
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Supplementary Materials: Revisiting Unsupervised Temporal
Action Localization: The Primacy of High-Quality Actionness and

Pseudolabels
Anonymous Authors

1 MORE METHOD DETAILS
1.1 Training Details
1.1.1 Overall Training Process. Compared to the conventional
"clustering and training" iterative process of UTAL methods, the
training pipeline of COPL simply includes the following three mod-
ifications: 1) replacing the class-agnostic attention with our HAS
attention for global video feature aggregation, 2) replacing the en-
tire pseudolabeled video set 𝑃𝑜 with our refined pseudolabeled
video set 𝑃 and unlabeled video set𝑈 , and 3) adopting our IOCNet,
which enhances the action awareness with multiple consistency
constraints, for model training. The whole training process is pre-
sented in Algorithm 1.

1.1.2 Data Augmentation Details. Our IOCNet follows a Teacher-
Student structure, wherein both the teacher and student networks
share an identical architecture. The student network is trained
using the refined pseudolabeled set 𝑃 and the unlabeled set 𝑈 ,
with the weights 𝜙 of the teacher model updated via Exponential
Moving Average (EMA) [7] from the corresponding weights 𝜙 ′ of
the student.

During the training, the RGB and optical flow features 𝑋𝑅 and
𝑋 𝐹 are fed into the IOCNet, while the teacher network receives
the original features and the student network receives the aug-
mented features. Specifically, we employ the temporal feature shift
technique [9] as our data augmentation method in IOCNet. This
technique involves selecting a certain proportion of channels and
then shifting half of them to the left and the other half to the right.
This channel mixing concept has also been utilized in other ap-
proaches such as [2, 10].

Note that our focus is not on designing novel data augmentation
techniques. Instead, we have chosen this specific augmentation ap-
proach to better leverage the information from the unlabeled video
set 𝑈 within the teacher-student framework, thereby improving
the IOCNet’s awareness of temporal actions.

1.2 Inference Details
In the inference stage, following our PLRI module, we obtain the
refined pseudolabeled video set 𝑃 that is grouped into𝐶 clusters. To
facilitate the evaluation of the unsupervised representation learning
ability of our COPL framework, we map each cluster to groundtruth
labels [1, 3, 11], allowing comparison of the mean Average Preci-
sion (mAP) metric with prior work including weakly supervised
methods.

Since we’ve established the correspondence between pseudola-
bels and groundtruth labels, we can adopt an inference process akin
to the WTAL method. Specifically, for a given test video, we com-
pute ℎ𝑐𝑠 as outlined in Eq. (14) and subsequently select the top-𝑇
instances with the highest scores. We then utilize 𝐶𝐴𝑆 to denote
the probability of each position corresponding to the occurrence of

Table A: Clustering performance comparison with SOTA
methods on THUMOS’14

Method Purity NMI ARI
TCAM [1] 0.780 0.811 0.612
APSL [3] - 0.821 0.639
COPL 0.870 0.867 0.742

actions in different categories. Following recent works [4, 6], each
selected instance’s position in 𝐶𝐴𝑆 represents the likelihood of the
snippet containing the corresponding action occurrence. We then
employ a series of thresholds to filter out snippets with probabili-
ties consistently greater than the threshold 𝜃 , forming consecutive
sequences as candidate proposals. Finally, we apply class-wise Non-
Maximum Suppression (NMS) [5] to eliminate proposals with high
overlap.

2 ADDITIONAL EXPERIMENTAL RESULTS
2.1 Clustering Performance Comparison
Table A presents the clustering results for all samples in THU-
MOS’14 using different methods during the final cycle, with purity,
Normalized Mutual Information Score (NMI), and Adjusted Rand
Index (ARI) serving as evaluation metrics. It is worth noting that
the UGCT method does not report its clustering performance and
has not made its code publicly available. Our reimplementation
falls significantly short of the published results for UGCT in terms
of localization performance; hence, we do not include a comparison
of its clustering results here.

As depicted in the table, our COPL consistently outperforms
TCAM and APSL across all metrics. The findings in Table 3 of our
paper have already validated that incorporating the HAS module
substantially enhances global video representations, thereby im-
proving clustering performance. The results in Table A further
underscore the pivotal role of PLRI and IOCNet in fortifying our
HAS module, leading to enhanced clustering performance.

2.2 Qualitative Analysis of PLRI Strategy
Fig. A illustrates the distributions of confidence scores 𝑠𝑖 for all
videos from the THUMOS’14 and ActivityNet v1.2 datasets across
iterations. As in Fig. A, varying confidence scores can be observed
among different videos. Consequently, upon setting a threshold 𝛿 ,
our PRLI strategy proves effective in filtering out pseudo-labeled
samples with low confidence, indicative of lower intra-cluster co-
hesion and inter-cluster separation, during the training process.
Furthermore, as the iterations progress, a noticeable upward trend
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Algorithm 1 Pipeline of our COPL framework
Input: Unlabeled video set 𝑉 ; Total action categories 𝐶;
Output: IOCNet model 𝜙 (𝜃 ; ·) with parameters 𝜃 ;
1: Initialize: the IOCNet 𝜙 (𝜃 ; ·); hyperparameters 𝛾 , 𝛼 , 𝛿 .
2: for 𝑋𝑖 𝑖𝑛 𝑉 do
3: Extract 𝑋𝑅 and 𝑋 𝐹 for 𝑋𝑖 with pre-trained extractors.
4: Feature concatenation: 𝑋 = [𝑋𝑅 ;𝑋 𝐹 ]
5: end
6: for 𝑛 𝑖𝑛 [1, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚] do
7: / ∗ The HAS module generates the global feature 𝐹 . ∗ /
8: for 𝑋𝑖 𝑖𝑛 𝑉 do
9: Obtain 𝐴𝐻𝐴𝑆 with 𝐴𝑐𝑠 and 𝐴𝑐𝑎 based on Eq. (1) to Eq. (4)
10: Obtain video global features for 𝑋𝑖 :

𝐹 = 𝐿2𝑁𝑜𝑟𝑚(𝑋𝑇𝐴𝐻𝐴𝑆 )
11: end
12: / ∗ The PLRI module for the refined pseudolabeled set 𝑃 and

unlabeled set𝑈 . ∗ /
13: Generate 𝑃𝑜 with spectral clustering:

𝑃𝑜 = {(𝑋𝑖 , 𝑦𝑖 ) |𝑋𝑖 ∈ 𝑉 } ←− 𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔(𝐹 )
14: for 𝑋𝑖 𝑖𝑛 𝑉 do
15: Compute intra-cluster cohesion 𝑎𝑖 and inter-cluster sepa-

ration 𝑏𝑖 with Eq. (6) and Eq. (7);
16: Compute confidence score: 𝑠𝑖 = 𝑎𝑖−𝑏𝑖

𝑚𝑎𝑥 (𝑎𝑖 ,𝑏𝑖 )
17: end
18: Split 𝑃𝑜 into𝑈 and 𝑃 based on Eq. (9) and Eq. (10);
19: / ∗ Training of IOCNet on 𝑃 and𝑈 . ∗ /
20: for𝑚 𝑖𝑛 [1, 𝑒𝑝𝑜𝑐ℎ_𝑛𝑢𝑚] do
21: Sample a mini-batch from𝑈 and 𝑃
22: Compute 𝐴𝑐𝑠 and 𝐴𝑐𝑎 for 𝑋𝑖 from IOCNet:

𝐴𝑐𝑠 , 𝐴𝑐𝑎 ←− 𝜙 (𝜃 ; (𝑋𝑅, 𝑋 𝐹 ))
23: Compute unsupervised loss on𝑈 :

𝐿𝑈 = 𝐿𝐶𝐼 + 𝜆1𝐿𝐶 + 𝜆2𝐿𝐶𝑂
24: Compute all loss on 𝑃 :

𝐿𝑃 = 𝐿𝑐𝑙𝑠 + 𝐿𝑎𝑠𝑙 + 𝐿𝐶𝐼 + 𝜆1𝐿𝐶 + 𝜆2𝐿𝐶𝑂
25: Update student network parameters 𝜃∗:

𝜃∗𝑡 = 𝜃∗𝑡−1 − 𝜂
𝜕(𝐿𝑈 + 𝐿𝑃 )

𝜕𝜃∗
𝑡−1

26: Update teacher network parameters 𝜃 via EMA:

𝜃𝑡 = 𝛾𝜃𝑡−1 + (1 − 𝛾)𝜃∗𝑡
27: Update attetion 𝐴𝐻𝐴𝑆 generated by HAS module:

𝐴𝐻𝐴𝑆 ←− 𝐻𝐴𝑆 (𝐴𝑐𝑠 , 𝐴𝑐𝑎)
28: end
29: end
30: return 𝜙 (𝜃 ; ·)

is observed in the overall confidence distribution. This trend signi-
fies the effective improvement of intra-cluster cohesion and inter-
cluster separation among all videos. This improvement is attributed
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Figure A: The statistical distribution of confidence scores for
𝑃𝑜 at iteration 0 and iteration 3, with binning at intervals of
0.01. Best viewed in color.

Table B: different 𝛿 in PLRI strategy.

Method 𝛿
THUMOS’14 ActivityNet v1.2
@0.5 @Avg @0.75 @Avg

w/o PLRI - 32.2 40.1 28.6 28.9

COPL

-0.10 32.3 40.6 28.5 29.2
-0.05 32.6 41.2 28.7 29.5
0 33.9 41.7 29.1 29.9

0.05 33.3 41.0 28.9 29.7
0.10 29.9 38.2 28.3 29.0

to the synergistic effect of our proposed modules, and it also indi-
cates that, over the iterations, the confidence levels of video samples
generally increase.

Additionally, we conducted experiments across a series of 𝛿
values in Table B. Combining those results with the confidence
distributions in Fig. A, we found that selecting an appropriate 𝛿
value to filter out the proportion of pseudolabeled videos is crucial.
When the filtering proportion is too low, the refined pseudolabeled
set still contains some noisy samples, which adversely affects the lo-
calization performance of the COPL framework. Conversely, when
the filtering proportion is too high, the available pseudolabeled
video samples for training become too few, the reduction in sample
quantity diminishes the localization performance.

2.3 Qualitative Analysis of HAS module
As illustrated in Fig. B, we employ t-SNE [8] to visualize video global
features of six action categories within the THUMOS’14 dataset. In
the figure, distinct colors represent different groundtruth action cat-
egories. A comparison between the t-SNE results with unfiltered at-
tention in Fig. 2(a) and our proposed HASmodule in Fig. 2(b) reveals
that our HAS module effectively generates improved attention for
video global features. For the same video snippet features, the HAS
attention enhances the intra-cluster cohesion and inter-cluster sep-
aration of video global features in the feature space, consequently
improving the precision of generated video-level pseudolabels.
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