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Abstract

Federated Class Incremental Learning (FCIL) aims to collaboratively process
continuously increasing incoming tasks across multiple clients. Among various
approaches, data replay has become a promising solution, which can alleviate
forgetting by reintroducing representative samples from previous tasks. However,
their performance is typically limited by class imbalance, both within the replay
buffer due to limited global awareness and between replayed and newly arrived
classes. To address this issue, we propose a class-wise balancing data replay
method for FCIL (FedCBDR), which employs a global coordination mechanism for
class-level memory construction and reweights the learning objective to alleviate
the aforementioned imbalances. Specifically, FedCBDR has two key components:
1) the global-perspective data replay module reconstructs global representations
of prior task in a privacy-preserving manner, which then guides a class-aware and
importance-sensitive sampling strategy to achieve balanced replay; 2) Subsequently,
to handle class imbalance across tasks, the task-aware temperature scaling module
adaptively adjusts the temperature of logits at both class and instance levels based
on task dynamics, which reduces the model’s overconfidence in majority classes
while enhancing its sensitivity to minority classes. Experimental results verified
that FedCBDR achieves balanced class-wise sampling under heterogeneous data
distributions and improves generalization under task imbalance between earlier
and recent tasks, yielding a 2%-15% Top-1 accuracy improvement over six state-
of-the-art methods.

1 Introduction

Federated learning (FL) is a distributed machine learning paradigm that enables collaborative training
of a shared global model across multiple data sources [1, 2, 3, 4, 5]. It periodically performs
parameter-level interaction between clients and the server instead of gathering clients’ data, which
can enhance data privacy while leveraging the diversity of distributed data sources to build a more
generalized global model [6, 7, 8, 9, 10, 11]. This mechanism makes it widely applicable to various
fields [12, 13, 14, 15, 16]. Building upon this foundation, Federated Class-Incremental Learning
(FCIL) extends FL by introducing dynamic data streams where clients sequentially encounter different
task classes under non-independent and identically distributed data [17, 18, 19, 20, 21]. However,
this amplifies the inherent complexities of FL, as the global model must integrate heterogeneous and
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Figure 1: Motivation of the FedCBDR. Traditional data replay strategies typically focus on local
information and, due to the lack of global awareness, often result in imbalanced class distributions
during replay. FedCBDR aims to explore global information in a privacy-preserving manner and
leverage it for sampling, which can alleviate the class imbalance problem.

evolving knowledge from clients while mitigating catastrophic forgetting, despite having no or only
limited access to historical data [22, 23, 24].

To address the challenge of catastrophic forgetting in FCIL, data replay has emerged as a promising
strategy for retaining knowledge from previous tasks. Existing replay-based methods can be broadly
categorized into two types: generative-based replay and exemplar-based replay. The former leverages
generative models to synthesize representative samples from historical tasks [23, 25, 26]. Its core
idea is to learn the data distribution of previous tasks and internalize knowledge in the form of model
parameters, enabling the indirect reconstruction of prior knowledge through sample generation when
needed [19, 27]. However, they often overlook the computational cost of training generative models
and are inherently constrained by the quality and fidelity of the synthesized data [23, 28, 29]. In
contrast, exemplar-based replay methods directly store real samples from previous tasks, avoiding the
complexity of generative processes while leveraging high-quality raw data to ensure robust retention
of prior knowledge [17, 28, 30, 31]. These methods rely on a limited set of historical samples to
maintain the decision boundaries of previously learned task classes. However, due to the lack of a
global perspective on data distribution across clients, these methods are prone to class-level imbalance
in replayed samples, which undermines the model’s ability to retain prior knowledge [30, 31].

To address these issues, this paper proposes a class-wise balancing data replay method for FCIL,
termed FedCBDR, which incorporates the global signal to regulate class-balanced memory construc-
tion, aiming to achieve distribution-aware replay and mitigate the challenges posed by non-IID
client data, as illustrated in Figure 1. Specifically, FedCBDR comprises two primary modules: 1)
the global-perspective data replay (GDR) module reconstructs a privacy-preserving pseudo global
representation of historical tasks by leveraging feature space decomposition, which enables effective
cross-client knowledge integration while preserving essential attributes information. Furthermore, it
introduces a principled importance-driven selection mechanism that enables class-balanced replay,
guided by a globally-informed understanding of data distribution; 2) the task-aware temperature
scaling (TTS) module introduces a multi-level dynamic confidence calibration strategy that combines
task-level temperature adjustment with instance-level weighting. By modulating the sharpness of the
softmax distribution, it balances the predictive confidence between majority and minority classes,
enhancing the model’s robustness to class imbalance between historical and current task samples.

Extensive experiments were conducted on three datasets with different levels of heterogeneity,
including performance comparisons, ablation studies, in-depth analysis, and case studies. The results
demonstrate that FedCBDR effectively balances the number of replayed samples across classes and
alleviates the long-tail problem. Compared to six state-of-the-art existing methods, FedCBDR achieves
a 2%-15% Top-1 accuracy improvement.

2 Related Work

2.1 Exemplar-based Replay Methods

In FCIL, exemplar-based replay methods aim to mitigate catastrophic forgetting by storing and
replaying a subset of samples from previous tasks. They typically maintain a small exemplar buffer
on each client, which is used during training alongside new task data to preserve knowledge of
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previously learned classes [17, 30, 31, 32, 33, 34]. For example, GLFC alleviates forgetting in
FCIL by leveraging local exemplar buffers for rehearsal, while introducing class-aware gradient
compensation and prototype-guided global coordination to jointly address local and global forgetting
[17]. Moreover, Re-Fed introduces a Personalized Informative Model to strategically identify and
replay task-relevant local samples, enhancing the efficiency of buffer usage and further reducing
forgetting in heterogeneous client environments [30]. However, the lack of global insight in local
sample selection often results in class imbalance, while the long-tailed distribution between replayed
and current data is frequently overlooked, degrading the effectiveness of data replay [30, 31].

2.2 Generative-based Replay Methods

Generative replay methods aim to reconstruct the samples of past tasks through techniques such as
generative modeling [19, 23, 27, 35, 36], which enables the model to revisit historical knowledge
to mitigate catastrophic forgetting. Following this line of thought, TARGET generates pseudo
features through a globally pre-trained encoder and performs knowledge distillation by aligning the
current model’s predictions with those of a frozen global model [27]; LANDER utilizes pre-trained
semantic text embeddings as anchors to synthesize meaningful pseudo samples, and distills knowledge
by aligning the model’s predictions with class prototypes derived from textual descriptions [19].
However, these methods are typically limited by the high computational cost of training generative
models and the suboptimal performance caused by low-fidelity pseudo samples [19, 27].

2.3 Knowledge Distillation-based Methods

Knowledge distillation-based methods generally follow two paradigms. The first focus om aligning
the output predictions of the current model with those of previous models, which aims to preserve
task-specific decision boundaries [37, 38, 39, 40, 41, 42, 43, 44, 45]. The second estimates the
importance of model parameters for previously learned tasks and performs regularization to prevent
forgetting [46, 47]. Both approaches avoid storing raw data but are prone to knowledge degradation
over time, especially as the number of tasks increases [37, 46].

3 Preliminaries

We consider a federated class-incremental learning (FCIL) setting, where a central server aims to
collaboratively train a global model with the assistance of K distributed clients. Each client k receives
a sequence of classification tasks {D(1)

k ,D(2)
k , . . . ,D(t)

k }, where each task introduces a disjoint set of
new classes. Upon the arrival of task t, the global model parameters θt are optimized to minimize
the average loss over the union of all samples seen so far, i.e., Dt =

⋃t
s=1

⋃K
k=1D

(s)
k , by solving

minθ
1

|Dt|
∑t

s=1

∑K
k=1

∑N
(s)
k

i=1 L(fk(x
(s)
k,i ; θ), y

(s)
k,i ).

In replay-based methods, each client maintains a memory buffer with a fixed budget of M samples.
When task t arrives, the client selects up to N representative samples from each of the previous
tasks {1, . . . , t − 1}, subject to the total memory constraint. The resulting memory set is denoted
by B(t−1)

k =
⋃t−1

s=1{(x
(s)
k,i , y

(s)
k,i )}Ni=1, where N is the number of samples stored per task and B(t−1)

k

satisfies |B(t−1)
k | ≤ M . The local training set on client k then becomes D(t)

k,train = D(t)
k ∪ B

(t−1)
k ,

combining current and replayed samples. Based on these local datasets, the server updates the global
model by minimizing the aggregated loss: minθ

∑K
k=1

∑
(x,y)∈D(t)

k,train

L(fk(x; θ), y).

4 Class-wise Balancing Data Replay for Federated Class-Incremental
Learning

This section presents an effective active data selection method for FCIL, which aims to explore global
data distribution to balance class-wise sampling. Moreover, it leverages temperature scaling to adjust
the logits, which can alleviate the imbalance between samples from previously learned and newly
introduced tasks. Figure 2 and Algorithm 1 illustrates the framework of the proposed FedCBDR.
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Figure 2: Illustration of the FedCBDR framework. It first trains local models using samples from
current and previous tasks. After a fixed number of communication rounds, each client extracts local
sample features using the global model and applies inverse singular value decomposition (ISVD) to
obtain pseudo features. The server then aggregates both local models and pseudo features, performs
SVD on the features, and selects representative samples based on leverage scores. The corresponding
sample indices are sent back to the clients for balanced replay.

4.1 Global-perspective Data Replay (GDR)

Due to privacy constraints, traditional data replay strategies typically rely on local data distributions.
However, the absence of global information often leads to class imbalance in the replay buffer. To
address this, the GDR module aggregates local informative features into a global pseudo feature set,
enabling exploration of the global distribution without exposing raw data.

Inspired by Singular Value Decomposition (SVD) [48, 49], we first generate a set of random orthogo-
nal matrices: a client-specific matrix P

(i)
k ∈ R|D(i)

k |×|D(i)
k | for each client k and task i, and a globally

shared matrix Q(i) ∈ Rd×d, where d denotes the dimension of the feature. Each client encrypts its
local feature matrix X

(i)
k = Mg(D(i)

k ) via Inverse Singular Value Decomposition (ISVD):

X
(i)′

k = P
(i)
k X

(i)
k Q(i), (1)

and uploads the encrypted matrix X
(i)′

k to the server, where Mg(·) is the feature extractor of the
global model. The server then aggregates all encrypted matrices into a global matrix X(i)′ :

X(i)′ = concat{X(i)′

k | k = 1, . . . ,K}, (2)

and performs SVD as follows:
X(i)′ = U (i)′Σ(i)′V (i)′⊤, (3)

where U (i)′ ∈ Rn×n, Σ(i)′ ∈ Rn×d, and V (i)′ ∈ Rd×d, with n denoting the total number of samples
from all clients. Next, the server extracts a submatrix of the left singular vectors for each client k by:

U
(i)
k = Ik(U (i)′) ∈ R|D(i)

k |×n, (4)

where Ik(·) denotes a row selection function that returns the indices corresponding to client k’s
samples. To quantify the importance of local samples within the global latent space, client k computes
a leverage score [50, 51, 52] for j-th sample of task i as:

τ i,jk = ∥e⊤i,jU
(i)
k ∥

2
2, (5)

where ei,j denotes the j-th standard basis vector in task i. Notably, a higher leverage score in-
dicates that the sample has a larger projection in the low-dimensional latent space, suggesting
that it contributes more significantly to the global structure and is more representative. More-
over, clients send their leverage scores to the server, which aggregates them into a global vector
τ i = concat{τ i,jk |k = 1, ...,K; j = 1, ..., ni

k} and normalizes it to obtain a sampling distribution:

pi,jk =
τ i,jk∑ni
k

j′=1 τ
i,j′

k

. (6)
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Algorithm 1 FEDCBDR

1: Initialize: R: number of communication rounds; K: number of clients; t: number of tasks; θg:
global model parameters; Bprek : replay buffer for historical tasks on client k; Ds

k: local data of
task s on client k.

2: for each task s = 1 to t do
3: for each communication round r = 1 to R do
4: for each client k = 1 to K do
5: Initialize local model parameters: θk ← θg
6: if s == 1 then
7: Sample a mini-batch ζ from D(1)

k , and update θk using Eq. 8.
8: else
9: Store the historical task data corresponding to globally sampled IDs into Bprek .

10: Sample a mini-batch ζ from D(s)
k ∪ B

pre
k , and update θk using Eq. 9.

11: Compute pseudo-features based on Eq. 1, and upload them to the server.
12: end if
13: end for
14: if r < R then
15: Aggregate local model parameters across clients.
16: else
17: Aggregate model parameters and pseudo-features from all clients using Eq. 2.
18: Perform Global Sampling based on Eqs. 3–6, and send the selected sample IDs back to

the corresponding clients.
19: end if
20: end for
21: end for
22: // Global Sampling Procedure
23: Form the global feature pool X(i) by aggregating all pseudo-features via Eq. (2).
24: Perform singular value decomposition (SVD) using Eq. 3 to extract key attributes.
25: Compute leverage scores for each client’s samples using Eqs. 4–5, and normalize globally using

Eq. 6.
26: Perform sampling and adjust the probabilities of the selected samples accordingly.

Subsequently, we perform i.i.d. sampling based on the distribution p = {pi,jk |k = 1, ...,K; j =
1, ..., ni

k}. Once a sample x is selected, its sampling weight is adjusted to 1√
ns·px

ex, where ns denotes
the number of selected samples and px is the original sampling probability of x, ex is the standard
basis vector of x. This adjustment ensures unbiased estimation during aggregation. Following the
sampling procedure, the server communicates the selected sample indices to their respective clients,
where the corresponding data points are subsequently marked for further use.

4.2 Task-aware Temperature Scaling (TTS)

Due to limited replay budgets, samples from previous tasks are often much fewer than those from the
current task, leading to class imbalance and poor retention of past knowledge. To mitigate this, the
TTS module dynamically adjusts sample temperature and weight based on task order, enhancing the
contribution of tail-class samples during optimization.

Specifically, we use a lower temperature to sharpen logits for samples from earlier tasks. Furthermore,
to further amplify the optimization effect of tail-class samples during training, we also leverage a
re-weighted cross-entropy loss, i.e.,

LTTS = 1
Nold

Nold∑
i=1

ωold · CE
(
yi,Softmax

(
Concat

(
zold
i

τold
,
znew
i

τnew

)))
+

1

Nnew

Nnew∑
j=1

ωnew · CE

(
yj ,Softmax

(
Concat

(
zold
j

τold
,
znew
j

τnew

)))
(7)

where Nold and Nnew denote the number of samples from the previous and newly arrived task,
respectively; yi and yj are the ground-truth labels; zold

i and znew
i denote the logits corresponding to

old classes and new classes, respectively; τold and τnew are the temperature scaling factors for previous
and newly arrived task samples; ωold and ωnew are the corresponding sample weights; CE(·) denotes
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Table 1: Statistics of the datasets used in experiments.

Datasets #Class #Training #Testing Image Size Federated Settings
Clients Tasks Heterogeneity

CIFAR10 10 50,000 10,000 32 × 32 5/10 3/5 0.5/1.0
CIFAR100 100 50,000 10,000 32 × 32 5/10 5/10 0.1/0.5/1.0
TinyImageNet 200 100,000 10,000 64 × 64 5/10 10/20 0.1/0.5/1.0

the cross-entropy loss function; and Softmax(z/τ) is the temperature-scaled softmax function used
to adjust the sharpness of the output distribution.

4.3 Training Strategy

The training strategy consists of two stages to progressively address the evolving challenges in
federated class-incremental learning. Algorithm 1 presents the pipeline of the FedCBDR.

Stage 1: Initial Task Optimization. In the first task, client k learns from local data using the
standard cross-entropy loss, i.e.,

min
θk

1

N

∑N
i=1CE(yi,Softmax(fθk(xi))), (8)

Stage 2: Class-Incremental Optimization. As new tasks arrive and class imbalance emerges
between previous and current tasks in client k, we employ LTTS to mitigate the imbalance, i.e.,

minθk
1

Nold

Nold∑
i=1

ωold · CE

(
yi,Softmax

(
Concat

(
f old
θk

(xi)

τold
,
f new
θk

(xi)

τnew

)))
+

1

Nnew

Nnew∑
j=1

ωnew · CE

(
yj ,Softmax

(
Concat

(
f old
θk

(xj)

τold
,
f new
θk

(xj)

τnew

)))
(9)

where xi is the input sample, yi is the corresponding ground-truth, f old
θk

(x) and f new
θk

(x) represent the
outputs of the model corresponding to old and new classes, respectively. Softmax(·) converts the
logits into a probability distribution.

5 Experiments

5.1 Experiment Settings

Datasets. Following existing studies [27, 30], we conducted all experiments on three commonly
used datasets, including CIFAR10 [53, 54], CIFAR100 [53, 54] and TinyImageNet [55] to validate
the effectiveness of the FedCBDR. We simulate heterogeneous data distributions across clients using
the Dirichlet distribution with parameters β = {0.1, 0.5, 1.0}, where smaller values of β correspond
to higher level of data heterogeneity. The statistical details are presented in the Table 1.

Evaluation Metric. Following prior studies [19, 56, 57, 58], we adopt Top-1 Accuracy as the
evaluation metric, defined as Accuracy = Ncorrect/Ntotal, where Ncorrect and Ntotal denote the number
of correct predictions and the total number of samples, respectively.

Implementation Details. In the experiments, the number of clients is fixed at K = 5, with each
client running local epochs E = 2 per round, using a batch size B = 128. For all datasets, we adopt
ResNet-18 as the backbone, with the classifier’s output dimension dynamically updated as tasks
progress and conduct T = 100 communication rounds per task. The SGD optimizer is employed
with a learning rate of 0.01 and a weight decay of 1× 10−5. The number of stored samples per task
varies by dataset and split setting: for CIFAR10, 450 samples are stored under 3-task splits and 300
under 5-task splits; for CIFAR100, 1,000 samples are used for 5-task splits and 500 for 10-task splits;
for TinyImageNet, 2,000 samples are stored for 10-task splits and 1,000 for 20-task splits. For the
temperature and weighted parameters, we select τold ∈ {0.8, 0.9} and wold ∈ {1.1, 1.2, 1.3, 1.4}
for previous tasks, while τnew ∈ {1.1, 1.2} and wnew ∈ {0.7, 0.8, 0.9} are used for newly arrived
tasks. Moreover, the hyperparameters of baselines are tuned based on their original papers for fair
comparison. And training on each client is performed using an NVIDIA RTX 3090 GPU (24 GB).
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Table 2: Performance comparison between FedCBDR and baselines across three datasets under
varying levels of heterogeneity (β). CIFAR10 is divided into 3 tasks, CIFAR100 into 5 tasks, and
TinyImageNet into 10 tasks. All methods were executed under three different random seeds, and both
the mean and standard deviation of the results are reported. The best results are bolded.

Method CIFAR10 CIFAR100 TinyImageNet
β=0.5 β=1.0 β=0.1 β=0.5 β=1.0 β=0.1 β=0.5 β=1.0

Finetune 38.71±3.7 40.49±3.0 15.17±2.2 16.75±2.6 17.15±1.3 6.06±0.9 6.00±0.8 6.40±0.5

FedEWC 39.93±1.1 42.70±2.5 18.30±2.4 20.70±5.3 21.22±3.4 6.30±0.8 6.94±0.7 7.36±0.6

FedLwF 56.03±1.6 58.29±3.6 33.97±2.6 37.09±3.1 41.91±2.5 11.81±0.9 11.47±1.0 14.87±1.2

TARGET 44.17±4.4 54.49±4.5 30.15±3.6 33.47±4.3 35.25±2.0 10.71±1.4 10.18±0.9 12.49±1.1

LANDER 53.90±3.2 60.79±1.4 44.07±3.3 47.63±3.7 52.77±1.4 13.80±0.8 15.02±1.9 16.36±1.0

Re-Fed 53.46±3.5 60.73±4.3 32.67±3.7 38.42±2.9 45.28±2.6 15.73±1.7 15.93±1.3 16.05±1.1

FedCBDR 64.11±1.2 65.20±1.9 46.40±1.6 49.76±2.7 52.06±1.5 18.37±1.1 18.86±0.9 18.78±0.9

Table 3: Performance comparison between FedCBDR and baselines across three datasets under
varying levels of heterogeneity (β). CIFAR10 is divided into 5 tasks, CIFAR100 into 10 tasks, and
TinyImageNet into 20 tasks. All methods were executed under three different random seeds, and both
the mean and standard deviation of the results are reported. The best results are bolded.

Method CIFAR10 CIFAR100 TinyImageNet
β=0.5 β=1.0 β=0.1 β=0.5 β=1.0 β=0.1 β=0.5 β=1.0

Finetune 19.78±2.3 23.34±2.8 7.22±1.1 9.39±0.7 9.64±0.5 3.40±0.4 3.73±0.5 3.95±0.3

FedEWC 20.11±2.7 28.97±2.3 8.08±0.3 11.69±0.7 12.19±1.7 3.50±0.3 4.58±0.4 5.08±0.9

FedLwF 38.76±2.3 52.95±3.1 18.73±1.1 25.30±0.6 28.21±1.0 3.67±0.4 6.61±0.6 10.22±1.3

TARGET 35.27±1.7 48.28±1.2 13.61±0.8 21.09±0.4 24.22±1.1 5.32±0.6 5.39±0.6 5.72±0.5

LANDER 40.22±2.4 58.07±3.4 27.79±1.9 33.51±2.3 37.42±1.8 8.89±0.6 8.57±0.8 10.45±0.6

Re-Fed 54.94±3.1 58.19±2.5 29.33±1.3 39.54±1.3 40.96±1.1 9.36±0.9 11.44±0.7 12.27±1.1

FedCBDR 61.18±1.3 65.42±1.8 45.11±1.2 46.51±1.6 47.79±1.4 12.58±0.4 14.47±0.7 15.69±0.6

5.2 Performance Comparison

To evaluate the effectiveness of the proposed FedCBDR, we compare it with six representative baseline
methods: Finetune [19], FedEWC [46], FedLwF [37], TARGET [27], LANDER [19], and Re-Fed
[30]. As reported in Table 2 and Table 3, the results can be summarized as follows:

• FedCBDR achieves the highest Top-1 accuracy in most cases across the three datasets under varying
levels of heterogeneity and task splits. The only suboptimal result occurs on CIFAR100 with 5 tasks
and β = 1.0, where FedCBDR (52.06%) performs slightly worse than LANDER (52.77%). This
demonstrates the adaptability and robustness of the proposed FedCBDR across complex settings.

• Despite LANDER attains the best performance on CIFAR100 under the 5-task and β = 1.0 setting,
it demands the generation of more than 10,000 samples per task, and the overhead of training its
data generator surpasses that of the federated model, raising concerns about its scalability.

• Knowledge distillation-based methods like FedLwF perform well on simpler tasks (CIFAR10) by
using pretrained knowledge to guide local models. However, their performance drops on more
complex or heterogeneous tasks due to limited adaptability to local variations.

• Given an equal memory budget, class-balanced sampling (FedCBDR) consistently achieves supe-
rior performance compared to class-imbalanced strategy (Re-Fed), as it ensures more equitable
representation across categories and effectively mitigates class-level forgetting in FCIL scenarios.

5.3 Ablation Study

In this section, we conducted an ablation study to investigate the contributions of key modules,
including the Global-perspective Active Data Replay (GDR) module and the Task-aware Temperature
Scaling (TTS) module. Table 4 presents the results, which can be summarized as follows:
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Table 4: Ablation results under different levels of data heterogeneity and task splitting settings.
“3/5/10” denotes CIFAR10 with 3 tasks, CIFAR100 with 5 tasks, and TinyImageNet with 10 tasks;
“5/10/20” represents 5, 10, and 20 tasks respectively.

Task
Splitting Method CIFAR10 CIFAR100 TinyImageNet

β=0.5 β=1.0 β=0.1 β=0.5 β=1.0 β=0.1 β=0.5 β=1.0

3/5/10

Finetune 38.71±3.7 40.49±3.0 15.17±2.2 16.75±2.6 17.15±1.3 6.06±0.9 6.00±0.8 6.40±0.5

+GDR 62.13±2.1 63.81±1.9 45.28±1.5 47.66±0.9 51.47±1.7 17.24±0.6 17.89±0.5 18.04±0.4

+TTS 41.34±2.3 42.55±2.2 17.32±0.5 17.14±0.4 19.32±0.5 6.67±0.2 6.92±0.3 7.27±0.4

+GDR+TTS 64.11±1.2 65.20±1.9 46.40±1.6 49.76±2.7 52.06±1.5 18.37±1.1 18.86±0.9 18.78±0.9

5/10/20

Finetune 19.78±2.3 23.34±2.8 7.22±1.1 9.39±0.7 9.64±0.5 3.40±0.4 3.73±0.5 3.95±0.3

+GDR 59.34±3.1 63.20±2.6 44.04±1.3 46.33±0.5 46.50±0.8 11.44±0.3 13.85±0.5 14.51±0.6

+TTS 22.43±2.4 25.81±2.1 8.31±0.2 10.21±0.3 10.33±0.4 3.78±0.5 4.04±0.4 4.16±0.3

+GDR+TTS 61.18±1.3 65.42±1.8 45.11±1.2 46.51±1.6 47.79±1.4 12.58±0.4 14.47±0.7 15.69±0.6

• Incorporating the GDR module substantially improves performance across all cases, particularly
under high data heterogeneity (β = 0.1), demonstrating its effectiveness in alleviating catastrophic
forgetting even with a limited number of replay samples in federated class-incremental learning.

• Using the TTS module alone leads to consistent improvements over Finetune, highlighting its
effectiveness in addressing intra-client class imbalance through temperature scaling. This contri-
bution to better generalization is particularly evident under the more challenging "5/10/20" task
splitting scenario.

• The integration of both modules results in the best overall performance, consistently achieving
the highest Top-1 accuracy across various datasets and heterogeneity levels. This stems from their
complementary strengths: the GDR module mitigates inter-task forgetting, while the TTS module
alleviates both intra- and inter-client class imbalance.

5.4 Performance Evaluation of FedCBDR under Incremental Tasks

Figure 3: Performance comparison of all methods across varying task splits on CIFAR10 (3/5 tasks),
CIFAR100 (5/10 tasks), and TinyImageNet (10/20 tasks) with β = 0.5.

This section investigates the performance of FedCBDR and the baselines in incremental cases on
three datasets. Figure 3 presents the average accuracy of all methods on both current and previous
tasks. Notably, FedCBDR consistently outperforms other baseline methods across all task splits, with
its accuracy curves remaining higher throughout the incremental process. Furthermore, FedCBDR
exhibits a slower performance degradation as the number of tasks increases, indicating stronger
resistance to catastrophic forgetting. In addition, it maintains significantly higher accuracy on
later tasks, especially in challenging settings such as CIFAR100 and TinyImageNet with 10 tasks,
highlighting its ability to balance knowledge retention and adaptation to new classes.

5.5 Quantitative Analysis of Replay Buffer Size on Test Accuracy

In this section, we evaluate the performance of Re-Fed and FedCBDR under different buffer size M
settings, and additionally include LANDER, which generates 10,240 synthetic samples for each task.
As shown in Table 5, FedCBDR exhibits more significant performance advantages over Re-Fed under
limited memory settings, and even surpasses LANDER, which relies on a large-scale generative replay
buffer. Furthermore, as the buffer size increases, FedCBDR demonstrates more stable and significant
performance improvements. This indicates that the method can effectively leverage larger replay
buffers for continuous optimization. However, Re-Fed exhibits noticeable performance fluctuations
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Table 5: Comparison of model performance with varying memory size M across datasets.

Methods CIFAR10 CIFAR100 TinyImageNet
M=150 M=300 M=450 M=500 M=1000 M=1500 M=2000 M=2500

LANDER (10240) 52.90 47.05 14.77
Re-Fed 47.23 53.47 54.66 33.89 38.42 47.84 15.89 16.78
FedCBDR 51.99 59.02 63.81 40.12 49.66 55.94 18.33 19.41

under small and medium buffer settings. In particular, its accuracy is significantly lower than that of
FedCBDR on CIFAR100 with M = 500 and TinyImageNet with M = 2000, indicating its limited
ability to mitigate inter-class interference and retain knowledge from previous tasks. These findings
validate that, under the same buffer budget, a balanced sampling distribution is more effective than an
imbalanced one in alleviating forgetting and improving overall model performance.

5.6 Sensitivity Analysis of FedCBDR on Temperature and Weighted Hyperparameters

𝜏𝑜𝑙𝑑 𝜏𝑛𝑒𝑤𝑤𝑜𝑙𝑑 𝑤𝑛𝑒𝑤

Figure 4: Performance of FedCBDR on CIFAR100 (β = 0.5, 5-task split) under varying temperature
(τold ∈ {0.5, 0.7, 0.9}, τnew ∈ {1.1, 1.5, 2.0}) and weighted (wold ∈ {1.1, 1.5, 2.0}, wnew ∈
{0.5, 0.7, 0.9}) settings.

Figure 4 gives a sensitivity analysis of FedCBDR with respect to temperature and sample weighting
hyperparameters. Overall, temperature scaling and sample re-weighting help mitigate class imbalance,
but model performance varies considerably with different hyperparameter settings. The model
achieves better overall performance when ωold = 1.1, ωnew = 0.9, τold = 0.9, and τnew = 1.1. This is
because slightly higher weight and temperature for previous-task samples help retain old knowledge,
while lower weight and higher temperature for newly arrived samples reduce overfitting and improve
adaptation. However, inappropriate hyperparameter choices may harm performance. For instance, a
large τnew (e.g., 2.0) leads to overly smooth predictions, reducing discrimination among newly arrived
classes. These results emphasize the need for proper tuning to ensure balanced learning.

5.7 Comparison of Per-Class Sample Distributions in the Replay Buffer

Average

Figure 5: Comparison of per-class sample distributions in the replay buffer between FedCBDR and
Re-Fed on the CIFAR100 dataset, under a heterogeneity level of β = 0.5 and a 5-task split case.

To evaluate the effectiveness of FedCBDR in balancing class-wise sampling, Figure 5 illustrates the
per-class sample distributions in the replay buffer between FedCBDR and Re-Fed across different
task stages. Overall, across different task stages, FedCBDR (orange bars) exhibits a per-class sample
distribution that is consistently closer to the average level (red line), whereas Re-Fed shows noticeable
skewness and fluctuations. This indicates that FedCBDR is more effective in achieving balanced
class-wise sampling in the replay buffer. In addition, FedCBDR ensures that no class is overlooked
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during sampling, while Re-Fed may fail to retain certain classes in the replay buffer—for example,
class 79 is missing in Task 4 under Re-Fed. This highlights the robustness of FedCBDR in maintaining
class coverage throughout incremental learning.

5.8 Visualization of Model Attention and Temperature-aware Logits Adjustment
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Figure 6: Case studies of model attention and the effect of temperature-aware logits adjustment on
CIFAR10 (β = 0.5, 3-task split).

This section presents case studies comparing prediction confidence and attention focus using Grad-
CAM [59, 60, 61, 62, 63] visualizations. As shown in Figure 6(a-c), in the absence of data replay,
the model struggles to correctly classify samples from previous tasks and fails to attend to the
relevant target regions. The incorporation of data replay in FedCBDR alleviates this issue by correcting
predictions and guiding attention back to semantically important areas. Despite partially mitigating
forgetting, data replay alone may still lead to misclassification or low-confidence predictions for tail
classes with limited samples. The integration of temperature scaling (T) and sample re-weighting
(W) in the TTS module enables the model to better distinguish confusing classes through temperature
adjustment, improving tail class accuracy and enhancing prediction stability, as depicted in Figure
6(d-f). These findings demonstrate the crucial role of the collaboration between both modules in
mitigating knowledge forgetting during incremental learning.

6 Conclusions and Future Work

To address the challenge of inter-class imbalance in replay-based federated class-incremental learning,
we propose FedCBDR that combines class-balanced sampling with loss adjustment to better exploit
the global data distribution and enhance the contribution of tail-class samples to model optimization.
Specifically, it uses SVD to decouple and reconstruct local data, aggregates local information in
a privacy-preserving manner, and explores i.i.d. sampling within the aggregated distribution. In
addition, it applies task-aware temperature scaling and sample re-weighting to mitigate the long-tail
problem. Experimental results show that FedCBDR effectively reduces inter-class sampling imbalance
and significantly improves final performance.

Despite the impressive performance of FedCBDR, there remain several directions worth exploring to
address its limitations. Specifically, we plan to investigate lightweight sampling strategies to reduce
feature transmission costs in FedCBDR, and to develop more robust post-sampling balancing methods
that mitigate class imbalance with less sensitivity to hyperparameters [64, 65, 66, 67]. Moreover,
extending FedCBDR to more complex scenarios [68, 69, 70, 71, 72] is a promising direction.
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A Appendix

A.1 Experimental Results

A.1.1 Performance Comparison

To thoroughly verify the effectiveness of the proposed FedCBDR, we compare its performance against
various baselines under the setting of 10 clients. Based on the original implementations, we generate
10,240 synthetic samples per task for both TARGET and LANDER. The data replay configurations
for Re-Fed and FedCBDR follow the settings outlined in Section 5.1. The results are presented in
Tables 6 and 7. Consistent with the results shown in Tables 2 and 3, FedCBDR achieves the best
performance across all cases. Notably, FedCBDR achieves over a 10% gain compared to the
second-best performing method in several settings.

Table 6: Performance comparison between FedCBDR and baseline methods across CIFAR-10, CIFAR-
100, and TinyImageNet under varying levels of data heterogeneity (Dirichlet parameter β). Specifi-
cally, CIFAR-10 is split into 3 tasks, CIFAR-100 into 5 tasks, and TinyImageNet into 10 tasks. The
number of clients is fixed at 10, and all experiments are conducted with a random seed of 2023 to
ensure reproducibility. The best results are bolded.

Method CIFAR10 CIFAR100 TinyImageNet
β=0.5 β=1.0 β=0.1 β=0.5 β=1.0 β=0.1 β=0.5 β=1.0

FedEWC 36.40 42.00 15.19 18.66 19.50 6.19 7.23 7.78
FedLwF 48.24 49.11 27.02 37.92 41.77 10.67 13.02 14.73
TARGET 38.23 41.11 18.34 23.59 25.71 7.45 8.29 8.87
LANDER 41.54 45.52 30.83 43.69 47.29 12.33 15.18 15.64

Re-Fed 45.49 52.22 31.81 36.40 37.95 9.28 11.48 12.10
FedCBDR 59.80 62.59 42.25 47.90 48.55 14.81 16.54 17.43

Table 7: Performance comparison between FedCBDR and baseline methods across CIFAR-10, CIFAR-
100, and TinyImageNet under varying levels of data heterogeneity (Dirichlet parameter β). Specifi-
cally, CIFAR-10 is split into 5 tasks, CIFAR-100 into 10 tasks, and TinyImageNet into 20 tasks. The
number of clients is fixed at 10, and all experiments are conducted with a random seed of 2023 to
ensure reproducibility. The best results are bolded.

Method CIFAR10 CIFAR100 TinyImageNet
β=0.5 β=1.0 β=0.1 β=0.5 β=1 β=0.1 β=0.5 β=1.0

FedEWC 20.18 23.33 6.68 10.98 12.30 3.27 4.80 4.89
FedLwF 43.31 46.79 13.82 17.79 27.80 4.50 5.71 9.07
TARGET 21.60 28.39 12.11 16.64 17.14 3.45 4.88 5.01
LANDER 27.24 32.21 10.74 25.87 31.79 4.74 12.05 13.21

Re-Fed 38.28 39.22 28.08 33.52 37.27 7.95 8.53 10.13
FedCBDR 51.71 59.57 37.42 43.82 45.50 11.51 14.45 15.25

A.1.2 Performance Evaluation of FedCBDR under Incremental Tasks

We evaluate the performance evolution of FedCBDR and competing methods under a 10-client setting
across incremental tasks on three benchmark datasets. Specifically, CIFAR-10 is split into 3 tasks
(β = {0.5, 1.0}), CIFAR-100 into 5 tasks (β = {0.1, 0.5, 1.0}), and TinyImageNet into 10 tasks
(β = {0.1, 0.5, 1.0}). As shown in Figure 7, FedCBDR consistently outperforms all baseline
methods across incremental tasks, maintaining higher accuracy on both current and previous
tasks throughout the training process. Moreover, its performance degrades more slowly as the
number of tasks increases.
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Figure 7: Comparison of per-class sample distributions in the replay buffer between FedCBDR and
Re-Fed on the CIFAR100 dataset, conducted under a heterogeneity level of β = 0.5, with a 10-task
split and 5 clients.

A.1.3 Comparison of Per-Class Sample Distributions in the Replay Buffer

We further validate the capability of the proposed FedCBDR to balance per-class sample distributions
in more complex scenarios. Specifically, we divide the CIFAR100 dataset into 10 tasks. As illustrated
in Figure 8, Re-Fed exhibits substantial disparities in the number of replayed samples across classes.
For example, in task 1, while classes 10 and 18 contain nearly 100 samples each, class 11 has fewer
than 10. In contrast, FedCBDR effectively alleviates such class imbalance, with the number of
replayed samples for all classes remaining consistently close to the average (as marked by the
red line). This contributes to more stable knowledge retention across tasks and enhances overall
model generalization.

A.1.4 Quantitative Analysis of Replay Buffer Size on Test Accuracy

Table 8: Comparison of model performance with varying replay budget M per task across datasets,
with the number of clients fixed at 10, and heterogeneity level β = 0.5.

Methods CIFAR10 CIFAR100
M=150 M=300 M=450 M=500 M=1000 M=1500

Re-Fed 39.22 42.93 45.49 28.21 36.40 41.78
FedCBDR 48.15 54.62 59.80 38.34 47.90 51.14

We compare the performance of the data replay-based methods, Re-Fed and FedCBDR, under varying
replay buffer budgets. Specifically, for CIFAR10, the buffer size is adjusted among {150, 300, 450},
while for CIFAR100, it ranges from {500, 1000, 1500}. The number of clients is set to 10, and
heterogeneity level β = 0.5. As shown in Table 8, the performance of both methods improves as
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Figure 8: Comparison of per-class sample distributions in the replay buffer between FedCBDR and
Re-Fed on the CIFAR100 dataset, conducted under a heterogeneity level of β = 0.5, with a 10-task
split and 5 clients.

the buffer size increases, with FedCBDR maintaining a clear advantage over Re-Fed under all
settings. This also underscores the importance of balancing per-class sample counts in the replay
buffer to ensure fair representation and stable performance.

A.1.5 Evaluation on the Impact of Local Training Epochs

To assess the impact of local training intensity, we compare the performance of LANDER, Re-Fed,
and FedCBDR, under varying local training epoch settings. Specifically, the evaluation is conducted
on CIFAR10 divided into 3 tasks and CIFAR100 divided into 5 tasks, under a federated setting with
10 clients and a heterogeneity level of β = 0.5. As shown in Figure 9, both GDR and GDR+TTS
consistently outperform the baseline methods (LANDER and Re-Fed) across all local training
epoch settings on both CIFAR10 and CIFAR100. Moreover, GDR+TTS achieves the highest
test accuracy in every configuration. The improvement brought by TTS highlights its necessity
in alleviating class imbalance during local training. And, unlike other methods whose performance
drops at 10 local epochs due to biased updates, GDR+TTS demonstrates a sustained improvement
potential.

A.1.6 Performance Assessment of the Final Model Across Tasks

This section compares the final model performance of different methods (LANDER, Re-Fed,
FedCBDR) across various tasks. Specifically, all experiments are conducted under a federated setting
with 5 clients and a heterogeneity level of β = 0.5. CIFAR10 is split into 3 tasks and CIFAR100
into 5 tasks. Each task is trained for 50 communication rounds, with each client performing 2 local
training epochs per round using a batch size of 128. For sample replay, LANDER synthesizes 10,240
samples per task, while Re-Fed and FedCBDR retain 150 and 1,000 real samples per task on CIFAR10
and CIFAR100, respectively. As shown in Table 9, LANDER suffers from significant forgetting of
earlier tasks, as evidenced by its low accuracy of only 1.37% on Task 1 of CIFAR10. This indicates
a severe inability to retain prior knowledge. Moreover, LANDER also shows a noticeable decline
in performance on the last task, achieving only 57.00% on Task 5 of CIFAR100, suggesting that its
generalization to new tasks is also limited under non-i.i.d. conditions. Compared to LANDER and
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Figure 9: Comparison of the final performance of the LANDER, Re-Fed, GDR, and GDR+TTS
methods under different numbers of local training epochs. GDR and TTS are the two functional
modules proposed in this work, and GDR+TTS=FedCBDR.

Re-Fed, GDR significantly enhances the retention of knowledge from most early tasks. This
demonstrates the advantage of balanced sample replay over imbalanced sampling. In particular,
GDR+TTS outperforms GDR alone, highlighting the effectiveness of the proposed TTS module
in mitigating class imbalance and supporting long-term knowledge preservation under non-i.i.d.
settings.

Table 9: Per-task and average accuracy (%) of different methods on CIFAR10 and CIFAR100.
CIFAR10 CIFAR100

Task 1 Task 2 Task 3 ALL Task 1 Task 2 Task 3 Task 4 Task 5 ALL
LANDER 1.37 30.00 88.32 44.74 33.95 40.90 43.70 44.45 57.00 44.00
Re-Fed 14.20 18.33 95.88 44.28 23.40 22.00 21.10 34.10 81.70 36.46
GDR 17.07 19.00 96.10 49.26 40.40 37.90 39.25 47.50 80.45 49.10
GDR+TTS 21.43 21.46 96.08 51.30 41.45 38.05 38.50 48.55 81.40 49.59

A.1.7 Scalability, Complexity, and Communication Efficiency

We have conducted additional large-scale experiments by extending the number of clients to 50/100
while simulating asynchronous participation, and the client sampling rate is set to 0.2. The dataset is
divided into five tasks, and in Re-Fed and FedCBDR, the number of replay samples is set to 150/300
for CIFAR-10 and 500/1000 for CIFAR-100.The following results can be summarized:

Table 10: Comparison of continual federated learning methods with 50 clients on CIFAR10 and
CIFAR100 under different Dirichlet data partitions (α).

50 Clients CIFAR10 CIFAR100

α = 0.5 α = 1.0 α = 0.5 α = 1.0

FedLwF 17.51 19.43 19.99 23.91
LANDER 18.08 21.27 26.96 27.34
Re-Fed (300/500) 29.65 32.45 27.12 28.86
FedCBDR (300/500) 34.76 35.98 28.75 30.90
Re-Fed (600/1000) 36.40 38.46 35.94 37.79
FedCBDR (600/1000) 41.33 45.31 38.54 39.69

18



Table 11: Computation and communication analysis on CIFAR10 and CIFAR100 datasets. Top:
computation overhead per client; Bottom: communication cost per round.

Dataset #Clients
(K)

Samples/
Client (nk)

Feature
Dim (d)

ISVD
Time/Client
(s)

Feature Extrac-
tion Time/Client
(s)

Total Extra
Time/Client (s)

CIFAR10 5 2000 512 0.00580 0.9083 0.9141
CIFAR100 5 2000 512 0.00452 1.0250 1.2952

Dataset #Clients
(K)

Samples/
Client (nk)

Feature
Dim (d)

Upload/Client
(MB)

Total Upload per
Round (MB)

Index Down-
load (KB)

CIFAR10 10 100 512 3.906 19.53 39.06
CIFAR10 10 100 128 0.9765 4.8825 39.06
CIFAR10 10 100 32 0.2441 1.2206 39.06

Moreover, we have further clarified the computational complexity of the SVD step. Client-side ISVD
costs O(nkd

2) per client, while server-side SVD costs O(Nd2), where N =
∑

k nk is the total
number of pseudo-features.

We also provide a summary of the additional training cost on clients, the communication overhead,
and the server-side computation incurred by our method in comparison to FedAvg. Overall, the
additional cost of performing SVD and computing leverage scores is relatively small.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The research problem and the main contributions of this study are clearly
articulated in the abstract and introduction sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The conclusion and future work section include a discussion of the study’s
limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This paper does not involve theoretical assumptions

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper provides a detailed description of the experimental setup, including
the parameter tuning ranges, and the code will be made available as supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code will be made available as supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental setup is clearly detailed in both the main experimental
section and the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: This paper reports the mean and standard deviation over multiple runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computational resources utilized are described in the experimental imple-
mentation details section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work fully adheres to the NeurIPS Code of Ethics in all aspects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The introduction highlights the significance of multi-source collaborative
modeling.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The ResNet model and datasets used in this study are all open-source.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All relevant works are properly cited, and all open-source assets are used in
accordance with their licensing terms.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: An anonymized version of the code developed in this study is included in the
supplementary materials to ensure reproducibility.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were used only for grammar correction and refinement.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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