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GeNSeg-Net: A General Segmentation Framework for Any
Nucleus in Immunohistochemistry Images

Anonymous Authors

ABSTRACT
Immunohistochemistry (IHC) plays a crucial role in understanding
disease mechanisms, diagnosing pathology and guiding treatment
decisions. The precise analysis heavily depends on accurate nucleus
segmentation. However, segmentation is challenging due to signifi-
cant inter- and intra-nucleus variability in morphology and distribu-
tion, stemming from inherent characteristics, imaging techniques,
tissue differences and other factors. While current deep learning-
based methods have shown promising results, their generalization
performance is limited, inevitably requiring specific training data.
To address the problem, we propose a novel General framework for
Nucleus Segmentation in IHC images (GeNSeg-Net). GeNSeg-Net
effectively segments nuclei across diverse tissue types and imaging
techniques with high variability using a small subset for training.
It comprises an enhancement model and a segmentation model.
Initially, all nuclei are enhanced to a uniform morphology with
distinct features by the enhancement model through generation.
The subsequent segmentation task is thereby simplified, leading to
higher accuracy. We design a lightweight generator and discrim-
inator to improve both enhancement quality and computational
efficiency. Extensive experiments demonstrate the effectiveness of
each component within GeNSeg-Net. Compared to existing meth-
ods, GeNSeg-Net achieves state-of-the-art (SOTA) segmentation
accuracy and generalization performance on both private and pub-
lic datasets, while maintaining highly competitive processing speed.
Code will be available for research and clinical purposes.

CCS CONCEPTS
• Computing methodologies→ Image representations; • Ap-
plied computing→ Health informatics.

KEYWORDS
immunohistochemistry images; nucleus segmentation; generative
adversarial network

1 INTRODUCTION
Immunohistochemistry (IHC) staining employs the specificity of
antigen-antibody reactions to visualize specific protein expression
within tissues or cells. Its high specificity and sensitivity, along with
the ability for multi-target quantification and localization, have con-
tributed to its growing popularity [2, 12, 35, 37]. It encompasses
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Figure 1: The diagram of our method. The left two columns
display IHC images, each sourced from a different tissue type.
B1, B2, B3 and B4 are brightfield images, while those prefixed
with "F" are fluorescence images. The image generated by
enhancement model exemplifies the "ideal" nuclei charac-
terized by clear centers, solid filling and well-defined edges.
Best viewed with zoom-in.

two major imaging techniques: brightfield and fluorescence. Ac-
curate nucleus segmentation in IHC images, involving detection
and delineation of each nucleus, is vital for disease diagnosis and
treatment [4]. For instance, the classification and grading of can-
cers heavily rely on the rich spatial and morphological information
of nuclei [25]. Manual nucleus segmentation is time-consuming,
which means the increasing need for automated segmentation.

Automated nucleus segmentation remains challenging due to
the inherent characteristics of nuclei, i.e., high density and adhesive
edges, as depicted in Fig. 1, resulting in under- or over-segmentation.
Furthermore, complex factors such as variable shapes and sizes,
blurred edges, overlapping cell clusters, uneven staining and imag-
ing condition variations lead to high error rates [11]. A large number
of traditional and deep learning-based methods have been proposed
to address above problems [5, 9, 15, 23, 27, 34]. In IHC images, there
are different imaging techniques, i.e., brightfield and fluorescence,
and significant morphological variations originating from diverse
tissues. Existing methods often struggle with generalization abil-
ity. They exhibit poor performance on nucleus segmentation for
tissue types not included in the training data. Since encompass-
ing all morphological variations during training is impractical, our
aim is to conduct a pilot study to develop a general framework
for nucleus segmentation in IHC images. By training on several
tissue types captured via brightfield and fluorescence imaging, the
method achieves accurate nucleus segmentation for various types,
regardless of their presence during training.

Fig. 1 showcases significant variations in nucleus morphology
across diverse tissue types in both IHC brightfield and fluorescence
images. For instance, in brightfield images, nuclei in image B1
exhibit a solid texture while those in B4 display a hollow texture.
Nuclei in B4 are relatively regular ellipses, whereas those in B1,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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B2 and B3 show irregular shapes. Hence, we ponder: Is it possible
to minimize these morphological variations arising from various
factors mentioned before? If so, the subsequent segmentation task
is simplified when dealing with nuclei of uniform morphology. This
leads to higher segmentation accuracy across various tissue types,
thereby improving the method’s generalization performance.

In this paper, we propose a novel two-stage method as illustrated
in Fig. 1. It deviates from the common approach of existing two-
stage methods [1, 10, 16], which involves initial nucleus detection
followed by precise segmentation. Inspired by the advancements
in Artificial Intelligence Generated Content (AIGC) [6, 45], nuclei
of various tissue types and imaging techniques are enhanced to
an "ideal" morphology characterized by clear centers, solid filling
and well-defined edges through generation in enhancement model.
Subsequently, the nuclei with distinct features in texture and edges
are input into the segmentation model to obtain precise contours.
In contrast to existing one-stage [9, 15, 33] and two-stage [1, 10, 16]
deep learning methods with task-specific network designs, a classic
image-to-image translation generative adversarial network (GAN)
[14] performs enhancement alongside a conventional network for
segmentation. Since two-stage methods which are not designed to
be end-to-end increase complexity to the entire framework [9], we
develop a lightweight generator and discriminator based on ResNet
and transformer [38], respectively, to improve both enhancement
quality and computational efficiency.

The main contributions of this paper are as follows:
• This paper is the pioneering study on the general framework
for nucleus segmentation in IHC images, with a focus on high
generalization ability.We aim to accurately segment nuclei across
various tissue types in both brightfield and fluorescence images
by training on a small subset of types.

• We propose a novel two-stage method, GeNSeg-Net, which first
enhances nuclei followed by segmentation. This process gen-
erates nuclei of various tissues with clearer texture and edges,
effectively mitigating segmentation challenges.

• We design a lightweight generator and discriminator to improve
enhancement quality by emphasizing the semantic relationship,
texture, shape and size of generated nuclei further, while ensuring
computational efficiency.

• We conduct experiments on a private systematic dataset of nuclei,
covering diverse tissues with rich stain colors in both brightfield
and fluorescence imaging, as well as public datasets DSB2018
[4] and BBBC006v1 [24] which include fluorescence images. Our
method, GeNSeg-Net, exhibits SOTA performance in accuracy.

2 RELATEDWORK
In this section, we divide current nucleus segmentation methods
into traditional methods and deep learning-based methods.

Many traditional methods are based on watershed [27, 36, 39,
46]. For instance, Malpica et al. [27] introduced a morphological
watershed-based method that utilizes both intensity and morpho-
logical information for nucleus segmentation. However, it tends to
result in under- or over-segmentationwhen dealingwith nucleus ad-
hesion [36, 46]. Yang et al. [46] proposed a novel marker extraction
method based on condition erosion to mitigate over-segmentation.
Additionally, numerous other methods exist, such as threshold-
based [5], contour-based [28], graph-based [3], region-based [40]

and others [26, 34, 43]. A common drawback of traditional methods
is their reliance on manual feature extraction, which leads to good
performance solely on specific datasets with rich features.

In recent years, deep learning-based methods have gained promi-
nence. They can be categorized into one-stage [7, 9, 15, 22, 33]
and two-stage [1, 10, 16, 23] methods. One-stage methods employ
a single network and use post-processing to obtain precise con-
tours, which can be further divided into classification-based and
regression-based methods. Classification-based methods output
classification probability maps. For example, DCAN [7] is a deep
contour-aware network that predicts nuclei and boundaries simul-
taneously through two branches: a semantic segmentation branch
and a boundary detection branch. BES-Net [29] and CIA-Net [49]
establish connections between the two branches, further improv-
ing effectiveness. HARU-Net [8], the latest advancement, utilizes a
hybrid attention-based residual U-blocks network to predict fore-
ground regions and boundaries simultaneously. These methods
derive final nucleus instances by subtracting boundaries from fore-
ground regions, potentially resulting in certain loss of segmentation
accuracy. Regression-based methods output regression maps. For
instance, HoVer-Net [15] predicts the distances between nucleus
pixels and their centroids in both the vertical and horizontal direc-
tions, followed by watershed post-processing. StarDist [33] predicts
centroid probability maps and distances from each foreground pixel
to its instance boundary along pre-defined directions. However,
StarDist may loss information for large nuclei due to its reliance on
only central pixel features in post-processing, which is addressed by
CPP-Net [9]’s optimization. Two-stage methods typically involve a
detection stage followed by a segmentation stage, i.e., first locating
nucleus instances and then predicting precise masks. For example,
BRP-Net [10] generates nucleus proposals based on instance bound-
aries and then refines the foreground masks. SAM [20] represents
the emergence of large-scale segmentation models, excelling in
natural image segmentation tasks, but its performance on special
objects like nucleus is yet to be verified.

3 METHODOLOGY
The overall architecture of GeNSeg-Net is depicted in Fig. 2. It
consists of two stages: an enhancement stage and a segmenta-
tion stage. In the first stage, the texture and edges of all nuclei
are enhanced to obtain a uniform morphology with distinct fea-
tures. The lightweight generator and discriminator in enhancement
model improves both the quality of enhancement and computa-
tional efficiency. In the second stage, we perform class prediction
and post-processing for segmentation.

3.1 Data Pre-processing
Data pre-processing is illustrated in the red area of Fig. 2. Consider-
ing texture and edge variations among nuclei, we initially enhance
them through GAN [14, 17], achieving consistent "ideal" nuclei
with clear centers, solid filling and well-defined edges, referred to
as "nucleus enhancement". To obtain the ground-truth ideal nuclei,
we calculate the pixel-to-boundary Euclidean distance for each
nucleus in the annotated images. This categorizes each pixel into
three classes: nucleus bodies, pending edges and background. More
specifically, we adjust the staining intensity of each pixel within a
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Figure 2: The overview of our proposed GeNSeg-Net. We take high-resolution images sized at 512 × 512 pixels as a typical
example to illustrate our method. "WS" denotes watershed segmentation. For clarity, we display images with a size of 256 × 256
pixels and bold the precise contours generated by watershed.

nucleus based on its distance from the centroid, gradually decreas-
ing towards the edge. Shared boundaries among nuclei receive a
same staining intensity, termed pending edges. The transformed
data serves as ground truth for the first stage and as input for the
second stage.

3.2 Enhancement Model
3.2.1 Lightweight Generator. For the relatively straightforward
generation task, we design a lightweight network as depicted in
Fig. 2. Initially, the high-resolution image X is transformed into a
feature map F(X) with𝐶 channels using the convolution operation.
Subsequently, spatial information of each nucleus is aggregated at
multiple levels through downsampling. The aggregation effectively
consolidates nucleus pixels while eliminating isolated background
noise. Simultaneously, applying subsequent operations to the down-
sampled feature map improves computational efficiency. The fea-
ture map then passes through 9 custom-designed Res-CBAM blocks.
In Res-CBAM blocks, channel attention and spatial attention are
integrated after convolution to eliminate irrelevant information
and noise [8, 44]. Finally, the feature map is gradually upsampled
to the original size, yielding the enhanced image Y. The process
mitigates the loss of fine details caused by direct upsampling at
large ratios. In the experiment, we meticulously assess the impact
of downsampling and Res-CBAM on model’s performance.

3.2.2 Lightweight Discriminator. In modern GANs [31], the dis-
criminator typically employs convolutional neural networks (CNN)
as backbone. While it facilitates stable training for high-resolution
images, the convolutional operation has a limited local receptive

field. In cases with extensive nucleus adhesion or large nuclei, in-
sufficient network depth fails to capture long-range dependencies.
However, increasing network depth can lead to feature and de-
tail loss, complicating optimization and reducing computational
efficiency, as demonstrated in previous studies [41, 47]. Therefore,
we deviate from conventional CNN models while conducting a
comparative analysis in our experiments.

In addition, we consider the following factors: (1) A nucleus cov-
ers multiple pixels, especially in cases of adhesive nuclei that span
a significant area. Hence, rather than pixel-level discrimination, we
opt for a coarser patch level. (2) Large patches in high-resolution
images tend to lose low-level texture details, while small patches
significantly increase computational demands and memory usage.
(3) The adhesion and size of nuclei vary, making it challenging to
adopt a fixed patch size for the entire image, which can affect model
generalization.

Inspired by TransGAN [18], we introduce a transformer-based
multi-scale lightweight discriminator, employing the transformer
encoder [38] as the basic block. Our multi-scale discriminator han-
dles local semantic relationships among nuclei, whether they are
isolated or adhesive, regardless of their size. It also considers low-
level texture, as well as global shape and size features by employing
patches of varying sizes at different scales. In high-resolution fea-
ture maps, correlating two distant positions is unnecessary. Thus,
we integrate grid self-attention [18] into the transformer block to
improve computational efficiency.

In Fig. 2, the generator produces an enhanced image Y, which is
then fed into the discriminator. At various stages, Y of size𝐻×𝑊 ×1
is cropped into four sequences by selecting different patch size 𝑃 ,
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2𝑃 , 4𝑃 and 8𝑃 . Considering the typical size of nuclei, the patch size
can be set to 8. Subsequently, these sequences are linearly projected
into dimensions (𝐻

𝑃
× 𝑊

𝑃
) × 𝐶

8 , (
𝐻
2𝑃 × 𝑊

2𝑃 ) ×
𝐶
8 , (

𝐻
4𝑃 × 𝑊

4𝑃 ) ×
𝐶
4 and

( 𝐻8𝑃 ×
𝑊
8𝑃 )×

𝐶
2 . These sequences, combined with learnable positional

encoding, serve as inputs to the transformer blocks. After each
block, features are upsampled via average pooling and concatenated
with the new sequence. A class token is introduced prior to the final
transformer. It passes through the transformer block to determine
whether Y is real or fake.

Grid self-attention [18] is adopted in high-resolution stages (reso-
lution higher than 16× 16). In contrast to conventional transformer
blocks [13] that involve interactions between the individual to-
ken and all others, we partition the entire feature map into grids
based on a pre-defined window size. Attention operation is then
performed within each grid, tailored to our requirements.

3.3 Segmentation Model
In the second stage, class prediction is conducted firstly by U-Net
[32], followed by watershed post-processing. To be specific, U-Net
categorizes the image context into three classes: nucleus bodies,
coarse edges (approximately 4 pixels wide) and background. The
watershed algorithm then defines contours within the coarse edge
regions. Our segmentation model follows a classic approach with
a simple network design. It achieves both high accuracy and com-
putational efficiency. Since the segmentation model operates inde-
pendently of the enhancement model, GeNSeg-Net provides great
flexibility, enabling the integration of more advanced segmentation
methods. Despite such a classic method within our framework, the
segmentation accuracy has already achieved SOTA performance.

3.4 Training and Inference
Our training data consists of several tissue types, while the testing
data includes nuclei from both the same tissue types as in the
training and different tissue types. To focus the networks’ attention
on nucleus morphology and minimize interference from imaging
techniques and other factors, both the training and testing data are
uniformly converted into grayscale images, as shown in the gray
area of Fig. 2. The enhancement model and segmentation model
are trained individually using their respective paired data for full
supervision.

During the training of our enhancement model, the loss function
for the image-to-image translation GAN is defined as:

𝐿𝐺𝐴𝑁 (𝐺, 𝐷) = E𝑦∼𝑝𝑑𝑎𝑡𝑎 (𝑦) {𝑙𝑜𝑔𝐷 (𝑦)}
+E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥 ) {𝑙𝑜𝑔(1 − 𝐷 (𝐺 (𝑥))} (1)

where 𝐺 and 𝐷 refer to the generator and discriminator, while
𝑥 and 𝑦 represent the input and ground truth, respectively. Pre-
vious research suggests that introducing noise to the input can
prevent deterministic outputs and address issues related to fitting
restricted distributions [42]. However, nucleus images inherently
contain background noise due to various factors. The intensity and
distribution of pixel values are crucial for the model to learn local-
ization and texture, with subtle variations playing a significant role
during learning. Therefore, we refrain from introducing additional
information besides the original input. Nevertheless, incorporat-
ing a traditional loss, such as L1, has proven beneficial for model

training [30]. While the discriminator’s task remains unchanged,
the generator now has a dual objective: to generate images with
realism in the semantic relationship, texture, shape and size, and to
approach the ground truth in an L1 sense. The overall loss function
of enhancement model is:

𝐿𝑇 (𝐺) = E𝑥,𝑦{∥ 𝑦 −𝐺 (𝑥) ∥1} (2)

𝐿𝑒𝑛ℎ (𝐺, 𝐷) = 𝐿𝑇 (𝐺) + 𝜆𝐿𝐺𝐴𝑁 (𝐺, 𝐷) (3)

In the fully supervised U-Net training, a combined Cross Entropy
and Dice loss function is utilized for predicting three classes. The
segmentation model’s loss function is formulated as:

𝐿𝑠𝑒𝑔 = 𝛼 · 𝐿𝐶𝐸 + 𝛽 · 𝐿𝐷𝑖𝑐𝑒 (4)

The weight of each term is controlled by 𝛼 and 𝛽 .
During inference, test images of diverse tissue types initially

undergo enhancement by the trained generator. Subsequently, the
trained U-Net model predicts the three classes. Precise contours
are then obtained by watershed post-processing.

4 EXPERIMENTAL SETUP
4.1 Dataset

DSB2018 and BBBC006v1. Data Science Bowl 2018 (DSB2018) [4]
is a competition focused on nucleus detection and segmentation. It
comprises 670 images with manual annotations, sized from 256×256
to 520×696 pixels. Fluorescence imaging is utilized, encompassing
DAPI and Hoechst 33342 stains. We follow the dataset division
protocol outlined in [9], allocating 380 images for training, 67 for
validation and 50 for testing. BBBC006v1 [24] consists of 768 fluo-
rescence images containing Hoechst 33342-stained U2OS cells, each
with the size 696×520 pixels. The dataset is randomly divided into
462 training images, 153 validation images and 153 testing images.

Private Systematic Dataset. To address the lack of a systematic
public IHC dataset, we build a nucleus dataset encompassing di-
verse tissue types and quantities. It consists of IHC images acquired
through two primary imaging techniques: brightfield and fluores-
cence. In brightfield imaging, hematoxylin stains nuclei, yielding
vibrant images under transmitted light. Fluorescence imaging em-
ploys DAPI to label nuclei. The nuclei emit fluorescence signal when
excited at specific wavelengths, which is then captured using a flu-
orescence microscope. To emulate real-world scenarios, we refrain
from strictly controlling staining and imaging conditions, allowing
for natural variations introduced by experts and environments. In
clinical and industrial settings, pseudo-colors are commonly ap-
plied to fluorescence images for better visualization. Hence, we
randomly assign pseudo-colors (e.g. red, blue and orange) while
ensuring consistent color assignment within the same tissue. All
stained whole slide images are segmented into patches of 512×512
pixels. Five pathologists with over three years of clinical experience
provided pixel-wise annotations, as illustrated in Fig. 3. In the train-
ing dataset, images are annotated into three classes: nucleus bodies,
edges and background. To mitigate annotation discrepancies among
experts, edges are required to be coarsely annotated with a 4-pixel
width, covering the entire actual edges. Two pixels are within the
nuclei, while the other two pixels lie outside. In the testing dataset,
each instance is precisely annotated.
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The dataset composition and division are summarized in supple-
mentary materials. Training and validation data originates from
four tissue types: lung, liver, colon and stomach cancers, each with
60 images, alongside 20 testing images per tissue. Additionally, the
testing data includes four different tissues: cervix, osteosarcoma,
tuberculoma and lymph cancers, each comprising 20 images. They
serve to evaluate the generalization ability of segmentation meth-
ods. During training, both brightfield and fluorescence data are
combined, resulting in a total of 480 images. Among these, 384
images are randomly selected for training, with the remaining 96
reserved for validation.

It’s noteworthy that our private dataset, compared to DSB2018
[9] and BBBC006v1 [24], contains a larger number of nuclei with
more diverse morphology and more complex environment, as de-
picted in Fig. 4 and 5. As a result, the segmentation task is signifi-
cantly more challenging.

4.2 Evaluation Metrics
We employ six evaluation metrics to fully assess method perfor-
mance: (1) Dice: It evaluates the separation of nuclei from the
background. (2) Aggregated Jaccard Index (AJI) [21] and AJI+: AJI
is based on instance-wise IoU between predictions and ground
truth [10, 15, 48]. AJI+ improves AJI by ensuring maximal unique
pairing to obtain overall intersection, thus addressing AJI’s over-
penalisation. (3) Panoptic Quality (PQ) [19]: It has been widely
employed in panoptic segmentation tasks [19]. PQ was first intro-
duced into nucleus segmentation by [15] as themost comprehensive
and persuasive metric. It evaluates both detection quality (DQ) and
instance-wise segmentation quality (SQ) comprehensively.

4.3 Implementation Details
All methods are implemented using PyTorch 1.12.1 on a system
equipped with a single NVIDIA GeForce RTX 3090 GPU. During
training, we maintain the original image size and apply basic data
augmentation techniques for all methods, including flip, rotation
and brightness adjustment. For GeNSeg-Net, the enhancement
model adopts Adam optimization with a learning rate of 10−4. A
linear decay strategy is employed in the latter half of epochs. Batch
size is set to 2 and training proceeds for 400 epochs. Considering
both nucleus size and computational efficiency, the discriminator’s
window size is configured to 8. The loss weight coefficient 𝜆 is em-
pirically set to 0.01. The enhancement model’s backbone is Pix2pix
[17] without any condition. In the segmentation model, the U-Net
architecture is standard as proposed in [32], with a fixed learning
rate of 10−2. 𝛼 and 𝛽 are respectively set to 1 and 3. For other
methods, we adhere to the settings in their respective papers.

5 EXPERIMENTS AND ANALYSIS
5.1 Comparisons with the SOTA Methods
To evaluate both the segmentation accuracy and speed of our pro-
posed GeNSeg-Net, we conduct experiments on our private system-
atic dataset, as well as public datasets DSB2018 [4] and BBBC006v1
[24]. GeNSeg-Net is compared against a large-scale segmentation
model and SOTA nucleus segmentation methods, i.e., SAM [20],
NucleiSegNet [22], HoVer-Net [15], StarDist [33] and CPP-Net [9].
To ensure fair comparison, we follow the same data split protocol

4-pixel width edge Accurately annotated edge

Figure 3: Annotation examples of brightfield training data
(left) and testing data (right).

as outlined in Section 4.1 and apply consistent data augmentation
techniques for all methods. During training, for methods other
than GeNSeg-Net, we adopt the midpoint position of the 4-pixel
width annotation as ground truth since they require precise edge
annotation.

5.1.1 Comparisons on the Private Systematic Dataset. In Table 1,
the results of brightfield same tissue testing are shown. Notably,
NucleiSegNet [22], HoVer-Net [15], StarDist [33] and CPP-Net [9]
exhibit robust performance. SAM [20] exhibits advantages in natu-
ral images but tends to under-segment due to the significant adhe-
sion of nuclei and minimal target variations in our task. Moreover,
SAM fails to identify nuclei of low signal and blurred edges, leading
to increased false negatives. NucleiSegNet’s well-designed architec-
ture facilitates efficient object localization and high-level semantic
map extraction while consciously mitigating false positives and
negatives. HoVer-Net performs well in identifying foreground re-
gions. It effectively addresses adhesive and blurred nuclei through
distance-based predictions. Although StarDist is proficient in fore-
ground region identification and adhesive nuclei differentiation, its
instance metrics are compromised due to the boundary influence.
StarDist’s reliance solely on central pixel features results in incom-
plete contours, particularly obvious for large nuclei. Additionally,
its inclination towards representing nucleus shapes with relatively
regular ellipses leads to inaccuracies when depicting irregularly
shaped nuclei. CPP-Net improves upon StarDist by more accurately
identifying foreground nuclei, distinguishing adhesive nuclei and
representing diverse shapes. GeNSeg-Net outperforms these meth-
ods across all metrics, with improvements of approximately 2.6% in
AJI, 3.1% in AJI+, 0.1% in Dice, 3.1% in DQ, 2.7% in SQ and 5.7% in
PQ. The quantitative comparison underscores its superior accuracy.

In brightfield different tissue testing, notable variations in nu-
cleus morphology not presented during training pose segmentation
challenges. Testing metrics are presented in Table 1. NucleiSegNet
[22] and HoVer-Net [15] exhibit poor segmentation performance.
In contrast, StarDist [33] and CPP-Net [9] show superior general-
ization ability, albeit with a performance decrease ranging from 4%
to 13% across metrics. The decline is mainly due to their difficulty
in detecting nuclei with different texture, shapes, sizes and signal
strength. CPP-Net’s reliance on similar nucleus shapes as a design
prior further constrains its performance on datasets with diverse
shapes. GeNSeg-Net maintains robustness and demonstrates supe-
rior results across all metrics compared to current SOTA methods.

In fluorescence tissue testing, most methods surpass their bright-
field counterparts as shown in Table 2. This superiority arises from
differences in staining and imaging, which result in fluorescence
images with reduced background noise, heightened signal intensity
and clearer nucleus edges compared to brightfield images. As a
result, while maintaining consistent trends with brightfield testing,
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Table 1: Comparisons on private brightfield data.

Methods Metrics

AJI↑ AJI+↑ Dice↑ DQ↑ SQ↑ PQ↑

Brightfield same tissue testing

SAM [20] 0.561 0.592 0.854 0.748 0.795 0.595
NucleiSegNet [22] 0.700 0.730 0.877 0.886 0.823 0.729
HoVer-Net [15] 0.654 0.690 0.840 0.852 0.830 0.707
StarDist [33] 0.655 0.684 0.850 0.857 0.800 0.686
CPP-Net [9] 0.700 0.722 0.873 0.875 0.826 0.723

GeNSeg-Net (ours) 0.726 0.761 0.878 0.917 0.857 0.786

Brightfield different tissue testing

SAM [20] 0.470 0.494 0.713 0.590 0.736 0.434
NucleiSegNet [22] 0.423 0.454 0.749 0.479 0.746 0.357
HoVer-Net [15] 0.422 0.457 0.575 0.589 0.753 0.444
StarDist [33] 0.591 0.624 0.758 0.811 0.737 0.598
CPP-Net [9] 0.587 0.620 0.749 0.801 0.750 0.601

GeNSeg-Net (ours) 0.701 0.729 0.783 0.895 0.843 0.754

Table 2: Comparisons on private fluorescence data.

Methods Metrics

AJI↑ AJI+↑ Dice↑ DQ↑ SQ↑ PQ↑

Fluorescence same tissue testing

SAM [20] 0.363 0.423 0.772 0.442 0.843 0.373
NucleiSegNet [22] 0.500 0.541 0.892 0.632 0.808 0.511
HoVer-Net [15] 0.615 0.682 0.842 0.833 0.853 0.711
StarDist [33] 0.677 0.722 0.869 0.902 0.819 0.739
CPP-Net [9] 0.709 0.753 0.875 0.944 0.833 0.786

GeNSeg-Net (ours) 0.737 0.779 0.886 0.936 0.863 0.808

Fluorescence different tissue testing

SAM [20] 0.328 0.448 0.826 0.553 0.800 0.442
NucleiSegNet [22] 0.526 0.560 0.882 0.628 0.764 0.48
HoVer-Net [15] 0.636 0.690 0.832 0.817 0.839 0.685
StarDist [33] 0.674 0.713 0.863 0.869 0.799 0.694
CPP-Net [9] 0.695 0.736 0.875 0.889 0.816 0.725

GeNSeg-Net (ours) 0.721 0.766 0.891 0.900 0.848 0.763

metrics in fluorescence different tissue testing exhibit no significant
decrease compared to those in fluorescence same tissue testing.
Overall, GeNSeg-Net maintains an advantage over other methods.

5.1.2 Comparisons on the DSB2018 and BBBC006v1 Dataset. In con-
trast to our private dataset, images in DSB2018 [4] and BBBC006v1
[24] feature nuclei with lower density and more consistent mor-
phology. This leads to the decent performance of HoVer-Net [15],
StarDist [33] and CPP-Net [9], as presented in Table 3. Compared
to the testing results of private fluorescence data, nearly all met-
rics show improvement. However, upon closer examination, we
notice the presence of adhesive nuclei that these methods fail to
fully distinguish. Our method effectively reduces false positives
and negatives, achieving higher segmentation accuracy.

Table 3: Comparisons on DSB2018 and BBBC006v1.

Methods Metrics

AJI↑ AJI+↑ Dice↑ DQ↑ SQ↑ PQ↑

DSB2018

SAM [20] 0.674 0.698 0.941 0.798 0.859 0.693
NucleiSegNet [22] 0.662 0.689 0.934 0.787 0.848 0.678
HoVer-Net [15] 0.777 0.788 0.905 0.868 0.877 0.767
StarDist [33] 0.795 0.806 0.915 0.902 0.850 0.770
CPP-Net [9] 0.832 0.843 0.936 0.934 0.873 0.818

GeNSeg-Net (ours) 0.841 0.862 0.930 0.940 0.882 0.829

BBBC006v1

SAM [20] 0.701 0.727 0.935 0.845 0.861 0.727
NucleiSegNet [22] 0.638 0.688 0.943 0.793 0.868 0.690
HoVer-Net [15] 0.915 0.921 0.976 0.961 0.958 0.920
StarDist [33] 0.914 0.918 0.970 0.966 0.950 0.917
CPP-Net [9] 0.961 0.963 0.993 0.990 0.978 0.969

GeNSeg-Net (ours) 0.968 0.969 0.991 0.988 0.981 0.969

Table 4: Cross-dataset evaluation.

Tasks Methods Metrics

AJI↑ AJI+↑ Dice↑ DQ↑ SQ↑ PQ↑

Private
↓

DSB2018

HoVer-Net[15] 0.727 0.735 0.843 0.848 0.826 0.711
StarDist[33] 0.764 0.773 0.895 0.917 0.814 0.747
CPP-Net[9] 0.823 0.831 0.925 0.943 0.850 0.802
GeNSeg-Net 0.837 0.845 0.935 0.929 0.868 0.808

Private
↓

BBBC
006v1

HoVer-Net[15] 0.775 0.778 0.92 0.901 0.850 0.766
StarDist[33] 0.763 0.765 0.914 0.879 0.838 0.752
CPP-Net[9] 0.790 0.792 0.929 0.910 0.855 0.778
GeNSeg-Net 0.801 0.803 0.933 0.899 0.868 0.781

DSB2018
↓

BBBC
006v1

HoVer-Net[15] 0.754 0.756 0.908 0.868 0.837 0.727
StarDist[33] 0.762 0.763 0.908 0.876 0.839 0.735
CPP-Net[9] 0.765 0.766 0.915 0.883 0.846 0.748
GeNSeg-Net 0.784 0.789 0.923 0.889 0.863 0.767

BBBC
006v1
↓

DSB2018

HoVer-Net[15] 0.570 0.588 0.812 0.660 0.784 0.531
StarDist[33] 0.537 0.558 0.792 0.644 0.762 0.504
CPP-Net[9] 0.426 0.434 0.666 0.469 0.729 0.378
GeNSeg-Net 0.665 0.673 0.821 0.755 0.836 0.631

5.1.3 Cross-dataset Evaluation. To further assess GeNSeg-Net’s
generalization performance, we design cross-dataset evaluation
experiments. Specifically, we evaluate GeNSeg-Net with HoVer-
Net [15], StarDist [33] and CPP-Net [9] across four tasks: our pri-
vate dataset (Private)→DSB2018 [4], Private→BBBC006v1 [24],
DSB2018→BBBC006v1 and BBBC006v1→DSB2018. Here, datasets
listed before the arrow represent the training data, while those
listed after denote the testing data. We present results in Table 4.
The metrics reveal that models trained on our private dataset and
DSB2018, which encompass diverse tissue types, exhibit superior
generalization ability. Conversely, the limited diversity of tissue
types in BBBC006v1 impedes the model’s generalization ability.
Across all four tasks, GeNSeg-Net consistently outperforms other
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NucleiSegNetSAM HoVer-Net StarDist CPP-Net GeNSeg-NetGround TruthOriginal Image

Figure 4: Qualitative comparisons with SOTA methods on our private dataset. The four lines from top to bottom present images
from brightfield same tissue testing, brightfield different tissue testing, fluorescence same tissue testing and fluorescence
different tissue testing, respectively. All images are of size 265 × 265 pixels.

NucleiSegNetSAM HoVer-Net StarDist CPP-Net GeNSeg-NetGround TruthOriginal Image

Figure 5: Qualitative comparisons with SOTA methods on the DSB2018 [4] and BBBC006v1 [24] dataset. The two lines from top
to bottom present images from DSB2018 and BBBC006v1, respectively. All images are of size 265 × 265 pixels.

methods. For instance, in the DSB2018→BBBC006v1 task, GeNSeg-
Net exhibits improvements of 1.9%, 2.3%, 0.8% and 1.9% in AJI, AJI+,
Dice and PQ, respectively. It’s noteworthy that GeNSeg-Net sig-
nificantly improves all metrics in the BBBC006v1→DSB2018 task,
though the scores remain below those in the Private→DSB2018
task. This highlights the importance of increasing the diversity of
tissue types in the training data, even if the types in testing are not
present during training.

5.1.4 Inference Time. We evaluate the inference speed of all meth-
ods on our private dataset using the same computer as outlined
in Section 4.1 and 4.3. Applying same post-processing method to
512 × 512 images, the average inference time per image for SAM
[20], NucleiSegNet [22], HoVer-Net [15], StarDist [33], CPP-Net
[9] and GeNSeg-Net is 1.938, 0.548, 1.863, 0.203, 0.353 and 0.242
seconds, respectively, covering both prediction and post-processing

time. Obviously, StarDist exhibits the fastest inference speed. De-
spite being a two-stage method, GeNSeg-Net’s lightweight design
enables faster processing compared to most existing methods.

5.2 Qualitative Comparisons
In this section, we qualitatively compare all methods on our private
dataset, DSB2018 [4] and BBBC006v1 [24]. Results for the private
dataset are shown in Fig. 4, while those for DSB2018 and BBBC006v1
are in Fig. 5, in line with our previous analysis. GeNSeg-Net, in-
corporating the enhancement model, excels in identifying weakly
stained nuclei, as indicated by the red boxes in Fig. 4. It also effec-
tively distinguishes adhesive nuclei and reduces over-segmentation,
as shown by the purple boxes in Fig. 4 and 5. Furthermore, thanks
to our segmentation model, GeNSeg-Net produces more natural
contours, better capturing the true shapes of nuclei.
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Table 5: Ablation study of each component in GeNSeg-Net.

Enh model Seg
model

Metrics

Gen Dis AJI↑ AJI+↑ Dice↑ DQ↑ SQ↑ PQ↑

– – ✓ 0.580 0.650 0.820 0.762 0.844 0.643

CPP-Net [9] 0.673 0.708 0.843 0.877 0.806 0.707

basic basic ✓ 0.682 0.715 0.844 0.853 0.835 0.712
basic ours ✓ 0.685 0.732 0.855 0.872 0.852 0.743
ours ours ✓ 0.721 0.759 0.860 0.912 0.853 0.778

Table 6: Ablation study on the generator.

Gen Dis Metrics

Backbone DS US AJI↑ AJI+↑ Dice↑ DQ↑ SQ↑ PQ↑

basic – ours 0.685 0.732 0.855 0.872 0.852 0.743

ResNet9 ✓ ours 0.711 0.755 0.852 0.908 0.853 0.775
Res-CBAM ✓ ours 0.721 0.759 0.860 0.912 0.853 0.778

5.3 Ablation Study
We conduct ablation studies on all brightfield and fluorescence test-
ing data in our private dataset. Initially, the efficacy of the enhance-
ment model is demonstrated. We then assess the discriminator’s
effectiveness and determine the generator’s structure. Qualitative
comparisons depicted in Fig. 6 show enhanced images in the first
row, predicted class maps in the second row and segmentation
results in the final row, with the top-left image representing the
ground truth. Evaluation metrics from the ablation study of each
component in GeNSeg-Net and the generator are presented in Ta-
ble 5 and 6, where "gen", "dis", "enh model", "seg model", "ds" and
"us" represent the generator, discriminator, enhancement model,
segmentation model, downsampling and upsampling, respectively.

5.3.1 Ablation Study of Each Component in GeNSeg-Net. When
solely relying on the segmentation model, it effectively identifies
foreground nucleus regions, as indicated by the relatively high Dice.
However, due to the network’s general design and lack of prior
information, it struggles to distinguish adhesive nuclei, resulting in
noticeable under-segmentation, as shown in the first column of Fig.
6. To address this issue, we introduce an enhancement model aimed
at enhancing morphological features, i.e., ensuring clear centers,
solid filling and well-defined edges to simplify subsequent segmen-
tation. Initially, the enhancement model employs ResNet as the
generator’s backbone, comprising 9 blocks, denoted as "basic" in
Table 5 and 6. We adopt a CNN-based discriminator proposed in
[17], which discriminates at the patch level, as the "basic" discrimi-
nator. Integrating the enhancement model significantly improves
segmentation performance, with AJI, AJI+, Dice, DQ, SQ and PQ
reaching 0.682, 0.715, 0.844, 0.853, 0.835 and 0.712, respectively,
slightly surpassing CPP-Net [9]. In our straightforward generation
task, increasing the number of blocks adds complexity to training,
while reducing blocks leads to insufficient model learning, reflected
in declining evaluation metrics. We further attempt to employ a
standard U-Net [32] as the generator’s backbone, but it results in
enhanced images with increased artifacts and noise. It performs
worse in distinguishing the two foreground classes, i.e., nucleus

basic + basic/ + / U-Net + basic basic + ours
ResNet9 

US&DS + ours
Res-CBAM 

US&DS + ours

GT

(a) (b) (c) (d) (e) (f)

Figure 6: Qualitative comparisons in the ablation study. The
six columns from left to right represent -/- (a), basic/basic (b),
U-Net/basic (c), basic/ours (d), ResNet9 DS&US/ours (e) and
Res-CBAM DS&US/ours (f). Left and right of "/" indicate the
structure of generator and discriminator respectively.

bodies and pending edges, leading to increased adhesion, as illus-
trated in the third column of Fig. 6. When both the generator and
discriminator follow a "basic" structure, as seen in the red box in the
second column of Fig. 6, the model struggles to differentiate the two
foreground classes, resulting in erroneous enhancement. Abrupt
texture and noise is obvious. Our designed discriminator focuses
more on the semantic relationships among classes, enabling better
differentiation. It also improves texture and shape in the enhanced
image. With our discriminator, AJI, AJI+, Dice and PQ are increased
by 0.3%, 1.7%, 1.1% and 3.1%. Compared to the basic generator, our
generator improves all metrics to optimal levels, achieving scores
of 0.721, 0.759, 0.860, 0.912, 0.853 and 0.778, respectively.

5.3.2 Ablation Study on the Generator in Enhancement Model. We
demonstrate each component’s role in the generator of the enhance-
ment model. Integrating downsampling into the basic generator
effectively aggregates nucleus pixel features, leading to a clearer
separation between classes, as evidenced by the purple boxes in
the fourth and fifth columns of Fig. 6. The improved differentia-
tion directly reduces false positives and false negatives. Notably,
Table 6 shows that SQ remains unchanged while DQ exhibits a 3.6%
improvement, which validates our findings. Additionally, the in-
troduction of the Res-CBAM module further suppresses irrelevant
information and noise. Improvement in non-nucleus positions can
be observed from the orange boxes in the fifth and sixth columns of
Fig. 6. All evaluation metrics for this structure reach optimal levels.

6 CONCLUSION
In this study, we propose a general framework for nucleus segmen-
tation in IHC images. It comprises two stages: initial enhancement
followed by segmentation. A classic generative architecture and
segmentation network demonstrate the effectiveness of our frame-
work. In the enhancement model, we design a lightweight generator
and discriminator to improve both enhancement robustness and
computational efficiency. Comparisons against existing methods
on both the private and public datasets highlight our method’s
SOTA accuracy. Cross-dataset evaluation further validates its supe-
rior generalization ability. Additionally, our method exhibits highly
competitive processing speed. Further discussions on methodology
and future work are presented in supplementary materials.
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