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1 DATASET

The composition and division of our private systematic dataset are
summarized in Table 1.

2 DISCUSSION

In this study, a classic image-to-image translation generative archi-
tecture [3] without any condition demonstrates the effectiveness of
our framework. Moving forward, our objective is to explore more
sophisticated generative adversarial network (GAN) [4-7, 11] ar-
chitectures and diffusion model [9, 10, 12] architectures specifically
tailored for nucleus enhancement.

For the segmentation task, three classes are predicted by a stan-
dard U-Net [8], followed by watershed for post-processing. Since the
segmentation model operates independently of the enhancement
model, there is potential to leverage more advanced and special-
ized networks [1, 2]. However, this inevitably increases complexity
to the entire framework, necessitating a careful balance between
segmentation accuracy and processing speed.

The introduction of generative models into segmentation tasks
represents a pioneering endeavor. In our future work, we plan
to extend the framework proposed in this paper to tasks such as
multi-organ tissue segmentation and beyond.
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Table 1: Composition and division of our private dataset with annotation. Left and right of "/" represent the number of brightfield
and fluorescence images respectively.

Data subset ‘ Total nuclei ‘ Cancer type

‘Brightﬁeld Fluorescence ‘ Lung Liver Colon Stomach Cervix Osteosarcoma Tuberculoma Lymph

Training and validation 58,001 60,960 60/60 60/60 60/60 60/60 - - - -
Same tissue testing 17,440 17,984 20/20  20/20  20/20 20/20 - - - -
Different tissue testing 19,674 19,286 - - - - 20/20 20/20 20/20 20/20

Total 95,115 98,230 ‘ 80/80 80/80  80/80 80/80 20/20 20/20 20/20 20/20
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