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1 DATASET
The composition and division of our private systematic dataset are
summarized in Table 1.

2 DISCUSSION
In this study, a classic image-to-image translation generative archi-
tecture [3] without any condition demonstrates the effectiveness of
our framework. Moving forward, our objective is to explore more
sophisticated generative adversarial network (GAN) [4–7, 11] ar-
chitectures and diffusion model [9, 10, 12] architectures specifically
tailored for nucleus enhancement.

For the segmentation task, three classes are predicted by a stan-
dard U-Net [8], followed bywatershed for post-processing. Since the
segmentation model operates independently of the enhancement
model, there is potential to leverage more advanced and special-
ized networks [1, 2]. However, this inevitably increases complexity
to the entire framework, necessitating a careful balance between
segmentation accuracy and processing speed.

The introduction of generative models into segmentation tasks
represents a pioneering endeavor. In our future work, we plan
to extend the framework proposed in this paper to tasks such as
multi-organ tissue segmentation and beyond.
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Table 1: Composition and division of our private dataset with annotation. Left and right of "/" represent the number of brightfield
and fluorescence images respectively.

Data subset Total nuclei Cancer type

Brightfield Fluorescence Lung Liver Colon Stomach Cervix Osteosarcoma Tuberculoma Lymph

Training and validation 58,001 60,960 60/60 60/60 60/60 60/60 – – – –
Same tissue testing 17,440 17,984 20/20 20/20 20/20 20/20 – – – –

Different tissue testing 19,674 19,286 – – – – 20/20 20/20 20/20 20/20

Total 95,115 98,230 80/80 80/80 80/80 80/80 20/20 20/20 20/20 20/20
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