
Instance-Conditioned GAN: Supplementary Material
We provide additional material to support the main paper. We credit the used assets by citing their
web links and licenses in Section A, and continue by describing the experimental setup and used
hyperparameters in Section B. We compute Precision and Recall metrics on ImageNet in Section C,
and we further compare BigGAN and StyleGAN2 backbones for IC-GAN on ImageNet in Section D.
We provide additional qualitative results for both IC-GAN on ImageNet in Section E and IC-GAN
off-the-shelf transfer results on other datasets in Section F. Moreover, we provide results when
training BigGAN with class balancing on ImageNet-LT in Section G. Finally, we show further impact
studies such as the choice of feature extractor (Section H), the number of conditionings used during
training (Section I), matching storage requirements for unconditional counterparts of BigGAN and
StyleGAN2 and IC-GAN (Section J) and the qualitative impact of neighborhood size k for ImageNet,
as well as quantitative results for ImageNet-LT and COCO-Stuff (Section K).

A Assets and licensing information

In Tables 5 and 6, we provide the links to the used datasets, repositories and their licenses. We
use Faiss [24] for a fast computation of nearest neighbors and k-means algorithm leveraging GPUs,
DiffAugment [59] for additional data augmentation when training BigGAN, and the pre-trained
SwAV [7] and ResNet50 models on ImageNet-LT [26] to extract instance features.

Table 5: Links to the assets used in the paper.
Name GitHub link

ImageNet [45] https://www.image-net.org

ImageNet-LT [34] https://github.com/zhmiao/OpenLongTailRecognition-OLTR

COCO-Stuff [6] https://cocodataset.org/

Cityscapes [10] https://www.cityscapes-dataset.com/

MetFaces [28] https://github.com/NVlabs/metfaces-dataset

PACS [31] https://domaingeneralization.github.io/

Sketches [15] http://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/

BigGAN [5] https://github.com/ajbrock/BigGAN-PyTorch

StyleGAN2 [28] https://github.com/NVlabs/stylegan2-ada-pytorch

Faiss [24] https://github.com/facebookresearch/faiss

DiffAugment [59] https://github.com/mit-han-lab/data-efficient-gans

PRDC [41] https://github.com/clovaai/generative-evaluation-prdc

SwAV [7] https://github.com/facebookresearch/swav

Pre-trained ResNet50 [26] https://github.com/facebookresearch/classifier-balancing

Table 6: Assets licensing information.
Name License

ImageNet [45] and ImageNet-LT [34] Terms of access: https://www.image-net.org/download.php
COCO-Stuff [6] https://www.flickr.com/creativecommons

Cityscapes [10] https://www.cityscapes-dataset.com/license

MetFaces [28] Creative Commons BY-NC 2.0
PACS [31] Unknown
Sketches [15] Creative Commons Attribution 4.0 International

BigGAN [5] MIT
StyleGAN2 [28] NVIDIA Source Code
Faiss [24] MIT
DiffAugment [59] BSD 2-Clause "Simplified"
PRDC [41] MIT
swAV [7] Attribution-NonCommercial 4.0 International
Pre-trained ResNet50 [26] BSD

B Experimental setup and hyperparameters

We divide the experimental section into architecture modifications in Subsection B.1 and training and
hyperparameter details in Subsection B.2.

14

https://www.image-net.org
https://github.com/zhmiao/OpenLongTailRecognition-OLTR
https://cocodataset.org/
https://www.cityscapes-dataset.com/
https://github.com/NVlabs/metfaces-dataset
https://domaingeneralization.github.io/
http://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/
https://github.com/ajbrock/BigGAN-PyTorch
https://github.com/NVlabs/stylegan2-ada-pytorch
https://github.com/facebookresearch/faiss
https://github.com/mit-han-lab/data-efficient-gans
https://github.com/clovaai/generative-evaluation-prdc
https://github.com/facebookresearch/swav
https://github.com/facebookresearch/classifier-balancing
https://www.image-net.org/download.php
https://www.flickr.com/creativecommons
https://www.cityscapes-dataset.com/license


B.1 Architecture modifications for IC-GAN.

In our IC-GAN experiments, we leveraged BigGAN and StyleGAN2 backbones, and extended their
architectures to handle the introduced instance conditionings.

When using BigGAN as a base architecture, IC-GAN replaces the class embedding layers in both
generator and discriminator by fully connected layers. The fully connected layer in the generator
has an input size of 2,048 (corresponding to the feature extractor f✓’s dimensionality) and an output
size odim that can be adjusted. For all our experiments, we used odim = 512 – selected out of
{256, 512, 1,024, 2,048}. The fully connected layer in the discriminator has a variable output size
ndim to match the dimensionality of the intermediate unconditional discriminator feature vector –
following the practice in BigGAN [5]. For the class-conditional IC-GAN, we use both the class
embedding layers as well as the fully connected layers associated with the instance conditioning.
In particular, we concatenate class embeddings (of dimensionality cdim = 128) and instance
embeddings (with dimensionality odim = 512). To avoid the rapid growth of parameters when using
both class and instance embeddings, we use ndim/2 as the output dimensionality for each of the
embeddings in the discriminator, so that the resulting concatenation has a dimensionality of ndim.

When using StyleGAN2 as a base architecture, we modify the class-conditional architecture of [28].
In particular, we replace the class embeddings layers with a fully connected layer of output dimen-
sionality 512 in the generator. The fully connected layer substituting the class embedding in the
discriminator is of variable size. In this case, the instance features are concatenated with the noise
vector at the input of the StyleGAN2’s mapping network, creating a style vector for the generator.
However, when it comes to the discriminator, the mapping network is only fed with the extracted
instance features to obtain a modulating vector that is multiplied by the internal discriminator
representation at each block.

All instance feature vectors hi are normalized with `2 norm before computing the neighborhoods and
when used as conditioning for the GAN.

B.2 Training details and hyperparameters

All models were trained while monitoring the training FID, and training was stopped according to
either one of the following criteria: (1) early stopping when FID did not improve for 50 epochs – or the
equivalent number of iterations depending on the batch size –, or (2) when the training FID diverged.
For BigGAN, we mainly explored the hyperparameter space around previously known and successful
configurations [5, 42]. Concretely, we focused on finding the following best hyperparameters for
each dataset and resolution: the batch size (BS), model capacity controlled by channel multipliers
(CH), number of discriminator updates versus generator updates (Dupdates), discriminator learning
rate (Dlr) and generator learning rate (Glr), while keeping all other parameters unchanged [5].
For StyleGAN, we also performed a hyperparameter search around previously known successful
settings [28]. More precisely, we searched for the optimal Dlr and Glr and R1 regularization weight
� and used default values for the other hyperparameters.

ImageNet. When using the BigGAN backbone, in the 64⇥64 resolution, we followed the exper-
imental setup of [42], where: BS = 256, CH = 64, Dlr =Glr = 1e�4 and found that, although
the unconditional BigGAN baseline achieves better metrics with Dupdates=2, IC-GAN and Big-
GAN do so with Dupdates=1. Note that we explored additional configurations such as increasing
BS or CH but did not observe any improvement upon the aforementioned setup. In both the
128⇥128 and 256⇥256 resolutions, BigGAN hyperparameters were borrowed from [5]. For IC-
GAN, we explored Dlr, Glr 2 {4e�4, 2e�4, 1e�4, 4e�5, 2e�5, 1e�5} and Dupdates 2 {1, 2}.
For 128⇥ 128, we used BS = 2,048, CH = 96 (as in [5]), Dlr = 1e�4, Glr = 4e�5 and
Dupdates = 1. For 256⇥256, we set BS = 2,048 and CH = 64 (half capacity, therefore faster
training) for both BigGAN and IC-GAN, and used Dlr =Glr = 1e�4 with Dupdates = 2 for IC-
GAN. When using the StyleGAN2 architecture both as a baseline and as a backbone, we explored
BS 2 {32, 64, 128, 256, 512, 1,024}, Dlr, Glr 2 {1e�2, 7e�3, 5e�3, 2.5e�3, 1e�4, 5e�4} and
� 2 {2e�1, 1e�2, 5e�2, 1e�1, 2e�1, 5e�1, 1, 2, 10} and selected BS = 64 and Dlr = Glr =
2.5e�3 and �=5e�2 for all resolutions.

COCO-Stuff. When using BigGAN architecture, we explored BS 2 {128, 256, 512, 2,048}
and CH 2 {32, 48, 64} and found BS = 256 and CH = 48 to be the best choice. We

15



searched for Dlr, Glr 2 {1e�3, 4e�4, 1e�4, 4e�5, 1e�5} and Dupdates 2 {1, 2}. For both
unconditional BigGAN and IC-GAN, we chose Dlr = 4e�4 and Glr = 1e�4 in 128⇥ 128
and Dlr = Glr = 1e�4 in 256⇥ 256. For both resolutions, unconditional BigGAN uses
Dupdates = 2 and IC-GAN, Dupdates = 1. When using StyleGAN2 architecture, we tried
several learning rates Dlr, Glr 2 {1e�3, 1.5e�3, 2e�3, 2.5e�3, 3e�3} in combination with
� 2 {2e�1, 1e�2, 5e�2, 1e�1, 2e�1, 5e�1, 1, 2, 10}. For the unconditional StyleGAN2 and IC-
GAN trained at resolution 128⇥128, we chose Dlr =Glr =2.5e�3 with �=5e�2. At resolution
256⇥256, we found that Dlr=Glr=3e�3 with �=0.5 were optimal for IC-GAN while we obtained
Dlr=Glr=2e�3 with �=2e�1 for the unconditional StyleGAN.

ImageNet-LT. We explored BS 2 {128, 256, 512, 1,024, 2,048} and CH 2 {48, 64, 96} and
found BS = 128 and CH = 64 to be the best configuration. We explored Dlr, Glr 2
{1e�3, 4e�4, 1e�4, 4e�5, 1e�5} and Dupdates 2 {1, 2}. In 64⇥ 64, we used Dlr = 1e�3,
Glr=1e�5 and Dupdates=1 for both BigGAN and IC-GAN setup. In 128⇥128 and 256⇥256, we
used Dlr=Glr=1e�4 and Dupdates=2.

Data augmentation. We use horizontal flips to augment the real data fed to the discriminator
in all experiments, unless stated otherwise. For COCO-Stuff and ImageNet-LT, we found that
using translations with the DiffAugment framework [59] improves FID scores, as the number
of training samples is significantly smaller than ImageNet (5% and 10% the size of ImageNet,
respectively). However, we did not see any improvement in ImageNet dataset and therefore we do
not use DiffAugment in our ImageNet experiments. For ImageNet and COCO-Stuff, we augment the
conditioning instance features hi by horizontally flipping all data samples xi and obtaining a new hi

from the flipped image, unless stated otherwise in the tables. This effectively doubles the number
of conditionings available at training time, which have the same sample neighborhood Ai as their
non-flipped versions. We tried applying this augmentation technique to ImageNet-LT but found that it
degraded the overall metrics, possibly due to the different feature extractor used in these experiments.
We hypothesize that the benefits of this technique are dependent on the usage of horizontal flips
during the training stage of the feature extractor. As seen in Table 7, using data augmentation in the
conditioning instance features slightly improves the results for IC-GAN both when coupled with
BigGAN and StyleGAN2 backbones in COCO-Stuff.

Compute resources. We used NVIDIA V100 32GB GPUs to train our models. Given that we used
different batch sizes for different experiments, we adapted the resources to each dataset configuration.
In particular, ImageNet 64⇥64 models were trained using 1 GPU, whereas ImageNet 128⇥128
and 256⇥256 models required 32 GPUs. ImageNet-LT 64⇥64, 128⇥128 and 256⇥256 used 1,
2 and 8 GPUs each, respectively. Finally, COCO-Stuff 128⇥128 and 256⇥256 required 4 and 16
GPUs, respectively, when using the BigGAN backbone, but required 2 and 4 GPUs when leveraging
StyleGAN2.

C Additional metrics: Precision and Recall

As additional measures of visual quality and diversity, we compute Precision (P) and Recall (R) [30]
in Table 8. Results are provided on the ImageNet dataset, following the experimental setup proposed
in [41]. By inspecting the results, we conclude that IC-GAN obtains better Recall (and therefore more
diversity) than all the baselines in both the unlabeled and labeled settings, when selecting 10,000
random instances from the training set. Moreover, when selecting 1,000 instances with k-means,
which is the standard experimental setup we used across the paper, we obtain higher Precision (as a
measure of visual quality) than the other baselines in the unlabeled setting. In the labeled setting,
the Precision is also higher than the one of BigGAN for 64x64 while being lower for 128⇥128 and
256⇥256.

D Comparison between StyleGAN2 and BigGAN backbones on ImageNet

We present additional experiments with IC-GAN using the StyleGAN2 backbone in ImageNet
in Table 9, comparing them to StyleGAN2 across all resolutions. IC-GAN with a StyleGAN2
backbone obtains better FID and IS than StyleGAN2 across all resolutions, further supporting that
IC-GAN does not depend on a specific backbone, as already shown in the COCO-Stuff dataset in

16



Table 7: Comparison between IC-GAN with and without data augmentation using the COCO-Stuff
dataset. †: 50% chance of horizontally flipping data samples xi to later obtain hi. The backbone for
each IC-GAN is indicated with the number of parameters between parentheses. To compute FID
in the training split, we use a subset of 1,000 training instance features (selected with k-means) as
conditionings.

Backbone (M) #FID
train eval eval seen eval unseen

128x128

IC-GAN BigGAN (22) 18.0 ± 0.1 45.5 ± 0.7 85.0 ± 1.1 60.6 ± 0.9
IC-GAN † BigGAN (22) 16.8 ± 0.1 44.9 ± 0.5 81.5 ± 1.3 60.5 ± 0.5

IC-GAN StyleGAN2 (24) 8.9 ± 0.0 36.2 ± 0.2 74.3 ± 0.8 50.8 ± 0.3
IC-GAN † StyleGAN2 (24) 8.7 ± 0.0 35.8 ± 0.1 74.0 ± 0.7 50.5 ± 0.6

256x256

IC-GAN BigGAN (26) 25.6 ± 0.1 53.2 ± 0.3 91.1 ± 3.3 68.3 ± 0.9
IC-GAN † BigGAN (26) 24.6 ± 0.1 53.1 ± 0.4 88.5 ± 1.8 69.1 ± 0.6

IC-GAN StyleGAN2 (24.5) 10.1 ± 0.0 41.8 ± 0.3 78.5 ± 0.9 57.8 ± 0.6
IC-GAN † StyleGAN2 (24.5) 9.6 ± 0.0 41.4 ± 0.2 76.7 ± 0.6 57.5 ± 0.5

Table 2. StyleGAN2, despite being designed for unconditional generation, is outperformed by the
unconditional counterpart of BigGAN, that uses a single label for the entire dataset, in ImageNet. We
suspect that there might be some biases introduced in the architecture at design time, as BigGAN
was proposed for ImageNet and StyleGAN2 was tested on datasets with human faces, cars, and
dogs, generally with presumably lower complexity and less number of data points than ImageNet.
This intuition is further supported by StyleGAN2 improving over the BigGAN backbone in the
COCO-Stuff experiments in Table 2, as this dataset is much smaller than ImageNet and contains a
lot of images where people are depicted. Interestingly, we qualitatively found that people and their
faces are better generated with a StyleGAN2 backbone rather than the BigGAN one when trained on
COCO-Stuff.

E Additional qualitative results for IC-GAN

Unlabeled ImageNet. IC-GAN generates high quality and diverse images that generally preserve
the semantics and style of the conditioning. Figure 5 shows three instances – a golden retriever
in the water, a humming bird on a branch, and a landscape with a castle –, followed by their six
closest nearest neighbors in the feature space of SwAV [7], a ResNet50 model trained with self-
supervision. Note that, although all neighbors contain somewhat similar semantics to those of the
instance, the class labels do not always match. For example, one of the nearest neighbors of a golden
retriever depicts a monkey in the water. The generated images depicted in Figure 5 are obtained by
conditioning IC-GAN with a BigGAN backbone on the features of the aforementioned instances.
These highlight that generated images preserve the semantic content of the conditioning instance
(a dog in the water, a bird with a long beak on a branch, and a landscape containing a water body)
and present similarities with the real samples in the neighborhood of the instance. In cases such
as the conditioning instance featuring a castle, the corresponding generated samples do not contain
buildings; this could be explained by the fact that most of its neighbors do not contain castles either.
Moreover, the generated images are not mere memorizations of training examples, as shown by the
row of images immediately below, nor are they copies of the conditioning instance.

Instance feature vector and noise interpolation. In Figure 6, we provide the resulting generated
images when interpolating between the instance features of two data samples (vertical axis), shown
on the left of each generated image grid, and additionally interpolating between two noise vectors
in the horizontal axis. The top left quadrant shows generated images when interpolating between
conditioning instance features from the class husky. The generated dog changes its fur color and
camera proximity according to the instance conditioning. At the top right corner, when interpo-
lating between two mushroom instance features, generated images change their color and patterns

17



Table 8: Results for ImageNet in terms of Precision (P) and Recall (R) [30] (bounded between 0
and 100), using 10,000 real and generated images. "Instance selection", only used for IC-GAN,
indicates whether 1,000 conditioning instances are selected with k-means (k-means 1,000) or 10,000
conditioning instances are sampled uniformly (random 10,000) from the training set to obtain 10,000
generated images in both cases. *: Generated images obtained with the paper’s opensourced code.

Method Res. Instance selection "P "R
Unlabeled setting

Uncond. BigGAN 64 - 69.6 ± 1.0 63.1 ± 0.0
IC-GAN 64 k-means 1,000 74.2 ± 0.8 60.2 ± 0.6
IC-GAN 64 random 10,000 67.5 ± 0.4 68.6 ± 0.5

Self-cond. GAN [33]* 128 - 66.3 ± 0.5 48.4 ± 0.8
IC-GAN 128 k-means 1,000 78.2 ± 0.8 55.6 ± 0.9
IC-GAN 128 random 10,000 71.7 ± 0.3 69.7 ± 0.9

IC-GAN 256 k-means 1,000 77.7 ± 0.5 54.3 ± 0.7
IC-GAN 256 random 10,000 70.4 ± 0.7 68.9 ± 0.3

Labeled setting

BigGAN [5] 64 - 72.8 ± 0.4 68.6 ± 0.6
Class-conditional IC-GAN 64 k-means 1,000 76.6 ± 0.7 67.5 ± 0.8
Class-conditional IC-GAN 64 random 10,000 69.6 ± 0.9 74.5 ± 0.8

BigGAN [5] 128 - 83.2 ± 0.7 64.2 ± 0.7
Class-conditional IC-GAN 128 k-means 1,000 78.8 ± 0.3 64.3 ± 0.7
Class-conditional IC-GAN 128 random 10,000 72.2 ± 0.4 73.6 ± 0.5

BigGAN [5] 256 - 83.9 ± 0.6 70.2 ± 0.7
Class-conditional IC-GAN 256 k-means 1,000 82.2 ± 0.3 70.4 ± 0.3
Class-conditional IC-GAN 256 random 10,000 73.9 ± 0.6 79.3 ± 0.2

Table 9: Results for ImageNet in unlabeled setting, comparing BigGAN and StyleGAN backbones.
For fair comparison with [42] at 64⇥64 resolution, we trained an unconditional BigGAN model and
report the non-official FID and IS scores – computed with Pytorch rather than TensorFlow – indicated
with *. †: increased parameters to match IC-GAN capacity. DA: 50% horizontal flips in real and
fake samples (d), and conditioning instances (i). ch⇥: Channel multiplier that affects network width.

Method Res. #FID "IS

Uncond. BigGAN† 64 16.9* ± 0.0 14.6* ± 0.1
StyleGAN2 + DA (d) 64 12.4* ± 0.0 15.4* ± 0.0
IC-GAN (BigGAN) + DA (d,i) 64 9.2* ± 0.0 23.5* ± 0.1
IC-GAN (StyleGAN2) + DA (d,i) 64 8.5* ± 0.0 23.5* ± 0.1

Uncond. BigGAN [36] 128 25.3 20.4
StyleGAN2 + DA (d) 128 27.8 ± 0.1 18.8 ± 0.1
IC-GAN (BigGAN) + DA (d,i) 128 11.7 ± 0.0 48.7 ± 0.1
IC-GAN (StyleGAN2) + DA (d,i) 128 15.2 ± 0.1 38.3 ± 0.2

StyleGAN2 + DA (d) 256 41.3 ± 0.1 19.7 ± 0.1
IC-GAN (BigGAN) (ch⇥ 64) + DA (d,i) 256 17.4 ± 0.1 53.5 ± 0.5
IC-GAN (BigGAN) (ch⇥ 96) + DA (d) 256 15.6 ± 0.1 59.0 ± 0.4
IC-GAN (StyleGAN2) + DA (d,i) 256 23.1 ± 0.1 42.2 ± 0.2

18



accordingly. Moreover, in the bottom left quadrant, lorikeet instance features are interpolated with
flying hummingbird instance features, and the generated images change their color and appearance
accordingly. Finally, in the bottom right grid, we interpolate instance features from a tiger and
instance features from a white wolf, resulting in different blends between the striped pelt of the tiger
and the white fur of the wolf.

Unlabeled COCO-Stuff. Training IC-GAN with a StyleGAN2 backbone on COCO-Stuff has
resulted in quantitative results that surpass those achieved by the state-of-the-art LostGANv2 [49] and
OC-GAN [50], controllable and conditional complex scene generation pipelines that rely on heavily
labeled data (bounding boxes and class labels), tailored intermediate steps and somewhat complex
architectures. In Figure 7, we compare generated images obtained with LostGANv2 and OC-GAN
with those generated by IC-GAN with a StyleGAN2 backbone. Note that the two former methods
use a bounding box layout with class labels as a conditioning, while we condition on the features
extracted from the real samples xi depicted in Figure 7a. We compare the generations obtained
with two random seeds for all methods, and observe that IC-GAN generates higher quality images
in all cases, especially for the top three instances. Moreover, the diversity in the generations using
two random seeds for LostGANv2 and OC-GAN is lower than for IC-GAN. This is not surprising,
as the former methods are restricted by their bounding box layout conditioning that specifies the
number of objects, their classes and their expected positions in the generated images. By contrast,
IC-GAN conditions on an instance feature vector, which does not require any object label, cardinality
or position to be satisfied, allowing more freedom in the generations.

ImageNet. Class-conditional IC-GAN with a BigGAN backbone has shown comparable quanti-
tative results to those of BigGAN for 256⇥256 resolution in Subsection 3.4. In Figure 8, we can
qualitatively compare BigGAN (ch⇥ 64) (first rows) and IC-GAN (ch⇥ 64) (second and third rows),
for three class labels: goldfish, limousine and red fox. By visually inspecting the generated images,
we can observe that the generation quality is similar for both BigGAN and IC-GAN in these specific
cases. Moreover, IC-GAN allows controllability of the semantics by changing the conditioning
instance features. For instance, changing the background in which the goldfish are swimming into
lighter colors in Figure 8a, generating limousines in generally dark and uniform backgrounds or,
instead, in an urban environment with a road and buildings (Figure 8b), or generating red foxes with
a close up view or with a full body shot as seen in Figure 8c.

Swapping classes for class-conditional IC-GAN on ImageNet. In Figure 8, we show that we
can change the appearance of the generated images by leveraging different instances of the same
class. In Figure 9, we take a further step and condition on instance features from other classes. More
specifically, in Figure 9 (top), we condition on the instance features of a snowplow in the woods
surrounded by snow, and ask to generate snowplows, camels and zebras. Perhaps surprisingly, the
generated images effectively get rid of the snowplow, and replace it by camel-looking and zebra-
looking objects, respectively, while maintaining a snowy background in the woods. Moreover, when
comparing the generated images with the closest samples in ImageNet, we see that for generated
camels in the snow, the closest images are either a camel standing in dirt or other animals in the
snow; for the generated zebras in the snow, we find one sample of a zebra standing in the snow,
while others are standing in other locations/backgrounds. In Figure 9 (bottom), we condition on the
features of an instance that depicts a golden retriever on a beach with overall purple tones, and ask to
generate golden retrievers, camels or zebras. In most cases, generated images contain camels and
zebras standing on water, while other generations contain purple or blue tones, similar to the instance
used as conditioning. Note that, except one generated zebra image, the closest samples in ImageNet
do not depict camels or zebras standing in the water nor on the beach.

F Additional off-the-shelf transfer results for IC-GAN

Is IC-GAN able to shift the generated data distribution by conditioning on different instances?
As discussed in Section 3.3, we can transfer an IC-GAN trained on unlabeled ImageNet to COCO-
Stuff and obtain better metrics and qualitative results than with the same IC-GAN trained on
COCO-Stuff. We hypothesize that the success of this experiment comes from the flexibility of
our conditioning strategy, where the generative model exploits the generalization capabilities of the
feature extractor when dealing with unseen instances to shift the distribution of generated images

19



Figure 5: Qualitative results on unlabeled ImageNet (256⇥256). Next to each input sample xi, used
to obtain the instance features hi = f✓(xi), the six nearest neighbors in the feature space of f✓ are
displayed. Below the neighbors, generated images sampled from IC-GAN with a BigGAN backbone
and conditioned on hi are depicted. Immediately below the generated images, the closest image in
the ImageNet training set is shown for each example (cosine distance in the feature space of f✓).

20



Figure 6: Qualitative results on unlabeled ImageNet (256⇥256) using IC-GAN (BigGAN backbone)
and interpolating between two instance feature vector conditionings (vertical axis) and two input
noise vectors (horizontal axis).The two images depicted to the left of the generated image grids are
used to extract the instance feature vectors used for the interpolation.

from ImageNet to COCO-Stuff. To test this hypothesis we design the following experiment: we
compute FID scores of generated images obtained by conditioning IC-GAN with instance features
from either ImageNet or COCO-Stuff and use either COCO-Stuff or ImageNet as a reference dataset
to compute FID. In Table 10 (first row) we show that when using COCO-Stuff for both the instance
features and the reference dataset, IC-GAN scores 8.5 FID; this is a lower FID score than the 43.6
FID obtained in Table 10 (second row) when conditioning IC-GAN on ImageNet instance features
and using COCO-Stuff as reference dataset. Moreover, when using COCO-Stuff instance features
and ImageNet as reference dataset, in Table 10 (third row), we obtain 37.2 FID. This shows that,
by changing the conditioning instance features, IC-GAN successfully exploits the generalization
capabilities of the feature extractor to shift the distribution of generated images to be closer to the
COCO-Stuff distribution. Additionally, note that the distance between ImageNet and COCO-Stuff
datasets can be quantified with an FID score of 37.2 2.

What is being transferred when IC-GAN is conditioned on instances other than the ones in
the training dataset? From the point of view of KDE, what is being transferred is the kernel
shape, not the kernel location (that is controlled by instances). The kernel shape is predicted using a
generative model from each input instance and we probe the kernel via sampling from the generator.

2We subsampled 76,000 ground-truth images from ImageNet training set and used all COCO-Stuff training
ground-truth images.

21



(a) xi (b) LostGANv2 [49] (c) OC-GAN [50] (d) IC-GAN (StyleGAN2)

Figure 7: Qualitative comparison for scene generation on 256⇥256 COCO-Stuff with other state-
of-the-art scene generation methods. (a) Data samples xi from which instance features hi = f(xi)
are obtained for IC-GAN, and labeled bounding box conditionings are obtained for LostGANv2 and
OC-GAN. Images generated with two random seeds with (b) LostGANv2 [49], (c) OC-GAN [50],
(d) IC-GAN (StyleGAN2).

Table 10: FID scores on COCO-Stuff 128⇥128, when using an IC-GAN trained on ImageNet
and tested with instance features from either COCO-Stuff or ImageNet and using either of those
datasets as reference. The metrics obtained by sampling 1,000 instance features (k-means) from
either ImageNet or COCO, and generating 76,000 samples. As a reference, 76,000 real samples from
COCO-Stuff or ImageNet training set are used.

train instance dataset eval instance dataset FID reference dataset #FID
IC-GAN ImageNet COCO-Stuff COCO-Stuff 8.5 ± 0.1
IC-GAN ImageNet ImageNet COCO-Stuff 43.6 ± 0.1
IC-GAN ImageNet COCO-Stuff ImageNet 37.2 ± 0.1

Thus, we transfer a function that predicts kernel shape from a conditioning, and this function seems
to be robust to diverse instances as shown in the paper (e.g. see Figure 1c and 1d). Moreover,
by visually inspecting the generated images in our transfer experiments, we observed that when
transferring an IC-GAN trained on ImageNet to COCO-Stuff, if the model is conditioned on images
that contain unseen classes in ImageNet, such as “giraffe”, the model will still generate an animal
that would look like a giraffe without the skin patterns and characteristic antennae, because ImageNet
contains other animals to draw inspiration from. This suggests that the model generates plausible
images that have some similar features to those present in the instance conditioning, but adapting
it to the training dataset style. Along these lines, we also observed that in some cases, shapes and
other object characteristics from one dataset are transferred to another (ImageNet to COCO-Stuff).
Moreover, when we conditioned on instances from Cityscapes, the generated images were rather
colorful, resembling more the color palette of ImageNet images rather than the Cityscapes one.

Off-the-shelf transfer results for IC-GAN. In Figure 10, we provide additional generated samples
and their closest images in the ImageNet training set, when conditioning on unseen instance features
from other datasets. Generated images often differ substantially from the closest image in ImageNet.

22



(a) Class label Goldfish

(b) Class label Limousine

(c) Class label Red fox

Figure 8: Qualitative results in 256⇥256 ImageNet. For each class, generated images with BigGAN
are presented in the first row, while the second and third row show generated images using class-
conditional IC-GAN with a BigGAN backbone, conditioned on the instance feature extracted from
the data sample to their left (xi) and their corresponding class.

23



Figure 9: Generated 256⇥256 images with a class-conditional IC-GAN (BigGAN backbone) trained
on ImageNet. Next to each data sample xi, used to obtain the instance features hi = f✓(xi), we
find generated images sampled from IC-GAN using hi and six sampled noise vectors. Below the
generated images, the closest image in the ImageNet training set are shown (Cosine similarity in the
feature space of f✓).

24



Although generated images using a COCO-Stuff and Cityscapes instances may have somewhat
similar looking images in ImageNet (for the first and second instances in Figure 10), the differences
accentuate when conditioning on instance features from MetFaces, PACS or Sketch datasets, where,
for instance, IC-GAN with a BigGAN backbone generates images resembling sketch strokes in the
last row, even if the closest ImageNet samples depict objects that are not sketches.

Off-the-shelf transfer results for class-conditional IC-GAN. In Figure 11, we show additional
results when transferring a class-conditional IC-GAN with a BigGAN backbone trained on ImageNet
to other datasets, using an ImageNet class label but an unseen instance. We are able to generate camels
in the grass by conditioning on an image of a cow in the grass from COCO-Stuff, we show generated
images with a zebra in an urban environment by conditioning on a Cityscapes instance, and we
generate cartoon-ish birdhouses by conditioning on a PACS cartoon house instance. This highlights
the ability of class-conditional IC-GAN to transfer to other datasets styles while maintaining the class
label semantics.

G Class balancing in ImageNet-LT

We experimented with class balancing for BigGAN in the ImageNet-LT dataset. In Table 11, we
compare (1) BigGAN, where both the class distribution for the generator and the data for the
discriminator are long-tailed; (2) BigGAN (CB), a class-balanced version of BigGAN, where the
generator samples class labels from a uniform distribution and the samples fed to the discriminator are
also class-balanced; and (3) BigGAN (T = 2) where the class distribution is balanced with a softmax
temperature of T = 2 providing a middle ground between the long-tail and the uniform distributions.
In the latter case, the probability to sample class c (with a frequency fc in the long-tailed training set)
during training is given by pc = softmax(T�1 ln fc).

Interestingly, balancing the class distribution (either with uniform class distribution or with T=2)
harmed performance in all cases except for the validation Inception Score. We hypothesize that over-
sampling rare classes, and thus the few images therein, may result in overfitting for the discriminator,
leading to low quality image generations.

Table 11: ImageNet-LT quantitative results for different class balancing techniques. "t.": training and
"v.": validation.

Res. #t. FID "t. IS #v. FID #v. [many/med/few] FID "v. IS
BigGAN 64 27.6 ± 0.1 18.1 ± 0.2 28.1 ± 0.1 28.8/32.8/48.4 ± 0.2 16.0 ± 0.1
BigGAN (CB) 64 62.1 ± 0.1 10.7 ± 0.2 56.2 ± 0.1 62.2/59.7/74.7 ± 0.2 11.0 ± 0.0
BigGAN (T = 2) 64 30.6 ± 0.1 16.8 ± 0.1 29.2 ± 0.1 30.9/33.3/49.5 ± 0.2 16.4 ± 0.1

H Choice of feature extractor

We study the choice of the feature extractor used to obtain instance features in Table 12. We compare
results using an IC-GAN with a BigGAN backbone when coupling it with a ResNet50 feature
extractor trained with either self supervision (SwAV) or with supervision for classification purposes
(RN50) on ImageNet dataset. Results highlight similar IC-GAN performances for both feature
extractors, suggesting that the choice of feature extractor that does not greatly impact the performance
of our method when leveraging unlabeled datasets. Given that for the unlabeled scenario we assume
no labels are available, we use the SwAV feature extractor. However, in the class-conditional case,
we observe that the IC-GAN coupled with a RN50 feature extractor surpasses IC-GAN coupled with
a SwAV feature extractor. Therefore, we choose the RN50 feature extractor for the class-conditional
experiments. For ImageNet-LT, we transfer these findings and use a RN50 trained on ImageNet-LT
as feature extractor, assuming we do not have access to the entire ImageNet dataset and its labels.

I Number of conditioning instance features at train time

To demonstrate that using many fine-grained overlapping partitions results in better performance than
using a few coarser partitions, we trained IC-GAN with a BigGAN backbone by conditioning on all
1.2M training instance features at training time in ImageNet and a neighborhood size of k = 50, and
compared it quantitatively with an IC-GAN trained by conditioning on only 1,000 instance features

25



Figure 10: Qualitative off-the-shelf transfer results in 256⇥256, using an IC-GAN trained on
unlabeled ImageNet and conditioning on unseen instances from other datasets. The instances come
from the following datasets (top to bottom): COCO-Stuff, Cityscapes, MetFaces, PACS (cartoons),
Sketches. Next to each data sample xi, used to obtain the instance features hi = f✓(xi), generated
images conditioning on hi are displayed. Immediately below each generated image, the closest image
in the ImageNet training set is displayed (Euclidean distance in the feature space of f✓).

26



Figure 11: Qualitative off-the-shelf transfer results in 256⇥256, using a class-conditional IC-GAN
trained on ImageNet and conditioning on unseen instances from other datasets and a class label.
The instances come from the following datasets (top to bottom): COCO-Stuff, Cityscapes, PACS
(cartoons). On the left, a data sample xi is depicted, used to obtain the instance features hi = f✓(xi).
Next to the data samples, generated images conditioning on hi and a class label (under the data
samples) are displayed. Just below the generated images, the closest image in the ImageNet training
set are shown (Euclidean distance in the feature space of f✓).

at training time. In this case, we extend the neighborhood size to k = 1,200 to better cover the
training distribution 3. Note that using k = 50 would result in using at most 50,000 training samples
during training, an unfair comparison. The 1,000 instance features are selected by applying k-means
to the entire ImageNet training set. We then use the same instances to generate images. Results are
presented in Table 13 and emphasize the importance of training with all available instances, which
results in significantly better FID and IS presumably due to the increased number of conditionings
and their smaller neighborhoods.

J Matching storage requirements for IC-GAN and unconditional models

We hypothesize that the good performance of IC-GAN on ImageNet and COCO-Stuff can not solely
be attributed to the slight increase of parameters and the extra memory required to store the instance
features used at test time, but also to the IC-GAN design, including the finegrained overlapping
partitions and the instance conditionings. To test for this hypothesis, we performed experiments
with the unconditional BigGAN baseline on ImageNet and COCO-Stuff, training it by setting all

3Note that this setup resembles the class partition in ImageNet, where 1,000 classes contain approximately
1,200 images each.

27



Table 12: Feature extractor impact with SwAV (ResNet50 trained with a self-supervised approach)
and RN50 (ResNet50 trained for the classification task in ImageNet). Experiments performed in
64⇥64 ImageNet, using 1,000 training instance features at test time, selected with k-means.

#FID
IC-GAN + SwAV 11.7 ± 0.1
IC-GAN + RN50 11.3 ± 0.1

Class-conditional IC-GAN + SwAV 9.9 ± 0.1
Class-conditional IC-GAN + RN50 8.5 ± 0.0

Table 13: Comparison between training IC-GAN (BigGAN backbone) using only 1,000 conditioning
instance features (selected with k-means) or all training instance features during training, in IC-GAN
64⇥64. At test time, we condition IC-GAN on 1,000 training instance features, selected with
k-means.

Method #FID "IS
IC-GAN (k = 50, trained with all 1.2M conditionings) 11.7 ± 0.1 21.6 ± 0.1
IC-GAN (k = 1,200, trained with only 1,000 conditionings) 24.8 ± 0.1 16.4 ± 0.1

labels in the training set to zero, following [36, 42], and increasing the generator capacity such that it
matches the IC-GAN storage requirements. In particular, we not only endowed the unconditional
BigGAN with additional parameters to compensate for the capacity mismatch, but also for the
instances required by IC-GAN. Moreover, we performed analogous experiments for the unconditional
StyleGAN2 in COCO-Stuff.

ImageNet. Given its instance conditioning, the IC-GAN (BigGAN backbone) generator introduces
an additional 4.5M parameters when compared to the unconditional BigGAN generator. Moreover,
IC-GAN requires an extra 8MB to store the 1,000 instance features used at inference time. This
8MB can be translated into roughly 2M parameters4. Therefore, we compensate for this additional
storage in IC-GAN by increasing the unconditional BigGAN capacity by expanding the width of both
generator and discriminator hidden layers. We follow the practice in [5], where the generator and
discriminator’s width are changed together. The resulting unconditional BigGAN baseline generator
has an additional 6.5M parameters. Results are reported in Table 14, showing that adding extra
capacity to the unconditional BigGAN leads to an improvement in terms of FID and IS. However,
IC-GAN still exhibits significantly better FID and IS, highlighting that the improvements cannot be
solely attributed to the increase in parameters nor instance feature storage requirements.

COCO-Stuff. Similarly, IC-GAN (BigGAN backbone) trained on COCO-Stuff requires 4M addi-
tional parameters on top of the extra storage required by the 1,000 stored instance features (8MB
again translated into roughly 2M parameters). Therefore, we add 6M extra parameters to the un-
conditional BigGAN generator. In the case of IC-GAN with a StyleGAN2 backbone, the instance
feature conditionings constitute 1M additional parameters. We therefore increase the capacity of the
unconditional StyleGAN2 model by 3M to match the storage requirements of IC-GAN (StyleGAN2
backbone). The results are presented in Table 15, where it is shown that both the unconditional
BigGAN and unconditional StyleGAN2 do not take advantage of the additional capacity and achieve
poorer performance than the model with lower capacity, possibly due to overfitting. When compared
to IC-GAN, the results match the findings in the ImageNet dataset: IC-GAN exhibits lower FID when
using BigGAN or StyleGAN2 backbones, compared to their respective unconditional models with
the same storage requirements, further highlighting that IC-GAN effectively benefits from its design,
finegrained overlapping partitions, and instance conditionings.

K Additional neighborhood size impact studies

We additionally study the impact of the neighborhood size for ImageNet-LT in Table 16 and in
COCO-Stuff in Table 17, showing that in both cases, IC-GAN with a BigGAN backbone and k = 5

4We store both parameters and instance features as float32.

28



Table 14: Comparing IC-GAN with the unconditional counterparts of BigGAN on 64⇥64 ImageNet
with the same storage requirements. Storage-G counts the storage required for the generator, Storage-I
the storage required for the training instance features, and Storage-All is the sum of both generator
and instance features required storage. FID and IS scores are computed using Pytorch code.

Method #prms. Storage-G Storage-I Storage-All #FID "IS
Unconditional BigGAN 32.5M 124MB 0MB 124MB 30.0 ± 0.1 12.1 ± 0.1
Unconditional BigGAN 39M 149MB 0MB 149MB 16.9 ± 0.0 14.6 ± 0.1
IC-GAN (BigGAN) 37M 141MB 8MB 149MB 10.4 ± 0.1 21.9 ± 0.1

Table 15: Comparing IC-GAN with the unconditional counterparts on 128⇥128 COCO-Stuff, with
the same storage requirements. Storage-G counts the storage required for the generator, Storage-I the
storage required for the training instance features, and Storage-All is the sum of both generator and
instance features required storage.

#prms. Storage-G Storage-I Storage-All #FID
train eval

Unconditional BigGAN 18M 68MB 0MB 68MB 17.9 ± 0.1 46.9 ± 0.5
Unconditional BigGAN 24M 92MB 0MB 92MB 28.8 ± 0.1 58.1 ± 0.5
IC-GAN (BigGAN) 22M 84MB 8MB 92MB 16.8 ± 0.1 44.9 ± 0.5

Unconditional StyleGAN2 23M 88MB 0MB 88MB 8.8 ± 0.1 37.8 ± 0.2
Unconditional StyleGAN2 26M 100MB 0MB 100MB 9.4 ± 0.0 38.4 ± 0.3
IC-GAN (StyleGAN2) 24M 92MB 8MB 100MB 8.7 ± 0.0 35.8 ± 0.1

achieves the best FID and IS metrics. The choice of a lower neighborhood size k = 5 than in
the ImageNet case (k = 50) could suggest that the number of semantically similar neighboring
samples is smaller for these two datasets. This wouldn’t be completely surprising given that these
two datasets are considerably smaller than ImageNet. Increasing the value of k in COCO-Stuff
and ImageNet-LT would potentially gather samples with different semantics within a neighborhood,
which could potentially harm the training and therefore the generated images quality.

Finally, in Figure 12, we qualitatively show generated images in ImageNet when using an IC-
GAN trained with varying neighborhood sizes. The findings further support the ones presented in
Subsection 3.5, showing that smaller neighborhoods result in generated images with less diversity,
while bigger neighborhood sizes, for example k = 500 result in more varied but lower quality
generations, supporting that k controls the smoothing effect.

Table 16: Impact of the number of neighbors (k) used to train class-conditional IC-GAN (BigGAN
backbone) in ImageNet-LT 64⇥64. Reported results in ImageNet validation set. As a feature extractor,
a ResNet50 is trained as a classifier on the same dataset is used. 50k instance features are sampled
from the training set.

#FID "IS
k = 5 23.4 ± 0.1 17.6 ± 0.1
k = 20 24.1 ± 0.1 16.8 ± 0.1
k = 50 24.1 ± 0.1 16.7 ± 0.1
k = 100 25.6 ± 0.1 16.3 ± 0.1
k = 500 27.1 ± 0.1 15.3 ± 0.1

29



Table 17: Impact of the number of neighbors (k) used to train IC-GAN (BigGAN backbone) on
COCO-Stuff 128⇥128. Reported results on COCO-Stuff evaluation set. As a feature extractor, a
ResNet50 trained with self-supervision (SwAV) is used.

#FID
k = 5 44.9 ± 0.5
k = 20 46.8 ± 0.3
k = 50 45.8 ± 0.4
k = 100 48.4 ± 0.3
k = 500 48.3 ± 0.5

(a) xi

(b) IC-GAN trained with k=5 (c) IC-GAN trained with k=20

(d) IC-GAN trained with k=50 (e) IC-GAN trained with k=100 (f) IC-GAN trained with k=500

Figure 12: Qualitative results in 64⇥64 unlabeled ImageNet when training IC-GAN (BigGAN
backbone) with different neighborhood sizes k. (a) Data samples xi used to obtain the instance
features hi = f✓(xi). (b-f) Generated images with IC-GAN (BigGAN backbone), sampling different
noise vectors, for different neighborhood sizes k used during training.

30


	Introduction
	Instance-conditioned GAN
	Experimental evaluation
	Experimental setup
	Unlabeled setting
	Off-the-shelf transfer to other datasets
	Class-conditional setting
	Selection of stored instances and neighborhood size

	Related work
	Discussion
	Assets and licensing information
	Experimental setup and hyperparameters
	Architecture modifications for IC-GAN.
	Training details and hyperparameters

	Additional metrics: Precision and Recall
	Comparison between StyleGAN2 and BigGAN backbones on ImageNet
	Additional qualitative results for IC-GAN
	Additional off-the-shelf transfer results for IC-GAN
	Class balancing in ImageNet-LT
	Choice of feature extractor
	Number of conditioning instance features at train time
	Matching storage requirements for IC-GAN and unconditional models
	Additional neighborhood size impact studies

