A Omitted Proofs for Section 4!

A.1 Proof of Proposition 1| (Consistency)

Proposition 6 (MDS LLN [16, Example 7.11]). Let Y be the sample mean from a martingale
difference sequence (MDS), Yr = + Zthl Y;, with E[|Y;|"] < oo for some r > 1. Then Y 5 0.
Lemma 2 (Uniform convergence). Let a;(0) := S;a(0, X;) be a real-valued function where S; €
{0,1} is H;_1-measurable and X; are i.i.d. Suppose that (i) © is compact and (ii) a(0, X;) satisfies
Property[l] Then

where a.(0) = E[a(0; X;)].

Proof. We follow a standard uniform law of large numbers proof (e.g. Tauchen [39, Lemma 1]) and
modify it to work for dependent data. The key modification is replacing the law of large numbers
(LLN) in that proof with a MDS LLN.

Let (01,0, ...,0k) be a minimal d-cover of © and Ns(6y) denote the J-ball around 6. By com-
pactness of ©, K is finite. For k € [K] and § € N;s(0y), we have

1 T
fm[ (0) — Sia.(0)]
1 T
— T;[al(ﬁ)—al(@c)—i—aiwk) Sia,(0) + Siax(0r) — Sia.(0)]
< ;;ml(a) ai (0| + Tg — Sia.(6)] Z; |S;a. (0)) — Sia. ()]
1 <& 1 <& 1 &
= TZ:W( a(0; X;) —a(fr; X T; a;(Or) — Sia.(0k)]| + T;'SZ (ax(0g) — ax(6))]
T 1 T
< *Zla (0; Xi) — a(Ok; Xi)| + T,Z[“Z’(e’“) = Sia.(0r)]| + lax(0r) — ax(0)] .

We now show that each of the three terms on the RHS above is small. In the third term, by continuity
of a.(0), Ve > 0,30 > 0s.t. |a.(0;) — a.(0)| < e

In the second term, [a;(6%) — S;a.(0); S;)] is a MDS. By Property [1{i) and Proposition[6] we have
S [0 - Sian (6] 0.

Next, we examine first term on the RHS. Let u;(0) = supg gce j9—o'|<s 10(0, Xi) — a(0', X;)|.
By continuity of a(#, X;), compactness of ©, and the Heine-Cantor theorem, @(6, X;) is uniformly
continuous in €. This ensures that u;(d) is continuous in ¢ and thus w;(§) | 0 as 6 | 0. Since
u;(8) < 2A(X;) (by Property [1]iii)), using dominated convergence, we have E[u;(8)] | O as é | 0.
Therefore, Ve > 0,36 > 0 s.t. E[u;()] < e. Thus we can write the first term as

—Z|a9X —a;(0k; X, \<—Zu,
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where (a) follows by the weak law of large numbers which applies because F[u;(8)] < E[A(X;)] <
oo (by Property [fiii)). O

Proposition (Consistency). Suppose that (i) Assumption Iholds (ii) Vj € [M], g+ ,(0) satisfies

Propertyl and (i) ¥(i, j) € [M]?, [3:(0)3:(0) " ]” satisfies Property - Then, for any policy T,
o) L o,
T—o0

Proof. We begin by defining the empirical and population analogues of the two-step GMM objective
for a given policy 7:

-
T
™ 1
Empirical objective: Q( )( 0) = 7 E ae( 1

T
roe]
. o
Population objective: Qgr)(G) = %ZE[ 1(0) | Hi—1]

:1T .
= < Z ) ® ga( )] w

= [mz ® g.(0)]" W[mT®g*(9)],

%% E [g:(0)|H;-1]
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/—<ap%

1§T:m >®g* )]

t=1

o~ —1
where g.(6) = E[g;(0)] and mp = £ Zthl m(s). We have W = QT(:Q\?S))] , where E)TOS) is
the one-step GMM estimate and )

Furthermore, we have W = [mgq (1) ® Q(6*)] ", where

The two-step GMM estimator is obtained by minimizing the empirical objective: §T =
arg mingecg Qgr )( 6). At the true parameter 0*, Q (9*) = 0 and by Assumption [2 a), 0* uniquely
minimizes Q{7 (6). By Newey and McFadden [30 Theorem 2.1], supgceo ‘Q(”) 7¥)(9)‘ it
0 = 6r 56~

Uniform convergence of @gf ) (6). We now prove that supgcg @53“ ) 0) — _gf ) (0)
ing the proof of Newey and McFadden [30, Theorem 2.6], we have

2 0. Follow-

TZ 9:(0) — m(st) ® g (0 +2H9* |

T
Z St ®g*
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)

15



We first prove that HW — WH 2% 0. Due to Condition (iii) of the theorem, we can apply Lemmato
get

YV (i,j) € [M]*, Ve >0, P (328 Qr(0);; — [ma(kr) ® Q(G)]’ > e> -0,

Y (i, §) € [M]2, Ve >0, P(\QT(é("S)),» - [mQ(HT)cm( ” >e) =0,
Y (i, §) € [M]2, Ve >0, P(‘Q 0),; — [msz(nT)®Q(0*)]‘ )ﬂo

Y (i,5) € [M], Ve >0, P()Wi,j—Wi,j ) o,

W -w| o,
where (a) follows because é\(og 2 o+ (by Proposmon and (b) by the continuous mapping theorem.
Therefore, we have
7] < 1wl + o)
< limsup H mq(kr) ® Q(0)] H +op(1

T—o0

=MXo
Substituting these results in Eq.[2] we get
2

L3 [06) — m(s) © 0. 0)]]] A2 +2]0.(0)]
T

t=1

AP - o) <

Thus, to show uniform convergence of @E,fr )(9), we need to show that

SUPgeo H% S 19:(0) — m(sy) ® g*(e)]H 2 0. For any € > 0, we have

sup >P | sup
(96@ ) Z

96@

1

z Sf & g*(ﬁ)}

=1

T
Z 9t.5(0) —m;(st)g:(0);]

T
> 1 —ZP (Sgg f;[gt,j m;(st)gs(0);]
(g 1—o0,(1),
1 T
-~ sup T;[gtw)—m(st)@g*w)} >0,

where (a) follows by the union bound and (b) by applying Lemma [2| for every j € [M] (using
Condition (ii)). O

A.2  Proof of Proposition 2] (Asymptotic normality)

Proposition 7 (Martingale CLT [15} Corollary 3.1]). Let M; with 1 < i < n be a martingale adapted
to the filtration F; with differences X; = M; — M;_, and My = 0. Suppose that the following two

conditions hold: (i) (Conditional Lindeberg) Ve > 0, >0 | B [XZI (|X;| > €) |F;_1] %0, and
(ii) (Convergence of conditional variance) For some constant o > 0, Z?Zl E [Xl2 \]-_1-_1] 5 o2
Theny ! | X; 4 N(0,02).

Proposition (Asymptotic normality). Suppose that (i) @(Fﬁ) L 0% (i) V(,j) € [M] x
[D], [%(9)} ~ satisfies Property ' (iii) 36 > 0such thatE [||gi(9*)\\2+‘5} < 00, and (iv) (Se-

lection ratio convergence) m( ™ Pk for some constant k € Ay,. Then 9T is asymptotically normal.:

VT(OF — %) % N (0,56, k))
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where 3(0*, k) is a constant matrix that depends only on 0* and k. By Assumption e ) and the Delta
method, B is asymptotically normal:

VT (Br — B%) 4 N(0,V(0%,k)), where V(0% , k) = Vo fuar(0F) T [2(0%, k)| Vi frar(07).
Proof. We follow a standard GMM asymptotic normality proof (e.g. Newey and McFadden [30,

Theorem 3.4]) and modify it to work for dependent data. Applying the GMM first-order condition to
the two-step GMM estimator, we get

VI (0r —0%) = |[GT(0r)0(0) 1 C(0)] @%m@%gggwm

where éTTO %) is the one-step GMM estimator, fisa point on the line-segment joining §T and 0%,
T
A 1 9g:(0)
G0) = =
) T 00
t=1
T -
T 00

2> tsmis misoye [2HO] ),

t=1 %
= D times
1« 9g:(0)
—thzl(mg(st)(@[ 89 :|>aand
_ 1 <
Q6) = 7> [9:(0)0:(0)"]
1 t;
= 73~ ([m(som(s) ] @ [3:0)3:0)"])
t=1
- %Z (ma(s:) ® [3:(0)3:(0) ")),
t=1
where mq(s¢) = [m(s¢), m(se),...,m(sy)]isa M x D matrix and mq(s;) = m(s¢)m(sy)".
D times

Convergence of @(éT) Let G() = E [8%750)} . Applying Lemmato every element of G (using

Condition (ii)) and using the union bound, we get

N 1 E
G(0) - (TZmG(St)> ® G(0)

B t:11 . .
G(Or) — (T ZmG(St)> ® G(0r)
t=1

Since k7 = k for some constant & (by Condition (iv)), (% Zle mg(st)) also converges in

sup £> Oa

0cO

V6>O,P<

> 6) — 0. 3)

probability to a constant matrix. That is, 7 Zthl ma(s:) = m(k) for some constant matrix
mg, (k) that only depends on k. By the continuity of G and the fact that §T L g+ (by Condition (i)),
we have G(07) 2 G(6*). Using these results with Eq. |3} we get

GOr) & me (k) ® G(6)

Similarly, G(6) (l)» G (0%, k), (5)
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where G (6%, k) = mz, (k) ® G(0*) and (a) follows because 6 2 6*.

Convergence of the weight matrix W. Let Q(0) = E [3,(0)5.(9)T]. By applying Lemmato
every element of Q (using Condition (iii)) and the union bound, we get

sup 50,

e

ﬁ ( ZWLQ St > (9)
'\(09) ( Zmﬂ s ) ®Q(§§?S))

. Ve>O,P<

> e) — 0. (6)

Since k7 - k for some constant k (by Condition (iv)), (i Zf,l mg(st)) LA mg (k) for some

constant matrix mg (k) that only depends on k. By continuity of €2 and the fact that 5("*) o*

(which follows by Proposition|1) ', we have Q(@;’S)) = Q(0*). Using these results with Eq. @ we get

Q%) B i (k) @ Q(67)
= Q.(0%, k),
LW =Q05) T B 07, k)7 7

where Q. (6%, k) = m§ (k) @ Q(6%).

Asymptotic normality of ﬁ Zthl 9i(0*). For this part, we use the Cramer-Wold theorem and

the martingale CLT in Proposition For any v € RM s.t. |v]| = 1, UTL\/%B*) is a MDS be-

cause E [v' g;(0%)|H;—1] = v"E[g;(6*)|H;—1] = 0. We now show that the two conditions of
Proposition[7]apply to this MDS.

(i) Conditional Lindeberg: The Lyapunov condition implies the Lindeberg condition [5, pg. 6]. In our
case, the Lyapunov condition is easier to check and we show that it holds. For some ¢ > 0, we have

* 2+5() 2481 w2+
— Z|v @ E Zn 172 Jlga 6")]
®» 1 oy (1246
= WZH%(Q | "
=1
2+5 1 &
. 3\ 12+9
: T1+5/2 ZE[ |Hi—1} < WZE {Hgi(@ )| |Hi—1]
=1

T
= i DB [Im(si) @ (69|
i=1

@ 1 < o ass

< w7 OB (13107
=1

@y,

where (a) follows by Cauchy-Schwarz, (b) because ||v|| = 1, (c) because m(s;) is a binary vector,
and (d) because E [||§1(9*) H2+6] < oo (by Condition (iii)).
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(ii) Convergence of conditional variance: The conditional variance can be written as

—ZE v 9:(6%)g:(6™) U|HZ = Z’UTE g:(6™)g (9*) | i 1]1}

[ — -

% o7 [mgy (k) © Q0%)] v

= 0" [Q.(0", k)] v

’ﬂ \

where (a) holds because k1 Bk (by Condition (iv)). Thus, using Proposition [/, Vv € RM st
||v]| = 1, we have

Zv 9:(0%)0 5 N (0,07 Q. (0%, k)v) .

Thus, by the Cramer-Wold theorem, we get
1 d
T o 0(07) BN (0,9.(8°, ). ®
i=1

Asymptotic normality of §T By Egs. and and Slutsky’s theorem, we get
VT (O — 67) % N (0,5(6%, k),
where (0%, k) = [G] (6%, k) (Q.(0%,k)™1) G.(6%, k)] .

A.3 Proof of Theorem |I| (Regret of OMS-ETC)

Lemma 3 (Consistency of /k\t). Suppose that Assumptionholds. If </9\t 25 0, then Et 2 k* where
ki = argmingen, V(0;, k).

Proof. By continuity of V', compactness of A, and Assumption ke B argmingea, V(0*, k) =
K*. O

Theorem (Regret of OMS-ETC). Suppose that (i) Conditions ( i)-(iii) of Proposition Ihold and (ii)
Assumptlonlholds Case (a): Fora fixede € (0,1), if k* € A, then the regret converges to zero:

Roo(mere) = 0. If k* ¢ A, then mgre suffers constant regret: R, (mgrc) = r for some constant
r > 0. Case (b): If e depends on T such thate = o(1) and Te — oo as T — oo (e.g. e = ﬁ), then

VO* € ©, we have Roo(mgrc) = 0.

Proof We first analyze Case (a) of the theorem Where e is fixed. By Condition (i), GTe L 0% We
have k& = arg mingen,, (HTE, k) and therefore kB g (by Lemma I| Thus, if k* € A, then
kr 5 ¥ and therefore kr B K*. Using Proposmon we get

VT (Br = 57) S N (0,V(6°, 1)
" Roo(WETC) = V(9*7I€*) — V(9*7/€*) =0.

If k* ¢ A, then ki 5 R # k*, where & = arg min V(6*, k). Using Proposition we have

HEA
VT (ET . ﬁ*) 4 A0,V (6, R))
. Rao(merc) = V(0" R) — V(6",5%) 20,
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where (a) follows by Condition (ii).

Now we analyze part (b) of the theorem. When e depends on T such that e = o(1), the feasible
region converges to the entire simplex: A— Ay asT — oo. Thus ky — k 2% 0. Furthermore, since

Te — oo as T — oo, we have k 5 k* and therefore Kr S K* Using Proposition we get the
desired result.

A.4 Proof of Lemma 1| (GMM concentration inequality)

Proposition 8 (MDS concentration inequality [43| Theorem 2.19]). Let {(Dy, Fi)}3> | be a MDS,
and suppose that E [exp {\Dy } |Fr_1] < exp {#} almost surely for any X < L. Then the sum

satisfies the concentration inequality

(g

k=1

2 2
>77> SQeXp{—ZZZ} ifO§77<%.

Lemma 4 (Uniform law for dependent data). Let a;(0) := S;a(0; X;), where a; is a real-valued
Sfunction, S; € {0,1} is H;_1-measurable, and X; X Py.. Let i, (0) = Ea(0; X;)|. Suppose that
a(0) satisfies Property[2] Note that E [a;(0)|H;—1] = S;a.(0). Then, for some constant 5y > 0 and
Vé € (0,00),

T
1 - 1 2
P (;1618 T 7221 [a;(0) — S;a.(0)]] > 5) < 5D XP {-0(16%)}.
Proof. LetU = {61,05,...,0n} be a minimal §-cover of ©. We have N < 6% for some constant C'.

Let ¢ : © — U be a function that returns the closest point from the cover: ¢(f) = arg ming.cy ||0 —
0'||. We have

= sup
geo | T
1 1 a
< sup — a;(0) —a;(q(0))]| + max |—= a; (6, S;ax(0,)]| + sup — S; |ax(q(0)) — a. (0
oup 7 D 16i(0) — (a0 + m | =3 as0) = S (6| +5up 7384 ) ~ 2.0
T
1 1
= sup — S; (a;(0,X;) —a;(q(0), X;))| + max |— a;(0,) — S;a+(0,)]| + sup |a«(q(0)) — a.(6
aegT;| (ai (0, Xi) — ai(q(0), X;))| ne[N]T;[ (6n) (0n)] aeg\ (a(8)) 0l
T
1
< sup — a(0,X;) —a;(q(8),X;)| + max |= a;(0,) — S;a.(0,)]| + sup |a.(q(0)) — a.(0
sup - 221006, X0) — (a(0) X1+ s |7 3 os(6) = S (0] + sup . (49) — .0)|

‘We now examine the three terms on the RHS one at a time.

Third term. By Lipschitzness of a, (Property[2]i)), we have:

sup |d.(q(0)) — a«(0)] < Ly sup [[¢(0) — 0] < L16.
90 0e0
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Second term. We note that it is a sum of a MDS. By Property [2ii) and Proposition|[8] there exists a
constant C; > 0 such that for § € (0, Cy), we have
. 5)

T

[ai(an) - Sia* (071)]

< 5) >1—exp {—O (T52)}

1 T

n€[N] i=1

>1— Nexp {—(9 (T52)}

P <;réz[%<] T . [ai(0n) — Sias(00)]

> 1 o5 exp {~0 (T7)}.

First term. We have

0,0’ c03]10—0'||<n
<E|swp|AX0)]  swp 00
S 0,0'€©;]10—0"||<n

< nsup [|A(X;, 0)||
60O
(a)
< Aon., ©))
where (a) follows by Property 2{iii).
Suppose that Property [2[iv)(a) holds. Then

sup 7 Z@ax a:((0), Xo)| < 7 3 uil9)

where (a) follows by Eq. [0} By Property 2fiv)(a), (u;(0) — us(6)) is sub-Exponential. By the
sub-exponential tail bound [43] Proposition 2.9], for some constant Co > 0 and ¢ € (0, C>), we have

T

LS i (6) — wa(0)

P(
T 4
i=1

T
P <Sup l Z |C~L7,(9,Xz) — &l(q(ﬁ),X,)| < (Ao + 1)5) >1—exp {—O (T(SQ)}

< 5) >1-— eXp{—(’) (T62)}

T
T <

Now suppose that Property [J[iv)(b) holds instead. Then

T
1
su a; (0, X;) X < = sup ||A(X;, 0)| sup || — q(6
sup 7 Z\ ai(q(0), X5)| T;eeg“( )Ilgegll q(0)]
5 T
?waA&wn

[dSC]



Since supgeg ||A(X;, 0)]| is sub-Exponential, so is ZiT:1 Supgee ||A(X;, 0)]|. By a sub-Exponential
tail bound [42, Proposition 2.7.1(a)], we have for any C5 > 0,

T
P (; Zzug IA(X;, 0)| > Og) < exp {—O (TCs)}

<sup Z|a1 0,X;) — ai(q(0), X;)| > 503> <exp{-0O(TCs)}

pco T

<SUpZ| ai(q(0), X )>5> exp{-0O(T)}.

pco T’

Combining these results together using the union bound, we get

%Z [a; (6 L(6;K)]

< (L1 + Ly + 2)5)

1 & N 1 &
<£aj>vc] T; — Sia.(6,)]] <6, ;ui(d)—u*(é) <5>
>1—ZP<;Z[%( o) > ) ( Z >5>
~p XP

Proposition 9 (Boundedness and Property Ekiv)(a)). Property Ekiv)( a) is satisfied for bounded
function classes, i.e., when ||a;]| 0 < A < 00.

Proof. We have:

ui(n) = sup la(f, X;) — a0, X;)|
0.0'c0,ll6-0"||<n

< 2sup |a|
9o

< 2A.

Thus u;(n) is bounded and therefore sub-Gaussian for every 7. O

Proposition 10 (L1near1ty and Property llV)(b)) Suppose that (i) a(0, X;) is a linear function of 6,
ie, a0, X;) =0T o(X;)+p(X;), where ¢ and p are arbitrary functions; and (i) Vd € [D)], ¢(X;)a
is sub-Exponential. Then a(0, X;) satisfies Property2fiv)(b).
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da Xi;e
Proof. We have that A(X;,0) = 2250 — (X, and thus supgee [|A(Xi,0)] = [6(X,)]| <
ZdDzl |¢(X;)q|. Therefore, for any 7 > 0, we have

p <sup JAX, 0] < 77> — P (l6(X)] <n)
€O

>P<§]¢ |<a

> P (Vde D), [6(X:)al < )
< 1—ZP<|¢ d\>—)

S exp -0}

> 1 exp{-O@)} .

where (a) follows by the union bound and (b) because ¢(X; ), is sub-Exponential. This shows that
Supgee ||A(X;, 0)| is also sub-Exponential (see Vershynin [42) Definition 2.7.5]). O

Remark. Rakhlin et al. [32|] derive a uniform martingale LLN and develop sequential analogues of
classical complexity measures used in empirical process theory. These techniques are a potential
alternative for deriving the tail bound in Lemma 4| However, the conditions required for these
techniques are difficult to check. In our case, the dependent and i.i.d. components can be separated
more easily. Thus we opted for deriving a uniform concentration bound by modifying the classical
uniform LLN proof. Zhan et al. [46]] also derive a uniform LLN without requiring boundedness of
the martingale difference terms, but with structural assumptions on the summands related to their
specific application.

Lemma (GMM concentration inequality). Let A, Co, 11,72, and 0y be some positive con-
stants. Suppose that (i) Assumption [2] holds; (ii) Vj, §; ;(0) satisfies Property @ (iii) The
spectral norm of the GMM weight matrix W is upper bounded with high probability: Y6 &
(0,Co), P <||/V[7H < /\*> > 1— spexp{—0O(T6?)} (see Remark ; (iv) (Local strict con-
vexity) V8 € N, (0*), P (’ %22 H < h) = 1(Q(0) is defined in Assumption a)); (v)
(Strict minimization) Y0 € N,,(0*), there is a unique minimizer k() = argmin, V (0, k) s.t

V(0,k)— V(9 k(0)) < c0? = ||k—r(0)|| < §; and (vi)sup,. |V (0,r) =V (0, k)| < L||6—0'|.

Then, for Ky = argmingen,, V(é\(T ), k), any policy w, and V5 € (0, dp),

P (Jo-

Proof. Below we give the empirical and population analogues of the GMM objective for a given
policy 7:

exp {—(’) (T&S)} .

6) < (Sz%exp{—(’) (T§4)} and P (HET — f<;*H > (5) < 54%

.
T

A~ 1 —

Empirical objective: Q(T)(G): T E gt(é’)l W

Population objective: Q(”)( 0) = g}(@)/V[?g}(H)T

where §.(0) = E [g:(9)].
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To simplify notation, let m; = m(s;). By the triangle and Cauchy-Shwartz inequalities (see Newey
and McFadden [30, Theorem 2.6]),

@ 0) - @ o)
2
W +2113.(6)]

T
Tg —me ®g.(6)] | Wi

2

T
i +2CH;Z 9:(6) — 1m0 © 3.(0)]

’IIWI,

where C' = supgeg [|G«(6)||. By applying Lemmato each element of the vector g;(6) and using
the union bound, we get:

T T
1 1 5
_ _ a > . _ . a.) _
P (ggg T 2 0(®) =m0 9..(6) <5) 2P (ﬂ sup 7 3 [0 (6) = ma © 3), 0] < M)
1 & 5
>1—§Psu E i(0) —my; ®(G4);(0)]] > —
(968 2 [9¢,5(0) t.j @ (34);(0)] M)
1
>1- (P—Dexp{—o (T5%)}. (10)
This means that, for 0 < § < 1,
T
1 . A
=300 —me @ 3. 0))| < 6 IW) <A = ‘Q( (0 <T>(e)\ < A262 42,008
= = (2C + A5\

< (2C + A)AG,

T
<sup|czT Q¥)<9>(<<2C+A*>A*a) >P<sup %Z[gm—mt@g*(eﬂ

0c©

<6, |W| < )\*>

> 5) _pP (||W|| > A*)

1 I
T Z [9:(60) — my ® G.(0)]

(;) 1-P <sup
veo |1 1=
® 1 )
z 1 52D exp {~0O (T9%)}
m 1
(sup 2 - o o) < 6) 21— opexp{~0(T45°)},
0c®

where (a) follows by the union bound and (b) follows by Eq. @l and Condition (iii). Using this
uniform concentration bound, we get

P(Q(”)( br) < Q% (0r) + g)>1 51 exp {—0 (T§?)},

(Q(w)(g*) < Q(ﬂ)( %) + g) >1-— (SQLDexp{fO (T52)}-

Since f7 minimizes @( almost surely, we have P (Q(ﬂ)( ) < Q(”)(G*)) = 1. Combining these
inequalities using the union bound, we get

(Q(”)( ) < Q% (07) + 5)217 exp {—0 (T6?)}

1

52D
- @ 1

P (QF(0r) <) 2 1- 5 exp (-0 (197},

where (a) follows because ngr) (0*)=0.

24



Intuitively, if Qgpﬂ ) (@\T) is small, then we would expect §T to be close to #*. To formally show this,

we use the local curvature of Qg? ), By Condition (iv), Qg,fr ) is locally strictly convex in the n;-ball

N, (0*). Therefore, there exists a closed y-ball N, (6*) C N, (6*) such that

VO ¢ N, (6%), QS (0) > Qn, where Qn = sup QY7 (6).

This is analogous to an identification condition and ensures that Q(ﬂ)( 0) <Qn = 0 € N,(0%).

Let H(0) = a;cgiﬂ (9). Then, by twice continuous differentiability of g, for § € N, (6*), we have

D0) 2 QT 07+ (0- 07 (1) (007"
oo [HE) (66,
oI < QP @NIE )]
2lare)n
where in (a), #’ is a point on the line segment joining ¢; (b) follows because Q(T” ) (0*) = 0; and (c)
follows by Condition (iv). Thus, for 6 < @y, we have
W (0r) <5 = || — 0*|| < Voh

N . 52
P(||9T—e*||<5) 2P< ™ (@ )<h)

1
>1-— (V—Dexp{—(’) (T(54)}.

Concentration inequality for ET
By Condition (vi), sup,.ca, \V(@\T, k) — V(6*,K)| < L||fr — 6*|. Therefore,

107 — 0% <8 = sup |[V(Or,k) — V(6" k)| < L.
NGAU,

Furthermore, we have

sup |V(07,K) — V(0% k)| < L6 = V(0*,kr) < V(0r, kr) + L5, and
KEAy

V(0r,k*) < V(0*, k%) + LS.
Since ET is the minimizer, we have V(§T, ET) < V(§T, k*). Combining these inequalities, we get
167 — %] <6 = V(0% kr) — V(6*, k%) < 2L6.

Due to Condition (v), we have

~ ~ 2L
V(G*,kT) — V(e*,/i*) <2Lf = ||k‘T - KJ*H < 76,
&
~ ~ 2L5
R e L T

P(|kr — k"] <8)>1-P (||§T 0 <O (52))

1= gp e {0 (15}

O
Lemma 5 (Sufficient condition for 7). Suppose that V(j, k), [:.;(0)Gi 1 (0)] satisfies Property
Let WT(QT()S)) = (AZT(GFX))_I = [% Y gt(a(qim))gt—r (5(7:”))} _1, where §(TOS) is the one-step GMM

estimator (that uses W =1). Then W\T(é\(qfs)) satisfies Condition (iii) ofLemma
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Proof. We define Wr(6*) as

Wr(07) = Qp(67)~

1< -
72 E 009 (07 HH]]

( Zm s¢)m ) ®E [gt(e*)gj(e*)]] :

Let A = QT(@TO S)) — QT@TTOS)) and A\, denote smallest eigenvalue. Using the eigenvalue stability
inequality [38, Section 1.3.3], we get:
‘/\min (QT(O’J?S))) - )‘min (QT(é\’,(Z?S)))‘ S HA” ’

N GO | P CORA ! :
L B e e o R e vy

By applying Lemmad]to each term of the matrix and using the union bound, we have

Y

P (e 00| 25) 2 (uplfrer - a0, <)

2P | sup 3 [0ras() = Oras0)] <0

1)
>1-— ZP (zlelg QTZJ(H) - QT,Z»J(G)‘ > W)

:1—6%exp{—(9(T52)}
P (A <) =P ([0r(@r) - 20r)| <6) 21~ e (-0 (767} (12)

where in (a) ||.|| r denotes the Frobenius norm.

For some dp > 0, let A = infeeNso(a*),neAw Amin (27(0)). For § < min {50, %} we have

lall <o £ ||[Wr(dn) | <

y\\ \)

P (| 7en] <3) = Paan<s)

G )
>1- 5—Dexp{—(9(T5 )},
where (a) follows by Eq.[IT]and (b) by Eq.[12} O

In the next lemma, we present a concentration inequality for %T with better rates under additional
restrictions on #*. We do not require these better rates for proving zero regret for OMS-ETG. We
present this lemma for the sake of completeness.

Lemma 6 (Another concentration inequality for /I;T). Let (0) = argmin, V(0,K), Opoundary =
{0 € © : k(9) € boundary(Ay)}, where boundary (Ay) = {k € Ay :3i, st k; =0},

Gmtmma - {8 S O: %V (9 H( )) - 0} and @revtruted =0 \ (ehoundary m @minima) SMPPOSE that (l)
the conditions of Lemmamhold and (ii) 0 € Oyestriciea- Then

o * 1 4
P(HkT—n )<62—Dexp{—(9(T6)}.
This means that if 6* is not such that the minimizer x(0) = arg min, V (0, k) is on the boundary of

the simplex and is also a local minimum of V (0, k) (informally, (0) is not “just” on the boundary),
we can get better rates.
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Figure 5: Illustration of the proof of OMS-ETG algorithm. When the event Z(¢) occurs, (a) if the
selection ratio xy; is outside N (x*), then then selection ratio in the next round Kp(j+1) Will move
closer to N(x*), and (b) if ky; is inside N, (x*), it remains inside for all future rounds.

Proof. Now we use the tail bound for §T to derive a concentration inequality for k\T when 6 €
Orestricted- K 18 the solution to the following constrained optimization problem:

K4l

Or,#) subjectt i=1
nIenPlLI\}MV( T,k ) subject to Zl/i

The Lagrangian function is

K
L(O,k,N) =V (0,k)+ A Zni—l

Let f(0,k,A) = 25 (0,1, A) = 9X(0,K) + A[L,1,...,1] 7. Since A[1,1,...,1]T # 0, there exists
a Lagrange multiplier \* € R such that f(6*, k*, \*) = 0.

Condition (ii) is required to ensure that f(6, k, \*) is continuously differentiable in (6, x) which
allows us to use the implicit function theorem. To show this, we divide the space O egyicted INLO
two dlSJOIHt sets: (1) ®1menor =0 \ ®b0unddrys and (11) (—)stnc[ boundary — (—)bounddry m ®m1mmd When
6 € Oingerior» the constraint will not be active and thus \* = 0. When 0 € Ogyici-boundary> the constraint
will be active and thus A* > 0. In both cases, f (6, x, A*) will be continuously differentiable in (6, x).
Note that if 0 € © \ Oyesricted, then A* = 0 but f is not differentiable because the constraint is “just”
1mactive.

Let Y(0,k) = 8f(9 K) = 3}@2 = %0 868 V_(0, ). By the implicit
function theorem since Y (6%, is invertible (by Condition (v)), there exist neighbourhoods
N(0*) and N(x*) and a function ¢ : N(6*) — N(k*) such that kr = ¢(6r) and %(G) =
— [Y(8,¢(0)) 71X (6, ¢(0))]. By a Taylor expansion, we get

(0, %), and X (0,r) = $5(0,r) =
k")

= 9(6) < 9(6%) + 90 0) (3~ 0°)
= K"+ %(9) (9T - 9*)

el
< c|[or -0
where in (a) 6 is a point on the line segment joining §T and 0%, and C = %(0)”.
Therefore, we have
P(Ir = <0) 2 P (5 -0 < 5) 2 1~ gpew (-0 (9")).
O

A.5 Proof of Theorem 2] (Regret of OMS-ETG)

Theorem (Regret of OMS-ETG). Suppose that Conditions (i)-(iv) of Proposition |2| hold. Let
A(s) ={skp + (1 — s)k : k € Ay}. Case (a): For a fixed s € (0, 1), if the oracle selection ratio
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k* € A(s), then the regret converges to zero: Roo(mprg) = 0. If K* ¢ A(s), then Roo(7grg) = 7
for some constant r > 0. Case (b): Now also suppose that the conditions for Lemma [I| hold. If
s = CT"! for some constant C and any n € [0, 1), then V0* € ©, the regret converges to zero:
Roo(Tr ETG) =0.

Proof. We prove this theorem by first showing that k7 = x*. Then we can apply Proposition [2[to
get the desired result. Recall that b = T's is the batch size.

Case 1: when s € (0, 1) is a fixed constant and x* € A(s).

Let Z(¢) be the event that Ebj remains inside an e-ball of k* (denoted by N,(x*)) for all rounds
j € [J]. Thatis, Z(e) = {Vj e [J], /lgbj € Ne(n*)}. If * € A(s), then to prove that kp > K*, it
is sufficient to show that Ve > 0, Z(e) occurs w.p.a. 1.

This is because in OMS-ETG, after every round, we move as close to Ebj as possible. This is

illustrated in Figure [5|for the case when A, is a 1-simplex. When Z () occurs, if the selection ratio
Ky, after round j is outside N¢(x*), we move towards it in the subsequent round and thus ;1) will

be closer to N (k*). Once the selection ratio enters N.(x*) (which it is guaranteed to if &* € A(s)),
it will remain inside N,(x*) for every round after that. Thus Z(¢) = kr € N (k*). Therefore,
we have

Ve > 0, P(ky € No(k*)) > P(Z(€))
=P (V)€ [J], oy € No(x"))

J
e (U e
j=1

(a) J -
21 3p (- -
j=1
U]
KT L K,

where (a) follows by the union bound and (b) follows because J is finite and V7, Ebj By ogx (by
Lemma 3).

Case 2: when s depends on the horizon 7.

Case 2(a): when s € Q(T"1) for any 1 € (0, 1).

Similar to Case 1, it is sufficient to show that the event Z(¢) = {Vj € [J], Ebj € Ns(n*)} occurs

w.p.a. 1 for every e > 0. However, since J — 00, consistency of ky; is no longer sufficient to prove
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this. Instead, we use the concentration inequality in Lemma [T}

Vi€ [J], o € Ne(n*))
< 6)

J
=1-P U H/k?bj_K*H>€
J=1

(
(¥ e,

‘kbj — K"

(@) J ~
21 S ([ ]
j=1
®) ‘o .
> I—Z&—Dexp{—(’)(—Tslye )}
j=1
© J

>1- JZI 64% exp {—(’) (fTseg)}

=1 e {-0(-Ts)}
1

=1- “ciD exp {—O (—Tseg)}

—1lifs=C7T7!

for any 7 € (0, 1) and some constant C. Here (a) follows by the union bound, (b) by Lemma and
(c) because 7 > 1.

Case 2(b): when s = % for some constant C' > 0.

We prove this similarly to Case 2(a). However, in this case, the number of rounds J =
Let f = T7~! for some v € (0,1) and Z(f,¢) = {Vj elJf+1,...,J], Ebj € N(k

event that Ebj remains inside N, (x*) after the first J f rounds.
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Since f € o(1), we have Z(f,e) = rr € N.(x*) for every € > 0. This is because the fraction f
is asymptotically negligible and thus we can effectively ignore the first .J f rounds. Therefore we have

Ve > 0, P(rr € N.(k) > P(Z(f,¢))
:P(WeLU+LJf+Z“WHWEM—ﬁH§Q

J
=1-P U HEbj*KZ*H>€

Jj=Jf+1
J
>1- Z P(H,]{\ijfli* >e)
i=Jf
oo
>1- Z EQXP{_O (Tsjeg)}
j=Jf+1
(@ Lo .
>1- ) Spe{-0(d)}
j=Jf+1
®) S s
J=Tf+1
© oo
>1- ) pen{-0(I¢)}
J=Tf+1

J
Z 1-— Eexp {_O (T’YGS)}

T
Z 1— 647D6Xp {—O (TFYEB)}

—1

3

where (a) follows because T's = C, (b) because j > J f, and (c) because Jf = O(T"). We note
that it is possible to unify the analysis of Case 2(a) and Case 2(b) by ignoring the first J f rounds in
Case 2(a) as well. We prove the two cases separately for the sake of clarity.

O

B Incorporate Cost Structure

B.1 Proof of Proposition [3 (Regret of OMS-ETC-CS)

Proposition (Regret of OMS-ETC-CS). Suppose that the conditions of Theorem|[I| hold. If e = o(1)
such that Be — 00 as B — oo, then V6* € O, R (mgrc.cs) = 0.

Proof. The roof is almost exactly like that of Theorem We prove that k1 2 k* and then apply
2

Proposition I Let the number of samples used for exploration be 7. Since k7, = [ ‘;}‘ , ‘—1‘, - ﬁ ,
we have
Be
T, = 2.
K, C

T, is not a random variable because x, is fixed. By Lemma we have kr, Lok,

When e € o(1), the feasible region converges to the entire simplex, i.e., A — Ay. Thus K — @Te N
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e NN NN R W N =

11
12
13
14
15

16
17
18
19

20

Input: B, s, ¢

k=ctr (Ay) s
b= Bs
By ='B:
J=0;
while B; > 0 do
J<Ji+1L
last_step = me <b;
if not last_step then Input: B, s, c
Collect b samples s.t. ky; = k; 1 k=ctr(Ay);
BH—B—bj(mbj) 2 J =4
3t=0;
t_b(]+1) 4 forjec[l1,2,...,J]do
ot GMM(H,, W = thd) s | b= @Bf 7
ke = arg mincea, V) (5T ol i
elsek = Proj(Kmin, A1 (k¢)): 7 | Collect b samples s.t. iy = k:
Collect samples s.t. k7 = k; 8 Gt GMM(H:, W= W"al‘d)
B; « 0; 9 kt = argmm,ieAw V((‘)t, K) (/<; c)
end 10 k= prOJ(kmm, AJ+1(nt)),
end 11 end
Or = GM}\\/I(HT, W = Weficient); 12 0r = GM}\\/I(HT, W = Weficient);
Output: 61 Output: 61
(a) OMS-ETG-FS (fixed samples per batch). (b) OMS-ETG-FB (fixed budget per batch)

Figure 6: Algorithms for OMS-ETG-FS and OMS-ETG-FB.

B.2 Proof of Proposition [d| (Regret of OMS-ETG-FS)

Proposition (Regret of OMS-ETG-FS). Suppose that the conditions of Theoremhold. Ifs=DB"!
and any n € [0, 1), then V0* € ©, Ry, (mgr6.rs) = 0.

Proof. We can prove this similarly to Theorem [2} The key difference is that the number of rounds .J
is now a random variable. But we can use the fact the J is bounded:

1 < J < Cmax
s $Cmin

seo()

Now we can proceed like Case 2 in the proof of Theorem 2] O

)

B.3 Proof of Proposition 5| (Regret of OMS-ETG-FB)

Proposition (Regret of OMS-ETG-FB). Suppose that the conditions of Theoremhold. Ifs=DB""1!
and any n € [0,1), then ¥0* € ©, Ry (Tgrcrp) = 0.

Proof. We show this s1m11arly to Theorem [2] In this case, the size of each batch is random but
the numbers of rounds J = - is not random. Thus we can’t use the concentration inequality in
Lemmal [I] directly since that only holds for a fixed time step t. We get around this by showing that

the estimated selection ratio kt will remain in an e-ball around x* uniformly over all time steps after
some asymptotically negligible fraction of the horizon 7.

Let T; be the number of samples collected after round j, i.e., T = ff{q. Let f = B! for some
‘T, ©

~ € (0,1). Like the proof of Theorem we can ignore the first .J f rounjds since they are f € o(1) is
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an asymptotically negligible fraction. And similarly to the proof of Theorem 2] in order to show that

rp B k%, it is sufficient to show that P (Vj cJf+1,0f+2,...,J], ‘ETJ. —wrll < e) Booo,
1. We can show this as follows:
P (Vj ef+1,Jf+2,...,J], H%Tj v < e) > P (Vt € [Trfin,-... Ty, Et—n*H < e).
(13)
The minimum and maximum batch sizes are b,,;, = CB 5 and by = CB 5 respectively. Therefore,
Bs
TJerlZJfbmin:JfC P
B
TJ < meax =J i .
Cmin

Using these facts and continuing Eq.[I3] we get:

P(Vj e[Jf+1,0f+2,...J] HETj —n*H ge) zP(Vte [Tyfin,... Ty, HE—H*H ge)

>P (Vt € [ Fbmins - - - » Thmax], |[Fe — #*]| < e)
@ T .
>1= > pen{-0(t))}

t:Jfbmin €
) Tomax .
2 ]. — Z Eexp{—@ (JfbmiUE )}

t=J fbmin €

Jbmax 1

>1- Y —pep{-0(Bfe)}

t=J fbmin €

Jblnax
>1- CiD exp{fO (Bfeg)}
B
Z 1-— eﬁliDeXp {_O (BfES)}
> 1 e (-0 (B7))
— 1,

where (a) follows by the union bound and (b) because t > J fbyin- O

C Feasible regions

In this section, we derive the feasibility regions for the various policies.
OMS-ETC

Recall that in OMS-ETC, we first collect T'e samples such that k7. = ctr (A ). For the remaining
T'(1 — e) samples, the agent can query the data sources with any fraction k € A,,. Therefore, the
feasible values of kK are

A= {T%Te +$(1_€)K : REAw}

={ekre+ (1 —e€)r: k€ Ay}.

OMS-ETG

After j rounds, the selection ratio is denoted by ky;. In every round, we collect b = T's samples. For
the batch collected in round j + 1, the agent can query the data sources with any fraction k € Ay.
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Therefore, the feasible values of k(41 are

~ bjkp; + bk
Ajyi(kyy) = {b(]jm 1K€ Aw}

Tsjky; +Tsk
= —_— S A
{ TsG+1) " ¢}
Ry + K }
=== :KkeAy ;.
{U+U v
OMS-ETC-CS

The agent uses Be budget to uniformly query the available data sources. Let T, denote the number of
samples collected after exploration. We have

Be
Te: T
K/TC

where = ctr (Ay) and ¢ is the cost vector. With the remaining B(1 — ¢) budget, the agent can
collect samples with any fraction k € A,,. However, since the data sources can have different costs,
the total number of samples 7" depends on the choice of :
B(l—e)
kTe
for © € Ay. Therefore the feasible values of «r are
~ T, T-1T,
A:{ KTe—’_; )E:HEAw}

Be B(l—e
Koh ('KéTf3 + fiTc )/{
=0 = tkEA
Be | B(l-¢) ° ¥
K C kTc

e (k7¢)kr, + (1 —e) (kpc) K .
B { e(kTe)+ (1 —e) (k0 .KEAw}'

T="T,+

OMS-ETG-FS

Since we collect a fixed number of samples in each round, the feasibility region for OMS-ETG-FS is
that same as OMS-ETG:
< JKp; + K
Aiii(kp) = ——— :KE A, 7.
]+1( bJ) { (]+1) 1/1}
OMS-ETG-FB

Let the selection ratio after j rounds be k7, where T; number of samples collected after round j:

T; = 855 For the batch collected in round j + 1, the agent can query the data sources with any
3T ke

fraction x € Ay. However, the number of samples collected in round j + 1 would depend on the
choice « due to the cost structure. Therefore the number of samples collected after round j + 1 is
Bsj
Tipa=T1; + T

for k € Ay. Hence, the feasible values of K, are

~ Tikp, + (Tjo1 —T;)k
Aja(kr,) = { o ;:1 L Rk E Aw}
J
B Ba]
= Bsg + Bsg RS Al/’

K“b]

i (kTe) Ky + (n;,c) K
= ’ K E A¢

j(kTe)+ (H—Trj c)
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D Experiments

D.1 Linear IV graph

Data from the linear IV graph (Figure [2a) is simulated as follows:
Z ~N(0,07),
U~N (0,03) ,
X = CVZ+'YU+Gxa €x NN(O,O’i) )
Y :=B8X 4+ oU + ¢y, ¢ NJ\/(O,Jg),

where €, and €, are exogenous noise terms independent of other variables and each other and U is an

unobserved confounder. Here {3, o, 7, ¢, 02,02, 02, 02} are parameters that we set for simulating

the data. For the experiment in Section[6.I} weused § = 1,a = 1,7y = 1,¢ = 1,0, = 1,0, =
1,0, =10y =L

The moment conditions used for estimation are
_ 5t71 Zt(Xt — CYZt)
gt<0) - |:St,2:| ® |:Zt(}/i 70[62)&) .
—_—— —
=m(st) =3:(0)

The parameter we estimate is @ = [3,a] " and 8 = fu.:(0) = 6q.

D.2 Two IVs graph

Data from the two IVs graph (Figure[2b) is simulated as follows:
2
Zy ~N (0,07,
2
Zy ~N(0,02)),
U~N (0,0’Z) ,
X =1 Z1+asZs + U + €z, € NN(O,UJ%) ,
Y :=BX +¢U +¢,, ¢, ~N(0,07),

where ¢, and €, are exogenous noise terms independent of other variables and each other and U is
an unobserved confounder. For the experiment in Section[6.1} weused 5 = 1,a =1,y =1,¢ =
l,0,=1,0,=1,0, = 1>Uy =1.

The moment conditions used for estimation are

) = [t o |2 23X

——
=m(s) =3¢(0)

The parameter we estimate is § = [5] and 8 = fir(0) = 0o.

D.3 Confounder-mediator graph

Data from the confounder-mediator graph (Figure 2b)) is simulated as follows:

WNN(OaO—?u)’
X:ZdW+€x7 ErNN(OaO—i)v
B

M .= gX‘i’Ema €mNN<0a0727L)7
Y i=aM + bW +¢,, ¢, ~ N (0,02),

Ty
where €, €,,, and €, are exogenous noise terms independent of other variables and each other. For
the experiment in Section[6.1} we used 8 = —0.32,a = 0.33,b = —0.34,d = 0.45,0, = 1,0, =
lLopm=10,=1.
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The moment conditions used for estimation are

rseq] | X (Y, — bW, — BXy) i

S Wi (Yy — bW, — BX,)

St.2 Xi(M; — §Xt)2

se2| | M, (Vi — aM, — %Xt)
gi(0) = |st2| ® d2bd3:; :

S¢1 X Yy —aM; — on

St,1 W2 — a2

St,1 Wt(Xt — dW)

L] | xP—(?e2+02) |

N——
=m(s) =5:(0)

The parameter we estimate is 0 = [3, a,b,d,02,02]" and 8 = fur () = 6p.

D.4 THDP dataset

To generate semi-synthetic IHDP dataset, we use two covariates: birth weight (denoted by W) and
whether the mother smoked (denoted by W5). The binary treatment is denoted by X and the outcome
is denoted by Y. The corresponding causal graph is shown in Figure For every sample of the
semi-synthetic dataset, Wy, Ws, and X are sampled uniformly at random from the real data. The
outcome Y is simulated as follows:

Y = ﬁX + oy W1 4+ aacWs + €y, €y NN(O’U?%) )

where ¢, is an independent exogenous noise term. For the experiment in Section @ we used
ﬂ = ].,Ckl = ].,CYQ :0.1,0'y = 1.

The moment conditions used for estimation are

1 —s,0] [ (W) (Y2 —ar(Wh)e — BXy) — aad)]
1-— 5t72 Xy ((Yt - al(Wl)t - 5Xt) - CY27'2)
1— 811 (Wa): (Vi — aa(Wa), — 5X;) — aud)
1— 84 X (Ve — a2(W2), — BXy) — anmy)

st73 ’ Wl)t(WQ t
g:(0) = [1—s2| ® X(Wi)—m
1—s5¢1 X(Wa)e — 12
1-— St.2 (Wl)% - 0121)1
1-— St,1 (WQ)% - 0-1312
1—s19 (Y; —or(Wh); — BX)? — azor, — o
sl [V —0a(Wa)s = BX)° — ooy, — o]

=mie:) =3.(0)

The parameter we estimate is 6 = [, 1, 2, d, 71, 72,05, 02] " and 8 = fiur(0) = bp.

D.5 The Vietnam draft and future earnings dataset

The causal graph for this dataset corresponds to Figure [2a| with a binary IV Z, binary treatment X
and continuous outcome Y. In this dataset, {Z, X} and {Z, Y} are collected from different data
sources and thus {Z, X, Y} are not observed simultaneously. For our experiment, we only use data
from the 1951 cohort.

In the semi-synthetic dataset, we sample Z uniformly at random from the real dataset. The treatment
X is generated similarly to a probit model. We first generate an intermediate variable X * and then
use that to generate X as follows:

X*:=aZ+c + e €2 ~N(0,1),
X = 1(X* >0)a

where 1 is the indicator function. To reduce clutter, let y, = P(Z = 1) = 0.3425, MS) =P(X =
11Z =1) and uSB) = P(X = 1|Z = 0). We set the parameters « and ¢* such that u;” = 0.2831 and
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(0) = 0.1468 (these values have been taken from [2, Table 2] to match the empirical distribution):
WO =PA(X" >0)|Z = 0)

(")

1(O 1468)

1.050,
=P1(X*>0)Z2=1)
=Pla+c" +e >0)

=d(a+c)
Ca=o () — ¢
=& (u)) — @ (u?)
= ®71(0.2831) — ®1(0.1468)
= 0.4766,
where ® is the cumulative distribution function of the standard normal distribution.

In the real data, we standardize the outcome Y by subtracting its mean and dividing by its standard

deviation and thus E[Y] = 0 and Var(Y') = 1. To generate the simulated outcome Y, we use
Y := BX + v + coep + €, where e, ~ N (0, 0627!). When ¢ # 0, the noise term (coe, + €,) U X.
Thus ¢ determines the extent of the confounding between X and Y.

We now describe how we set 5 and «. Since E[Y] = 0, we have
v = —PE[X]
= =8 (1001 = ) + 1Pz )
— —0.19348.
Using the covariance of Y and Z, we have

Cov(Y, Z) = E[Y Z]
= BE[ZX] + vE|[Z]
= B (E[ZX] - E[X]E[Z])

= B(E[Z1(aZ + ¢* + ¢, > 0)] — E[X]E[Z])
=S (E[ZE1 (aZ +c" +e, >0)|7]] - E[X|E[Z])
— B(BIZE[L(e, > —(aZ +¢))|Z]] - EIX]E[Z))
— B(E[Z8(aZ + ¢")] — E[X]E[2))

= B(®(aZ + ¢ ). — E[X]E[Z))

= Bp- () — BLX))

Therefore, we set 3 and ~y as
E[YZ]
11z (uil) - E[X])

v =—0.19348 = 0.0834.

8=

= —0.4313,

Now we describe how we set ¢y and ofy. For this, we use the variance of Y:

Var(Y) = 1 = 2Var(X) + §o?, + 28¢E[Xe,]. (14)
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We have
Var(X) = Var[E(X|Z)] + E[Var(X|Z)]
= Var (24 + (1 = 2)p?) + oD (1 = pD) + (1= i)l (1 = )

= p=(1 = p2) (8 = ) + pepfD (1= D) + (1= ) (1 = )
— 0.1560,

E[Xe,] = E[E[1(Za + ¢ + e, > 0)e,|Z]]
=E[E[1(e; > —(Za+ c"))e.| Z]]

o[

\/12? [exp {_(;*)2(1 ~ #z) +exp {W} NZH
= 0.2670,

where in (a), f(z) is the probability density function of the standard normal distribution. We set
co = 0.5 and using Eq.we geto? = 0.6058.

To summarize, the data is generated as follows:

Z ~ Bernoulli(p,),
X* = aZ + ¢ + e, €, ~ N(0,1),
X :=1(X*>0),
Y = BX + 7+ coex + €y, €y ~ N(0,07),
where /1. = 0.3424, o = 0.4766, c* = —1.0502, § = —0.4313, = 0.0834, and 0, = 0.6058.

The moment conditions used for estimation are

N PR e
RN 1—Z)(Y: — o
gt(9) o St,2 © Zt(Xt - 7’1)
St,2 (1 — Zt)(Xt — 7'0)
N——

=m(s¢) =3¢+(0)

The parameter we estimate is § = [u1, 110, 71, To] and the target parameter is 8 = far(0) = £2=L2.
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