
A Omitted Proofs for Section 4

A.1 Proof of Proposition 1 (Consistency)

Proposition 6 (MDS LLN [16, Example 7.11]). Let ȲT be the sample mean from a martingale
difference sequence (MDS), ȲT = 1

T

∑T
t=1 Yi, with E [|Yt|r] <∞ for some r > 1. Then ȲT

p→ 0.
Lemma 2 (Uniform convergence). Let ai(θ) := Siã(θ,Xi) be a real-valued function where Si ∈
{0, 1} is Hi−1-measurable and Xi are i.i.d. Suppose that (i) Θ is compact and (ii) ã(θ,Xi) satisfies
Property 1. Then

sup
θ∈Θ

∣∣∣∣∣ 1

T

T∑
i=1

[ai(θ)− Sia∗(θ)]

∣∣∣∣∣ p→ 0,

where a∗(θ) = E[ã(θ;Xi)].

Proof. We follow a standard uniform law of large numbers proof (e.g. Tauchen [39, Lemma 1]) and
modify it to work for dependent data. The key modification is replacing the law of large numbers
(LLN) in that proof with a MDS LLN.

Let (θ1, θ2, . . . , θK) be a minimal δ-cover of Θ and Nδ(θk) denote the δ-ball around θk. By com-
pactness of Θ, K is finite. For k ∈ [K] and θ ∈ Nδ(θk), we have∣∣∣∣∣ 1

T

T∑
i=1

[ai(θ)− Sia∗(θ)]

∣∣∣∣∣
=

∣∣∣∣∣ 1

T

T∑
i=1

[ai(θ)− ai(θk) + ai(θk)− Sia∗(θk) + Sia∗(θk)− Sia∗(θ)]

∣∣∣∣∣
≤ 1

T

T∑
i=1

|ai(θ)− ai(θk)|+

∣∣∣∣∣ 1

T

T∑
i=1

[ai(θk)− Sia∗(θk)]

∣∣∣∣∣+
1

T

T∑
i=1

|Sia∗(θk)− Sia∗(θ)|

=
1

T

T∑
i=1

|Si (ã(θ;Xi)− ã(θk;Xi))|+

∣∣∣∣∣ 1

T

T∑
i=1

[ai(θk)− Sia∗(θk)]

∣∣∣∣∣+
1

T

T∑
i=1

|Si (a∗(θk)− a∗(θ))|

≤ 1

T

T∑
i=1

|ã(θ;Xi)− ã(θk;Xi)|+

∣∣∣∣∣ 1

T

T∑
i=1

[ai(θk)− Sia∗(θk)]

∣∣∣∣∣+ |a∗(θk)− a∗(θ)| .

We now show that each of the three terms on the RHS above is small. In the third term, by continuity
of a∗(θ), ∀ε > 0,∃δ > 0 s.t. |a∗(θk)− a∗(θ)| < ε.

In the second term, [ai(θk)− Sia∗(θk;Si)] is a MDS. By Property 1(i) and Proposition 6, we have∣∣∣ 1
T

∑T
i=1 [ai(θk)− Sia∗(θk)]

∣∣∣ p→ 0.

Next, we examine first term on the RHS. Let ui(δ) = supθ,θ′∈Θ,‖θ−θ′‖≤δ |ã(θ,Xi)− ã(θ′, Xi)|.
By continuity of ã(θ,Xi), compactness of Θ, and the Heine-Cantor theorem, ã(θ,Xi) is uniformly
continuous in θ. This ensures that ui(δ) is continuous in δ and thus ui(δ) ↓ 0 as δ ↓ 0. Since
ui(δ) ≤ 2A(Xi) (by Property 1(iii)), using dominated convergence, we have E[ui(δ)] ↓ 0 as δ ↓ 0.
Therefore, ∀ε > 0,∃δ > 0 s.t. E[ui(δ)] < ε. Thus we can write the first term as

1

T

T∑
i=1

|ã(θ;Xi)− ãi(θk;Xi)| ≤
1

T

T∑
i=1

ui(δ)

=
1

T

T∑
i=1

ui(δ)−E[ui(δ)] + E[ui(δ)]

≤ 1

T

T∑
i=1

ui(δ)−E[ui(δ)] + ε

(a)
= op(1) + ε,
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where (a) follows by the weak law of large numbers which applies because E[ui(δ)] ≤ E[A(Xi)] <
∞ (by Property 1(iii)).

Proposition (Consistency). Suppose that (i) Assumption 2 holds, (ii) ∀j ∈ [M ], g̃t,j(θ) satisfies
Property 1, and (iii) ∀(i, j) ∈ [M ]2,

[
g̃t(θ)g̃t(θ)

>]
i,j

satisfies Property 1; Then, for any policy π,

θ̂
(π)
T

p−−−−→
T→∞

θ∗.

Proof. We begin by defining the empirical and population analogues of the two-step GMM objective
for a given policy π:

Empirical objective: Q̂(π)
T (θ) =

[
1

T

T∑
t=1

gt(θ)

]>
Ŵ

[
1

T

T∑
t=1

gt(θ)

]
,

Population objective: Q̄(π)
T (θ) =

[
1

T

T∑
t=1

E [gt(θ)|Ht−1]

]>
W

[
1

T

T∑
t=1

E [gt(θ)|Ht−1]

]

=

[(
1

T

T∑
t=1

m(st)

)
⊗ g∗(θ)

]>
W

[(
1

T

T∑
t=1

m(st)

)
⊗ g∗(θ)

]
= [mT ⊗ g∗(θ)]>W [mT ⊗ g∗(θ)] ,

where g∗(θ) = E [g̃i(θ)] and mT = 1
T

∑T
t=1m(st). We have Ŵ =

[
Ω̂T (θ̂

(os)
T )

]−1

, where θ̂(os)
T is

the one-step GMM estimate and

Ω̂T (θ) =
1

T

T∑
t=1

[
gt(θ)gt(θ)

>]
=

1

T

T∑
t=1

([
m(st)m(st)

>]⊗ [g̃t(θ)g̃t(θ)>]) .
Furthermore, we have W = [mΩ(κT )⊗ Ω(θ∗)]

−1, where

mΩ(κT ) =

T∑
t=1

(
m(st)m(st)

>) ,
Ω(θ) = E

[
g̃t(θ)g̃t(θ)

>] .
The two-step GMM estimator is obtained by minimizing the empirical objective: θ̂T =

arg minθ∈Θ Q̂
(π)
T (θ). At the true parameter θ∗, Q̄(π)

T (θ∗) = 0 and by Assumption 2(a), θ∗ uniquely

minimizes Q̄(π)
T (θ). By Newey and McFadden [30, Theorem 2.1], supθ∈Θ

∣∣∣Q̂(π)
T (θ)− Q̄(π)

T (θ)
∣∣∣ p→

0 =⇒ θ̂T
p→ θ∗.

Uniform convergence of Q̂(π)
T (θ). We now prove that supθ∈Θ

∣∣∣Q̂(π)
T (θ)− Q̄(π)

T (θ)
∣∣∣ p→ 0. Follow-

ing the proof of Newey and McFadden [30, Theorem 2.6], we have∣∣∣Q̂(π)
T (θ)− Q̄(π)

T (θ)
∣∣∣

≤

∥∥∥∥∥ 1

T

T∑
t=1

[gt(θ)−m(st)⊗ g∗(θ)]

∥∥∥∥∥
2 ∥∥∥Ŵ∥∥∥2

+ 2 ‖g∗(θ)‖

∥∥∥∥∥ 1

T

T∑
t=1

[gt(θ)−m(st)⊗ g∗(θ)]

∥∥∥∥∥∥∥∥Ŵ∥∥∥+

‖g∗(θ)‖2
∥∥∥Ŵ −W∥∥∥ .

(2)
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We first prove that
∥∥∥Ŵ −W∥∥∥ p→ 0. Due to Condition (iii) of the theorem, we can apply Lemma 2 to

get

∀ (i, j) ∈ [M ]2, ∀ ε > 0, P

(
sup
θ∈Θ

∣∣∣Ω̂T (θ)i,j − [mΩ(κT )⊗ Ω(θ)]
∣∣∣ > ε

)
→ 0,

∴ ∀ (i, j) ∈ [M ]2, ∀ ε > 0, P
(∣∣∣Ω̂T (θ̂

(os)
T )i,j −

[
mΩ(κT )⊗ Ω(θ̂

(os)
T )

]∣∣∣ > ε
)
→ 0,

∴ ∀ (i, j) ∈ [M ]2, ∀ ε > 0, P
(∣∣∣Ω̂T (θ̂

(os)
T )i,j − [mΩ(κT )⊗ Ω(θ∗)]

∣∣∣ > ε
)

(a)−−→ 0,

∴ ∀ (i, j) ∈ [M ]2, ∀ ε > 0, P
(∣∣∣Ŵi,j −Wi,j

∣∣∣ > ε
)

(b)−−→ 0,

∴
∥∥∥Ŵ −W∥∥∥ p→ 0,

where (a) follows because θ̂(os)
T

p→ θ∗ (by Proposition 1) and (b) by the continuous mapping theorem.
Therefore, we have ∥∥∥Ŵ∥∥∥ ≤ ‖W‖+ op(1)

≤ lim sup
T→∞

∥∥∥[mΩ(κT )⊗ Ω(θ∗)]
−1
∥∥∥︸ ︷︷ ︸

:=λ0

+op(1).

Substituting these results in Eq. 2, we get∣∣∣Q̂(π)
T (θ)− Q̄(π)

T (θ)
∣∣∣ ≤ ∥∥∥∥∥ 1

T

T∑
t=1

[gt(θ)−m(st)⊗ g∗(θ)]

∥∥∥∥∥
2

λ2
0 + 2 ‖g∗(θ)‖

∥∥∥∥∥ 1

T

T∑
t=1

[gt(θ)−m(st)⊗ g∗(θ)]

∥∥∥∥∥λ0 + op(1).

Thus, to show uniform convergence of Q̂
(π)
T (θ), we need to show that

supθ∈Θ

∥∥∥ 1
T

∑T
t=1 [gt(θ)−m(st)⊗ g∗(θ)]

∥∥∥ p→ 0. For any ε > 0, we have

P

(
sup
θ∈Θ

∥∥∥∥∥ 1

T

T∑
t=1

[gt(θ)−m(st)⊗ g∗(θ)]

∥∥∥∥∥ < ε

)
≥ P

sup
θ∈Θ

M∑
j=1

∣∣∣∣∣ 1

T

T∑
t=1

[gt,j(θ)−mj(st)g∗(θ)j ]

∣∣∣∣∣ < ε


(a)

≥ 1−
M∑
j=1

P

(
sup
θ∈Θ

∣∣∣∣∣ 1

T

T∑
t=1

[gt,j(θ)−mj(st)g∗(θ)j ]

∣∣∣∣∣ ≥ ε

M

)
(b)

≥ 1− op(1),

∴ sup
θ∈Θ

∥∥∥∥∥ 1

T

T∑
t=1

[gt(θ)−m(st)⊗ g∗(θ)]

∥∥∥∥∥ p→ 0,

where (a) follows by the union bound and (b) by applying Lemma 2 for every j ∈ [M ] (using
Condition (ii)).

A.2 Proof of Proposition 2 (Asymptotic normality)

Proposition 7 (Martingale CLT [15, Corollary 3.1]). LetMi with 1 ≤ i ≤ n be a martingale adapted
to the filtration Fi with differences Xi = Mi −Mi−1 and M0 = 0. Suppose that the following two
conditions hold: (i) (Conditional Lindeberg) ∀ε > 0,

∑n
i=1 E

[
X2
i I (|Xi| > ε) |Fi−1

] p→ 0, and
(ii) (Convergence of conditional variance) For some constant σ > 0,

∑n
i=1 E

[
X2
i |Fi−1

] p→ σ2.

Then
∑n
i=1Xi

d−→ N (0, σ2).

Proposition (Asymptotic normality). Suppose that (i) θ̂(π)
T

p−→ θ∗; (ii) ∀(i, j) ∈ [M ] ×
[D],

[
∂g̃t
∂θ (θ)

]
i,j

satisfies Property 1; (iii) ∃δ > 0 such thatE
[
‖g̃i(θ∗)‖2+δ

]
< ∞, and (iv) (Se-

lection ratio convergence) κ(π)
T

p→ k for some constant k ∈ ∆ψ . Then θ̂T is asymptotically normal:
√
T (θ̂

(π)
T − θ∗) d→ N (0,Σ(θ∗, k)) ,
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where Σ(θ∗, k) is a constant matrix that depends only on θ∗ and k. By Assumption 2(e) and the Delta
method, β̂T is asymptotically normal:

√
T (β̂T − β∗)

d→ N (0, V (θ∗, k)) , whereV (θ∗, k) = ∇θftar(θ
∗)>[Σ(θ∗, k)]∇θftar(θ

∗).

Proof. We follow a standard GMM asymptotic normality proof (e.g. Newey and McFadden [30,
Theorem 3.4]) and modify it to work for dependent data. Applying the GMM first-order condition to
the two-step GMM estimator, we get

√
T (θ̂T − θ∗) =

[
Ĝ>(θ̂T )Ω̂(θ̂

(os)
T )−1Ĝ(θ̃)

]−1

Ĝ>(θ̂T )Ω̂(θ̂
(os)
T )−1 1√

T

T∑
t=1

gi(θ
∗),

where θ̂(os)
T is the one-step GMM estimator, θ̃ is a point on the line-segment joining θ̂T and θ∗,

Ĝ(θ) =
1

T

T∑
t=1

∂gt(θ)

∂θ

=
1

T

T∑
t=1

∂m(st)⊗ g̃t(θ)
∂θ

=
1

T

T∑
t=1

[m(st),m(st), . . . ,m(st)]︸ ︷︷ ︸
D times

⊗
[
∂g̃t(θ)

∂θ

] ,

=
1

T

T∑
t=1

(
mG(st)⊗

[
∂g̃t(θ)

∂θ

])
, and

Ω̂(θ) =
1

T

T∑
t=1

[
gt(θ)gt(θ)

>]
=

1

T

T∑
t=1

([
m(st)m(st)

>]⊗ [g̃t(θ)g̃t(θ)>]) ,
=

1

T

T∑
t=1

(
mΩ(st)⊗

[
g̃t(θ)g̃t(θ)

>]) ,
where mG(st) = [m(st),m(st), . . . ,m(st)]︸ ︷︷ ︸

D times

is a M ×D matrix and mΩ(st) = m(st)m(st)
>.

Convergence of Ĝ(θ̂T ). Let G(θ) = E
[
∂g̃t(θ)
∂θ

]
. Applying Lemma 2 to every element of Ĝ (using

Condition (ii)) and using the union bound, we get

sup
θ∈Θ

∥∥∥∥∥Ĝ(θ)−

(
1

T

T∑
t=1

mG(st)

)
⊗G(θ)

∥∥∥∥∥ p→ 0,

∴ ∀ε > 0, P

(∥∥∥∥∥Ĝ(θ̂T )−

(
1

T

T∑
t=1

mG(st)

)
⊗G(θ̂T )

∥∥∥∥∥ > ε

)
→ 0. (3)

Since κT
p→ k for some constant k (by Condition (iv)),

(
1
T

∑T
t=1mG(st)

)
also converges in

probability to a constant matrix. That is, 1
T

∑T
t=1mG(st)

p→ m∗G(k) for some constant matrix
m∗G(k) that only depends on k. By the continuity of G and the fact that θ̂T

p→ θ∗ (by Condition (i)),
we have G(θ̂T )

p→ G(θ∗). Using these results with Eq. 3, we get

Ĝ(θ̂T )
p→ m∗G(k)⊗G(θ)

= G∗(θ
∗, k), (4)

Similarly, Ĝ(θ̃)
p−−→

(a)
G∗(θ

∗, k), (5)
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where G∗(θ∗, k) = m∗G(k)⊗G(θ∗) and (a) follows because θ̃
p→ θ∗.

Convergence of the weight matrix Ŵ . Let Ω(θ) = E
[
g̃t(θ)g̃t(θ)

>]. By applying Lemma 2 to
every element of Ω̂ (using Condition (iii)) and the union bound, we get

sup
θ∈Θ

∥∥∥∥∥Ω̂(θ)−

(
1

T

T∑
t=1

mΩ(st)

)
⊗ Ω(θ)

∥∥∥∥∥ p→ 0,

∴ ∀ε > 0,P

(∥∥∥∥∥Ω̂(θ̂
(os)
T )−

(
1

T

T∑
t=1

mΩ(st)

)
⊗ Ω(θ̂

(os)
T )

∥∥∥∥∥ > ε

)
→ 0. (6)

Since κT
p→ k for some constant k (by Condition (iv)),

(
1
T

∑T
t=1mΩ(st)

)
p→ m∗Ω(k) for some

constant matrix m∗Ω(k) that only depends on k. By continuity of Ω and the fact that θ̂(os)
T

p→ θ∗

(which follows by Proposition 1), we have Ω(θ̂
(os)
T )

p→ Ω(θ∗). Using these results with Eq. 6, we get

Ω̂(θ̂
(os)
T )

p→ m∗Ω(k)⊗ Ω(θ∗)

= Ω∗(θ
∗, k),

∴ Ŵ = Ω̂(θ̂
(os)
T )−1 p→ Ω∗(θ

∗, k)−1, (7)

where Ω∗(θ
∗, k) = m∗Ω(k)⊗ Ω(θ∗).

Asymptotic normality of 1√
T

∑T
t=1 gi(θ

∗). For this part, we use the Cramer-Wold theorem and

the martingale CLT in Proposition 7. For any v ∈ RM s.t. ‖v‖ = 1, v>gi(θ
∗)√

T
is a MDS be-

cause E
[
v>gi(θ

∗)|Hi−1

]
= v>E [gi(θ

∗)|Hi−1] = 0. We now show that the two conditions of
Proposition 7 apply to this MDS.

(i) Conditional Lindeberg: The Lyapunov condition implies the Lindeberg condition [5, pg. 6]. In our
case, the Lyapunov condition is easier to check and we show that it holds. For some δ > 0, we have

1

T 1+δ/2

T∑
i=1

∣∣v>gi(θ∗)∣∣2+δ (a)

≤ 1

T 1+δ/2

T∑
i=1

‖v‖2+δ ‖gi(θ∗)‖2+δ

(b)
=

1

T 1+δ/2

T∑
i=1

‖gi(θ∗)‖2+δ

∴
1

T 1+δ/2

T∑
i=1

E
[∣∣v>gi(θ∗)∣∣2+δ ∣∣Hi−1

]
≤ 1

T 1+δ/2

T∑
i=1

E
[
‖gi(θ∗)‖2+δ ∣∣Hi−1

]
=

1

T 1+δ/2

T∑
i=1

E
[
‖m(si)⊗ g̃i(θ∗)‖2+δ

]
(c)

≤ 1

T 1+δ/2

T∑
i=1

E
[
‖g̃i(θ∗)‖2+δ

]
(d)→ 0,

where (a) follows by Cauchy-Schwarz, (b) because ‖v‖ = 1, (c) because m(si) is a binary vector,
and (d) because E

[
‖g̃i(θ∗)‖2+δ

]
<∞ (by Condition (iii)).
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(ii) Convergence of conditional variance: The conditional variance can be written as

1

T

T∑
t=1

E
[
v>gt(θ

∗)gt(θ
∗)>v

∣∣Hi−1

]
=

1

T

T∑
t=1

v>E
[
gt(θ

∗)gt(θ
∗)>
∣∣Hi−1

]
v

= v>

[(
1

T

T∑
t=1

m(st)m(st)
>

)
⊗ Ω(θ∗)

]
v

(a)−−→
p

v> [m∗Ω(k)⊗ Ω(θ∗)] v

= v> [Ω∗(θ
∗, k)] v,

where (a) holds because κT
p→ k (by Condition (iv)). Thus, using Proposition 7, ∀v ∈ RM s.t.

‖v‖ = 1, we have

1√
T

T∑
i=1

v>gi(θ
∗)v

d−→ N
(
0, v>Ω∗(θ

∗, k)v
)
.

Thus, by the Cramer-Wold theorem, we get

1√
T

T∑
i=1

gi(θ
∗)

d−→ N (0,Ω∗(θ
∗, k)) . (8)

Asymptotic normality of θ̂T By Eqs. 4, 5, 7, and 8, and Slutsky’s theorem, we get
√
T (θ̂T − θ∗)

d→ N (0,Σ(θ∗, k)) ,

where Σ(θ∗, k) =
[
G>∗ (θ∗, k)

(
Ω∗(θ

∗, k)−1
)
G∗(θ

∗, k)
]−1

.

A.3 Proof of Theorem 1 (Regret of OMS-ETC)

Lemma 3 (Consistency of k̂t). Suppose that Assumption 3 holds. If θ̂t
p→ θ∗, then k̂t

p→ κ∗ where
k̂t = arg minκ∈∆ψ

V (θ̂t, κ).

Proof. By continuity of V , compactness of ∆ψ , and Assumption 3, k̂t
p→ arg minκ∈∆ψ

V (θ∗, κ) =
κ∗.

Theorem (Regret of OMS-ETC). Suppose that (i) Conditions (i)-(iii) of Proposition 2 hold and (ii)
Assumption 3 holds. Case (a): For a fixed e ∈ (0, 1), if κ∗ ∈ ∆̃, then the regret converges to zero:
R∞(πETC) = 0. If κ∗ /∈ ∆̃, then πETC suffers constant regret: R∞(πETC) = r for some constant
r > 0. Case (b): If e depends on T such that e = o(1) and Te→∞ as T →∞ (e.g. e = 1√

T
), then

∀θ∗ ∈ Θ, we have R∞(πETC) = 0.

Proof. We first analyze Case (a) of the theorem where e is fixed. By Condition (i), θ̂Te
p→ θ∗. We

have k̂ = arg minκ∈∆ψ
V (θ̂Te, κ) and therefore k̂

p→ κ∗ (by Lemma 3). Thus, if κ∗ ∈ ∆̃, then
κT

p→ k̂ and therefore κT
p→ κ∗. Using Proposition 2, we get
√
T
(
β̂T − β∗

)
d→ N (0, V (θ∗, κ∗))

∴ R∞(πETC) = V (θ∗, κ∗)− V (θ∗, κ∗) = 0.

If κ∗ /∈ ∆̃, then κT
p→ κ̄ 6= κ∗, where κ̄ = arg minκ∈∆̃ V (θ∗, κ). Using Proposition 2, we have

√
T
(
β̂T − β∗

)
d→ N (0, V (θ∗, κ̄))

∴ R∞(πETC) = V (θ∗, κ̄)− V (θ∗, κ∗)
(a)
> 0,
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where (a) follows by Condition (ii).

Now we analyze part (b) of the theorem. When e depends on T such that e = o(1), the feasible
region converges to the entire simplex: ∆̃→ ∆ψ as T →∞. Thus κT − k̂

p→ 0. Furthermore, since
Te → ∞ as T → ∞, we have k̂

p→ κ∗ and therefore κT
p→ κ∗. Using Proposition 2, we get the

desired result.

A.4 Proof of Lemma 1 (GMM concentration inequality)

Proposition 8 (MDS concentration inequality [43, Theorem 2.19]). Let {(Dk,Fk)}∞k=1 be a MDS,

and suppose that E [exp {λDk} |Fk−1] ≤ exp
{
λ2ν2

2

}
almost surely for any λ < 1

α . Then the sum
satisfies the concentration inequality

P

(∣∣∣∣∣ 1n
n∑
k=1

Dk

∣∣∣∣∣ > η

)
≤ 2 exp

{
−nη

2

2ν2

}
if 0 ≤ η < ν2

α
.

Lemma 4 (Uniform law for dependent data). Let ai(θ) := Siã(θ;Xi), where ai is a real-valued
function, Si ∈ {0, 1} is Hi−1-measurable, and Xi

iid∼ Pθ∗ . Let ã∗(θ) = E [ã(θ;Xi)]. Suppose that
ã(θ) satisfies Property 2. Note that E [ai(θ)|Hi−1] = Siã∗(θ). Then, for some constant δ0 > 0 and
∀δ ∈ (0, δ0),

P

(
sup
θ∈Θ

∣∣∣∣∣ 1

T

T∑
i=1

[ai(θ)− Siã∗(θ)]

∣∣∣∣∣ > δ

)
<

1

δD
exp

{
−O

(
Tδ2

)}
.

Proof. Let U = {θ1, θ2, . . . , θN} be a minimal δ-cover of Θ. We have N ≤ C
δD

for some constant C.
Let q : Θ→ U be a function that returns the closest point from the cover: q(θ) = arg minθ′∈U ‖θ −
θ′‖. We have

sup
θ∈Θ

∣∣∣∣∣ 1

T

T∑
i=1

[ai(θ)− Siã∗(θ)]

∣∣∣∣∣
= sup
θ∈Θ

∣∣∣∣∣ 1

T

T∑
i=1

[ai(θ)− ai(q(θ)) + ai(q(θ))− Siã∗(q(θ)) + Siã∗(q(θ))− Siã(θ)]

∣∣∣∣∣
≤ sup
θ∈Θ

1

T

T∑
i=1

|ai(θ)− ai(q(θ))|+ max
n∈[N ]

∣∣∣∣∣ 1

T

T∑
i=1

[ai(θn)− Siã∗(θn)]

∣∣∣∣∣+ sup
θ∈Θ

1

T

T∑
i=1

Si |ã∗(q(θ))− ã∗(θ)|

= sup
θ∈Θ

1

T

T∑
i=1

|Si (ãi(θ,Xi)− ãi(q(θ), Xi))|+ max
n∈[N ]

∣∣∣∣∣ 1

T

T∑
i=1

[ai(θn)− Siã∗(θn)]

∣∣∣∣∣+ sup
θ∈Θ
|ã∗(q(θ))− ã∗(θ)|

≤ sup
θ∈Θ

1

T

T∑
i=1

|ã(θ,Xi)− ãi(q(θ), Xi)|+ max
n∈[N ]

∣∣∣∣∣ 1

T

T∑
i=1

[ai(θn)− Siã∗(θn)]

∣∣∣∣∣+ sup
θ∈Θ
|ã∗(q(θ))− ã∗(θ)| .

We now examine the three terms on the RHS one at a time.

Third term. By Lipschitzness of ã∗ (Property 2(i)), we have:

sup
θ∈Θ
|ã∗(q(θ))− ã∗(θ)| ≤ L1 sup

θ∈Θ
‖q(θ)− θ‖ ≤ L1δ.
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Second term. We note that it is a sum of a MDS. By Property 2(ii) and Proposition 8, there exists a
constant C1 > 0 such that for δ ∈ (0, C1), we have

∀n ∈ [N ], P

(∣∣∣∣∣ 1

T

T∑
i=1

[ai(θn)− Siã∗(θn)]

∣∣∣∣∣ < δ

)
> 1− exp

{
−O

(
Tδ2

)}
∴ P

(
max
n∈[N ]

∣∣∣∣∣ 1

T

T∑
i=1

[ai(θn)− Siã∗(θn)]

∣∣∣∣∣ < δ

)
> 1−P

 ⋃
n∈[N ]

∣∣∣∣∣ 1

T

T∑
i=1

[ai(θn)− Siã∗(θn)]

∣∣∣∣∣ > δ


> 1−N exp

{
−O

(
Tδ2

)}
> 1− 1

δD
exp

{
−O

(
Tδ2

)}
.

First term. We have

u∗(η) = E

[
sup

θ,θ′∈Θ;‖θ−θ′‖≤η
|ãi(θ,Xi)− ãi(θ′, Xi)|

]

≤ E

[
sup
θ∈Θ
‖A(Xi, θ)‖ sup

θ,θ′∈Θ;‖θ−θ′‖≤η
‖θ − θ′‖

]
≤ η sup

θ∈Θ
‖A(Xi, θ)‖

(a)

≤ A0η., (9)

where (a) follows by Property 2(iii).

Suppose that Property 2(iv)(a) holds. Then

sup
θ∈Θ

1

T

T∑
i=1

|ãi(θ,Xi)− ãi(q(θ), Xi)| ≤
1

T

T∑
i=1

ui(δ)

≤ 1

T

T∑
i=1

ui(δ)− u∗(δ) + u∗(δ)

(a)

≤ 1

T

T∑
i=1

ui(δ)− u∗(δ) +A0δ,

where (a) follows by Eq. 9. By Property 2(iv)(a), (ui(δ) − u∗(δ)) is sub-Exponential. By the
sub-exponential tail bound [43, Proposition 2.9], for some constant C2 > 0 and δ ∈ (0, C2), we have

P

(∣∣∣∣∣ 1

T

T∑
i=1

ui(δ)− u∗(δ)

∣∣∣∣∣ < δ

)
> 1− exp

{
−O

(
Tδ2

)}
∴ P

(
sup
θ∈Θ

1

T

T∑
i=1

|ãi(θ,Xi)− ãi(q(θ), Xi)| < (A0 + 1)δ

)
> 1− exp

{
−O

(
Tδ2

)}
∴ P

(
sup
θ∈Θ

1

T

T∑
i=1

|ãi(θ,Xi)− ãi(q(θ), Xi)| < δ

)
> 1− exp

{
−O

(
Tδ2

)}
.

Now suppose that Property 2(iv)(b) holds instead. Then

sup
θ∈Θ

1

T

T∑
i=1

|ãi(θ,Xi)− ãi(q(θ), Xi)| ≤
1

T

T∑
i=1

sup
θ∈Θ
‖A(Xi, θ)‖ sup

θ∈Θ
‖θ − q(θ)‖

≤ δ

T

T∑
i=1

sup
θ∈Θ
‖A(Xi, θ)‖ .
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Since supθ∈Θ ‖A(Xi, θ)‖ is sub-Exponential, so is
∑T
i=1 supθ∈Θ ‖A(Xi, θ)‖. By a sub-Exponential

tail bound [42, Proposition 2.7.1(a)], we have for any C3 > 0,

P

(
1

T

T∑
i=1

sup
θ∈Θ
‖A(Xi, θ)‖ > C3

)
≤ exp {−O (TC3)}

∴ P

(
sup
θ∈Θ

1

T

T∑
i=1

|ãi(θ,Xi)− ãi(q(θ), Xi)| > δC3

)
≤ exp {−O (TC3)}

∴ P

(
sup
θ∈Θ

1

T

T∑
i=1

|ãi(θ,Xi)− ãi(q(θ), Xi)| > δ

)
≤ exp {−O (T )} .

Combining these results together using the union bound, we get

P

(
sup
θ∈Θ

∣∣∣∣∣ 1

T

T∑
i=1

[ai(θ)− Siã∗(θ; k)]

∣∣∣∣∣ < (L1 + L2 + 2)δ

)

> P

(
max
n∈[N ]

∣∣∣∣∣ 1

T

T∑
i=1

[ai(θn)− Siã∗(θn)]

∣∣∣∣∣ < δ,

∣∣∣∣∣ 1

T

T∑
i=1

ui(δ)− u∗(δ)

∣∣∣∣∣ < δ

)

> 1−
N∑
n=1

P

(∣∣∣∣∣ 1

T

T∑
i=1

[ai(θn)− Siã∗(θn)]

∣∣∣∣∣ > δ

)
−P

(∣∣∣∣∣ 1

T

T∑
i=1

ui(δ)− u∗(δ)

∣∣∣∣∣ > δ

)

> 1− 1

δD
exp

{
−O

(
Tδ2

)}
∴ P

(
sup
θ∈Θ

∣∣∣∣∣ 1

T

T∑
i=1

[ai(θ)− Siã∗(θ; k)]

∣∣∣∣∣ < δ

)
> 1− 1

δD
exp

{
−O

(
Tδ2

)}
.

Proposition 9 (Boundedness and Property 2(iv)(a)). Property 2(iv)(a) is satisfied for bounded
function classes, i.e., when ‖ãi‖∞ < A <∞.

Proof. We have:

ui(η) = sup
θ,θ′∈Θ,‖θ−θ′‖≤η

|ã(θ,Xi)− ã(θ′, Xi)|

≤ 2 sup
θ∈Θ
|ãi|

≤ 2A.

Thus ui(η) is bounded and therefore sub-Gaussian for every η.

Proposition 10 (Linearity and Property 2(iv)(b)). Suppose that (i) ã(θ,Xi) is a linear function of θ,
i.e., ã(θ,Xi) = θTφ(Xi)+ρ(Xi), where φ and ρ are arbitrary functions; and (ii) ∀d ∈ [D], φ(Xi)d
is sub-Exponential. Then ã(θ,Xi) satisfies Property 2(iv)(b).
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Proof. We have that A(Xi, θ) = ∂ã(Xi;θ)
∂θ = φ(Xi) and thus supθ∈Θ ‖A(Xi, θ)‖ = ‖φ(Xi)‖ ≤∑D

d=1 |φ(Xi)d|. Therefore, for any η > 0, we have

P

(
sup
θ∈Θ
‖A(Xi, θ)‖ < η

)
= P (‖φ(Xi)‖ < η)

≥ P

(
D∑
d=1

|φ(Xi)d| < η

)
≥ P

(
∀ d ∈ [D], |φ(Xi)d| <

η

D

)
(a)

≥ 1−
D∑
d=1

P
(
|φ(Xi)d| >

η

D

)
(b)

≥ 1−
D∑
d=1

exp {−O(η)}

≥ 1− exp {−O(η)} ,

where (a) follows by the union bound and (b) because φ(Xi)d is sub-Exponential. This shows that
supθ∈Θ ‖A(Xi, θ)‖ is also sub-Exponential (see Vershynin [42, Definition 2.7.5]).

Remark. Rakhlin et al. [32] derive a uniform martingale LLN and develop sequential analogues of
classical complexity measures used in empirical process theory. These techniques are a potential
alternative for deriving the tail bound in Lemma 4. However, the conditions required for these
techniques are difficult to check. In our case, the dependent and i.i.d. components can be separated
more easily. Thus we opted for deriving a uniform concentration bound by modifying the classical
uniform LLN proof. Zhan et al. [46] also derive a uniform LLN without requiring boundedness of
the martingale difference terms, but with structural assumptions on the summands related to their
specific application.
Lemma (GMM concentration inequality). Let λ∗, C0, η1, η2, and δ0 be some positive con-
stants. Suppose that (i) Assumption 2 holds; (ii) ∀j, g̃i,j(θ) satisfies Property 2; (iii) The
spectral norm of the GMM weight matrix Ŵ is upper bounded with high probability: ∀δ ∈
(0, C0) , P

(
‖Ŵ‖ ≤ λ∗

)
≥ 1 − 1

δD
exp

{
−O

(
Tδ2

)}
(see Remark 1); (iv) (Local strict con-

vexity) ∀θ ∈ Nη1(θ∗), P
(∥∥∥∂2Q̄

∂θ2 (θ)−1
∥∥∥ ≤ h) = 1 (Q̄(θ) is defined in Assumption 2(a)); (v)

(Strict minimization) ∀θ ∈ Nη2(θ∗), there is a unique minimizer κ(θ) = arg minκ V (θ, κ) s.t.
V (θ, κ)−V (θ, κ(θ)) ≤ cδ2 =⇒ ‖κ−κ(θ)‖ ≤ δ; and (vi) supκ |V (θ, κ)−V (θ′, κ)| ≤ L‖θ−θ′‖.
Then, for k̂t = arg minκ∈∆ψ

V (θ̂
(π)
T , κ), any policy π, and ∀δ ∈ (0, δ0),

P
(∥∥∥θ̂(π)

T − θ∗
∥∥∥ > δ

)
<

1

δ2D
exp

{
−O

(
Tδ4

)}
and P

(∥∥∥k̂T − κ∗∥∥∥ > δ
)
<

1

δ4D
exp

{
−O

(
Tδ8

)}
.

Proof. Below we give the empirical and population analogues of the GMM objective for a given
policy π:

Empirical objective: Q̂(π)
T (θ) =

[
1

T

T∑
t=1

gt(θ)

]>
Ŵ

[
1

T

T∑
t=1

gt(θ)

]
,

Population objective: Q̄(π)
T (θ) = g∗T (θ)Ŵg∗T (θ)>

=

[
1

T

T∑
t=1

E [gt(θ)|Ht−1]

]>
Ŵ

[
1

T

T∑
t=1

E [gt(θ)|Ht−1]

]

=

[(
1

T

T∑
t=1

m(st)

)
⊗ g̃∗(θ)

]>
Ŵ

[(
1

T

T∑
t=1

m(st)

)
⊗ g̃∗(θ)

]
,

where g̃∗(θ) = E [g̃t(θ)].
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To simplify notation, let mt = m(st). By the triangle and Cauchy-Shwartz inequalities (see Newey
and McFadden [30, Theorem 2.6]),∣∣∣Q̂(π)

T (θ)− Q̄(π)
T (θ)

∣∣∣
≤

∥∥∥∥∥ 1

T

T∑
t=1

[gt(θ)−mt ⊗ g̃∗(θ)]

∥∥∥∥∥
2

‖Ŵ‖2 + 2 ‖g̃∗(θ)‖

∥∥∥∥∥ 1

T

T∑
t=1

[gt(θ)−mt ⊗ g̃∗(θ)]

∥∥∥∥∥ ‖Ŵ‖
≤

∥∥∥∥∥ 1

T

T∑
t=1

[gt(θ)−mt ⊗ g̃∗(θ)]

∥∥∥∥∥
2

‖Ŵ‖2 + 2C

∥∥∥∥∥ 1

T

T∑
t=1

[gt(θ)−mt ⊗ g̃∗(θ)]

∥∥∥∥∥ ‖Ŵ‖,
where C = supθ∈Θ ‖g̃∗(θ)‖. By applying Lemma 4 to each element of the vector gi(θ) and using
the union bound, we get:

P

(
sup
θ∈Θ

∥∥∥∥∥ 1

T

T∑
i=1

[gt(θ)−mt ⊗ g̃∗(θ)]

∥∥∥∥∥ < δ

)
≥ P

 M⋂
j=1

sup
θ∈Θ

∣∣∣∣∣ 1

T

T∑
t=1

[gt,j(θ)−mt,j ⊗ (g̃∗)j(θ)]

∣∣∣∣∣ < δ

M


≥ 1−

M∑
j=1

P

(
sup
θ∈Θ

∣∣∣∣∣ 1

T

T∑
t=1

[gt,j(θ)−mt,j ⊗ (g̃∗)j(θ)]

∣∣∣∣∣ > δ

M

)

≥ 1− 1

δ2D
exp

{
−O

(
Tδ2

)}
. (10)

This means that, for 0 < δ < 1,∥∥∥∥∥ 1

T

T∑
t=1

[gt(θ)−mt ⊗ g̃∗(θ)]

∥∥∥∥∥ ≤ δ, ‖Ŵ‖ ≤ λ∗ =⇒
∣∣∣Q̂(π)

T (θ)− Q̄(π)
T (θ)

∣∣∣ ≤ λ2
∗δ

2 + 2λ∗Cδ

= (2C + λ∗δ)λ∗δ

< (2C + λ∗)λ∗δ,

∴ P

(
sup
θ∈Θ

∣∣∣Q̂(π)
T (θ)− Q̄(π)

T (θ)
∣∣∣ < (2C + λ∗)λ∗δ

)
≥ P

(
sup
θ∈Θ

∥∥∥∥∥ 1

T

T∑
t=1

[gt(θ)−mt ⊗ g̃∗(θ)]

∥∥∥∥∥ ≤ δ, ‖Ŵ‖ ≤ λ∗
)

(a)

≥ 1−P

(
sup
θ∈Θ

∥∥∥∥∥ 1

T

T∑
t=1

[gt(θ)−mt ⊗ g̃∗(θ)]

∥∥∥∥∥ > δ

)
−P

(
‖Ŵ‖ > λ∗

)
(b)

≥ 1− 1

δ2D
exp

{
−O

(
Tδ2

)}
∴ P

(
sup
θ∈Θ

∣∣∣Q̂(π)
T (θ)− Q̄(π)

T (θ)
∣∣∣ < δ

)
≥ 1− 1

δ2D
exp

{
−O

(
Tδ2

)}
,

where (a) follows by the union bound and (b) follows by Eq. 10 and Condition (iii). Using this
uniform concentration bound, we get

P

(
Q̄

(π)
T (θ̂T ) < Q̂

(π)
T (θ̂T ) +

δ

2

)
≥ 1− 1

δ2D
exp

{
−O

(
Tδ2

)}
,

P

(
Q̂

(π)
T (θ∗) < Q̄

(π)
T (θ∗) +

δ

2

)
≥ 1− 1

δ2D
exp

{
−O

(
Tδ2

)}
.

Since θ̂T minimizes Q̂(π)
T almost surely, we have P

(
Q̂

(π)
T (θ̂T ) ≤ Q̂(π)

T (θ∗)
)

= 1. Combining these
inequalities using the union bound, we get

P
(
Q̄

(π)
T (θ̂T ) < Q̄

(π)
T (θ∗) + δ

)
≥ 1− 1

δ2D
exp

{
−O

(
Tδ2

)}
∴ P

(
Q̄

(π)
T (θ̂T ) < δ

) (a)

≥ 1− 1

δ2D
exp

{
−O

(
Tδ2

)}
,

where (a) follows because Q̄(π)
T (θ∗) = 0.

24



Intuitively, if Q̄(π)
T (θ̂T ) is small, then we would expect θ̂T to be close to θ∗. To formally show this,

we use the local curvature of Q̄(π)
T . By Condition (iv), Q̄(π)

T is locally strictly convex in the η1-ball
Nη1(θ∗). Therefore, there exists a closed γ-ball Nγ(θ∗) ⊆ Nη(θ∗) such that

∀θ /∈ Nγ(θ∗), Q̄
(π)
T (θ) > Q̄N , where Q̄N = sup

θ∈Nγ(θ∗)

Q̄
(π)
T (θ).

This is analogous to an identification condition and ensures that Q̄(π)
T (θ) ≤ Q̄N =⇒ θ ∈ Nγ(θ∗).

Let H(θ) = ∂2Q̄(π)

∂θ2 (θ). Then, by twice continuous differentiability of g, for θ ∈ Nγ(θ∗), we have

Q̄
(π)
T (θ)

(a)
= Q̄

(π)
T (θ∗) + (θ − θ∗) [H(θ′)] (θ − θ∗)>

(b)
= (θ − θ∗) [H(θ′)] (θ − θ∗)>,

∴ ‖θ − θ∗‖2 ≤ Q̄(π)
T (θ)‖H−1(θ′)‖

(c)

≤
[
Q̄

(π)
T (θ)

]
h,

where in (a), θ′ is a point on the line segment joining θ; (b) follows because Q̄(π)
T (θ∗) = 0; and (c)

follows by Condition (iv). Thus, for δ < Q̄N , we have

Q̄
(π)
T (θ̂T ) < δ =⇒ ‖θ̂T − θ∗‖ <

√
δh

∴ P
(
‖θ̂T − θ∗‖ < δ

)
≥ P

(
Q̄

(π)
T (θ̂T ) <

δ2

h

)
≥ 1− 1

δ2D
exp

{
−O

(
Tδ4

)}
.

Concentration inequality for k̂T

By Condition (vi), supκ∈∆ψ
|V (θ̂T , κ)− V (θ∗, κ)| ≤ L‖θ̂T − θ∗‖. Therefore,

‖θ̂T − θ∗‖ < δ =⇒ sup
κ∈∆ψ

|V (θ̂T , κ)− V (θ∗, κ)| ≤ Lδ.

Furthermore, we have

sup
κ∈∆ψ

|V (θ̂T , κ)− V (θ∗, κ)| ≤ Lδ =⇒ V (θ∗, k̂T ) < V (θ̂T , k̂T ) + Lδ, and

V (θ̂T , κ
∗) < V (θ∗, κ∗) + Lδ.

Since k̂T is the minimizer, we have V (θ̂T , k̂T ) ≤ V (θ̂T , κ
∗). Combining these inequalities, we get

‖θ̂T − θ∗‖ < δ =⇒ V (θ∗, k̂T )− V (θ∗, κ∗) < 2Lδ.

Due to Condition (v), we have

V (θ∗, k̂T )− V (θ∗, κ∗) < 2Lδ =⇒ ‖k̂T − κ∗‖ <
√

2Lδ

c
,

∴ ‖θ̂T − θ∗‖ < δ =⇒ ‖k̂T − κ∗‖ <
√

2Lδ

c

∴ P(‖k̂T − κ∗‖ < δ) > 1−P
(
‖θ̂T − θ∗‖ < O

(
δ2
))

> 1− 1

δ4D
exp

{
−O

(
Tδ8

)}
.

Lemma 5 (Sufficient condition for Ŵ ). Suppose that ∀(j, k), [g̃i,j(θ)g̃i,k(θ)] satisfies Property 2.

Let ŴT (θ̂
(os)
T ) = Ω̂T (θ̂

(os)
T )−1 =

[
1
T

∑T
t=1 gt(θ̂

(os)
T )g>t (θ̂

(os)
T )

]−1

, where θ̂(os)
T is the one-step GMM

estimator (that uses Ŵ = I). Then ŴT (θ̂
(os)
T ) satisfies Condition (iii) of Lemma 1.
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Proof. We define WT (θ∗) as

WT (θ∗) = ΩT (θ∗)−1 =

[
1

T

T∑
t=1

E
[
gt(θ

∗)g>t (θ∗)
∣∣Ht−1

]]−1

=

[(
1

T

T∑
t=1

m(st)m
>(st)

)
⊗E

[
g̃t(θ

∗)g̃>t (θ∗)
]]−1

.

Let ∆ = Ω̂T (θ̂
(os)
T )− ΩT (θ̂

(os)
T ) and λmin denote smallest eigenvalue. Using the eigenvalue stability

inequality [38, Section 1.3.3], we get:∣∣∣λmin

(
Ω̂T (θ̂

(os)
T )

)
− λmin

(
ΩT (θ̂

(os)
T )

)∣∣∣ ≤ ‖∆‖ ,
∴
∥∥∥ŴT (θ̂

(os)
T )

∥∥∥ =
∥∥∥Ω̂T (θ̂

(os)
T )−1

∥∥∥ =
1

λmin

(
Ω̂T (θ̂

(os)
T )

) ≤ 1

λmin

(
ΩT (θ̂

(os)
T )

)
− ‖∆‖

. (11)

By applying Lemma 4 to each term of the matrix and using the union bound, we have

P

(
sup
θ∈Θ

∥∥∥Ω̂T (θ)− ΩT (θ)
∥∥∥ ≤ δ) (a)

≥ P

(
sup
θ∈Θ

∥∥∥Ω̂T (θ)− ΩT (θ)
∥∥∥
F
≤ δ
)

≥ P

sup
θ∈Θ

∑
i,j

∣∣∣Ω̂T,i,j(θ)− ΩT,i,j(θ)
∣∣∣ ≤ δ


≥ 1−

∑
i,j

P

(
sup
θ∈Θ

∣∣∣Ω̂T,i,j(θ)− ΩT,i,j(θ)
∣∣∣ > δ

M2

)
= 1− 1

δD
exp

{
−O

(
Tδ2

)}
∴ P (‖∆‖ ≤ δ) = P

(∥∥∥Ω̂T (θ̃T )− Ω(θ̃T )
∥∥∥ ≤ δ) ≥ 1− 1

δD
exp

{
−O

(
Tδ2

)}
, (12)

where in (a) ‖.‖F denotes the Frobenius norm.

For some δ0 > 0, let λ̄ = infθ∈Nδ0 (θ∗),κ∈∆ψ
λmin (ΩT (θ)). For δ ≤ min

{
δ0,

λ̄
2

}
, we have

‖∆‖ ≤ δ (a)
=⇒

∥∥∥ŴT (θ̃T )
∥∥∥ ≤ 2

λ̄
,

∴ P

(∥∥∥ŴT (θ̃T )
∥∥∥ ≤ 2

λ̄

)
≥ P (‖∆‖ ≤ δ)

(b)

≥ 1− 1

δD
exp

{
−O

(
Tδ2

)}
,

where (a) follows by Eq. 11 and (b) by Eq. 12.

In the next lemma, we present a concentration inequality for k̂T with better rates under additional
restrictions on θ∗. We do not require these better rates for proving zero regret for OMS-ETG. We
present this lemma for the sake of completeness.

Lemma 6 (Another concentration inequality for k̂T ). Let κ(θ) = arg minκ V (θ, κ), Θboundary =
{θ ∈ Θ : κ(θ) ∈ boundary (∆ψ)}, where boundary (∆ψ) = {κ ∈ ∆ψ : ∃i, s.t. κi = 0},
Θminima = {θ ∈ Θ : ∂V∂κ (θ, κ(θ)) = 0}, and Θrestricted = Θ \ (Θboundary

⋂
Θminima) Suppose that (i)

the conditions of Lemma 1 hold, and (ii) θ ∈ Θrestricted. Then

P
(∥∥∥k̂T − κ∗∥∥∥ > δ

)
<

1

δ2D
exp

{
−O

(
Tδ4

)}
.

This means that if θ∗ is not such that the minimizer κ(θ) = arg minκ V (θ, κ) is on the boundary of
the simplex and is also a local minimum of V (θ, κ) (informally, κ(θ) is not “just” on the boundary),
we can get better rates.
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𝜅∗ 𝜅𝑏𝑗

𝜖

Figure 5: Illustration of the proof of OMS-ETG algorithm. When the event I(ε) occurs, (a) if the
selection ratio κbj is outside Nε(κ∗), then then selection ratio in the next round κb(j+1) will move
closer to Nε(κ∗), and (b) if κbj is inside Nε(κ∗), it remains inside for all future rounds.

Proof. Now we use the tail bound for θ̂T to derive a concentration inequality for k̂T when θ ∈
Θrestricted. k̂T is the solution to the following constrained optimization problem:

min
κ∈R|ψ|

V
(
θ̂T , κ

)
subject to

|ψ|∑
i=1

κi = 1.

The Lagrangian function is

L (θ, κ, λ) = V (θ, κ) + λ

 |ψ|∑
i=1

κi − 1

 .

Let f(θ, κ, λ) = ∂L
∂κ (θ, κ, λ) = ∂V

∂κ (θ, κ) + λ[1, 1, . . . , 1]>. Since λ[1, 1, . . . , 1]> 6= 0, there exists
a Lagrange multiplier λ∗ ∈ R such that f(θ∗, κ∗, λ∗) = 0.

Condition (ii) is required to ensure that f(θ, κ, λ∗) is continuously differentiable in (θ, κ) which
allows us to use the implicit function theorem. To show this, we divide the space Θrestricted into
two disjoint sets: (i) Θinterior = Θ \ Θboundary, and (ii) Θstrict-boundary = Θboundary

⋂
Θc

minima. When
θ ∈ Θinterior, the constraint will not be active and thus λ∗ = 0. When θ ∈ Θstrict-boundary, the constraint
will be active and thus λ∗ > 0. In both cases, f(θ, κ, λ∗) will be continuously differentiable in (θ, κ).
Note that if θ ∈ Θ \Θrestricted, then λ∗ = 0 but f is not differentiable because the constraint is “just”
inactive.

Let Y (θ, κ) = ∂f
∂κ (θ, κ) = ∂2V

∂κ2 (θ, κ), and X(θ, κ) = ∂f
∂θ (θ, κ) = ∂2V

∂θ∂κ (θ, κ). By the implicit
function theorem, since Y (θ∗, κ∗) is invertible (by Condition (v)), there exist neighbourhoods
N(θ∗) and N(κ∗) and a function φ : N(θ∗) → N(κ∗) such that k̂T = φ(θ̂T ) and ∂φ

∂θ (θ) =

−
[
Y (θ, φ(θ))−1X(θ, φ(θ))

]
. By a Taylor expansion, we get

k̂T = φ(θ̂T )
(a)
= φ(θ∗) +

∂φ

∂θ
(θ̃)
(
θ̂T − θ∗

)
= κ∗ +

∂φ

∂θ
(θ̃)
(
θ̂T − θ∗

)
∴
∥∥∥k̂T − κ∗∥∥∥ ≤ ∥∥∥∥∂φ∂θ (θ̃)

∥∥∥∥∥∥∥θ̂T − θ∗∥∥∥
≤ C

∥∥∥θ̂T − θ∗∥∥∥ ,
where in (a) θ̃ is a point on the line segment joining θ̂T and θ∗, and C = supθ∈N (θ∗)

∥∥∥∂φ∂θ (θ)
∥∥∥.

Therefore, we have

P (‖κ̂T − κ∗‖ ≤ δ) ≥ P

(∥∥∥θ̂T − θ∗∥∥∥ ≤ δ

C

)
≥ 1− 1

δ2D
exp

{
−O

(
tδ4
)}
.

A.5 Proof of Theorem 2 (Regret of OMS-ETG)

Theorem (Regret of OMS-ETG). Suppose that Conditions (i)-(iv) of Proposition 2 hold. Let
∆̃(s) = {sκb + (1− s)κ : κ ∈ ∆ψ}. Case (a): For a fixed s ∈ (0, 1), if the oracle selection ratio
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κ∗ ∈ ∆̃(s), then the regret converges to zero: R∞(πETG) = 0. If κ∗ /∈ ∆̃(s), then R∞(πETG) = r
for some constant r > 0. Case (b): Now also suppose that the conditions for Lemma 1 hold. If
s = CT η−1 for some constant C and any η ∈ [0, 1), then ∀θ∗ ∈ Θ, the regret converges to zero:
R∞(πETG) = 0.

Proof. We prove this theorem by first showing that κT
p→ κ∗. Then we can apply Proposition 2 to

get the desired result. Recall that b = Ts is the batch size.

Case 1: when s ∈ (0, 1) is a fixed constant and κ∗ ∈ ∆̃(s).

Let I(ε) be the event that k̂bj remains inside an ε-ball of κ∗ (denoted by Nε(κ∗)) for all rounds

j ∈ [J ]. That is, I(ε) =
{
∀j ∈ [J ], k̂bj ∈ Nε(κ∗)

}
. If κ∗ ∈ ∆̃(s), then to prove that κT

p→ κ∗, it
is sufficient to show that ∀ε > 0, I(ε) occurs w.p.a. 1.

This is because in OMS-ETG, after every round, we move as close to k̂bj as possible. This is
illustrated in Figure 5 for the case when ∆ψ is a 1-simplex. When I(ε) occurs, if the selection ratio
κbj after round j is outside Nε(κ∗), we move towards it in the subsequent round and thus κb(j+1) will
be closer to Nε(κ∗). Once the selection ratio enters Nε(κ∗) (which it is guaranteed to if κ∗ ∈ ∆̃(s)),
it will remain inside Nε(κ∗) for every round after that. Thus I(ε) =⇒ κT ∈ Nε(κ∗). Therefore,
we have

∀ε > 0, P(κT ∈ Nε(κ∗)) ≥ P(I(ε))

= P
(
∀j ∈ [J ], k̂bj ∈ Nε(κ∗)

)
= 1−P

 J⋃
j=1

∥∥∥k̂bj − κ∗∥∥∥ > ε


(a)

≥ 1−
J∑
j=1

P
(∥∥∥k̂bj − κ∗∥∥∥ > ε

)
(b)−−→ 1,

∴ κT
p→ κ∗,

where (a) follows by the union bound and (b) follows because J is finite and ∀j, k̂bj
p→ κ∗ (by

Lemma 3).

Case 2: when s depends on the horizon T .

Case 2(a): when s ∈ Ω(T η−1) for any η ∈ (0, 1).

Similar to Case 1, it is sufficient to show that the event I(ε) =
{
∀j ∈ [J ], k̂bj ∈ Nε(κ∗)

}
occurs

w.p.a. 1 for every ε > 0. However, since J →∞, consistency of k̂bj is no longer sufficient to prove
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this. Instead, we use the concentration inequality in Lemma 1:

∀ε > 0, P(κT ∈ Nε(κ∗)) ≥ P(I(ε))

= P
(
∀j ∈ [J ], k̂bj ∈ Nε(κ∗)

)
= P

(
∀j ∈ [J ],

∥∥∥k̂bj − κ∗∥∥∥ ≤ ε)
= 1−P

 J⋃
j=1

∥∥∥k̂bj − κ∗∥∥∥ > ε


(a)

≥ 1−
J∑
j=1

P
(∥∥∥k̂bj − κ∗∥∥∥ > ε

)
(b)

≥ 1−
J∑
j=1

1

ε4D
exp

{
−O

(
−Tsjε8

)}
(c)

≥ 1−
J∑
j=1

1

ε4D
exp

{
−O

(
−Tsε8

)}
= 1− J

ε4D
exp

{
−O

(
−Tsε8

)}
= 1− 1

sε4D
exp

{
−O

(
−Tsε8

)}
→ 1 if s = CT η−1

for any η ∈ (0, 1) and some constant C. Here (a) follows by the union bound, (b) by Lemma 1, and
(c) because j ≥ 1.

Case 2(b): when s = C
T for some constant C > 0.

We prove this similarly to Case 2(a). However, in this case, the number of rounds J = 1
s ∈ O(T ).

Let f = T γ−1 for some γ ∈ (0, 1) and I(f, ε) =
{
∀j ∈ [Jf + 1, . . . , J ], k̂bj ∈ Nε(κ∗)

}
be the

event that k̂bj remains inside Nε(κ∗) after the first Jf rounds.
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Since f ∈ o(1), we have I(f, ε) =⇒ κT ∈ Nε(κ∗) for every ε > 0. This is because the fraction f
is asymptotically negligible and thus we can effectively ignore the first Jf rounds. Therefore we have

∀ε > 0, P(κT ∈ Nε(κ∗)) ≥ P(I(f, ε))

= P
(
∀j ∈ [Jf + 1, Jf + 2, . . . , J ],

∥∥∥k̂bj − κ∗∥∥∥ ≤ ε)
= 1−P

 J⋃
j=Jf+1

∥∥∥k̂bj − κ∗∥∥∥ > ε


≥ 1−

J∑
j=Jf

P
(∥∥∥k̂bj − κ∗∥∥∥ > ε

)

≥ 1−
J∑

j=Jf+1

1

ε4D
exp

{
−O

(
Tsjε8

)}
(a)

≥ 1−
J∑

j=Jf+1

1

ε4D
exp

{
−O

(
jε8
)}

(b)

≥ 1−
J∑

j=Jf+1

1

ε4D
exp

{
−O

(
Jfε8

)}
(c)

≥ 1−
J∑

j=Jf+1

1

ε4D
exp

{
−O

(
T γε8

)}
≥ 1− J

ε4D
exp

{
−O

(
T γε8

)}
≥ 1− T

ε4D
exp

{
−O

(
T γε8

)}
→ 1,

where (a) follows because Ts = C, (b) because j ≥ Jf , and (c) because Jf = O(T γ). We note
that it is possible to unify the analysis of Case 2(a) and Case 2(b) by ignoring the first Jf rounds in
Case 2(a) as well. We prove the two cases separately for the sake of clarity.

B Incorporate Cost Structure

B.1 Proof of Proposition 3 (Regret of OMS-ETC-CS)

Proposition (Regret of OMS-ETC-CS). Suppose that the conditions of Theorem 1 hold. If e = o(1)
such that Be→∞ as B →∞, then ∀θ∗ ∈ Θ, R∞(πETC-CS) = 0.

Proof. The proof is almost exactly like that of Theorem 1. We prove that κT
p→ κ∗ and then apply

Proposition 2. Let the number of samples used for exploration be Te. Since κTe =
[

1
|ψ| ,

1
|ψ| , . . . ,

1
|ψ|

]
,

we have

Te =
Be

κ>Tec
.

Te is not a random variable because κTe is fixed. By Lemma 3, we have k̂Te
p→ κ∗.

When e ∈ o(1), the feasible region converges to the entire simplex, i.e., ∆̃→ ∆ψ . Thus κT − k̂Te
p→

0.
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Input: B, s, c
1 k̂ = ctr (∆ψ) ;
2 b = Bs

cmax
;

3 Bl = B;
4 j = 0 ;
5 while Bl > 0 do
6 j ← j + 1;
7 last_step = Bl

cmax
≤ b;

8 if not last_step then
9 Collect b samples s.t. κbj = k̂;

10 Bl ← B − bj
(
κ>bjc

)
;

11 t = b(j + 1);
12 θ̂t = GMM(Ht, Ŵ = Ŵvalid);
13 k̂t = arg minκ∈∆ψ

V (θ̂t, κ)
(
κ>c

)
;

14 k̂ = proj(k̂min, ∆̃j+1(κt));
15 else
16 Collect samples s.t. κT = k̂;
17 Bl ← 0;
18 end
19 end
20 θ̂T = GMM(HT , Ŵ = Ŵefficient);

Output: θ̂T

(a) OMS-ETG-FS (fixed samples per batch).

Input: B, s, c
1 k̂ = ctr (∆ψ);
2 J = B

s ;
3 t = 0;
4 for j ∈ [1, 2, . . . , J ] do
5 b = Bs

(k̂>c)
;

6 t← t+ b;
7 Collect b samples s.t. κt = k̂;
8 θ̂t = GMM(Ht, Ŵ = Ŵvalid);
9 k̂t = arg minκ∈∆ψ

V (θ̂t, κ)
(
κ>c

)
;

10 k̂ = proj(k̂min, ∆̃j+1(κt));
11 end
12 θ̂T = GMM(HT , Ŵ = Ŵefficient);

Output: θ̂T

(b) OMS-ETG-FB (fixed budget per batch)

Figure 6: Algorithms for OMS-ETG-FS and OMS-ETG-FB.

B.2 Proof of Proposition 4 (Regret of OMS-ETG-FS)

Proposition (Regret of OMS-ETG-FS). Suppose that the conditions of Theorem 2 hold. If s = Bη−1

and any η ∈ [0, 1), then ∀θ∗ ∈ Θ, R∞ (πETG-FS) = 0.

Proof. We can prove this similarly to Theorem 2. The key difference is that the number of rounds J
is now a random variable. But we can use the fact the J is bounded:

1

s
≤ J ≤ cmax

scmin
,

∴ J ∈ O
(

1

s

)
.

Now we can proceed like Case 2 in the proof of Theorem 2.

B.3 Proof of Proposition 5 (Regret of OMS-ETG-FB)

Proposition (Regret of OMS-ETG-FB). Suppose that the conditions of Theorem 2 hold. If s = Bη−1

and any η ∈ [0, 1), then ∀θ∗ ∈ Θ, R∞ (πETG-FB) = 0.

Proof. We show this similarly to Theorem 2. In this case, the size of each batch is random but
the numbers of rounds J = 1

s is not random. Thus we can’t use the concentration inequality in
Lemma 1 directly since that only holds for a fixed time step t. We get around this by showing that
the estimated selection ratio k̂t will remain in an ε-ball around κ∗ uniformly over all time steps after
some asymptotically negligible fraction of the horizon T .

Let Tj be the number of samples collected after round j, i.e., Tj = Bsj
κ>Tj

c
. Let f = Bγ−1 for some

γ ∈ (0, 1). Like the proof of Theorem 2, we can ignore the first Jf rounds since they are f ∈ o(1) is
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an asymptotically negligible fraction. And similarly to the proof of Theorem 2, in order to show that
κT

p→ κ∗, it is sufficient to show that P
(
∀j ∈ [Jf + 1, Jf + 2, . . . , J ],

∥∥∥k̂Tj − κ∗∥∥∥ ≤ ε) B→∞−−−−→
1. We can show this as follows:

P
(
∀j ∈ [Jf + 1, Jf + 2, . . . , J ],

∥∥∥k̂Tj − κ∗∥∥∥ ≤ ε) ≥ P
(
∀t ∈ [TJf+1, . . . , TJ ],

∥∥∥k̂t − κ∗∥∥∥ ≤ ε) .
(13)

The minimum and maximum batch sizes are bmin = Bs
cmax

and bmax = Bs
cmin

, respectively. Therefore,

TJf+1 ≥ Jfbmin = Jf
Bs

cmax
,

TJ ≤ Jbmax = J
Bs

cmin
.

Using these facts and continuing Eq. 13, we get:

P
(
∀j ∈ [Jf + 1, Jf + 2, . . . , J ],

∥∥∥k̂Tj − κ∗∥∥∥ ≤ ε) ≥ P
(
∀t ∈ [TJf+1, . . . , TJ ],

∥∥∥k̂t − κ∗∥∥∥ ≤ ε)
≥ P

(
∀t ∈ [Jfbmin, . . . , Jbmax],

∥∥∥k̂t − κ∗∥∥∥ ≤ ε)
(a)

≥ 1−
Jbmax∑

t=Jfbmin

1

ε4D
exp

{
−O

(
tε8
)}

(b)

≥ 1−
Jbmax∑

t=Jfbmin

1

ε4D
exp

{
−O

(
Jfbminε

8
)}

≥ 1−
Jbmax∑

t=Jfbmin

1

ε4D
exp

{
−O

(
Bfε8

)}
≥ 1− Jbmax

ε4D
exp

{
−O

(
Bfε8

)}
≥ 1− B

ε4D
exp

{
−O

(
Bfε8

)}
≥ 1− B

ε4D
exp

{
−O

(
Bγε8

)}
→ 1,

where (a) follows by the union bound and (b) because t ≥ Jfbmin.

C Feasible regions

In this section, we derive the feasibility regions for the various policies.

OMS-ETC

Recall that in OMS-ETC, we first collect Te samples such that κTe = ctr (∆ψ). For the remaining
T (1− e) samples, the agent can query the data sources with any fraction κ ∈ ∆ψ. Therefore, the
feasible values of κT are

∆̃ =

{
TeκTe + T (1− e)κ

T
: κ ∈ ∆ψ

}
= {eκTe + (1− e)κ : κ ∈ ∆ψ} .

OMS-ETG

After j rounds, the selection ratio is denoted by κbj . In every round, we collect b = Ts samples. For
the batch collected in round j + 1, the agent can query the data sources with any fraction κ ∈ ∆ψ.
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Therefore, the feasible values of κb(j+1) are

∆̃j+1(κbj) =

{
bjκbj + bκ

b(j + 1)
: κ ∈ ∆ψ

}
=

{
Tsjκbj + Tsκ

Ts(j + 1)
: κ ∈ ∆ψ

}
=

{
jκbj + κ

(j + 1)
: κ ∈ ∆ψ

}
.

OMS-ETC-CS

The agent uses Be budget to uniformly query the available data sources. Let Te denote the number of
samples collected after exploration. We have

Te =
Be

κ>Tec
,

where κ>Te = ctr (∆ψ) and c is the cost vector. With the remaining B(1− e) budget, the agent can
collect samples with any fraction κ ∈ ∆ψ . However, since the data sources can have different costs,
the total number of samples T depends on the choice of κ:

T = Te +
B(1− e)
κ>c

,

for κ ∈ ∆ψ . Therefore the feasible values of κT are

∆̃ =

{
TeκTe + (T − Te)κ

T
: κ ∈ ∆ψ

}

=


Be
κ>Tec

κTe + B(1−e)
κ>c

κ

Be
κ>Tec

+ B(1−e)
κ>c

: κ ∈ ∆ψ


=

{
e
(
κ>c

)
κTe + (1− e)

(
κ>Tec

)
κ

e (κ>c) + (1− e)
(
κ>Tec

) : κ ∈ ∆ψ

}
.

OMS-ETG-FS

Since we collect a fixed number of samples in each round, the feasibility region for OMS-ETG-FS is
that same as OMS-ETG:

∆̃j+1(κbj) =

{
jκbj + κ

(j + 1)
: κ ∈ ∆ψ

}
.

OMS-ETG-FB

Let the selection ratio after j rounds be κTj where Tj number of samples collected after round j:
Tj = Bsj

κ>bjc
. For the batch collected in round j + 1, the agent can query the data sources with any

fraction κ ∈ ∆ψ. However, the number of samples collected in round j + 1 would depend on the
choice κ due to the cost structure. Therefore the number of samples collected after round j + 1 is

Tj+1 = Tj +
Bsj

κ>c
,

for κ ∈ ∆ψ . Hence, the feasible values of κTj+1
are

∆̃j+1(κTj ) =

{
TjκTj + (Tj+1 − Tj)κ

Tj+1
: κ ∈ ∆ψ

}

=


Bsj
κ>bjc

κTj + Bsj
κ>c

κ

Bsj
κ>bjc

+ Bsj
κ>c

: κ ∈ ∆ψ


=

j
(
κ>c

)
κTj +

(
κ>Tjc

)
κ

j (κ>c) +
(
κ>Tjc

) : κ ∈ ∆ψ

 .
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D Experiments

D.1 Linear IV graph

Data from the linear IV graph (Figure 2a) is simulated as follows:

Z ∼ N
(
0, σ2

z

)
,

U ∼ N
(
0, σ2

u

)
,

X := αZ + γU + εx, εx ∼ N
(
0, σ2

x

)
,

Y := βX + φU + εy, εy ∼ N
(
0, σ2

y

)
,

where εx and εy are exogenous noise terms independent of other variables and each other and U is an
unobserved confounder. Here {β, α, γ, φ, σ2

z , σ
2
u, σ

2
x, σ

2
y} are parameters that we set for simulating

the data. For the experiment in Section 6.1, we used β = 1, α = 1, γ = 1, φ = 1, σz = 1, σu =
1, σx = 1, σy = 1.

The moment conditions used for estimation are

gt(θ) =

[
st,1
st,2

]
︸ ︷︷ ︸
=m(st)

⊗
[
Zt(Xt − αZt)
Zt(Yt − αβZt)

]
︸ ︷︷ ︸

=g̃t(θ)

.

The parameter we estimate is θ = [β, α]> and β = ftar(θ) = θ0.

D.2 Two IVs graph

Data from the two IVs graph (Figure 2b) is simulated as follows:

Z1 ∼ N
(
0, σ2

z1

)
,

Z2 ∼ N
(
0, σ2

z2

)
,

U ∼ N
(
0, σ2

u

)
,

X := α1Z1 + α2Z2 + γU + εx, εx ∼ N
(
0, σ2

x

)
,

Y := βX + φU + εy, εy ∼ N
(
0, σ2

y

)
,

where εx and εy are exogenous noise terms independent of other variables and each other and U is
an unobserved confounder. For the experiment in Section 6.1, we used β = 1, α = 1, γ = 1, φ =
1, σz = 1, σu = 1, σx = 1, σy = 1.

The moment conditions used for estimation are

gt(θ) =

[
st,1
st,2

]
︸ ︷︷ ︸
=m(st)

⊗
[
(Z1)t(Yt − βXt)
(Z2)t(Yt − βXt)

]
︸ ︷︷ ︸

=g̃t(θ)

.

The parameter we estimate is θ = [β] and β = ftar(θ) = θ0.

D.3 Confounder-mediator graph

Data from the confounder-mediator graph (Figure 2b) is simulated as follows:

W ∼ N
(
0, σ2

w

)
,

X := dW + εx, εx ∼ N
(
0, σ2

x

)
,

M :=
β

a
X + εm, εm ∼ N

(
0, σ2

m

)
,

Y := aM + bW + εy, εy ∼ N
(
0, σ2

y

)
,

where εx, εm, and εy are exogenous noise terms independent of other variables and each other. For
the experiment in Section 6.1, we used β = −0.32, a = 0.33, b = −0.34, d = 0.45, σw = 1, σx =
1, σm = 1, σy = 1.
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The moment conditions used for estimation are

gt(θ) =



st,1
st,1
st,2
st,2
st,2
st,1
st,1
st,1
1


︸ ︷︷ ︸
=m(st)

⊗



Xt(Yt − bWt − βXt)
Wt(Yt − bWt − βXt)

Xt(Mt − β
aXt)

Mt

(
Yt − aMt − bdσ2

w

d2σ2
w+σ2

x
Xt

)
Xt

(
Yt − aMt − bdσ2

w

d2σ2
w+σ2

x
Xt

)
W 2
t − σ2

w
Wt(Xt − dW )

X2
t − (d2σ2

w + σ2
x)


︸ ︷︷ ︸

=g̃t(θ)

.

The parameter we estimate is θ = [β, a, b, d, σ2
w, σ

2
x]> and β = ftar(θ) = θ0.

D.4 IHDP dataset

To generate semi-synthetic IHDP dataset, we use two covariates: birth weight (denoted by W1) and
whether the mother smoked (denoted by W2). The binary treatment is denoted by X and the outcome
is denoted by Y . The corresponding causal graph is shown in Figure 4a. For every sample of the
semi-synthetic dataset, W1,W2, and X are sampled uniformly at random from the real data. The
outcome Y is simulated as follows:

Y := βX + α1W1 + α2W2 + εy, εy ∼ N
(
0, σ2

y

)
,

where εy is an independent exogenous noise term. For the experiment in Section 6.2, we used
β = 1, α1 = 1, α2 = 0.1, σy = 1.

The moment conditions used for estimation are

gt(θ) =



1− st,2
1− st,2
1− st,1
1− st,1
st,3

1− st,2
1− st,1
1− st,2
1− st,1
1− st,2
1− st,1


︸ ︷︷ ︸

=m(st)

⊗



(W1)t ((Yt − α1(W1)t − βXt)− α2d)
Xt ((Yt − α1(W1)t − βXt)− α2τ2)

(W2)t ((Yt − α2(W2)t − βXt)− α1d)
Xt ((Yt − α2(W2)t − βXt)− α1τ1)

(W1)t(W2)t − d
X(W1)t − τ1
X(W2)t − τ2
(W1)2

t − σ2
w1

(W2)2
t − σ2

w2

(Yt − α1(W1)t − βX)
2 − α2

2σ
2
w2
− σ2

y

(Yt − α2(W2)t − βX)
2 − α2

1σ
2
w1
− σ2

y


︸ ︷︷ ︸

=g̃t(θ)

.

The parameter we estimate is θ = [β, α1, α2, d, τ1, τ2, σ
2
w, σ

2
y]> and β = ftar(θ) = θ0.

D.5 The Vietnam draft and future earnings dataset

The causal graph for this dataset corresponds to Figure 2a with a binary IV Z, binary treatment X
and continuous outcome Y . In this dataset, {Z,X} and {Z, Y } are collected from different data
sources and thus {Z,X, Y } are not observed simultaneously. For our experiment, we only use data
from the 1951 cohort.

In the semi-synthetic dataset, we sample Z uniformly at random from the real dataset. The treatment
X is generated similarly to a probit model. We first generate an intermediate variable X∗ and then
use that to generate X as follows:

X∗ := αZ + c∗ + εx, εx ∼ N (0, 1),

X := 1(X∗ > 0),

where 1 is the indicator function. To reduce clutter, let µz = P̂(Z = 1) = 0.3425, µ(1)
x = P(X =

1|Z = 1) and µ(0)
x = P(X = 1|Z = 0). We set the parameters α and c∗ such that µ(1)

x = 0.2831 and

35



µ
(0)
x = 0.1468 (these values have been taken from [2, Table 2] to match the empirical distribution):

µ(0)
x = P(1(X∗ > 0)|Z = 0)

= P(c∗ + εx > 0))

= P(εx > −c∗))
= P(εx < c∗))

= Φ(c∗),

∴ c∗ = Φ−1(µ(0)
x )

= Φ−1(0.1468)

= −1.050,

µ(1)
x = P(1(X∗ > 0)|Z = 1)

= P(α+ c∗ + εx > 0))

= Φ(α+ c∗)

∴ α = Φ−1(µ(1)
x )− c∗

= Φ−1(µ(1)
x )− Φ−1(µ(0)

x )

= Φ−1(0.2831)− Φ−1(0.1468)

= 0.4766,

where Φ is the cumulative distribution function of the standard normal distribution.

In the real data, we standardize the outcome Y by subtracting its mean and dividing by its standard
deviation and thus Ê[Y ] = 0 and V̂ar(Y ) = 1. To generate the simulated outcome Y , we use
Y := βX + γ + c0εx + εy , where εy ∼ N (0, σ2

εy ). When c0 6= 0, the noise term (c0εx + εy) 6⊥⊥ X .
Thus c0 determines the extent of the confounding between X and Y .

We now describe how we set β and γ. Since E[Y ] = 0, we have

γ = −βE[X]

= −β
(
µ(0)
x (1− µz) + µ(1)

x µz

)
= −0.1934β.

Using the covariance of Y and Z, we have

Cov(Y,Z) = E[Y Z]

= βE[ZX] + γE[Z]

= β (E[ZX]−E[X]E[Z])

= β (E[Z1(αZ + c∗ + εx > 0)]−E[X]E[Z])

= β (E[ZE[1(αZ + c∗ + εx > 0)|Z]]−E[X]E[Z])

= β (E[ZE[1(εx > −(αZ + c∗))|Z]]−E[X]E[Z])

= β (E[ZΦ(αZ + c∗)]−E[X]E[Z])

= β (Φ(αZ + c∗)µz −E[X]E[Z])

= βµz

(
µ(1)
x −E[X]

)
.

Therefore, we set β and γ as

β =
Ê[Y Z]

µz

(
µ

(1)
x −E[X]

) = −0.4313,

γ = −0.1934β = 0.0834.

Now we describe how we set c0 and σ2
εy . For this, we use the variance of Y :

Var(Y ) = 1 = β2Var(X) + c20σ
2
εy + 2βc0E[Xεx]. (14)
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We have

Var(X) = Var[E(X|Z)] + E[Var(X|Z)]

= Var
(
Zµ(1)

x + (1− Z)µ(0)
x

)
+ µzµ

(1)
x (1− µ(1)

x ) + (1− µz)µ(0)
x (1− µ(0)

x )

= µz(1− µz)(µ(1)
x − µ(0)

x )2 + µzµ
(1)
x (1− µ(1)

x ) + (1− µz)µ(0)
x (1− µ(0)

x )

= 0.1560,

E[Xεx] = E[E[1(Zα+ c∗ + εx > 0)εx|Z]]

= E[E[1(εx > −(Zα+ c∗))εx|Z]]

(a)
= EZ

[∫ ∞
−(Zα+c∗)

xf(x)dx

]

= E

[
1√
2π

exp

{
−(Zα+ c∗)2

2

}]
=

1√
2π

[
exp

{
−(c∗)2

2
(1− µz) + exp

{
−(α+ c∗)2

2

}
µz

}]
= 0.2670,

where in (a), f(x) is the probability density function of the standard normal distribution. We set
c0 = 0.5 and using Eq. 14, we get σ2

εy = 0.6058.

To summarize, the data is generated as follows:

Z ∼ Bernoulli(µz),
X∗ := αZ + c∗ + εx, εx ∼ N (0, 1),

X := 1(X∗ > 0),

Y := βX + γ + c0εx + εy, εy ∼ N (0, σ2
εy ),

where µz = 0.3424, α = 0.4766, c∗ = −1.0502, β = −0.4313, γ = 0.0834, and σ2
εy = 0.6058.

The moment conditions used for estimation are

gt(θ) =

st,1st,1
st,2
st,2


︸ ︷︷ ︸
=m(st)

⊗

 Zt(Yt − µ1)
(1− Zt)(Yt − µ0)
Zt(Xt − τ1)

(1− Zt)(Xt − τ0)


︸ ︷︷ ︸

=g̃t(θ)

.

The parameter we estimate is θ = [µ1, µ0, τ1, τ0] and the target parameter is β = ftar(θ) = µ1−µ0

τ1−τ0 .
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