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ABSTRACT

We consider the problem of distributional off-policy evaluation which serves as
the foundation of many distributional reinforcement learning (DRL) algorithms.
In contrast to most existing works (that rely on supremum-extended statistical dis-
tances), we study the expectation-extended statistical distance for quantifying the
distributional Bellman residuals and provide the corresponding theoretical sup-
ports. Extending the framework of Bellman residual minimization to DRL, we
propose a method called Energy Bellman Residual Minimizer (EBRM) to estimate
the return distribution. We establish a finite-sample error bound for the EBRM es-
timator under the realizability assumption. Additionally, we introduce a variant of
our method based on a multi-step bootstrapping procedure to enable multi-step ex-
tension. By selecting an appropriate step level, we obtain a better error bound for
this variant of EBRM compared to a single-step EBRM, under non-realizability
settings. Finally, we demonstrate the superior performance of our method through
simulation studies, comparing with other existing methods.

1 INTRODUCTION

In reinforcement learning (RL), the cumulative (discounted) reward, also known as the return, is a
crucial quantity for evaluating the performance of a policy. Most existing RL methods focus on only
the expectation of the return distribution. In Bellemare et al. (2017a), the focus has been extended
to the whole return distribution, and they introduce a distributional RL (DRL) algorithm (hereafter
called Categorical algorithm) that achieves a considerably better performance in Atari games than
expectation-oriented Deep-Q Networks (Mnih et al., 2015). This has sparked significant interests
among the RL community, and was later followed by a series of quantile-based methods including
QRDQN, QRTD (Dabney et al., 2018b), IQN (Dabney et al., 2018a), FQF (Yang et al., 2019),
EDRL (Rowland et al., 2019) and particle-based methods including MMDRL (Nguyen-Tang et al.,
2021), SinkhornDRL (Sun et al., 2022), MD3QN (Zhang et al., 2021). In this paper, we consider
the problem of off-policy evaluation in DRL, i.e., estimating the (conditional) return distribution of
a target policy based on offline data.

Despite their competitive performances, distributional RL methods are significantly underdeveloped
compared with the traditional expectation-based RL, especially in the theoretical development under
the offline setting. All aforementioned methods are motivated by supremum-extended distances due
to the contraction property (see (4) below), but their algorithms essentially minimize an expectation-
extended distance (see (6)), as summarized in the column “Distance Mismatch” of Table 1. This
leads to a theory-practice gap. Also, most of these work does not provide any statistical guarantee
such as the convergence rate. We note that Rowland et al. (2018) establishes the consistency of their
estimator, but no error bound analysis (and convergence rate) is provided. In terms of statistical
analysis, a very recent work FLE (Wu et al., 2023) only offers error bound analysis of their estimator
for the marginal distribution of return, which is hard to use for policy learning. In addition, their
analysis is based on a strong condition called completeness, which in general significantly restricts
model choices of return distributions and excludes the non-realizable scenario.

This paper proposes novel estimators, which we call Energy Bellman Residual Minimizer (EBRM),
based on the idea of Bellman residual minimization for the conditional distribution of the return.
In contrast to existing work, we provide solid theoretical ground for the application of expectation-
extended distance in measuring (distributional) Bellman residual. A multi-step extension of our
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estimator is proposed for non-realizability settings. Our method comes with statistical error bound
analyses in both realizable and non-realizable settings. Table 1 provides some key comparisons
between our method and some existing works. More details is given in Table 3 in the Appendix
D.1. Finally, we summarize our contributions as follows. (1) We provide theoretical foundation
of the application of expectation-extended distance for Bellman residual minimization in DRL. See
Section 2.3. (2) We develop a novel distributional off-policy evaluation method (EBRM), together
with its finite-sample error bound. See Section 3. (3) We develop a multi-step extension of EBRM
for non-realizabile settings in Section 4. We also provide corresponding finite-sample error bound
under non-realizable settings. (4) Our numerical experiments in Section 5 demonstrate the strong
performance of EBRM compared with some baseline methods.

Table 1: Comparison among DRL methods in off-policy evaluation.

Distance Statistical Non- Multi-
Method match error bound realizable dimension

Categorical (Bellemare et al., 2017a) ✗ ✗ NA ✓
QRTD (Dabney et al., 2018b) ✗ ✗ NA ✗
IQN (Dabney et al., 2018a) ✗ ✗ NA ✗
FQF (Yang et al., 2019) ✗ ✗ NA ✗
EDRL (Rowland et al., 2019) ✗ ✗ NA ✗
MMDRL (Nguyen-Tang et al., 2021) ✗ ✗ NA ✓
SinkhornDRL (Sun et al., 2022) ✗ ✗ NA ✓
MD3QN (Zhang et al., 2021) ✗ ✗ NA ✓
FLE (Wu et al., 2023) ✓ ✓ NA ✓
EBRM (our method) ✓ ✓ ✓ ✓

2 OFF-POLICY EVALUATION BASED ON BELLMAN EQUATION

2.1 BACKGROUND

We consider an off-policy evaluation (OPE) problem under the framework of infinite-horizon
Markov Decision Process (MDP), which is characterized by a state space S, a discrete action space
A, and a transition probability p : S×A → P(Rd×S) with P(X ) denoting the class of probability
measures over a generic space X . In other words, p defines a joint distribution of a d-dimensional
immediate reward and the next state conditioned on a state-action pair. At each time point, an action
is chosen by the agent based on a current state according to a (stochastic) policy, a mapping from S
to P(A). With the initial state-action pair (S(0), A(0)), a trajectory generated by such an MDP can
be written as {S(t), A(t), R(t+1)}t≥0. The return variable is defined as Z :=

∑∞
t=1 γ

t−1R(t) with
γ ∈ [0, 1) being a discount factor, based on which we can evaluate the performance of some target
policy π.

Traditional OPE methods are mainly focused on estimating the expectation of return Z under the
target policy π, whereas DRL aims to estimate the whole distribution of Z. Letting L(X) be the
probability measure of some random variable (or vector) X , our target is to estimate the collection
of return distributions conditioned on different initial state-action pairs (S(0), A(0)) = (s, a):

Υπ(s, a) := L
( ∞∑
t=1

γt−1R(t)

)
, (R(t+1), S(t+1)) ∼ p(·|S(t), A(t)), A(t+1) ∼ π(·|S(t+1)), (1)

collectively written as Υπ ∈ P(Rd)S×A. It is analogous to the Q-function in traditional RL, whose
evaluation at a state-action pair (s, a) is the expectation of the distribution Υπ(s, a). Our goal in this
paper is to use the offline data generated by the behavior policy b to estimate Υπ .

Similar to most existing DRL methods, our proposal is based on the distributional Bellman equa-
tion (Bellemare et al., 2017a). Define the distributional Bellman operator by T π : P(Rd)S×A →
P(Rd)S×A such that, for any Υ ∈ P(Rd)S×A,(

T πΥ
)
(s, a) :=

∫
Rd×S×A

(gr,γ)#Υ(s′, a′)dπ(a′|s′)dp(r, s′|s, a), (s, a) ∈ S ×A, (2)
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where (gr,γ)# : P(Rd)→ P(Rd) maps the distribution of any random vector X to the distribution
of r + γX . One can show that Υπ is the unique solution to the distributional Bellman equation:

T πΥ = Υ. (3)

Letting Zπ(s, a) be the random vector that follows the distribution Υπ(s, a), one can also express
the distributional Bellman equation (3) in a more intuitive way: for all (s, a) ∈ S ×A,

Zπ(s, a)
D
= R+ γZπ(S

′, A′) where (R,S′) ∼ p(·|s, a), A′ ∼ π(·|S′),

where D
= refers to the equivalence in terms of the underlying distributions. Due to the distributional

Bellman equation (3), a sensible approach to find Υπ is based on minimizing the discrepancy be-
tween T πΥ and Υ with respect to Υ ∈ P(Rd)S×A, which will be called Bellman residual hereafter.
To proceed with this approach, two important issues need to be addressed. First, both T πΥ and Υ
are collections of distributions over Rd, based on which Bellman residual shall be quantified. Sec-
ond, T π may not be available and therefore needs to be estimated through data. We will focus on
the quantification of Bellman residual first, and defer the proposed estimator of T π and the formal
description of our estimator for Υπ to Section 3.

2.2 EXISTING MEASURES OF BELLMAN RESIDUALS

To quantify the discrepancy between the two sides of the distributional Bellman equation (3), one
can use a distance over P(Rd)S×A. Fixing a state-action pair, one can solely compare two dis-
tributions from P(Rd). Therefore, a common strategy is to start by selecting a statistical distance
η(·, ·) : P(Rd) × P(Rd) → [0,∞], and then define an extended-distance over P(Rd)S×A through
combining the statistical distances over different state-action pairs. As shown in Table 3 in Appendix
D.1, most existing methods (e.g., Bellemare et al., 2017b;a; Nguyen et al., 2020) are based on some
supremum-extended distance η∞:

η∞(Υ1,Υ2) := sup
s,a

η

{
Υ1(s, a),Υ2(s, a)

}
. (4)

Under various choices of η including Wasserstein-pmetric with 1 ≤ p ≤ ∞ (Bellemare et al., 2017a;
Dabney et al., 2018b) and maximum mean discrepancy (Nguyen-Tang et al., 2021), it is shown that
T π is a contraction with respect to η∞. More specifically, η∞(T πΥ1, T πΥ2) ≤ γβ0 · η∞(Υ1,Υ2)
holds for any Υ1,Υ2 ∈ P(Rd)S×A, where the value of β0 > 0 depends on the choice of η. If η∞ is
a metric, then the contractive property implies, for any Υ ∈ P(Rd)S×A,

η∞(Υ,Υπ) ≤
∞∑
k=1

η∞
{
(T π)k−1Υ, (T π)kΥ

}
≤ 1

1− γβ0
· η∞(Υ, T πΥ). (5)

As such, minimizing Bellman residual measured by η∞ would be a sensible approach for finding
Υπ . However, as surveyed in Appendix D.1, most existing methods in practice essentially minimize
an empirical (and approximated) version of the expectation-extended distance defined by

η̄(Υ1,Υ2) := E(S,A)∼bµη

{
Υ1(S,A),Υ2(S,A)

}
, (6)

with (S,A) ∼ bµ. Here bµ = µ × b refer to data distribution over S × A induced by the behavior
policy b. With a slight abuse of notation, we will overload the notation bµ with its density (with
respect to some appropriate base measure of S ×A, e.g., counting measure and Lebesgue measure).
We remark that (5) does not hold under η̄ because η∞ and η̄ are not necessarily equivalent for the
general state-action space, leading to a theory-practice gap in most methods (Column 1 of Table 1).

2.3 EXPECTATION-EXTENDED DISTANCE

Despite the implicit use of expectation-extended distances in some prior works, the corresponding
theoretical foundations are not well established. Regarding Bellman residual minimization, a very
natural and crucial question is:

In terms of an expectation-extended distance, does small Bellman residual of Υ
lead to closeness between Υ and Υπ?
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To proceed, we focus on settings such that the state-action pairs of interest can be well covered by
bµ, as formally stated in the following assumption. Let qπ(s, a|s̃, ã) be the conditional probability
density of the next state-action pair at (s, a) conditional on the current state-action pair at (s̃, ã),
defined by the transition probability p and the target policy π.
Assumption 1. There exists pmin > 0 and pmax < ∞ such that bµ(s, a) ≥ pmin for all s, a ∈
S ×A and qπ(s, a|s̃, ã) ≤ pmax for all (s̃, ã), (s̃, ã) ∈ S ×A.

Let qπ:tbµ (s, a) be the probability density (or mass) of (S(t), A(t)) at (s, a), given (S(0), A(0)) ∼
bµ and the target policy π. Assumption 1 implies uniformly bounded density ratio, that is
qπ:tbµ (s, a)/bµ(s, a) ≤ Csup(<∞) for all t ∈ N, as proved in Appendix A.1.

In the following Theorem 1 (proved in Appendix A.2), we provide a solid ground for Bellman
residual minimization based on expectation-extended distances.
Theorem 1. Under Assumption 1, if the statistical distance η satisfies translation-invariance, scale-
sensitivity of order β0 > 0, convexity, and relaxed triangular inequality defined in Appendix A.2.1,
then we can bound the inaccuracy:

η̄(Υ,Υπ) ≤ 2CsupB1(γ;β0) · η̄(Υ, T πΥ), (7)

where B1(γ;β0) := 1
2(1−γβ0 )

∑∞
k=1 4

kγ(2
k−1−1)β0 < ∞ is an increasing function of γ ∈ (0, 1),

and Csup is defined in (25).

Inequality (7) provides an analogy to Bound (5) for expectation-based distances, answering our prior
question positively for some expectation-extended distances. Note that Theorem 1 can be applied to
the settings with general state-action space, including continuous one.

In order to take advantage of Theorem 1, we should select a statistical distance that satisfies all the
properties stated in Theorem 1. One example is energy distance (Székely & Rizzo, 2013) as proved
in Appendix A.3, which is in fact a squared maximum mean discrepancy (Gretton et al., 2012) with
kernel k(x,y) = ∥x∥+ ∥y∥ − ∥x− y∥. The energy distance is defined as

E{L(X),L(Y)} := 2E∥X−Y∥ − E∥X−X′∥ − E∥Y −Y′∥, (8)

where X′ and Y′ are independent copies of X and Y respectively, and X,X′,Y,Y′ are indepen-
dent. In below, we will use energy distance to construct our estimator.

3 ENERGY BELLMAN RESIDUAL MINIMIZER

3.1 ESTIMATED BELLMAN RESIDUAL

Despite applicability of Theorem 1 to general state-action space, we will focus on tabular case with
finite cardinality |S × A| < ∞ for simpler construction of estimation, which enables an in-depth
theoretical study under both realizable and non-realizable settings in Sections 3.2 and 4.3. But the
reward can be continuous. Our target objective of Bellman residual minimization is

Ē(Υ, T πΥ) =
∑
s,a

bµ(s, a) · E
{
Υ(s, a), T πΥ(s, a)

}
, where (9)

E
{
Υ(s, a), T πΥ(s, a)

}
= 2E∥Zα(s, a)− Z(1)

β (s, a)∥ − E∥Zα(s, a)− Zβ(s, a)∥

− E∥Z(1)
α (s, a)− Z(1)

β (s, a)∥,

where Zα(s, a), Zβ(s, a) ∼ Υ(s, a) and Z(1)
α (s, a), Z

(1)
β (s, a) ∼ T πΥ(s, a) are all independent.

For the tabular case with offline data, we can estimate bµ and the transition p simply by empirical
distributions. That is, given observations D = {(si, ai, ri, s′i)}Ni=1, we consider

b̂µ(s, a) :=
N(s, a)

N
where N(s, a) :=

N∑
i=1

1
{
(si, ai) = (s, a)

}
, and (10)

p̂(E|s, a) :=

{
1

N(s,a)

∑
i:(si,ai)=(s,a) δri,s′i(E) if N(s, a) ≥ 1,

δ0,s(E) if N(s, a) = 0
for any measurable set E,
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where δr,s′ is the Dirac measure at (r, s′). Based on this, we can estimate T π for any Υ ∈
P(Rd)S×A by the estimated transition p̂ and the target policy π, by replacing p of (2) with p̂.

Denoting the conditional expectation by Ẽ(· · · ) := E(· · · |D), we can compute

E
{
Υ(s, a), T̂ πΥ(s, a)

}
= 2Ẽ∥Zα(s, a)− Ẑ(1)

β (s, a)∥ − Ẽ∥Zα(s, a)− Zβ(s, a)∥

− Ẽ∥Ẑ(1)
α (s, a)− Ẑ(1)

β (s, a)∥, (11)

where Zα(s, a), Zβ(s, a) ∼ Υθ(s, a) and Ẑ(1)
α (s, a), Ẑ

(1)
β (s, a) ∼ T̂ πΥ(s, a) are all independent

conditioned on the observed data D that determines T̂ π . With the above construction, we can
estimate the objective function by

ˆ̄E(Υ, T̂ πΥ) =
∑
s,a

b̂µ(s, a) · E
{
Υ(s, a), T̂ πΥ(s, a)

}
. (12)

Now letting {Υθ : θ ∈ Θ} ⊆ P(Rd)S×A be the hypothesis class of Υπ , where each distribution
Υθ is indexed by an element of candidate space Θ, a special case of which is the parametric case
Θ ⊆ Rp. Then the proposed estimator of Υπ is Υθ̂ where

θ̂ ∈ argmin
θ∈Θ

ˆ̄E(Υθ, T̂ πΥθ). (13)

We call our method the Energy Bellman Residual Minimizer (EBRM) and summarize it in Algorithm
1. We will refer to the approach here as EBRM-single-step, as opposed to the multi-step extension
EBRM-multi-step in Section 4.2.

Algorithm 1 EBRM-single-step
Input: Θ, D = {(si, ai, ri, s′i)}Ni=1

Output: θ̂

Estimate b̂µ and p̂. ▷ Refer to Equation (10).
Compute θ̂ = argminθ∈Θ

ˆ̄E(Υθ, T̂ πΥθ). ▷ Refer to Equations (11) and (12).

3.2 STATISTICAL ERROR BOUND

In this subsection, we will provide a statistical error bound for EBRM-single-step. As shown in
Table 1, most existing distributional OPE methods do not have a finite sample error bound for their
estimators. To the best of our knowledge, the only exception is the very recent work named FLE
(Wu et al., 2023), which is only able to analyze the marginal distribution of the return instead of
conditional distributions of the return on each state-action pair studied in this paper. In passing, we
also note that Rowland et al. (2018) also shows the consistency of their estimator, but no error bound
analysis (and so convergence rate) is provided. We will first focus on the realizability setting and
defer the analysis for the non-realizable case in Section 4.
Assumption 2. There exists a unique θ ∈ Θ such that Υπ(s, a) = Υθ(s, a) for all s, a ∈ S ×A.

Note that realizability is a generally weaker assumption than the widely-assumed completeness as-
sumption (e.g., used in FLE (Wu et al., 2023)) which states that for all θ ∈ Θ, there exist θ′ ∈ Θ
such that T πΥθ = Υθ′ , in that it implies realizability due to Υπ = limT→∞(T π)TΥθ under mild
conditions. In contrast with non-realizability settings (Section 4), the realizability assumption aligns
the minimizer of inaccuracy E(Υ,Υπ) (best approximation) and the minimizer of Bellman residual,
leading to stronger arguments and results.

Additionally, we make several mild assumptions regarding the transition probability p and the candi-
date space Θ, including the subgaussian rewards. A random variable (vector) X being subgaussian
implies its tail probability decaying as fast as gaussian distribution (e.g., gaussian mixture, bounded
random variable), quantified with finite subgaussian norm ∥X∥ψ2 < ∞, as explained in Appendix
A.4.
Assumption 3. For any θ ∈ Θ, the random element Z(s, a; θ), which follows Υθ(s, a), has finite
expectation with respect to their norms, and the reward distribution are subgaussian, i.e.,

sup
θ∈Θ

sup
s,a

E∥Z(s, a; θ)∥ <∞ and sup
s,a
∥R(s, a)∥ψ2

<∞.
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Assumption 4. The offline data D = {(si, ai, ri, s′i)}Ni=1 are iid draws from bµ × p.

Assumption 5. There exists a metric η̃ over P(Rd)S×A such that diam(Θ; η̃) :=
supθ1,θ2∈Θ η̃(θ1, θ2) < ∞, where η̃(θ1, θ2) := η̃(Υθ1 ,Υθ2). For arbitrary c ∈ Rd, γ1, γ2 ∈ [0, 1],
(s, a), (s̃, ã) ∈ S ×A, letting Zi(s, a) ∼ Υi(s, a) be such that (Z1(s, a), Z3(s, a)) ∈ Rd ×Rd and
(Z2(s̃, ã), Z4(s̃, ã)) ∈ Rd × Rd are mutually independent, η̃ should satisfy∣∣∣∣E∥c+ γ1Z1(s, a)− γ2Z2(s̃, ã)∥ − E∥c+ γ1Z3(s, a)− γ2Z4(s̃, ã)∥

∣∣∣∣ (14)

≤ γ1 · η̃(Υ1,Υ3) + γ2 · η̃(Υ2,Υ4).

Supremum-extended Wasserstein-1 metric W1,∞, which is shown to be a metric by Lemma 2 of
Bellemare et al. (2017b), is an example that satisfies (14), as proved in Appendix A.5. Then we can
obtain the convergence rate O(

√
log(N/δ)/N) as follows, with the exact finite-sample error bound

demonstrated in Appendix A.6.7. Its proof can be found in Appendix A.6, and its special case for
Θ ⊆ Rp is covered in Corollary 3 of Appendix A.7.
Theorem 2. (Inaccuracy for realizable scenario) Under Assumptions 1–5, for any δ ∈ (0, 1),
given large enough sample sizeN ≥ N(δ), our estimator θ̂ ∈ Θ given by (13) satisfies the following
bound with probability at least 1− δ,

Ē(Υθ̂,Υπ) ≲
√

1

N
log(

(|S × A|+N)

δ
), (15)

where N(δ) depends on the complexity of Θ and ≲ means bounded by the given bound (RHS)
multiplied by a positive number that does not depend on N , as defined in Appendix A.6.8.

4 NON-REALIZABLE SETTINGS

4.1 COMBATING NON-REALIZABILITY WITH MULTI-STEP EXTENSIONS

In the tabular case, most traditional OPE/RL methods do not suffer from model mis-specification and
thus realizability always holds. In contrast, in DRL, as our target is to estimate the conditional distri-
bution of return given any state-action pair, which is an infinite-dimensional object, non-realizability
could still happen. Hence understanding and analyzing DRL methods for the tabular case under the
non-realizable scenario is both important and challenging.

In the previous section under realizability, Theorem 1 played a fundamental role in our analysis.
Indeed, Theorem 1 is valid regardless of realizability (Assumption 2), and essentially implies

0 ≤ min
θ∈Θ
Ē(Υθ,Υπ) ≤ Ē(Υθ∗ ,Υπ) ≤ 2CsupB1(γ;β0) · Ē(Υθ∗ , T πΥθ∗), (16)

where θ∗ := argminθ∈Θ Ē(Υθ, T πΥθ). Violation of Assumption 2 (that is, non-realizability) im-
plies nonzero value of Ē(Υθ∗ , T πΥθ∗) > 0, and so Theorem 1 no longer ensures that θ∗ has the
smallest inaccuracy among θ ∈ Θ. Thus non-realizability may lead to the following mismatch:

θ̃ := argmin
θ∈Θ
Ē(Υθ,Υπ) ̸= argmin

θ∈Θ
Ē(Υθ, T πΥθ) =: θ∗. (17)

Clearly, this mismatch is not due to sample variability, so it is unrealistic to hope that θ̂ defined by
(13) would necessarily converge in probability to θ̃ as N →∞.

To solve this issue, we propose a new approach. Temporarily ignoring mathematical rigor, the
most important insight is that we can approximate (T π)mΥ ≈ Υπ with sufficiently large step level
m ∈ N. Thanks to the properties of energy distance, we have the following

sup
θ∈Θ
|Ē(Υθ, (T π)mΥθ)− Ē(Υθ,Υπ)| ≤ Cγm, for some constant C > 0. (18)

(See Appendix C.2.9 under assumptions of Theorem 3.) As m → ∞, the RHS of (18) shrinks to
zero, making m-step Bellman residual Ē(Υθ, (T π)mΥθ) approximate the inaccuracy Ē(Υθ,Υπ).
This leads the two minimizers to be close, as illustrated schematically in Figure 1:

θ
(m)
∗ := argmin

θ∈Θ
Ē(Υθ, (T π)mΥθ) ≈ argmin

θ∈Θ
Ē(Υθ,Υπ) =: θ̃ for large enough m. (19)
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One can intuitively guess that larger step level m is required when the extent of non-realizability
is large. Although multi-step idea has been widely employed for the purpose of improving sample
efficiency particularly in traditional RL (e.g., Chen et al., 2021), ours is the first approach to use it
in DRL for the purpose of overcoming non-realizability, to the best of our knowledge.

Figure 1: Larger m makes (T π)mΥθ ≈ Υπ in Energy Distance, and thereby leads to θ(m)
∗ ≈ θ̃.

4.2 BOOTSTRAP OPERATOR

Generalizing from definition of T̂ π based on (10), we consider Ẑ(m)(s, a; θ) ∼ (T̂ π)mΥθ(s, a)
as the distribution of an m-lengthed trajectories of tuples (s, a, r, s′) that is generated under the
estimated transition p̂ and the target policy π:

Ẑ(m)(s, a; θ)
D
=

m∑
t=1

γt−1R̂(t) + γmZ(Ŝ(m), Â(m); θ), where (20)

(R̂(t), Ŝ(t)) ∼ p̂(· · · |Ŝ(t−1), Â(t−1)) and Â(t) ∼ π(·|Ŝ(t)) ∀t ≥ 1, (Ŝ(0), Â(0)) = (s, a).

Now we can define the estimated and the population Bellman residual, as well as the inaccuracy
function, along with their minimizers as:

F̂m(θ) := ˆ̄E
(
Υθ, (T̂ π)mΥθ

)
, Fm(θ) := Ē

(
Υθ, (T π)mΥθ

)
, F (θ) := Ē

(
Υθ,Υπ

)
, (21)

θ̂(m) := argmin
θ∈Θ

F̂m(θ), θ
(m)
∗ := argmin

θ∈Θ
Fm(θ), θ̃ := argmin

θ∈Θ
F (θ).

However, the estimation of m-step Bellman operator (20) generally requires computation of Nm

trajectories (as discussed in Appendix B.1), which amounts to a heavy computational burden.

To alleviate such burden, we will instead bootstrap M ≪ Nm many trajectories by first sampling
the initial state-action pairs (s(0)i , a

(0)
i ) (1 ≤ i ≤ M) from b̂µ and then resampling the subsequent

r
(t+1)
i , s

(t+1)
i ∼ p̂(· · · |s(t)i , a

(t)
i ) and a(t+1)

i ∼ π(·|s(t+1)
i ) for m steps. Let p̂(B)

m (· · · |s, a) be the
empirical probability measure of (

∑m
t=1 γ

t−1r
(t)
i , s

(m)
i ) conditioning on (s

(0)
i , a

(0)
i ) = (s, a). We

define the bootstrap operator as follows, with an abuse of notation BmZ(s, a; θ) ∼ BmΥθ(s, a),

BmZ(s, a; θ) :
D
=

m∑
t=1

γt−1R̂
(t)
b + γmZ(Ŝ

(m)
b , Â

(m)
b ; θ), (22)

where (

m∑
t=1

γt−1R̂
(t)
b , Ŝ

(m)
b ) ∼ p̂(B)

m (· · · |s, a) and Â
(m)
b ∼ π(·|Ŝ(m)

b ).

Then we can compute our objective function and derive the bootstrap-based multi-step estimator.

F̂ (B)
m (θ) := ˆ̄E

(
Υθ,BmΥθ

)
and θ̂(B)

m := argmin
θ∈Θ

F̂ (B)
m (θ). (23)

We will refer to this method as EBRM-multi-step, whose procedure is summarized in Algorithm 2.

4.3 STATISTICAL ERROR BOUND

In this section, we develop a theoretical guarantee for Ē
(
Υ
θ̂
(B)
m
,Υθ̃

)
, where Υθ̃ is the best one we can

achieve under the non-realizability. To proceed, we need to first deal with the parameter convergence
from θ̂

(B)
m to θ̃, which relies on the following assumptions regarding the inaccuracy function F (·)

(21), distance η̃ (Assumpion 5), and candidate space Θ.

7
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Algorithm 2 EBRM-multi-step
Input: Θ, D = {(si, ai, ri, s′i)}Ni=1, m, M
Output: θ̂

(B)
m

Estimate b̂µ and p̂. ▷ Refer to Equation (10).
Randomly generate M tuples of (

∑m
t=1 γ

t−1r
(t)
i , s

(m)
i ) (1 ≤ i ≤M).

θ̂
(B)
m = argminθ∈Θ

ˆ̄E(Υθ,BmΥθ). ▷ Refer to Equations (22) and (23).

Assumption 6. The inaccuracy function (21) F (·) : Θ ⊂ Rp → R has a unique minimizer θ̃,
and lower bounded by a polynomial of degree q ≥ 1. That is, for all θ ∈ Θ, we have F (θ) ≥
F (θ̃) + cq · ∥θ − θ̃∥q for some constant cq > 0.
Assumption 7. The candidate space Θ is compact (i.e., diam(Θ; ∥ · ∥) < ∞). Furthermore, there
exists L > 0 such that

η̃(θ1, θ2) ≤ L∥θ1 − θ2∥ for ∀θ1, θ2 ∈ Θ.

Assumption 8. η̃ satisfies contractive property, i.e., η̃(T πΥ1, T πΥ2) ≤ γ · η̃(Υ1,Υ2), where T π
(2) may correspond to an arbitrary transition p(· · · |s, a).

Assumption 6 is used in quantifying the convergence rate. Compactness in Assumption 7 is for
ensuring the existence of a minimizer of the estimated objective function (23), which is proved to be
continuous in Appendix C.2.11. Compactness can be relaxed to “bounded” under mild conditions.
Assumption 8 makes (18) feasible, and thereby shrinks the disparity between Bellman minimizer
and the best approximation (19). This is satisfied by W1,∞ that also satisfies property (14), as
proved in Lemma 3 of Bellemare et al. (2017b).

Due to space constraints, we only present a simplified result below (proof in Appendix B.4), and a
more detailed version of the finite-sample error bound for a fixed m is given in Appendix B.4.3.
Theorem 3. Under Assumptions 1, 3–8, lettingM = ⌊C1 ·N⌋ andm = ⌊ 14 log(1/γ)(C2N/ logN)⌋
for arbitrary constants C1, C2 > 0, we have the optimal convergence rate of the upper bound

Ē
(
Υ
θ̂
(B)
m
,Υθ̃

)
≤ Õp

[
1

N1/(4q)
·
{
log 1

γ

(
N

logN

)}2/q]
,

where Õp indicates the rate of convergence up to logarithmic order.

The convergence rate of Theorem 3 is the result of the (asymptotically) optimal choice of M and
m. In our analysis, we notice a form of bias-variance trade-off in the selection of m, as explained
in Appendix B.4.4. Practically, we set M = N which works fine in the simulations of Section 5. A
practical rule of m will be discussed in Section 4.4.

Note that the finite-sample error bound in Appendix B.4.3 is applicable to the setting withm = 1 and
realizability assumption. For instance, assuming that the inaccuracy function F (θ) is lower-bounded
by a quadratic polynomial q = 2, it gives us the bound O[{log(N/δ1)/N}1/8] under the ideal case
where we can ignore the last two sources of inaccuracy specified in Appendix B.4.4, each associated
with bootstrap and non-realizability. We can see that it is much slower than the convergence rate
O(

√
log(N/δ)/N) of Theorem 2, implying that it does not degenerate into Theorem 2. This is fun-

damentally due to a different proof structure that can be introduced via the application of Theorem
1 in the proof of Theorem 2, as intuitively explained in Appendix C.3.1. As explained earlier in
Section 4.1, Theorem 1 can be used effectively to construct convergence of θ̂ under realizability.

4.4 DATA-ADAPTIVE WAY OF SELECTING STEP LEVEL

We need to choose m in practice. We will apply Lepski’s rule (Lepskii, 1991). Since multi-step
construction includes bootstrapping from the observed samples D = {(si, ai, ri, s′i)}Ni=1 (Section
4.2), this enables us to form a confidence interval. Starting from large enough m, we can decrease
it until the intersection of the confidence intervals becomes a null set. To elaborate, given the data
D, we first generate multiple estimates of θ̂(B)

m (say θ̂(B)
m,j for 1 ≤ j ≤ J), and calculate the disparity

8
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from the single-step estimation which has no randomness once D is given, that is ˆ̄E(Υθ̂,Υθ̂(B)
m,j

)

(1 ≤ j ≤ J). Then we calculate their means and standard deviations, forming a (Mean ± SD)
interval for each m. Starting from a large enough value, we decrease m by one or more at a time,
and select the m that makes the intersection become a null set ∩k≥mI(k) = ∅. If we did not obtain
the null set until ∩k≥2I

(k) ̸= ∅, then we use EBRM-single-step (13) without boostrap. Details are
explained in Algorithm 3 of Appendix D.3.1.

5 EXPERIMENTS

We assume a state space S = {1, 2, · · · , 30} and an action space A = {−1, 1}, each action rep-
resenting left or right. With the details of the environment in Appendix D.2.1, the initial state
distribution and behavior / target policies are
S ∼ Unif

{
1, 2, · · · , 30

}
and A ∼ b(·|S), where b(a|s) = 1/2 for ∀s, a ∈ S ×A,

π(−1|s) = 0 and π(1|s) = 1 for ∀s ∈ S. (24)
We compare three methods: EBRM, FLE (Wu et al., 2023), and QRTD (Dabney et al., 2018b). Here,
we assume realizability where the correct model is known (details in Appendix D.2.2) under two
settings (with small and large variances), and the step levelm for EBRM is chosen in a data-adaptive
way in Section 4.4. With other tuning parameter selections explained in Appendix D.3, we repeated
100 simulations with the given sample size for each case, whose mean and standard deviation (within
parenthesis) are recorded in Table 2. EBRM showed the lowest inaccuracy values measured by both
Ē(Υθ̂,Υπ) and W1(Υθ̂,Υπ), where W1 indicates expectation-extended (6) Wasserstein-1 metric.

We also performed simulations in non-realizable scenarios (Appendix D.2.3) with more variety of
sample sizes, and included Wasserstein-1 metric between marginal return distributions (Tables 8–13
of Appendix D.4). In most cases, EBRM showed outstanding performance.

Table 2: Mean Ē-inaccuracy (top) and W1-inaccuracy (bottom) (standard deviation in parenthesis)
over 100 simulations under realizability (γ = 0.99). Smallest inaccuracy values are in boldface.

Small variance Large variance
Sample size 2000 5000 10000 2000 5000 10000

EBRM (Ours) 0.046 0.019 0.008 0.728 0.301 0.128
(0.060) (0.022) (0.010) (0.920) (0.354) (0.167)

FLE 5.533 2.385 1.220 24.603 14.482 6.528
(6.448) (2.883) (1.618) (25.768) (16.101) (7.814)

QRTD 48.679 46.032 49.402 105.274 75.173 70.483
(34.323) (30.909) (34.617) (11.728) (21.515) (33.965)

Small variance Large variance
Sample size 2000 5000 10000 2000 5000 10000

EBRM (Ours) 1.339 0.985 0.782 21.221 15.532 12.371
(0.651) (0.388) (0.227) (10.337) (6.117) (3.595)

FLE 12.374 8.036 5.694 101.232 79.628 53.745
(7.843) (5.091) (3.773) (58.586) (46.772) (33.948)

QRTD 56.739 54.397 57.145 274.405 236.383 223.537
(23.716) (22.259) (24.314) (11.003) (22.376) (38.935)

6 CONCLUSION

In this paper, we justify the use of expectation-extended distances for Bellman residual minimization
in DRL under general state-action space, based on which we propose a distributional OPE method
called EBRM. We establish finite sample error bounds of the proposed estimator for the tabular case
with or without realizability assumption. One interesting future direction is to extend EBRM to
non-tabular case via linear MDP (e.g., Lazic et al., 2020; Bradtke & Barto, 1996), as we will briefly
discuss in Appendix C.3.2.
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A PROOFS FOR SECTIONS 2 AND 3

A.1 BOUNDING RADON-NIKODYM DERIVATIVE (25)

Let t ∈ N be arbitrary. Then we have the following for all s, a ∈ S ×A,

qπ:tbµ (s, a)

bµ(s, a)
≤

∫
S×A

qπ(s, a|s̃, ã) · qπ:t−1
bµ

(s̃, ã)dν(s̃, ã) · 1

bµ(s, a)
≤ pmax

pmin
<∞,

where qπ:0bµ
= bµ. Since t ∈ N was arbitrary, this implies existence of C(t), Csup > 0 such that

sup
s,a

{
qπ:tbµ (s, a)

bµ(s, a)

}
≤ C(t) ≤ Csup ≤

pmax

pmin
for ∀ t ∈ N. (25)

A.2 PROOF OF THEOREM 1

A.2.1 PROPERTIES OF DISTANCE

Property 1. η satisfies translation-invariance and scale-sensitivity of order β0 > 0. That is, with z
being an arbitrary (nonrandom) constant of computable size and c ∈ R,

η{L(z +X),L(z + Y )} ≤ η{L(X),L(Y )} & η{L(cX),L(cY )} ≤ |c|β0η{L(X),L(Y )}.

Property 2. Letting µ(·), ν(·) : Z → P(Rd) have different probability measures depending on the
index random variable Z ∈ Z that follows a distribution P (·), the distance between probability-
mixtures

∫
Z µ(z)dP (z) and

∫
Z ν(z)dP (z) satisfies convexity, that is

η

{∫
Z
µ(z)dP (z),

∫
Z
ν(z)dP (z)

}
≤

∫
Z
η{µ(z), ν(z)}dP (z) = EZ∼P [η{µ(Z), ν(Z)}].

Property 3. It satisfies the following Relaxed Triangular Inequality for all integers K ≥ 2,

η(L(X0),L(XK)) ≤ K
K−1∑
i=0

ρ2(L(Xi),L(Xi+1)) = K

K−1∑
i=0

η(L(Xi),L(Xi+1)). (26)

This is satisfied by all squared metric, that is η(P,Q) = ρ2(P,Q) for some probability metric ρ.

A.2.2 PROOF

Let Υ ∈ P(Rd)S×A be arbitarily chosen. Starting with Relaxed Triangular Inequality (26) with
p = 2, we obtain the following for an arbitrary t ∈ N,

η

{
Υ(s, a),Υπ(s, a)

}
≤ 2

[
η

{
Υ(s, a), (T π)tΥ(s, a)

}
︸ ︷︷ ︸

(a)

+ η

{
(T π)tΥ(s, a),Υπ(s, a)

}
︸ ︷︷ ︸

(b)

]
. (27)

Let us first deal with (b). Define Pπt (· · · |s, a) to be the probability measure of
(
∑t
i=1 γ

i−1R(i), S(t), A(t)) after t steps starting from the intial state-action pair (S,A) = (s, a)

under the given transition probability (R(t), S(t)) ∼ p(· · · |S(t−1), A(t−1)) and the target pol-
icy A(t) ∼ π(·|S(t)). Further denoting the probability measure of y + γtZ(s(t), a(t)) with
Z(s, a) ∼ Υ(s, a) as (gy,γt)#Υ(s(t), a(t)) for the fixed value of s(t), a(t), y =

∑t
i=1 γ

i−1r(i)

12
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(which aligns with the notation (gr,γ)# in (2)), we can obtain the following,

(b) = η

{
(T π)tΥ(s, a), (T π)tΥπ(s, a)

}
∵ (T π)tΥπ(s, a) = Υπ(s, a)

= η

{∫
(gy,γt)#Υ(s(t), a(t))dPπt (y, s

(t), a(t)|s, a),∫
(gy,γt)#Υπ(s

(t), a(t))dPπt (y, s
(t), a(t)|s, a)

}
≤

∫
η
{
(gy,γt)#Υ(s(t), a(t)), (gy,γt)#Υπ(s

(t), a(t))
}
dPπt (y, s

(t), a(t)|s, a) by Property 2

≤
∫
γtβ0η

{
Υ(s(t), a(t)),Υπ(s

(t), a(t))

}
dPπt (s

(t), a(t)|s, a) by Property 1

= γtβ0Eπ
[
η

{
Υ(S(t), A(t)),Υπ(S

(t), A(t))

}∣∣∣∣S = s,A = a

]
. (28)

From now on, we will use Ebµ and Eqπ:t
bµ

to denote the expectation with respect to the probability

(S,A) ∼ bµ and (S,A) ∼ qπ:tbµ . Treating (S,A) in Inequality (27) as random, we can obtain the
following based on Inequality (28),

Ebµ
[
(b)

]
≤ γtβ0E

[
η

{
Υ(S(t), A(t)),Υπ(S

(t), A(t)))

}∣∣∣∣(S,A) ∼ bµ, A(i) ∼ π(·|S(i)) ∀i ≥ 1

]
= γtβ0Ebµ

[
Eπ

{
η

(
Υ(S(t), A(t)),Υπ(S

(t), A(t))

)∣∣∣∣S,A}]
= γtβ0Eqπ:t

bµ

[
η

{
Υ(S,A),Υπ(S,A)

}]
by definition of qπ:tbµ under Assumption 1

= γtβ0Ebµ
[
η

{
Υ(S,A),Υπ(S,A)

}
·
qπ:tbµ (S,A)

bµ(S,A)

]
≤ C(t) · γtβ0 · η̄(Υ,Υπ) by Inequality (25). (29)

Now let us deal with (a) of Inequality (27) using Property 3. Let Υk(s, a) = (T π)kΥ(s, a). For
sufficiently large t ∈ N, we obtain the following by relaxed triangle inequality (26) with K = 2,
η(Υ(s, a), (T π)tΥ(s, a))

≤ 2 ·
{
η(Υ0(s, a),Υ1(s, a)) + η(Υ1(s, a),Υt(s, a))

}
≤ 2 · η(Υ0(s, a),Υ1(s, a)) + 2 · 2 ·

{
η(Υ1(s, a),Υ3(s, a)) + η(Υ3(s, a),Υt(s, a))

}
≤ 2 · η(Υ0(s, a),Υ1(s, a)) + 22 · η(Υ1(s, a),Υ3(s, a))

+ 22 · 2 ·
{
η(Υ3(s, a),Υ7(s, a)) + η(Υ7(s, a),Υt(s, a))

}
≤ 2 · η(Υ0(s, a),Υ1(s, a)) + 22 · η(Υ1(s, a),Υ3(s, a)) + 23 · η(Υ3(s, a),Υ7(s, a)) + · · · .

This can be further bounded as follows by relaxed triangle inequality (26), this time with general
K ≥ 2,
η(Υ(s, a), (T π)tΥ(s, a)) ≤ 2 · η(Υ0(s, a),Υ1(s, a))

+ 22 · 2 ·
{
η(Υ1(s, a),Υ2(s, a)) + η(Υ2(s, a),Υ3(s, a))

}
+ 23 · 22 ·

{
η(Υ3(s, a),Υ4(s, a)) + · · ·+ η(Υ6(s, a),Υ7(s, a))

}
+ · · · ,

which can finally be formalized into

(a) ≤
∞∑
k=1

22k−1 ·
s1(k)∑
j=0

η

(
Υs1(k)+j(s, a),Υs1(k)+j+1(s, a)

)
where s1(k) = 2k−1 − 1.

13
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Therefore we can further obtain following using similar logic as Inequality (29),

Ebµ
[
(a)

]
≤

∞∑
k=1

22k−1 ·
s1(k)∑
j=0

Ebµ
[
η

{
Υs1(k)+j(S,A),Υs1(k)+j+1(S,A)

}]

≤
∞∑
k=1

22k−1 ·
s1(k)∑
j=0

Ebµ
[
η

{
(T π)s1(k)+jΥ(S,A), (T π)s1(k)+j+1Υ(S,A)

}]

≤
∞∑
k=1

22k−1 ·
s1(k)∑
j=0

γ(s1(k)+j)β0 · Eqb:π
T :s1(k)+j

[
η

{
Υ(S,A), T πΥ(S,A)

}]

≤
∞∑
k=1

22k−1 ·
s1(k)∑
j=0

γ(s1(k)+j)β0 · C(s1(k) + j) · Ebµ
[
η

{
Υ(S,A), T πΥ(S,A)

}]

=

∞∑
k=1

22k−1 ·
2k−1−1∑
j=0

γ(2
k−1−1+j)β0 · C(2k−1 − 1 + j) · Ebµ

[
η

{
Υ(S,A), T πΥ(S,A)

}]
. (30)

Note that we have

B(γ;β0) =

∞∑
k=1

22k−1 ·
2k−1−1∑
j=0

γ(2
k−1−1+j)β0 =

∞∑
k=1

22k−1 · γ(2
k−1−1)β0 ·

2k−1−1∑
j=0

(γβ0)j

≤
( ∞∑
k=1

22k−1 · γ(2
k−1−1)β0

)
·
( ∞∑
j=0

(γβ0)j
)
≤ 1

2(1− γβ0)

∞∑
k=1

(4k · γ(2
k−1−1)β0) <∞, (31)

and Inequalities (29) and (30) can thereby be switched into the following bound, since C(t) ≤ Csup

by Inequality (25),

Ebµ
[
(a)

]
≤ Csup ·B(γ;β0) · η̄(Υ, T πΥ) & Ebµ

[
(b)

]
≤ Csup · γtβ0 η̄(Υ,Υπ).

Then starting from Inequality (27), we can obtain

η̄(Υ,Υπ) ≤ 2 ·
{
Ebµ

[
(a)

]
+ Ebµ

[
(b)

]}
≤ 2Csup ·

{
B(γ;β0) · η̄(Υ, T πΥ) + γtβ0 η̄(Υ,Υπ)

}
.

Letting t→∞, we obtain the desired result as follows,

η̄(Υ,Υπ) ≤ 2CsupB(γ;β0) · η̄(Υ, T πΥ).

ReplacingB(γ;β0) withB1(γ;β0) :=
1

2(1−γβ0 )

∑∞
k=1(4

k ·γ(2k−1−1)β0) as (31) gives us the desired
result of Theorem 1.

A.3 PROOF THAT ENERGY DISTANCE SATISFIES PROPERTIES A.2.1

Property 1 is straightforward from the definition of Energy Distance (8). For an arbitrary c ∈ Rd
and c ∈ R, we have the following that leads to β0 = 1 in Property 1,

E
{
L(c+X),L(c+Y)

}
= E

{
L(X),L(Y)

}
& E

{
L(cX),L(cY)

}
= |c| · E

{
L(X),L(Y)

}
.

Property 2 is shown by Lemma 3 of Nguyen-Tang et al. (2021).

Property 3 can be verified as follows. Since E is a squared MMDk corresponding to the kernel
k(x,y) = ∥x∥ + ∥y∥ − ∥x − y∥, it is a squared form of some metric ρ between two distributions
P,Q by Lemma 4 of Gretton et al. (2012),

E(P,Q) = ρ2(P,Q) where ρ(P,Q) := ∥µP − µQ∥H

14
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where µP , µQ ∈ H are the mean embeddings of P,Q, and H is the RKHS corresponding to the
suggested kernel k. Based on this, we can derive the so-called Relaxed Triangular Inequality,

E(L(X0),L(XK)) = ρ2(L(X0),L(XK)) ≤
{K−1∑

i=0

ρ(L(Xi),L(Xi+1))

}2

≤ K
K−1∑
i=0

ρ2(L(Xi),L(Xi+1)) = K

K−1∑
i=0

E(L(Xi),L(Xi+1)),

where the inequality of the second line used ab + ba ≤ a2 + b2 that leads to (a1 + · · · aK)2 ≤
K · (a21 + · · · a2K). Plugging in K = 2 gives us the following special case,

E{L(X0),L(X2)} ≤ 2 · [E{L(X0),L(X1)}+ E{L(X1),L(X2)}]. (32)

A.4 EXPLANATION OF SUBGAUSSIAN NORM

Subgaussianity can be quantified with subgaussian norm ∥ · ∥ψ2
: P(R) → R or P(Rd) → R

(Definition 2.5.6 and Definition 3.4.1 of Vershynin (2018)),

∥X∥ψ2 := inf

{
t > 0 : E(X2/t2) ≤ 2

}
(d = 1) & ∥X∥ψ2 := sup

x∈Rd:∥x∥=1

∥⟨X,x⟩∥ψ2 . (33)

Subgaussian norm is verified to be a valid norm in Exercise 2.5.7 of (Vershynin, 2018). Random
variable (vector) X is called subgaussian if it satisfies ∥X∥ψ2

< ∞. A lot of useful inequalilties,
such as Dudley’s integral inequality and and Hoeffding’s inequality (Theorems 4, 5) are based on
subgaussianity assumption.

A.5 WHY SUPREMUM-EXTENDED WASSERSTEIN-1 METRIC SATISFIES (14)

Let c ∈ Rd, γ1, γ2 ∈ (0, 1], and (s, a), (s̃, ã) ∈ S ×A be arbitrary, Zi(s, a) ∼ Υi(s, a) with
Z1(s, a), Z2(s̃, ã) and Z3(s, a), Z4(s̃, ã) being pairwise independent. Letting J13 be the possi-
ble dependence structures between Z1(s, a) and Z2(s, a), and J24 be that between Z3(s̃, ã) and
Z4(s̃, ã), we have∣∣∣∣E∥c+ γ1Z1(s, a)− γ2Z2(s̃, ã)∥ − E∥c+ γ1Z3(s, a)− γ2Z4(s̃, ã)∥

∣∣∣∣
= inf
J13,J24

∣∣∣∣E∥c+ γ1Z1(s, a)− γ2Z2(s̃, ã)∥ − E∥c+ γ1Z3(s, a)− γ2Z4(s̃, ã)∥
∣∣∣∣

≤ inf
J13,J24

E∥c+ γ1Z1(s, a)− γ2Z2(s̃, ã)− c− γ1Z3(s, a) + γ2Z4(s̃, ã)∥

= inf
J13

E∥γ1Z1(s, a)− γ1Z3(s, a)∥+ inf
J24

E∥γ2Z2(s̃, ã)− γ2Z4(s̃, ã)∥

= γ1 ·W1(Z1(s, a), Z3(s, a)) + γ2 ·W1(Z2(s, a), Z4(s, a))

≤ γ1 ·W1,∞(Υ1,Υ3) + γ2 ·W1,∞(Υ2,Υ4),

where the second last line holds by the definition of Wasserstein-1 metric.
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A.6 PROOF OF THEOREM 2

Throughout the proof, we will useC > 0,Ck > 0 (k ∈ N) to denote appropriate universal constants.

Based on the metric η̃ in Assumption 5, we will quantify the model complexity by covering num-
ber (Definition 4.2.2 of Vershynin (2018)). With Nη̃(θ, t) := {θ′ ∈ Θ : η̃(θ′, θ) < t} being
t-neighborhood of θ ∈ Θ, we define the covering number as follows,

N (Θ, η̃, t) := min

{
M̃ ∈ N : ∃θ1, · · · , θM̃ s.t. Θ ⊂

M̃⋃
i=1

Nη̃(θi, t)

}
. (34)

Also define the following minimizer of Bellman residual,

θ∗ :∈ argmin
θ∈Θ
Ē(Υθ, T πΥθ).

Since Υπ = Υθ′ for some θ′ ∈ Θ by Assumption 2, we have Ē(Υθ′ , T πΥθ′) = Ē(Υπ, T πΥπ) = 0,
thereby becoming the minimizer of Bellman residual. Then we can let θ∗ = θ′, and have
Ē(Υθ∗ , T πΥθ∗) = 0, that is Υθ∗ = T πΥθ∗ .

A.6.1 DECOMPOSITION INTO TWO DISCREPANCIES

Defining ΓN and ∆N as

ΓN := sup
θ∈Θ
Ē(T πΥθ, T̂ πΥθ) & ∆N := sup

θ∈Θ

∣∣∣∣Ē(Υθ, T̂ πΥθ)− ˆ̄E(Υθ, T̂ πΥθ)
∣∣∣∣,

we can decompose the term Ē(Υθ̂, T
πΥθ̂) as follows.

Ē(Υθ̂, T
πΥθ̂) ≤ 2 ·

{
Ē(Υθ̂, T̂

πΥθ̂) + Ē(T̂
πΥθ̂, T

πΥθ̂)

}
≤ 2 ·

{
ˆ̄E(Υθ̂, T̂

πΥθ̂) +

∣∣∣∣ ˆ̄E(Υθ̂, T̂ πΥθ̂)− Ē(Υθ̂, T̂ πΥθ̂)∣∣∣∣+ Ē(T̂ πΥθ̂, T πΥθ̂)}
≤ 2 ·

{
ˆ̄E(Υθ∗ , T̂ πΥθ∗) + ∆N + ΓN

}
≤ 2 ·

{
Ē(Υθ∗ , T̂ πΥθ∗) +

∣∣∣∣ ˆ̄E(Υθ∗ , T̂ πΥθ∗)− Ē(Υθ∗ , T̂ πΥθ∗)∣∣∣∣+∆N + ΓN

}
≤ 2 ·

{
Ē(T πΥθ∗ , T̂ πΥθ∗) + 2ΓN +∆N

}
≤ 4 · (ΓN +∆N ).

Combined with Theorem 1 that requires Assumption 1, it leads to the following bound,

Ē(Υθ̂,Υπ) ≤ 8CsupB1(γ) · (ΓN +∆N ), where (35)

B1(γ) := B1(γ; 1) =
1

2(1− γ)

∞∑
k=1

4kγ2
k−1−1 by definition in Theorem 1

since we have verified β0 = 1 in A.3. Now it suffices to bound ΓN and ∆N , which will be referred
to as Bellman discrepancy and state-action discrepancy to indicate the sources of error, T π and
bµ(s, a), respectively. Before we proceed, we list several properties of subgaussian norm (33) that
we will utilize in our analysis. Corresponding proofs can be found in Section C.2.1, which are
mostly based on Vershynin (2018).
Remark 1. (Properties of sub-gaussian norm) We have the following properties regarding sub-
gaussian norm,

1. For X ∼ Ber(p), we have ∥X∥ψ2
≤ 1/

√
log 2.

2. For a constant c ∈ R, ∥c∥ψ2 = c/
√
log 2.
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3. For a random variable X ∈ R, ∥E(X)∥ψ2
≤ ∥X∥ψ2

holds.

4. For a random vector X ∈ Rd,
∥∥∥X∥∥∥

ψ2
≤ d

∥∥X∥∥
ψ2

holds.

5. For a random variable X ∈ R, ∥X − E(X)∥ψ2
≤ C∥X∥ψ2

holds.

A.6.2 CONDITIONING ON SUFFICIENT SAMPLE SIZE FOR EACH STATE-ACTION PAIR

Prior to bounding ΓN and ∆N of (35), we will first condition upon an event where each state-action
pair is observed sufficiently many times.

Before we proceed, we should note that the given probability space (Ω,Σ,P) can be factorized into
two stages. Letting N = (N(s, a))s,a∈S×A ∈ RS×A to be a random vector that indicates the
observed number of samples for each state-action pair, we can see that (Ω,Σ,P) consists of two
consecutive probability events denoted as follows,

Stage 1: (ΩS×A,ΣS×A,PS×A)⇒ determines which state-action pairs Si, Ai are sampled, (36)

Stage 2: (Ω(N),Σ(N),P(N))⇒ conditioned on (Si, Ai), determines Ri, S′
i ∼ p(· · · |Si, Ai).

This implies that having sufficiently many observations for each s, a is solely associated with prob-
ability space of Stage 1. Now let us discuss how “sufficiently large” N(s, a) is characterized (38).

Since we are given with N ≥ 2, we can divide the data D = {(Si, Ai, Ri, S′
i)}Ni=1 into two halves,

D1 = {(Si, Ai, Ri, S′
i)}

⌊N/2⌋
i=1 and D2 = {(Si, Ai, Ri, S′

i)}Ni=⌊N/2⌋+1.

Note that we denoted observations (Si, Ai, Ri, S
′
i) in capital letters, so as to indicate that they are

random objects. Based on this, we define the following notations based on (10),

p =
(
bµ(s, a)

)
s,a∈S×A ∈ [0, 1]S×A & p̂ =

(
b̂µ(s, a)

)
s,a∈S×A ∈ [0, 1]S×A,

and it is straightforward to see

p̂ =
⌊N/2⌋
N

p̂(1) +
N − ⌊N/2⌋

N
p̂(2), (37)

where each term in the RHS of (37) is sample mean based on D1 and D2,

p̂(1) =
1

N/2

N/2∑
i=1

yi and p̂(2) =
1

N − ⌊N/2⌋

N−⌊N/2⌋∑
i=1

yi,

yi ∈
{
(1, 0, · · · , 0)⊺, (0, 1, · · · , 0)⊺, · · · , (0, 0, · · · , 1)⊺

}
⊂ [0, 1]|S×A|

with yi being indicators that represent where each observation (Si, Ai) belongs to. Within Stage 1
probability space (36), we define the following subset with given ϵ ∈ (0, 1],

Ω
(ϵ)
S×A :=

{
ω ∈ ΩS×A

∣∣∣∣ ∥p̂(1) − p∥ < 1

2
pmin · ϵ and ∥p̂(2) − p∥ < 1

2
pmin · ϵ

}
, (38)

under which we can verify that following holds (proofs in C.2.2),

Fact 1: b̂µ(s, a) =
N(s, a)

N
∈
[
1

2
bµ(s, a),

3

2
bµ(s, a)

]
for ∀s, a ∈ S ×A, (39)

Fact 2: N(s, a) ≥ 2 for ∀s, a ∈ S ×A,

Fact 3: ∥p̂− p∥ < 1

2
pmin · ϵ.

There is one fact which is crucially important about (38). The conditioned event of observing a
plenty of samples for each s, a (38) is not related at all with Stage 2 probability space (36). This
implies that regardless of realizations of N, the dependence structure between different samples
(conditioned on the same s, a) (R,S′) ∼ p(· · · |s, a) remains intact, i.e. Ri, S′

i (1 ≤ i ≤ N ) remain
independent with respect to Stage 2 probability measure P(N) (36).

Throughout the following subsections A.6.3 and A.6.4 where we shall bound ΓN and ∆N , we
will resort to conditional probability measure P(N)(· · · ) := P(· · · |N) along with its corresponding
subgaussian norm ∥ · ∥ψ2(N). In other words, we will consider N(s, a) to be fixed (non-random),
assuming that Facts (39) are satisfied, and later calculate its unconditional probability with P in
A.6.5 by Inequality (75).
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A.6.3 BOUNDING BELLMAN DISCREPANCY

Once more, we would like to emphasize that N(s, a) are fixed, and Facts (39) hold. The probability
space we are dealing with in this subsection is Stage 2 probability space (36).

Let us define the following stochastic process that can be used in bounding Bellman discrepancy
ΓN :

Xθ := Ē
(
T̂ πΥθ, T πΥθ

)
and Xθ(s, a) := E

{
T̂ πΥθ(s, a), T πΥθ(s, a)

}
,

∴ ΓN = sup
θ∈Θ

Xθ ≤ sup
θ∈Θ

∣∣∣∣Xθ −Xθ0

∣∣∣∣+Xθ0 , (40)

where θ0 ∈ Θ is a fixed value that will be chosen at the later in the proof.

First, let us handle the supremum term supθ∈Θ |Xθ − Xθ0 | of Decomposition (40) with Dudley’s
integral inequality 4. We have

Xθ =
∑
s,a

bµ(s, a) ·Xθ(s, a), (41)

∥Xθ1 −Xθ2∥ψ2(N) ≤
∑
s,a

bµ(s, a) · ∥Xθ1(s, a)−Xθ2(s, a)∥ψ2(N), (42)

and therefore we first need to bound the term ∥Xθ1(s, a)−Xθ2(s, a)∥ψ2(N). Towards that end, let us
first rewrite the term Xθ(s, a) as follows where Ẽ(· · · ) = E(· · · |D) is the conditional expectation
used in (11),

Xθ(s, a) = 2 ·
{
Ẽ∥Rα + γZα(S

′
α, A

′
α; θ)− R̂β − γZβ(Ŝ′

β , Â
′
β ; θ)∥

− E∥Rα + γZα(S
′
α, A

′
α; θ)−Rβ − γZβ(S′

β , A
′
β ; θ)∥

}
−
{
Ẽ∥R̂α + γZα(Ŝ

′
α, Â

′
α; θ)− R̂β − γZβ(Ŝ′

β , Â
′
β ; θ)∥

− E∥Rα + γZα(S
′
α, A

′
α; θ)−Rβ − γZβ(S′

β , A
′
β ; θ)∥

}
,

where Z(s, a; θ) ∼ Υθ(s, a), (R,S′) ∼ p(· · · |s, a), (R̂, Ŝ′) ∼ p̂(· · · |s, a), A′ ∼ π(·|S′), Â′ ∼
π(·|Ŝ′), and having different subscripts (α or β) means they are independent, although they may
follow the same distribution(s). That being said, we can simplify it as follows,

Xθ(s, a) =
2

N(s, a)

N(s,a)∑
i=1

W θ
i −

1

N(s, a)2

N(s,a)∑
i=1

N(s,a)∑
j=1

W θ
ij , (43)

where W θ
i and W θ

ij are the random variables that have following realizations,

wθi := E∥Rα + γZα(S
′
α, A

′
α; θ)− ri − γZβ(s′i, A′

i; θ)∥ (44)

− E∥Rα + γZα(S
′
α, A

′
α; θ)−Rβ − γZβ(S′

β , A
′
β ; θ)∥,

wθij := E∥ri + γZα(s
′
i, A

′
i; θ)− rj − γZβ(s′j , A′

j ; θ)∥ (45)

− E∥Rα + γZα(S
′
α, A

′
α; θ)−Rβ − γZβ(S′

β , A
′
β ; θ)∥. (46)

Since we have
E(W θ

i ) = 0, E(W θ
ij) = 0 if i ̸= j, E(W θ

ii) ̸= 0,

we should further decompose Equation (43) as following, based on N(s, a) ≥ 2 by Facts (39),

Xθ(s, a) =
2

N(s, a)

N(s,a)∑
i=1

W θ
i −

1

N(s, a)2
·
(N(s,a)∑

i ̸=j

W θ
ij +

N(s,a)∑
i=1

W θ
i

)
(47)

=
2

N(s, a)

N(s,a)∑
i=1

W θ
i −

N(s, a)− 1

N(s, a)
· 1

N(s, a) · (N(s, a)− 1)

N(s,a)∑
i̸=j

W θ
ij −

1

N(s, a)2

N(s,a)∑
i=1

W θ
ii,
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This leads to

∥Xθ1(s, a)−Xθ2(s, a)∥ψ2(N)

≤ N(s, a)− 1

N(s, a)
·
∥∥∥∥ 1

N(s, a) · (N(s, a)− 1)

N(s,a)∑
i̸=j

(W θ1
ij −W

θ2
ij )

∥∥∥∥
ψ2(N)

+

∥∥∥∥ 2

N(s, a)

N(s,a)∑
i=1

(W θ1
i −W

θ2
i )

∥∥∥∥
ψ2(N)

+

∥∥∥∥ 1

N(s, a)2

N(s,a)∑
i=1

(W θ1
ii −W

θ2
ii )

∥∥∥∥
ψ2(N)

, (48)

and we will bound each term one by one. Before we begin with the first term, we would like to
introduce a useful trick that will be used repetitively throughout the proof. First, it is easy to see that
|wθ112 − w

θ2
12| can be decomposed into the following two terms,

|wθ112 − w
θ2
12| ≤

∣∣∣∣E∥r1 + γZα(s
′
1, A

′
1; θ1)− r2 − γZβ(s′2, A′

2; θ1)∥

− E∥r1 + γZα(s
′
1, A

′
1; θ2)− r2 − γZβ(s′2, A′

2; θ2)∥
∣∣∣∣

+

∣∣∣∣E∥Rα + γZα(S
′
α, A

′
α; θ1)−Rβ − γZβ(S′

β , A
′
β ; θ1)∥

− E∥Rα + γZα(S
′
α, A

′
α; θ2)−Rβ − γZβ(S′

β , A
′
β ; θ2)∥

∣∣∣∣.
Since we have the following by Assumption 5,∣∣∣∣E∥r1 + γZα(s

′
1, a

′
1; θ1)− r2 − γZβ(s′2, a′2; θ1)∥

− E∥r1 + γZα(s
′
1, a

′
1; θ2)− r2 − γZβ(s′2, a′2; θ2)∥

∣∣∣∣ ≤ 2γ · η̃(θ1, θ2). (49)

this leads to∣∣∣∣E∥r1 + γZα(s
′
1, A

′
1; θ1)− r2 − γZβ(s′2, A′

2; θ1)∥

− E∥r1 + γZα(s
′
1, A

′
1; θ2)− r2 − γZβ(s′2, A′

2; θ2)∥
∣∣∣∣

=

∣∣∣∣ ∑
a′1,a

′
2∈A

π(a′1|s′1) · π(a′2|s′2) · E∥r1 + γZα(s
′
1, A

′
1; θ1)− r2 − γZβ(s′2, A′

2; θ1)∥

−
∑

a′1,a
′
2∈A

π(a′1|s′1) · π(a′2|s′2) · E∥r1 + γZα(s
′
1, A

′
1; θ2)− r2 − γZβ(s′2, A′

2; θ2)∥
∣∣∣∣

≤
∑

a′1,a
′
2∈A

π(a′1|s′1) · π(a′2|s′2) ·
∣∣∣∣E∥r1 + γZα(s

′
1, a

′
1; θ1)− r2 − γZβ(s′2, a′2; θ1)∥

− E∥r1 + γZα(s
′
1, a

′
1; θ2)− r2 − γZβ(s′2, a′2; θ2)∥

∣∣∣∣
≤ 2γ · η̃(θ1, θ2) by Inequality (49). (50)

Furthermore, by letting Pπ(2) to be the (conditional) probability measure of (r1, s
′
1, a

′
1, r2, s

′
2, a

′
2)

with (r1, s
′
1, a

′
1) and (r2, s

′
2, a

′
2) being independent conditioned on (s, a), we can derive the follow-

ing,∣∣∣∣E∥Rα + γZα(S
′
α, A

′
α; θ1)−Rβ − γZβ(S′

β , A
′
β ; θ1)∥

− E∥Rα + γZα(S
′
α, A

′
α; θ2)−Rβ − γZβ(S′

β , A
′
β ; θ2)∥

∣∣∣∣
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=

∣∣∣∣ ∫ E∥r1 + γZα(s
′
1, a

′
1; θ1)− r2 − γZβ(s′2, a′2; θ1)∥dPπ(2)(r1, s

′
1, a

′
1, r2, s

′
2, a

′
2|s, a)

− E∥r1 + γZα(s
′
1, a

′
1; θ2)− r2 − γZβ(s′2, a′2; θ2)∥dPπ(2)(r1, s

′
1, a

′
1r2, s

′
2, a

′
2|s, a)

∣∣∣∣
≤

∫ ∣∣∣∣E∥r1 + γZα(s
′
1, a

′
1; θ1)− r2 − γZβ(s′2, a′2; θ1)∥

− E∥r1 + γZα(s
′
1, a

′
1; θ2)− r2 − γZβ(s′2, a′2; θ2)∥

∣∣∣∣dPπ(2)(r1, s′1, a′1, r2, s′2, a′2|s, a)
≤ 2γ · η̃(θ1, θ2) by Inequality (49). (51)

Combining the two inequalities (50) and (51), we obtain

|wθ112 − w
θ2
12| ≤ 4γ · η̃(θ1, θ2), (52)

which implies that |W θ1
ij −W

θ2
ij | ≤ 4γ · η̃(θ1, θ2) is a bounded random variable. Defining another

random variable that satisfies following based on Remark 1,

W̃ θ
ij :=

1

2
· (W θ

ij +W θ
ji) where 1 ≤ i < j ≤ N(s, a), (53)

∴ ∥W̃ θ1
12 − W̃

θ2
12 ∥ψ2(N) ≤

1

2
∥W θ1

12 −W
θ2
12 ∥ψ2(N) +

1

2
∥W θ1

21 −W
θ2
21 ∥ψ2(N) ≤

4γ√
log 2

· η̃(θ1, θ2).

Then we rewrite the first term as follows,∥∥∥∥ 1

N(s, a) · (N(s, a)− 1)

N(s,a)∑
i̸=j

(W θ1
ij −W

θ2
ij )

∥∥∥∥
ψ2(N)

=

∥∥∥∥ 1

N(s, a) · (N(s, a)− 1)/2

N(s,a)∑
i<j

(W̃ θ1
ij − W̃

θ2
ij )

∥∥∥∥
ψ2(N)

, (54)

and we will apply the following corollary, whose proof is in Section C.2.3.

Corollary 1. For i.i.d. mean-zero subgaussian random variables X1, · · · , Xn, we have∥∥∥∥ 1n
n∑
i=1

Xi

∥∥∥∥
ψ2

≤ C√
n
· ∥X1∥ψ2

.

The tuples that we add up in Equation (54) are not necessarily independent, so we need to reorganize
the terms. Towards that end, we divide our cases into two, when N(s, a) ≥ 2 is an even number or
an odd number. When N(s, a) is even, we can directly use Lemma 6 of C.1 to group

{
(i, j) : 1 ≤

i < j ≤ N(s, a)
}

into (N(s, a) − 1) groups Gk (1 ≤ k ≤ N(s, a) − 1), each of which contains
|Gk| = N(s, a)/2 pairs of (i, j), with no pair overlapping in any component. Then we can take up
Equation (54) as follows,∥∥∥∥ 1

N(s, a) · (N(s, a)− 1)

N(s,a)∑
i ̸=j

(W θ1
ij −W

θ2
ij )

∥∥∥∥
ψ2(N)

≤
∥∥∥∥ 1

N(s, a)− 1

N(s,a)−1∑
k=1

1

N(s, a)/2

∑
(i,j)∈Gk

(W̃ θ1
ij − W̃

θ2
ij )

∥∥∥∥
ψ2(N)

≤
∥∥∥∥ 1

N(s, a)/2

∑
(i,j)∈G1

(W̃ θ1
ij − W̃

θ2
ij )

∥∥∥∥
ψ2(N)

by Triangular Inequality

≤ C1√
N(s, a)

· ∥W̃ θ1
12 − W̃

θ2
12 ∥ψ2(N) by Corollary 1. (55)

20



Under review as a conference paper at ICLR 2024

Now let us assume that N(s, a) ≥ 2 is an odd number, which automatically gives us N(s, a) ≥ 3.
Then we can take up Equation (54) as follows,∥∥∥∥ 1

N(s, a) · (N(s, a)− 1)

N(s,a)∑
i̸=j

(W θ1
ij −W

θ2
ij )

∥∥∥∥
ψ2(N)

≤
∥∥∥∥N(s, a)− 2

N(s, a)
· 1

(N(s, a)− 1) · (N(s, a)− 2)/2

N(s,a)−1∑
i<j

(W̃ θ1
ij − W̃

θ2
ij )

∥∥∥∥
ψ2(N)

(56)

+
1

N(s, a)/2
·
∥∥∥∥ 1

N(s, a)− 1

N(s,a)−1∑
i=1

(W̃ θ1
iN(s,a) − W̃

θ2
iN(s,a))

∥∥∥∥
ψ2(N)

≤ N(s, a)− 2

N(s, a)
·
∥∥∥∥ 2

(N(s, a)− 1) · (N(s, a)− 2)

N(s,a)−1∑
i<j

(W̃ θ1
ij − W̃

θ2
ij )

∥∥∥∥
ψ2(N)

+
2

N(s, a)
· ∥W̃ θ1

12 − W̃
θ2
12 ∥ψ2(N)

≤ C1√
N(s, a)− 1

· ∥W̃ θ1
12 − W̃

θ2
12 ∥ψ2(N) +

2

N(s, a)
· ∥W̃ θ1

12 − W̃
θ2
12 ∥ψ2(N) by Inequality (55)

≤ C2√
N(s, a)

· ∥W̃ θ1
12 − W̃

θ2
12 ∥ψ2(N) ∵ N(s, a)− 1 ≥ N(s, a)

2
since N(s, a) ≥ 3,

where the second last line holds since N(s, a) − 1 is an even number. That being said, we can
generalize the following result for ∀N(s, a) ∈ N based on (53), regardless of even or odd numbers,∥∥∥∥ 1

N(s, a) · (N(s, a)− 1)

N(s,a)∑
i̸=j

(W θ1
ij −W

θ2
ij )

∥∥∥∥
ψ2(N)

≤ C4γ√
N(s, a)

· η̃(θ1, θ2).

Regarding the second term of Inequality (48), we can apply the same trick of (51) to obtain

E∥Rα + γZα(S
′
α, A

′
α; θ1)− r1 − γZβ(s′1, A′

1; θ1)∥
− E∥Rα + γZα(S

′
α, A

′
α; θ2)− r1 − γZβ(s′1, A′

1; θ2)∥
≤ 2γ · η̃(θ1, θ2) by Inequality (49).

which leads to following by the same logic of (52),

|wθ11 − w
θ2
1 | ≤ 4γ · η̃(θ1, θ2).

This allows us to bound the second term as follows by employing the same logic as when we bounded
the first term of (48),∥∥∥∥ 2

N(s, a)

N(s,a)∑
i=1

(W θ1
i −W

θ2
i )

∥∥∥∥
ψ2(N)

≤ C6γ√
N(s, a)

· η̃(θ1, θ2).

The third term of Inequality (48) can be bounded as follows,∥∥∥∥ 1

N(s, a)2

N(s,a)∑
i=1

(W θ1
ii −W

θ2
ii )

∥∥∥∥
ψ2(N)

≤ 1

N(s, a)2
·N(s, a) · ∥W θ1

11 −W
θ2
11 ∥ψ2(N)

≤ C7γ

N(s, a)
· η̃(θ1, θ2) by the same trick (52).

Finally, we can bound Inequality (48) as follows,

∥Xθ1(s, a)−Xθ2(s, a)∥ψ2(N) ≤
C8γ√
N(s, a)

· η̃(θ1, θ2),
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which eventually leads to following by Inequality (42), by using N(s, a) ≥ 1
2bµ(s, a) ·N based on

Fact (39),

∥Xθ1 −Xθ2∥ψ2(N) ≤
∑
s,a

bµ(s, a) ·
C8γ√
N(s, a)

· η̃(θ1, θ2) ≤
C9γ√
N
·
∑
s,a

√
bµ(s, a) · η̃(θ1, θ2).

Without loss of generality, we can assume that separability holds. Therefore, by Assumptions 3 and
4, we can apply Dudley’s Integral Inequality 4 to obtain the following for ∀u > 0,

P(N)

[
sup
θ∈Θ

∣∣∣∣Xθ −Xθ0

∣∣∣∣ ≤ C10γ√
N
·
∑
s,a

√
bµ(s, a) ·

{∫ ∞

0

√
logN (Θ, η̃, t)dt

+ u · diam(Θ; η̃)

}]
≥ 1− 2 exp(−u2). (57)

The next part is bounding the term Xθ0 of Decomposition (40). We first fix a state-action pair
s, a ∈ S ×A, we can use the last line of Equation (47) to obtain the following decomposition,

Xθ0(s, a) ≤ 2 ·
∣∣∣∣ 1

N(s, a)

N(s,a)∑
i=1

W θ0
i

∣∣∣∣+ N(s, a)− 1

N(s, a)
·
∣∣∣∣ 1

N(s, a) · (N(s, a)− 1)

N(s,a)∑
i ̸=j

W θ0
ij

∣∣∣∣
+

1

N(s, a)
·
∣∣∣∣ 1

N(s, a)

N(s,a)∑
i=1

W θ0
ii

∣∣∣∣. (58)

We first select ϵ1 > 0, and we will bound each term one by one. Starting from the first term of De-
composition (58), we can apply Theorem 5 by Assumptions 3 and 4, to obtain the following, where
E(N)(· · · ) is the conditional expectation that corresponds to the conditional probability P(N)(· · · ),

P(N)

(∣∣∣∣ 1

N(s, a)

N(s,a)∑
i=1

W θ0
i

∣∣∣∣ ≥ ϵ1) ≤ 2 · exp
{

−C11 ·N(s, a) · ϵ21
∥W θ0

1 − E(N)(W θ0
1 )∥2ψ2(N)

}
. (59)

Note that we could remove the expectation term in the LHS due to

E(N)(W θ0
i ) = E(W θ0

i ) = 0, (60)

which holds since the randomness of W θ0
i solely depends on (R(s, a), S′(s, a)) ∼ p(· · · |s, a) for a

fixed state-action pair s, a, which is irrelevant (independent) with N = (N(s, a))s,a∈S×A. Then we
have the following based on Definition (46),

E∥Rα + γZα(S
′
α, A

′
α; θ0)− r1 − γZβ(s′1, A′

1; θ0)∥
≤ E∥R(s, a)∥+ 2γ · sup

s,a
E∥Z(s, a; θ0)∥+ ∥r1∥,

we can apply Remark 1 to see

∥W θ0
1 − E(N)(W θ0

1 )∥ψ2(N) ≤ C12 · ∥W θ0
1 ∥ψ2(N)

≤ C13 ·
∥∥E∥R(s, a)∥+ 2γ · sup

s,a
E∥Z(s, a; θ0)∥+ ∥R(s, a)∥

∥∥
ψ2(N)

= C13 ·
∥∥E∥R(s, a)∥+ 2γ · sup

s,a
E∥Z(s, a; θ0)∥+ ∥R(s, a)∥

∥∥
ψ2

≤ C13 ·
{
2 ·

∥∥∥R(s, a)∥∥∥
ψ2

+
2γ√
log 2

· sup
s,a

E∥Z(s, a; θ0)∥
}
, (61)

where the third line holds with the same reason as in (60), that is the realization of N =
(N(s, a))s,a∈S×A plays no role in the distribution of R(s, a) that is conditioned on a fixed state-
action pair s, a. Since we have∥∥E∥R(s, a)∥∥∥

ψ2
≤

∥∥∥R(s, a)∥∥∥
ψ2
≤ d · ∥R(s, a)∥ψ2

by Remark 1, (62)

this further leads to following by Inequality (61),

∥W θ0
1 − E(N)(W θ0

1 )∥2ψ2(N) ≤ C14 ·
{∥∥∥R(s, a)∥∥∥

ψ2
+ γ · sup

s,a
E∥Z(s, a; θ0)∥

}2

(63)
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Since Facts (39) implies N(s, a)/N ≥ 1
2bµ(s, a) ≥

1
2pmin, this allows us to take up Bound (59) as

follows,

P(N)

(∣∣∣∣ 1

N(s, a)

N(s,a)∑
i=1

W θ0
i

∣∣∣∣ ≥ ϵ1) ≤ 2 · exp
{

−C15 ·N(s, a) · ϵ21(∥∥∥R(s, a)∥∥∥
ψ2

+ γ · sups,a E∥Z(s, a; θ0)∥
)2}

≤ 2 · exp
{

−C16 · pmin ·N · ϵ21(∥∥∥R(s, a)∥∥∥
ψ2

+ γ · sups,a E∥Z(s, a; θ0)∥
)2}. (64)

Now we have to bound the second term of Decomposition (58), which can be derived similarly to
the first bound (64), but takes one additional step of employing the following lemma that is proved
in C.2.4,

Lemma 1. Given X1, · · · , XN ∼ iid (N ≥ 2), let Xij := h(Xi, Xj) for some bivariate function
h(·, ·), and assume that ∥X12∥ψ2

<∞ holds. Then we have the following inequality for ∀ϵ > 0,

P
{∣∣∣∣ 1

N(N − 1)

∑
i̸=j

Xij − E(X12)

∣∣∣∣ ≥ ϵ} ≤ 4N · exp
{

−C ·N · ϵ2

∥X12 − E(X12)∥2ψ2

}
.

By Lemma 1, we have

P(N)

(∣∣∣∣ 1

N(s, a) · (N(s, a)− 1)

N(s,a)∑
i ̸=j

W θ0
ij

∣∣∣∣ ≥ ϵ1)

≤ 4N(s, a) · exp
{

−C17 ·N(s, a) · ϵ21
∥W θ0

12 − E(N)(W θ0
12 )∥2ψ2(N)

}
,

and then we can employ the tricks (61) and (63) to obtain

∥W θ0
12 − E(N)(W θ0

12 )∥2ψ2(N) ≤ C18 ·
{∥∥∥R(s, a)∥∥∥

ψ2
+ γ · sup

s,a
E∥Z(s, a; θ0)∥

}2

.

Using N(s, a) ≥ 1
2pmin and N(s, a) ≤ 3

2bµ(s, a) that are implied by Facts (39), we can derive the
following bound,

P(N)

(∣∣∣∣ 1

N(s, a) · (N(s, a)− 1)

N(s,a)∑
i ̸=j

W θ0
ij

∣∣∣∣ ≥ ϵ1)

≤ 6N · bµ(s, a) · exp
{

−C19 · pmin ·N · ϵ21(∥∥∥R(s, a)∥∥∥
ψ2

+ γ · sups,a E∥Z(s, a; θ0)∥
)2}. (65)

Lastly, we bound the third term of Decomposition (58). Since E(W θ0
ii ) ̸= 0, we cannot repeat the

same procedure that we employed for the first and second terms. Based on Definition (46), we can
see that |W θ0

11 | is a bound random variable,

|wθ011| = E∥γZα(s′i, A′
i; θ0)− γZβ(s′j , A′

j ; θ0)∥
− E∥Rα + γZα(S

′
α, A

′
α; θ0)−Rβ − γZβ(S′

β , A
′
β ; θ0)∥

≤ 2 sup
s,a

E∥R(s, a)∥+ 4γ · sup
s,a

E∥Z(s, a, θ0)∥,

which leads us to bound the third term of (58) as following based on N(s, a) ≥ 1
2pmin ·N ,

1

N(s, a)
·
∣∣∣∣ 1

N(s, a)

N(s,a)∑
i=1

W θ0
ii

∣∣∣∣ ≤ 1

N
· 8

pmin
·
{
E∥R(s, a)∥+ γ · sup

s,a
E∥Z(s, a; θ0)∥

}
. (66)
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We can combine Bounds (64), (65), and (66) to form the following bound, based on Decomposition
(58),

P(N)

{
Xθ0(s, a) ≤ 2ϵ1 +

1

N
· 8

pmin
·
(
E∥R(s, a)∥+ γ · sup

s,a
E∥Z(s, a; θ0)∥

)}
≥ 1− 2 · exp

{
−C16 · pmin ·N · ϵ21(∥∥∥R(s, a)∥∥∥
ψ2

+ γ · sups,a E∥Z(s, a; θ0)∥
)2}

− 6N · bµ(s, a) · exp
{

−C19 · pmin ·N · ϵ21(∥∥∥R(s, a)∥∥∥
ψ2

+ γ · sups,a E∥Z(s, a; θ0)∥
)2}.

This further leads to

P(N)

{
Xθ0 ≤ 2ϵ1 +

1

N
· 8

pmin
·
(
sup
s,a

E∥R(s, a)∥+ γ · sup
s,a

E∥Z(s, a; θ0)∥
)}

≥ P(N)

{
sup
s,a

Xθ0(s, a) ≤ 2ϵ1 +
1

N
· 8

pmin
·
(
sup
s,a

E∥R(s, a)∥+ γ · sup
s,a

E∥Z(s, a; θ0)∥
)}

≥ 1− (2|S × A|+ 6N) · exp
{

−C20 · pmin ·N · ϵ21(
sups,a

∥∥∥R(s, a)∥∥∥
ψ2

+ γ · sups,a E∥Z(s, a; θ0)∥
)2}. (67)

Note that we obtained a bound for sups,aXθ0(s, a), which is one step further than Xθ0 . This shall
be later used in proof of Lemma 2 for non-realizable scenario, which is suggested in B.2.

Now we can combine the bounds (57) and (67) to take up Decomposition (40) as following for
∀u > 0, ϵ1 > 0, N ≥ 2,

P(N)

{
ΓN ≤

C10γ√
N
·
∑
s,a

√
bµ(s, a) ·

(∫ ∞

0

√
logN (Θ, η̃, t)dt+ u · diam(Θ; η̃)

)
+ 2ϵ1 +

1

N
· 8

pmin
·
(
sup
s,a

E∥R(s, a)∥+ γ · sup
s,a

E∥Z(s, a; θ0)∥
)}

≥ 1− 2 exp(−u2)− (2|S × A|+ 6N)

× exp

{
−C21 · pmin ·N · ϵ21

d2 ·
(
sups,a ∥R(s, a)∥ψ2

)2
+ γ2 ·

(
sups,a E∥Z(s, a; θ0)∥

)2}, (68)

where the second last inequality holds by Inequality (62) and the technique (a+ b)2 ≤ 2(a2 + b2).
We should always remember that we are conditioning on the event Ω(ϵ)

S×A defined in Definition (38).

A.6.4 BOUNDING STATE-ACTION DISCREPANCY

This time, we will bound state-action discrepancy ∆N that occurs due to the estimation error of
bµ(s, a). As warned in the last paragraph of A.6.2, we are still assuming N(s, a) to be fixed, satis-
fying Facts (39). Accordingly, we only deal with Stage 2 probability space (36) with the conditional
probability measure P(N).

With p and p̂ defined in A.6.2 and ϵ > 0 being the value specified in Definition (38), and defining
∥x∥1 :=

∑p0
i=1 |xi| for ∀x = (x1, · · · , xp0)⊺, we can derive the following based on (x1 + · · · +

xp0)
2 ≤ p0 · (x21 + · · ·x2p0),∑

s,a

∣∣∣∣b̂µ(s, a)− bµ(s, a)∣∣∣∣ = ∥p− p̂∥1 ≤
√
|S × A| · ∥p− p̂∥.

Then we have the following extension,

∆N := sup
θ∈Θ

∣∣∣∣Ē(Υθ, T̂ πΥθ)− ˆ̄E(Υθ, T̂ πΥθ)
∣∣∣∣

≤
∑
s,a

∣∣∣∣b̂µ(s, a)− bµ(s, a)∣∣∣∣ · sup
θ∈Θ
E
{
Υθ(s, a), T̂ πΥθ(s, a)

}
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≤
√
|S × A| · ∥p− p̂∥ · sup

θ∈Θ
sup
s,a
E
{
Υθ(s, a), T̂ πΥθ(s, a)

}
≤
√
pmin

2
· ϵ · sup

θ∈Θ
sup
s,a
E
{
Υθ(s, a), T̂ πΥθ(s, a)

}
by Facts (39). (69)

where the last line holds due to pmin ≤ 1/|S × A| that leads to |S × A| ≤ 1/pmin, by the definition
of minimum probability pmin > 0 in Assumption 1.

Now let us handle the supremum term of Inequality (69). Letting Ri(s, a) (1 ≤ i ≤ N(s, a)) be
the reward vectors observed conditioned on s, a, we have the following hold based on the notations
introduced in (11),

sup
θ∈Θ

sup
s,a
E
{
Υθ(s, a), T̂ πΥθ(s, a)

}
≤ sup
θ∈Θ

sup
s,a

{
2Ẽ∥Zα(s, a; θ)− Ẑ(1)

β (s, a; θ)∥

− Ẽ∥Zα(s, a; θ)− Zβ(s, a; θ)∥ − Ẽ∥Ẑ(1)
α (s, a; θ)− Ẑ(1)

β (s, a; θ)∥
}

≤ sup
θ∈Θ

sup
s,a

{
4Ẽ∥Z(s, a; θ)∥+ 4 · Ẽ∥Ẑ(1)(s, a; θ)∥

}

≤ 4(1 + γ) · sup
θ∈Θ

sup
s,a

E∥Z(s, a; θ)∥+ 4 · sup
s,a

{
1

N(s, a)
·
N(s,a)∑
i=1

∥Ri(s, a)∥
}
. (70)

The first term can be bounded as follows, using the property of η̃ introduced in Assumption 5,

sup
θ∈Θ

sup
s,a

E∥Z(s, a; θ)∥ = sup
θ∈Θ

{
sup
s,a

E∥Z(s, a; θ)∥ − sup
s,a

E∥Z(s, a; θ0)∥
}
+ sup

s,a
E∥Z(s, a; θ0)∥

≤ sup
θ∈Θ

{
sup
s,a

∣∣∣∣E∥Z(s, a; θ)∥ − E∥Z(s, a; θ0)∥
∣∣∣∣}+ sup

s,a
E∥Z(s, a; θ0)∥

≤ sup
θ∈Θ

η̃(θ, θ0) + sup
s,a

E∥Z(s, a; θ0)∥ ≤ diam(Θ; η̃) + sup
s,a

E∥Z(s, a; θ0)∥. (71)

Now let ϵ2 > 0 be arbitrary. For a fixed s, a ∈ S ×A, we have

P(N)

{
1

N(s, a)

N(s,a)∑
i=1

∥Ri(s, a)∥ ≥ E∥R(s, a)∥+ ϵ2

}

≤ P(N)

{∣∣∣∣ 1

N(s, a)

N(s,a)∑
i=1

∥Ri(s, a)∥ − E∥R(s, a)∥
∣∣∣∣ ≥ ϵ2}

≤ 2 · exp
{

−C22 ·N(s, a) · ϵ22∥∥∥R1(s, a)∥ − E∥R(s, a)∥
∥∥2
ψ2

}
≤ 2 · exp

{
−C23 · pmin ·N · ϵ22
d2 · ∥R(s, a)∥2ψ2

}
(72)

where the last inequality is by Inequality (62) and Remark 1. Note that we used E and ψ2 instead
of E(N) and ψ2(N) in the first two inequalties, by the same reason mentioned beneath Inequalities
(59) and (61). We also used Facts (39) that implies N(s, a) ≥ pmin/2 ·N in the last line. Then we
can expand the result towards following,

P(N)

[
sup
s,a

{
1

N(s, a)

N(s,a)∑
i=1

∥Ri(s, a)∥
}
≥ sup

s,a
E∥R(s, a)∥+ ϵ2

]

≤ P(N)

{
1

N(s, a)

N(s,a)∑
i=1

∥Ri(s, a)∥ ≥ E∥R(s, a)∥+ ϵ2 for ∃s, a ∈ S ×A
}

≤
∑
s,a

P(N)

{
1

N(s, a)

N(s,a)∑
i=1

∥Ri(s, a)∥ ≥ E∥R(s, a)∥+ ϵ2

}

≤ 2|S × A| · exp
{

−C23 · pmin ·N · ϵ22
d2 ·

(
sups,a ∥R(s, a)∥ψ2

)2} by Inequality (72). (73)
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Plugging (71) and (73) into Inequality (70) and then into Inequality (69) returns

P(N)

[
∆N ≤ 2

√
pmin · ϵ ·

{
(1 + γ) ·

(
diam(Θ; η̃) + sup

s,a
E∥Z(s, a; θ0)∥

)
+ sup

s,a
E∥R(s, a)∥+ ϵ2

}]
≥ 1− 2|S × A| · exp

{
−C23 · pmin ·N · ϵ22

d2 ·
(
sups,a ∥R(s, a)∥ψ2

)2}. (74)

A.6.5 FINALIZING THE BOUND

Recall that we defined Ω
(ϵ)
S×A (38) in A.6.2 where the samples are collected sufficiently many for

each s, a. Assuming this, we have bounded ΓN and ∆N throughout A.6.3 and A.6.4, each in (68)
and (74). Simply put, letting E ⊂ Ω be the event where ΓN and ∆N simulatenously achieve the
specified bounds (68) and (74) can be understood as P(E|Ω(ϵ)

S×A). Then we get

P(E) ≥ P(E ∩ Ω
(ϵ)
S×A) = P(Ω(ϵ)

S×A) · P(E|Ω
(ϵ)
S×A)

=
{
1− (1− P(Ω(ϵ)

S×A))
}
·
{
1− (1− P(E|Ω(ϵ)

S×A))
}

≥ 1− (1− P(Ω(ϵ)
S×A))− (1− P(E|Ω(ϵ)

S×A)). (75)

According to (36), it may be more rigorous to denote PS×A(Ω
(ϵ)
S×A) instead of P(Ω(ϵ)

S×A) in (75), but

we allowed using P(Ω(ϵ)
S×A) since P is an integrated probability measure of both PS×A and P(N).

Term P(E|Ω(ϵ)
S×A) can be derived by aggregating two bounds (68) and (74). That is, for ∀ϵ1 >

0, ϵ2 > 0, u > 0,

P(E|Ω(ϵ)
S×A) ≥ 1− (2|S × A|+ 6N)

× exp

{
−C21 · pmin ·N · ϵ21

d2 ·
(
sups,a ∥R(s, a)∥ψ2

)2
+ γ2 ·

(
sups,a E∥Z(s, a; θ0)∥

)2}
− 2|S × A| · exp

{
−C23 · pmin ·N · ϵ22

d2 ·
(
sups,a ∥R(s, a)∥ψ2

)2}− 2 exp(−u2).

Then it remains for us to calculate P(Ω(ϵ)
S×A) in (75), and we should assume ϵ ∈ (0, 1] as mentioned

in Definition (38),

P(Ω(ϵ)
S×A) ≥ 1− P

(
∥p̂(1) − p∥ ≥ 1

2
pmin · ϵ

)
− P

(
∥p̂(2) − p∥ ≥ 1

2
pmin · ϵ

)
, (76)

for which we can utilize the following corollary that we proved in C.2.5, which is a special case of
Theorem 6.

Corollary 2. For Xi
iid∼ Multinomial(n,p) with p = (p1, · · · , pH)⊺ with

∑H
h=1 ph = 1, we have

the following for ∀ϵ > 0,

P
(
∥p̂− p∥ ≥ ϵ

)
≤ exp

(
1

4

)
· exp

(
−n · ϵ2

32

)
where p̂ =

1

n

n∑
i=1

Xi.

If N ≥ 2 holds (as we assumed in A.6.2), we have ⌊N/2⌋ ≥ N/6 and (N − ⌊N/2⌋) ≥ N/6. Then
applying the above corollary allows us to take up the probability bound (76) as follows,

P(Ω(ϵ)
S×A) ≥ 1− C24 · exp(−C25 · p2min ·N · ϵ2). (77)

Then the probability bound (75) can be finalized as follows, with the notation ϵ ∈ (0, 1] replaced
by ϵ ∈ (0, 1]. By putting together Bounds (35), (68), and (74) gives us the following bound. For
∀ϵ ∈ (0, 1], ϵ1 > 0, ϵ2 > 0, u > 0, we have

Ē(Υθ̂,Υπ) ≤ 8CsupB1(γ)× (78)[
C10γ√
N
·
∑
s,a

√
bµ(s, a) ·

(∫ ∞

0

√
logN (Θ, η̃, t)dt+ u · diam(Θ; η̃)

)
(79)
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+ 2ϵ1 +
1

N
· 8

pmin
·
(
sup
s,a

E∥R(s, a)∥+ γ · sup
s,a

E∥Z(s, a; θ0)∥
)

+ 2
√
pmin · ϵ ·

{
(1 + γ) ·

(
diam(Θ; η̃) + sup

s,a
E∥Z(s, a; θ0)∥

)
+ sup

s,a
E∥R(s, a)∥+ ϵ2

}]
,

with probability larger than

1− (2|S × A|+ 6N) · exp
{

−C21 · pmin ·N · ϵ21
d2 ·

(
sups,a ∥R(s, a)∥ψ2

)2
+ γ2 ·

(
sups,a E∥Z(s, a; θ0)∥

)2}
− 2|S × A| · exp

{
−C23 · pmin ·N · ϵ22

d2 ·
(
sups,a ∥R(s, a)∥ψ2

)2}− 2 exp(−u2)

− C24 · exp(−C25 · p2min ·N · ϵ2). (80)

We adjust the existing variables as

ϵ1 =
√
pmin · ϵ, ϵ2 =

√
pmin · ϵ, u =

√
N · pmin · ϵ. (81)

Based on following, which holds due to Cauchy-Schwartz Inequality,∑
s,a

√
bµ(s, a) ≤

(∑
s,a

bµ(s, a)

)1/2

·
(∑

s,a

1

)1/2

=
√
|S × A| ≤ 1

√
pmin

, (82)

the value within the square bracket [· · · ] of Bound (78) has the following upper bound,

C10γ√
N
·
∑
s,a

√
bµ(s, a) ·

(∫ ∞

0

√
logN (Θ, η̃, t)dt+

√
N · pmin · diam(Θ; η̃) · ϵ

)
+
√
pmin · ϵ+

1

N
· 8

pmin
·
(
sup
s,a

E∥R(s, a)∥+ γ · sup
s,a

E∥Z(s, a; θ0)∥
)

+ 2
√
pmin · ϵ ·

{
(1 + γ) ·

(
diam(Θ; η̃) + sup

s,a
E∥Z(s, a; θ0)∥

)
+ sup

s,a
E∥R(s, a)∥+ 1

}
≤ 1

N
· 8

pmin
·
(
sup
s,a

E∥R(s, a)∥+ γ · sup
s,a

E∥Z(s, a; θ0)∥
)

+
C10γ√
N
·
∑
s,a

√
bµ(s, a) ·

∫ ∞

0

√
logN (Θ, η̃, t)dt

+ C26 ·
√
pmin · (1 + γ) ·

{
diam(Θ; η̃) + sup

s,a
E∥Z(s, a; θ0)∥+ sup

s,a
E∥R(s, a)∥+ 1

}
· ϵ.

The probability bound (80) has the following lower bound with the adjusted variables (81),

1− (2|S × A|+ 6N) · exp
{

−C21 · p2min ·N · ϵ2

d2 ·
(
sups,a ∥R(s, a)∥ψ2

)2
+ γ2 ·

(
sups,a E∥Z(s, a; θ0)∥

)2}
− 2|S × A| · exp

{
−C23 · p2min ·N · ϵ2

d2 ·
(
sups,a ∥R(s, a)∥ψ2

)2}− 2 exp(−p2min ·N · u2)

− C24 · exp(−C25 · p2min ·N · ϵ2)
≥ 1− C27 · (|S × A|+N) · exp(−C28 · p2min ·N · ϵ2/Cden)

with Cden := d2 ·
(
sup
s,a
∥R(s, a)∥ψ2

)2
+ γ2 ·

(
sup
s,a

E∥Z(s, a; θ0)∥
)2

+ 1, (83)

Now we can choose θ0 ∈ Θ in the most favorable way,

θ0 :∈ argmin
θ∈Θ

sup
s,a

E∥Z(s, a; θ)∥. (84)

If such θ0 does not exist for some reason including the case when Θ is not closed, then we can also
let it be an arbitrary value.
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Then we finally obtain the following result. Under Assumptions 1, 2, 3, 4, and 5, provided that
N ≥ 2, our estimator θ̂ ∈ Θ (13) satisfies the following bound for ∀ϵ ∈ (0, 1],

Ē(Υθ̂,Υπ) ≤ 8CsupB1(γ)×
[
1

N
· 8

pmin
·
(
sup
s,a

E∥R(s, a)∥+ γ · sup
s,a

E∥Z(s, a; θ0)∥
)

+
C10γ√
N
·
∑
s,a

√
bµ(s, a) ·

∫ ∞

0

√
logN (Θ, η̃, t)dt (85)

+ C26 ·
√
pmin · (1 + γ) ·

{
diam(Θ; η̃) + sup

s,a
E∥Z(s, a; θ0)∥+ sup

s,a
E∥R(s, a)∥+ 1

}
· ϵ
]
,

with probability larger than

1− C27 · (|S × A|+N) · exp(−C28 · p2min ·N · ϵ2/Cden), (86)

where the subscript of Cden means the denominator.

A.6.6 SIMPLIFYING THE PROBABILITY TERM

To simplify our result, we will do some additional algebra. Letting ϵ = ϵ′/
√
pmin where ϵ′ ∈

(0, pmin], we have

Probability (86) = 1− C27 · (|S × A|+N) · exp(−C28 · pmin ·N · ϵ′
2
/Cden)

By letting

ϵ′ =

√
Cden

C28 · pmin
×

√
1

N
log

(
C27 · (|S × A|+N)

δ

)
,

we obtain

Probability (86) = 1− δ,
but we need an assumption that the sample size N is large enough to satisfy

ϵ′ ∈ (0, pmin].

For this reason, we need N to be larger than N(1)(δ) ∈ N, where N(1)(δ) is defined to be the
smallest integer such that N ≥ N(1)(δ) implies

1

N
log

(
C27 · (|S × A|+N)

δ

)
≤ C28 · p2min

Cden
. (87)

Then the bound (85) can be rewritten as

Ē(Υθ̂,Υπ) ≤ 8CsupB1(γ)×
[
1

N
· 8

pmin
·
(
sup
s,a

E∥R(s, a)∥+ γ · sup
s,a

E∥Z(s, a; θ0)∥
)

+
C10γ√
N
·
∑
s,a

√
bµ(s, a) ·

∫ ∞

0

√
logN (Θ, η̃, t)dt+

√
1

N
log

(
C27 · (|S × A|+N)

δ

)
×

C26(1 + γ) ·
{
diam(Θ; η̃) + sup

s,a
E∥Z(s, a; θ0)∥+ sup

s,a
E∥R(s, a)∥+ 1

}
·

√
Cden

C28 · pmin

]
. (88)

Since we have the following by Remark 1 and Inequality (62)

E∥R(s, a)∥ =
√

log 2 ·
∥∥E∥R(s, a)∥∥∥

ψ2
≤

√
log 2 · d · ∥R(s, a)∥ψ2

,

we have{
diam(Θ; η̃) + sup

s,a
E∥Z(s, a; θ0)∥+ sup

s,a
E∥R(s, a)∥+ 1

}
×
√
Cden

≤ 2 ·
√
diam(Θ; η̃)2 +

(
sup
s,a

E∥Z(s, a; θ0)∥
)2

+ log 2 · d2 ·
(
sup
s,a
∥R(s, a)∥ψ2

)2
+ 1 ·

√
Cden

≤ 2 ·
{
diam(Θ; η̃)2 +

(
sup
s,a

E∥Z(s, a; θ0)∥
)2

+ d2 ·
(
sup
s,a
∥R(s, a)∥ψ2

)2
+ 1

}
by (83)
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where we applied (a+ b+ c+ d)2 ≤ 4 · (a2 + b2 + c2 + d2) in the first inequality. Letting

Cenv(Θ) := diam(Θ; η̃)2 +
(
sup
s,a

E∥Z(s, a; θ0)∥
)2

+ d2 ·
(
sup
s,a
∥R(s, a)∥ψ2

)2
+ 1., (89)

Then we can take up Bound (88) as follows, additionally replacing
∑
s,a

√
bµ(s, a) with

√
|S × A|

by (82) in order to enhance interpretability,

Ē(Υθ̂,Υπ) ≤ 8CsupB1(γ)×
[
1

N
· 8

pmin
·
(
sup
s,a

E∥R(s, a)∥+ γ · sup
s,a

E∥Z(s, a; θ0)∥
)

+
C10γ√
N
·
√
|S × A| ·

∫ ∞

0

√
logN (Θ, η̃, t)dt

+
C29√
pmin

· (1 + γ) · Cenv(Θ) ·

√
1

N
log

(
C27 · (|S × A|+N)

δ

)]
. (90)

We now see that there are three terms all differing in order, O(1/N), O(1/
√
N), and

O(
√
log(N/δ)/N). Since the last term decays slowest with respect to N , we can further simplify it

as follows. First let us define N(2)(δ) to be the smallest integer such that N ≥ N(2)(δ) implies

1

N
· 8

pmin
·
(
sup
s,a

E∥R(s, a)∥+ γ · sup
s,a

E∥Z(s, a; θ0)∥
)
+
C10γ√
N
·
√
|S × A|× (91)

∫ ∞

0

√
logN (Θ, η̃, t)dt ≤ C29√

pmin
· (1 + γ) · Cenv(Θ) ·

√
1

N
log

(
C27 · (|S × A|+N)

δ

)
.

Then we can rewrite Bound (90) as follows, where we skipped all the complicated calcucations
where we used 1 + γ ≤ 2,

Ē(Υθ̂,Υπ) ≤
32C29√
pmin

· CsupB1(γ) · Cenv(Θ) ·

√
1

N
log

(
C27 · (|S × A|+N)

δ

)
.

A.6.7 FINAL STATEMENT

Below is the final statement.

Under Assumptions 1, 2, 3, 4, and 5, for arbitrary δ ∈ (0, 1), given large enough sample size N ≥
max{2, N(1)(δ), N(2)(δ)}, our estimator θ̂ ∈ Θ (13) satisfies the following bound with probability
larger than 1− δ,

Ē(Υθ̂,Υπ) ≤
C
√
pmin

· Csup ·B1(γ) · Cenv(Θ) ·

√
1

N
log

(
C2 · (|S × A|+N)

δ

)
, (92)

where pmin > 0 is defined in Assumption 1, B1(γ) > 0, Csup > 0, in Equations (35), (25), and
Cenv(Θ), N(1)(δ), N(2)(δ) in Appendix A.6.8.

A.6.8 RECAP OF TERMINOLOGIES

Here is a recap of the terminologies that were newly defined, which are repetitions of Equations
(35), (83),(84), (87), (91), and (89). First, we have

B1(γ) :=
1

2(1− γ)

∞∑
k=1

4kγ2
k−1−1,

Cenv(Θ) = diam(Θ; η̃)2 +
(
sup
s,a

E∥Z(s, a; θ0)∥
)2

+ d2 ·
(
sup
s,a
∥R(s, a)∥ψ2

)2
+ 1,

Cden := d2 ·
(
sup
s,a
∥R(s, a)∥ψ2

)2
+ γ2 ·

(
sup
s,a

E∥Z(s, a; θ0)∥
)2

+ 1,

θ0 :∈ argmin
θ∈Θ

sup
s,a

E∥Z(s, a; θ)∥.
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Next, let

N(δ) := max{2, N(1)(δ), N(2)(δ)}
where N(1)(δ) and N(2)(δ) are the smallest integers such that N ≥ N(1)(δ)implies

1

N
log

(
C27 · (|S × A|+N)

δ

)
≤ C28 · p2min

Cden
.

and N ≥ N(2)(δ)implies

1

N
· 8

pmin
·
(
sup
s,a

E∥R(s, a)∥+ γ · sup
s,a

E∥Z(s, a; θ0)∥
)

+
C10γ√
N
·
√
|S × A| ·

∫ ∞

0

√
logN (Θ, η̃, t)dt

≤ C29√
pmin

· (1 + γ) · Cenv(Θ) ·

√
1

N
log

(
C27 · (|S × A|+N)

δ

)
.

A.7 SPECIAL CASE FOR PARAMETRIC MODELS UNDER REALIZABILITY

Corollary 3. (Inaccuracy for parametric model in realizable scenario) Under Assumptions
1, 2, 3, 4, 5, and 7, for arbitrary δ ∈ (0, 1), given large enough sample size N ≥
max{2, N(1)(δ), N(2)(δ)} (87), (95), we have following with probability larger than 1− δ,

Ē(Υθ̂,Υπ) ≤
C1√
pmin

· Csup ·B1(γ) · C ′
env(Θ) ·

√
1

N
log

(
C2 · (|S × A|+N)

δ

)
. (93)

with B1(γ) > 0, Csup > 0, Cenv(Θ)′ are defined in Equations (35), (25), (94), and pmin > 0 in
Assumption 1.

A.7.1 PROOF

We restart from applying Assumption 7 to (90). We can use diam(Θ; η̃) ≤ L · diam(Θ; ∥ · ∥) and
the following remark (proof in C.2.6).
Remark 2. Under Assumption 7, we have the following,∫ ∞

0

√
logN (Θ, η̃, t)dt ≤ 6

√
2π · L√p · diam(Θ; ∥ · ∥).

Then for arbitrary δ ∈ (0, 1), given large enough sample size N ≥ max{2, N(1)(δ)} (87), we have
the following with probability larger than 1− δ, with (84)

Ē(Υθ̂,Υπ) ≤ 8CsupB1(γ)×
{

1

N
· 8

pmin
·
(
sup
s,a

E∥R(s, a)∥+ γ · sup
s,a

E∥Z(s, a; θ0)∥
)
+
C1γ√
N
×

√
|S × A| · L√p · diam(Θ; ∥ · ∥) +

√
1

N
log

(
C3 · (|S × A|+N)

δ

)
· C2(1 + γ)
√
pmin

· C ′
env(Θ)

}
with C ′

env(Θ) := L2 · diam(Θ; ∥ · ∥)2 +
(
sup
s,a

E∥Z(s, a; θ0)∥
)2

+ d2 ·
(
sup
s,a
∥R(s, a)∥ψ2

)2
+ 1.

(94)

Now we will define N(2)(δ) differently as follows, with θ0 defined in (84). N(2)(δ) is the smallest
integer such that N ≥ N(2)(δ) implies

1

N
· 8

pmin
·
(
sup
s,a

E∥R(s, a)∥+ γ · sup
s,a

E∥Z(s, a; θ0)∥
)
+
C1γ√
N
·
√
|S × A|×

L
√
p · diam(Θ; ∥ · ∥) ≤

√
1

N
log

(
C3 · (|S × A|+N)

δ

)
· C2(1 + γ)
√
pmin

· C ′
env(Θ)

}
. (95)

Then, assuming N ≥ N(2)(δ) we can take up (94), and it returns the desired bound of Corollary 3.

30



Under review as a conference paper at ICLR 2024

B PROOFS FOR SECTION 4

As in Appendix 3, we will use Ck > 0 (k ∈ N) to denote appropriate universal constants throughout
the proof.

B.1 EXPONENTIAL INCREASING RATE OF TRAJECTORIES

Based on how we defined T̂ π based on p̂ (10), (T̂ π)mΥθ(s, a) utilizes the trajectories of tuples
(s, a, r, s′) that can occur consecutively under the estimated probability measure p̂(· · · |s, a) and the
target policy π(a|s),(

s, a, r
(1)
i , s

(1)
i , a

(1)
i , r

(2)
i , s

(2)
i , a

(2)
i , r

(3)
i , s

(3)
i , a

(3)
i , · · · , r(m)

i , s
(m)
i

)
, (96)

where r(t)i , s
(t)
i ∼ p̂(· · · |s

(t−1)
i , a

(t−1)
i ), a

(t)
i ∼ π(·|s

(t)
i ) for ∀t ≥ 1, with (s

(0)
i , a

(0)
i ) = (s, a).

Let us first verify how many such trajectories (96) can amount to, which start from a common state-
action pair s, a with length m = 2.

First there are N(s, a) many tuples that can occur in the first step,

(s, a, r
(1)
i , s

(1)
i )

(
1 ≤ i ≤ N(s, a)

)
.

Now fix one observation with index i, and then there can be |A|many actions at most that can follow
s
(1)
i , giving us the following tuples,

(s, a, r
(1)
i , s

(1)
i , a1), (s, a, r

(1)
i , s

(1)
i , a2), · · · , (s, a, r(1)i , s

(1)
i , a|A|)

(
1 ≤ i ≤ N(s, a)

)
.

Now we are given with |A| different state-action pairs, (s(1)i , a1), · · · , (s(1)i , a|A|), and then the
following observations of (r(2)i , s

(2)
i ) can be as many as

|A|∑
k=1

N(s
(1)
i , ak) ≤

∑
s,a

N(s, a) = N.

This eventually gives us at most N(s, a) × N trajectories of length m = 2 starting from the given
state-action pair s, a,

(s, a, r
(1)
i , s

(1)
i , a

(1)
i , r

(2)
i , s

(2)
i )

(
1 ≤ i ≤ N(s, a)×N

)
.

Then we can add up for all state-action pairs that we can begin with, which leads to N2 many
trajectories at most, ∑

s,a

N(s, a)×N = N2.

We can generalize this result for an arbitrary value ofm ∈ N, which gives usN(s, a)×Nm−1 many
trajectories for a given state-action pair s, a,

(s, a, r
(1)
i , s

(1)
i , a

(1)
i , r

(2)
i , s

(2)
i , · · · , s(m−1)

i , a
(m−1)
i , r

(m)
i , s

(m)
i ) 1 ≤ i ≤ N(s, a)×Nm−1,

which further amounts to Nm many trajectories if we sum them all up for all state-action pairs as
the initial point.

B.2 ESTIMATION ERROR OF MULTI-STEP BELLMAN RESIDUAL

Lemma 2. (Convergence of estimated Bellman residual) Under Assumptions 1, 3–5, 7–8, for
arbitrary ϵ ∈ (0, 1], we have

sup
θ∈Θ

∣∣∣∣F̂m(θ)− Fm(θ)

∣∣∣∣ ≤ C1 ·m2 · 1

p2min

· C(m)
env (Θ) ·

(
1

N1/4
+
√
ϵ

)
with probability larger than

1− C2 ·m · (|S × A|+N) · exp
{
− C3 · p2min ·N · ϵ2/Cden(m)

}
with pmin > 0 defined in Assumption 1, θ0 ∈ Θ in (84), Cden(m) in (132), and C(m)

env (Θ) in (138).

Although larger values of step level m both increase and decrease some terms, the decreasing parts
have a non-zero lower bounds γm

√
p + 1 and 1 + γm of (138). Thus it can be seen that increased

values of step level m eventually leads to looser bound, necessitating larger sample size N .
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B.2.1 DECOMPOSITION

We start with the following decomposition,

sup
θ∈Θ

∣∣∣∣F̂m(θ)− Fm(θ)

∣∣∣∣ = sup
θ∈Θ

∣∣∣∣Ē{Υθ, (T π)mΥθ
}
− ˆ̄E

{
Υθ, (T̂ π)mΥθ

}∣∣∣∣
≤ sup
θ∈Θ

∣∣∣∣Ē{Υθ, (T π)mΥθ
}
− Ē

{
Υθ, (T̂ π)mΥθ

}∣∣∣∣︸ ︷︷ ︸
(Term 1)

+ sup
θ∈Θ

∣∣∣∣Ē{Υθ, (T̂ π)mΥθ
}
− ˆ̄E

{
Υθ, (T̂ π)mΥθ

}∣∣∣∣︸ ︷︷ ︸
(Term 2)

. (97)

Unfortunately, we cannot bound (Term 1) with supθ∈Θ Ē((T π)mΥθ, (T̂ π)mΥθ) by applying tri-
angular inequality, since Ē is not a metric. Instead, we can devise an alternative (Lemma 3), based on
the fact that E is in fact a squared metric (Property 3), yet we need to pay price by having square-root.
Refer to C.2.7 for its proof.
Lemma 3. For arbitrary Υ0,Υ1,Υ2 ∈ P{S ×A}, we have∣∣Ē(Υ0,Υ1)− Ē(Υ0,Υ2)

∣∣ ≤ 4 · Ē(Υ1,Υ2)
1/2

×
[
max

{
Ē(Υ0,Υ1), Ē(Υ0,Υ2)

}
+ Ē(Υ1,Υ2)

]1/2
.

Based on the following definition,

ΓN,m := sup
θ∈Θ
Ē
{
(T π)mΥθ, (T̂ π)mΥθ

}
(98)

applying Lemma 3 to (Term 1) gives us

(Term 1) ≤ 4 · sup
θ∈Θ

(
Ē
{
(T π)mΥθ, (T̂ π)mΥθ

}1/2

×
[
max

{
Ē
{
Υθ, (T π)mΥθ

}
, Ē

{
Υθ, (T̂ π)mΥθ

}}
+ Ē

{
(T π)mΥθ, (T̂ π)mΥθ

}]1/2)
≤ 4 · Γ1/2

N,m · sup
θ∈Θ

[
2 ·

{
Ē
{
Υθ, (T π)mΥθ

}
+ Ē

{
(T π)mΥθ, (T̂ π)mΥθ

}}
+ Ē

{
(T π)mΥθ, (T̂ π)mΥθ

}]1/2
by Relaxed Triangle Inequality (32)

≤ 8 · Γ1/2
N,m ·

{
ΓN,m + sup

θ∈Θ
Ē
{
Υθ, (T π)mΥθ

}}1/2

≤ 8 · Γ1/2
N,m ·

{
Γ
1/2
N,m + sup

θ∈Θ
Ē
{
Υθ, (T π)mΥθ

}1/2
}
, (99)

where the last line is due to
√
x+ y ≤

√
x+
√
y for x, y ≥ 0.

Now let us deal with (Term 2), which can be decomposed as follows,

(Term 2) = sup
θ∈Θ

∣∣∣∣∑
s,a

{
bµ(s, a)− b̂µ(s, a)

}
· E

{
Υθ(s, a), (T̂ π)mΥθ(s, a)

}∣∣∣∣
= sup
θ∈Θ

∣∣∣∣∑
s,a

{
bµ(s, a)− b̂µ(s, a)

}
·
[
E
{
Υθ(s, a), (T̂ π)mΥθ(s, a)

}
− E

{
Υθ0(s, a), (T̂ π)mΥθ0(s, a)

}]∣∣∣∣
+

∣∣∣∣∑
s,a

{
bµ(s, a)− b̂µ(s, a)

}
· E

{
Υθ0(s, a), (T̂ π)mΥθ0(s, a)

}∣∣∣∣. (100)
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To handle the first line of Decomposition (100), we can first obtain the following bound, where we
will use an abuse of notation T̂ πθ := T̂ πΥθ, along with Ẑ(m)(s, a; θ) used in (20), Ẽ in (11), and
α, β indicating mutual independence between random variables with different indices (α or β),∣∣∣∣E{Υθ(s, a), (T̂ π)mΥθ(s, a)

}
− E

{
Υθ0(s, a), (T̂ π)mΥθ0(s, a)

}∣∣∣∣
= 2 ·

∣∣∣∣Ẽ∥Zα(s, a; θ)− Ẑ(m)
β (s, a; θ)∥ − Ẽ∥Zα(s, a; θ0)− Ẑ(m)

β (s, a; θ0)∥
∣∣∣∣

+

∣∣∣∣Ẽ∥Zα(s, a; θ)− Zβ(s, a; θ)∥ − Ẽ∥Zα(s, a; θ0)− Zβ(s, a; θ0)∥
∣∣∣∣

+

∣∣∣∣Ẽ∥Ẑ(m)
α (s, a; θ)− Ẑ(m)

β (s, a; θ)∥ − Ẽ∥Ẑ(m)
α (s, a; θ0)− Ẑ(m)

β (s, a; θ0)∥
∣∣∣∣ (101)

≤ 2 ·
{
η̃(θ, θ0) + η̃

{
(T̂ π)mθ, (T̂ π)mθ0

}}
+

{
η̃(θ, θ0) + η̃(θ, θ0)

}
+

{
η̃
{
(T̂ π)mθ, (T̂ π)mθ0

}
+ η̃

{
(T̂ π)mθ, (T̂ π)mθ0

}}
based on Trick (49)

≤ 4(1 + γm) · η̃(θ, θ0) ≤ 4(1 + γm) · diam(Θ; η̃) (102)

where the second last line holds, since a Bellman operator is a contraction with respect to η̃ by
Assumption 8. The second line of Decomposition (100) can be bounded by∣∣∣∣∑

s,a

{
bµ(s, a)− b̂µ(s, a)

}
· E

{
Υθ0(s, a), (T̂ π)mΥθ0(s, a)

}∣∣∣∣
≤

∑
s,a

∣∣∣∣bµ(s, a)− b̂µ(s, a)∣∣∣∣ · sup
s,a
E
{
Υθ0(s, a), (T̂ π)mΥθ0(s, a)

}
≤

∑
s,a

∣∣∣∣bµ(s, a)− b̂µ(s, a)∣∣∣∣× by Relaxed Triangle Inequality (32)

2 · sup
s,a

[
E
{
Υθ0(s, a), (T π)mΥθ0(s, a)

}
+ E

{
(T π)mΥθ0(s, a), (T̂ π)mΥθ0(s, a)

}]
(103)

Plugging Inequalities (102) and (103) into (100), we obtain

(Term 2) ≤ 4 ·
∑
s,a

∣∣∣∣bµ(s, a)− b̂µ(s, a)∣∣∣∣× [
(1 + γm) · diam(Θ; η̃)

+ sup
s,a
E
{
Υθ0(s, a), (T π)mΥθ0(s, a)

}
+ sup

s,a
E
{
(T π)mΥθ0(s, a), (T̂ π)mΥθ0(s, a)

}]
. (104)

Now we can use the two bounds (99) and (104) to take up Decomposition (97) as follows,

sup
θ∈Θ

∣∣∣∣F̂m(θ)− Fm(θ)

∣∣∣∣ ≤ (Term 1) + (Term 2)

≤ 8 · Γ1/2
N,m ·

{
Γ
1/2
N,m + sup

θ∈Θ
Ē
{
Υθ, (T π)mΥθ

}1/2
}

(105)

+ 4 ·
∑
s,a

∣∣∣∣bµ(s, a)− b̂µ(s, a)∣∣∣∣× [
(1 + γm) · diam(Θ; η̃)

+ sup
s,a
E
{
Υθ0(s, a), (T π)mΥθ0(s, a)

}
+ sup

s,a
E
{
(T π)mΥθ0(s, a), (T̂ π)mΥθ0(s, a)

}]
.

Here, we can further simplify two terms, sups,a E
{
(T π)mΥθ0(s, a), (T̂ π)mΥθ0(s, a)

}
and ΓN,m.

First let
(
Ŝ(t)(s, a), Â(t)(s, a)

)
be the t-th state-action pair that follows the distribution (20), that is

the random state-action pair which can be reached by consecutively simulating from the estimated
probability p̂(· · · |s, a) and the target policy π(a|s) starting from the initial state-action pair s, a.
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Furthermore, let us denote such probability (density) as q̂π:tbµ (· · · |s, a) that is conditioned on a fixed
initial state-action pair s, a, and denote the marginalized probability as q̂π:tbµ (· · · ) that treats the initial
state-action pair S,A ∼ bµ(s, a) as random. This aligns with the notation qπ:tbµ (· · · ) defined below

Assumption 1. Then we have the following bound using Ẽ (11),

sup
s,a
E
{
(T π)mΥθ0(s, a), (T̂ π)mΥθ0(s, a)

}
≤ sup

s,a

[
m ·

m−1∑
t=0

E
{
(T̂ π)m−t(T π)tΥθ0(s, a), (T̂ π)m−t−1(T π)t+1Υθ0(s, a)

}]
by (26)

≤ m · sup
s,a

[m−1∑
t=0

γm−t−1 · E
{
T̂ π(T π)tL

{
Z(Ŝ(m−t−1)(s, a), Â(m−t−1)(s, a); θ0)

}
,

(T π)t+1L
{
Z(Ŝ(m−t−1)(s, a), Â(m−t−1)(s, a); θ0)

}}]
≤ m ·

m−1∑
t=0

γm−t−1 · sup
s,a

Ẽ
ŝ(m−t−1),â(m−t−1)∼q̂π:(m−t−1)

bµ
(···|s,a)

{
E
{
T̂ π(T π)tΥθ0(ŝ(m−t−1), â(m−t−1)), (T π)t+1Υθ0(ŝ

(m−t−1), â(m−t−1))
}}

≤ m ·
m−1∑
t=0

γm−t−1 · sup
s,a
E
{
T̂ π(T π)tΥθ0(s, a), T π(T π)tΥθ0(s, a)

}
. (106)

We also have following, where the subscripts of Ẽq̂π:m−t−1
bµ

and Ẽbµ indicate the distribution of S,A,

ΓN,m = sup
θ∈Θ
Ē
{
(T̂ π)mΥθ, (T π)mΥθ

}
≤ sup
θ∈Θ

[
m ·

m−1∑
t=0

Ē
{
(T̂ π)m−t(T π)tΥθ, (T̂ π)m−t−1(T π)t+1Υθ

}]

= sup
θ∈Θ

[
m ·

m−1∑
t=0

ẼbµE
{
(T̂ π)m−t(T π)tΥθ(S,A), (T̂ π)m−t−1(T π)t+1Υθ(S,A)

}]

= sup
θ∈Θ

[
m ·

m−1∑
t=0

γm−t−1

× Ẽq̂π:m−t−1
bµ

E
{
T̂ π(T π)tΥθ(Ŝ(m−t−1), Â(m−t−1)), (T π)t+1Υθ(Ŝ

(m−t−1), Â(m−t−1))

}]
≤ sup
θ∈Θ

[
m ·

m−1∑
t=0

γm−t−1 · 1

pmin
· ẼbµE

{
T̂ π(T π)tΥθ(S,A), (T π)t+1Υθ(S,A)

}]

≤ m

pmin
·
m−1∑
t=0

γm−t−1 · sup
θ∈Θ
Ē
{
T̂ π(T π)tΥθ, T π(T π)tΥθ

}
≤ m

pmin
·
m−1∑
t=0

γm−t−1 ·
{∣∣∣∣ sup

θ∈Θ
Ē
{
T̂ π(T π)tΥθ, T π(T π)tΥθ

}
− Ē

{
T̂ π(T π)tΥθ0 , T π(T π)tΥθ0

}∣∣∣∣+ Ē{T̂ π(T π)tΥθ0 , T π(T π)tΥθ0}}

≤ m

pmin
·
m−1∑
t=0

γm−t−1 ·
[
sup
θ∈Θ

∣∣∣∣Ē{T̂ π(T π)tΥθ, T π(T π)tΥθ} (107)

− Ē
{
T̂ π(T π)tΥθ0 , T π(T π)tΥθ0

}∣∣∣∣+ sup
s,a
E
{
T̂ π(T π)tΥθ0(s, a), T π(T π)tΥθ0(s, a)

}]
,
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where the fifth line holds, since the Radon-Nikodym derivative is bounded as follows,

sup
s,a

q̂π:m−t−1
bµ

(s, a)

bµ(s, a)
≤ 1

pmin
.

Let us now define the following terms to make things more simple,

Y
(1)
t := sup

s,a
E
{
T̂ π(T π)tΥθ0(s, a), T π(T π)tΥθ0(s, a)

}
,

Y
(2)
t := sup

θ∈Θ

∣∣∣∣Ē{T̂ π(T π)tΥθ, T π(T π)tΥθ}− Ē{T̂ π(T π)tΥθ0 , T π(T π)tΥθ0}∣∣∣∣,
Ēθ := Ē

{
Υθ, (T π)mΥθ

}
& Eθ0(s, a) := E

{
Υθ0(s, a), (T π)mΥθ0(s, a)

}
.

Then we can plug Inequalities (106) and (107) into Decomposition (105), which can then be rewrit-
ten as follows,

sup
θ∈Θ

∣∣∣∣F̂m(θ)− Fm(θ)

∣∣∣∣ (108)

≤ 8 ·
{

m

pmin
·
m−1∑
t=0

γm−t−1 ·
(
Y

(1)
t + Y

(2)
t

)}1/2

×
[
sup
θ∈Θ
Ē1/2θ +

{
m

pmin
·
m−1∑
t=0

γm−t−1 · (Y (1)
t + Y

(2)
t )

}1/2]
(109)

+ 4 ·
∑
s,a

∣∣∣∣bµ(s, a)− b̂µ(s, a)∣∣∣∣ ·{(1 + γm) · diam(Θ; η̃) + sup
s,a
Eθ0(s, a)

+m ·
m−1∑
t=0

γm−t−1 · Y (1)
t

}
. (110)

B.2.2 BOUNDING EACH VARIABLE OF BOUND (108)

Now we can see that there exist three random quantities∑
s,a

∣∣∣∣bµ(s, a)− b̂µ(s, a)∣∣∣∣, Y (1)
t , Y

(2)
t , for ∀t ∈ {0, 1, 2, · · · ,m− 1},

and the good thing is that these are very similar to the previous proofs in A.6. We will again assume
Ω

(ϵ)
S×A of Definition (38), and utilize the conditional probability P(N)(· · · ). Under Ω

(ϵ)
S×A (ϵ ∈

(0, 1]), whose probability is larger than

P(Ω(ϵ)
S×A) ≥ 1− C1 · exp(−C2 · p2min ·N · ϵ2),

we have ∑
s,a

∣∣∣∣bµ(s, a)− b̂µ(s, a)∣∣∣∣ ≤ √pmin

2
· ϵ for ϵ ∈ (0, 1],

which can be verified through derivations (69) and (77).

The remaining two terms Y (1)
t and Y (2)

t are merely repetitions of what we showed in A.6.3 that
required Assumptions 3, 4, and 5, since they are in fact

Y
(1)
t = sup

s,a
X

(t)
θ0

(s, a), where X(t)
θ (s, a) := E

{
T̂ πΥ(t)

θ (s, a), T πΥ(t)
θ (s, a)

}
, Υ

(t)
θ := (T π)tΥθ,

Y
(2)
t = sup

θ∈Θ

∣∣∣∣X(t)
θ −X

(t)
θ0

∣∣∣∣, where X
(t)
θ := Ē

(
T̂ πΥ(t)

θ , T πΥ(t)
θ

)
=

∑
s,a

bµ(s, a) ·X(t)
θ (s, a),

(111)
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where the notations align with Definition (40) of Xθ and Xθ(s, a). The proofs are exactly the same
except that W θ

i , W θ
ij have realizations of the following forms where α, β are defined in the same

way as we did above (43),

wθi := E∥Rα + γZ(t)
α (S′

α, A
′
α; θ)− ri − γZ

(t)
β (s′i, A

′
i; θ)∥

− E∥Rα + γZ(t)
α (S′

α, A
′
α; θ)−Rβ − γZ

(t)
β (S′

β , A
′
β ; θ)∥,

wθij := E∥ri + γZ(t)
α (s′i, A

′
i; θ)− rj − γZ

(t)
β (s′j , A

′
j ; θ)∥

− E∥Rα + γZ(t)
α (S′

α, A
′
α; θ)−Rβ − γZ

(t)
β (S′

β , A
′
β ; θ)∥, (112)

where

Z(t)(s, a; θ) ∼ (T π)tΥθ(s, a). (113)

One may argue that obtaining the probability bound of Y (1)
t = sups,aX

(t)
θ (s, a) should be more

difficult than that of X(t)
θ , bound of which we derived in Bound (67). However, we have already

derived a stronger bound that bounds sups,aX
(t)
θ (s, a), as mentioned right beneath Bound (67).

Therefore we can copy the probability bounds (57) and (67). Let us first allow the following abuse
of notation (T π)tΘ, which we will define as

(T π)tΘ :=

{
(T π)tθ : θ ∈ Θ

}
for ∀t ∈ {0, 1, 2, · · · ,m− 1}, where T πθ := T πΥθ. (114)

Then, under Ω(ϵ)
S×A, for a fixed value of t ∈ {0, 1, 2 · · · ,m− 1}, we have the following for arbitrary

ϵ ∈ (0, 1], ϵ1 > 0, u > 0, ∑
s,a

∣∣∣∣bµ(s, a)− b̂µ(s, a)∣∣∣∣ ≤ √pmin

2
· ϵ, (115)

& Y
(1)
t ≤ 2ϵ1 +

1

N
· 8

pmin
·
{
sup
s,a

E∥R(s, a)∥+ γ · sup
s,a

E∥Z(t)(s, a; θ0)∥
}
,

& Y
(2)
t ≤ C3γ√

N
·
∑
s,a

√
bµ(s, a) ·

{∫ ∞

0

√
logN

(
(T π)tΘ, η̃, z

)
dz + u · diam

(
(T π)tΘ; η̃

)}
,

with probability larger than

1− 2 exp(−u2)− (2|S × A|+ 6N)

× exp

{
−C4 · pmin ·N · ϵ21(

d · sups,a ∥R(s, a)∥ψ2
+ γ · sups,a E∥Z(t)(s, a; θ0)∥

)2}, (116)

where the lower bound of probability is derived by combining Inequalities (62) and (67). In order to
further bound the metric entropy and the diameter based on (114), we can develop a new metric,

η̃(t)(θ1, θ2) := η̃
{
(T π)tθ1, (T π)tθ2

}
≤ γt · η̃(θ1, θ2) by Assumption 8,

∴ N
(
(T π)tΘ, η̃, z

)
= N

(
Θ, η̃(t), z

)
.

Since it satisfies γt-Lipschitz continuity w.r.t. η̃, we can apply the logic that we used in Inequality
(194) of C.2.6 to obtain the following,∫ ∞

0

√
logN

(
(T π)tΘ, η̃, z

)
dz =

∫ ∞

0

√
logN

(
Θ, η̃(t), z

)
dz ≤ γt ·

∫ ∞

0

√
logN (Θ, η̃, t)dt,

diam
(
(T π)tΘ; η̃

)
= diam(Θ; η̃(t)) ≤ γt · diam(Θ; η̃).

Then we can also bound the new expectation term as follows for 1 ≤ t ≤ m − 1 with Z(t) defined
in (113),

sup
s,a

E∥Z(t)(s, a; θ0)∥ = sup
s,a

E∥Z(t)(s, a; θ0)∥

≤
t∑

k=1

γk−1 · sup
s,a

E∥R(s, a)∥+ γt · sup
s,a

E∥Z(s, a; θ0)∥ (117)
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and this is easily generalized into follows for all 0 ≤ t ≤ m− 1,

sup
s,a

E∥R(s, a)∥+ γ · sup
s,a

E∥Z(t)(s, a; θ0)∥

≤
t∑

k=0

γk · sup
s,a

E∥R(s, a)∥+ γt+1 · sup
s,a

E∥Z(s, a; θ0)∥ (118)

≤ d ·
m−1∑
t=0

γt · sup
s,a
∥R(s, a)∥ψ2

+ γ · sup
s,a

E∥Z(s, a; θ0)∥ by Inequality (62). (119)

This eventually allows to rewrite Bound (115) as follows. Under Ω(ϵ)
S×A, we have the following for

arbitrary ϵ ∈ (0, 1], ϵ1 > 0, u > 0, based on Line (118),∑
s,a

∣∣∣∣bµ(s, a)− b̂µ(s, a)∣∣∣∣ ≤ √pmin

2
· ϵ,

& Y
(1)
t ≤ 2ϵ1 +

1

N
· 8

pmin
·
{ t∑
k=0

γk · sup
s,a

E∥R(s, a)∥+ γt+1 · sup
s,a

E∥Z(s, a; θ0)∥
}
,

& Y
(2)
t ≤ C3γ

t+1

√
N
·
∑
s,a

√
bµ(s, a) ·

{∫ ∞

0

√
logN

(
Θ, η̃, z

)
dz + u · diam

(
Θ; η̃

)}
, (120)

with probability larger than the following, based on Line (119),

Probability (116) ≥ 1− 2 exp(−u2)− (2|S × A|+ 6N)×

exp

{
−C5 · pmin ·N · ϵ21

d2 ·
(∑m−1

t=0 γt
)2 · ( sups,a ∥R(s, a)∥ψ2

)2
+ γ2 ·

(
sups,a E∥Z(s, a; θ0)∥

)2}. (121)

B.2.3 FINAL AGGREGATION

Before taking up Decomposition (108), we can further derive the following for ∀t ∈
{0, 1, 2, · · · ,m− 1}, based on Inequality (120),

m ·
m−1∑
t=0

γm−t−1 · Y (1)
t ≤ m ·

m−1∑
t=0

γm−t−1 ·
[
2ϵ1 +

1

N
· 8

pmin
·
{ t∑
k=0

γk · sup
s,a

E∥R(s, a)∥

+ γt+1 · sup
s,a

E∥Z(s, a; θ0)∥
}]

≤ m
m−1∑
t=0

γt ·
[
2ϵ1 +

1

N
· 8

pmin
·
{m−1∑

t=0

γt · sup
s,a

E∥R(s, a)∥+ γ · sup
s,a

E∥Z(s, a; θ0)∥
}]
, (122)

where the last line holds due to 0 ≤ t ≤ m− 1, along with

m

pmin
·
m−1∑
t=0

γm−t−1 · Y (2)
t

≤ m

pmin

m−1∑
t=0

γm−t−1 · C3γ
t+1

√
N
·
∑
s,a

√
bµ(s, a)×

{∫ ∞

0

√
logN

(
Θ, η̃, z

)
dz + u · diam

(
Θ; η̃

)}

=
C3√
N
· m

pmin

m−1∑
t=0

γm ·
∑
s,a

√
bµ(s, a) ·

{∫ ∞

0

√
logN

(
Θ, η̃, z

)
dz + u · diam

(
Θ; η̃

)}
=

C3√
N
·m2γm · 1

pmin

∑
s,a

√
bµ(s, a) ·

{∫ ∞

0

√
logN

(
Θ, η̃, z

)
dz + u · diam

(
Θ; η̃

)}
,
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which further leads to the following, where we skipped all the complicated calculations that required∑
s,a

√
bµ(s, a) ≤ 1/

√
pmin (82) and m

∑m−1
t=0 γt ≤ m2,

ΓN,m ≤
m

pmin
·
m−1∑
t=0

γm−t−1 · (Y (1)
t + Y

(2)
t ) by Inequality (107) and Definition (111)

≤ E1(m) · ϵ1 +
1√
N
· E2(m) · u+

1√
N
· E3(m), (123)

where

E1(m) :=
2

pmin
·m

m−1∑
t=0

γt & E2(m) := C4 ·m2γm · 1

pmin

∑
s,a

√
bµ(s, a) · diam(Θ; η̃),

E3(m) := C4 ·m2 · 1

p2min

·
{
γm ·

∫ ∞

0

√
logN (Θ, η̃, t)dt+

1√
N
·
m−1∑
t=0

γt · sup
s,a

E∥R(s, a)∥

+
1√
N
· γ · sup

s,a
E∥Z(s, a; θ0)∥

}
. (124)

Now let us get back to Decomposition (108) by further simplifying Line (109) and (110). Towards
that end, we will first adjust the variables as follows for arbitrary ϵ0 ∈ (0, 1],

u =
√
N · pmin · ϵ0, & ϵ1 =

√
pmin · ϵ0, &

ϵ =
ϵ0

d ·
∑m−1
t=0 γt · sups,a ∥R(s, a)∥ψ2 + sups,a E∥Z(s, a; θ0)∥+ 1

∈ (0, 1] (125)

Then Line (109) and Line (122) can be bounded as follows, based on Inequalities (122) and (123)
respectively.

Line (109) ≤ 8 ·
{
E1(m) · √pmin · ϵ0 + E2(m) · pmin · ϵ0 +

1√
N
· E3(m)

}1/2

×
[
sup
θ∈Θ
Ē1/2θ +

{
E1(m) · √pmin · ϵ0 + E2(m) · pmin · ϵ0 +

1√
N
· E3(m)

}1/2]
= 8 ·

{
G(m) · ϵ0 +

1√
N
· E3(m)

}1/2

·
[
sup
θ∈Θ
Ē1/2θ +

{
G(m) · ϵ0 +

1√
N
· E3(m)

}1/2]
where G(m)

let
= E1(m) · √pmin + E2(m) · pmin

≤ 8 ·
{
sup
θ∈Θ
Ē1/2θ +

√
E3(m) +

√
G(m)

}
·
{√

E3(m)

N1/4
+

√
G(m) ·

√
ϵ0

}
,

where the last line used ϵ0 ∈ (0, 1] and
√
x+ y ≤

√
x+
√
y for x, y ≥ 0. Next, before we deal with

Line (122), we can see

Eθ0(s, a) = E
{
Υθ0(s, a), (T π)mΥθ0(s, a)

}
= 2E∥Zα(s, a; θ0)− Z(m)

β (s, a; θ0)∥ − E∥Zα(s, a; θ0)− Zβ(s, a; θ0)∥

− E∥Z(m)
α (s, a; θ0)− Z(m)

β (s, a; θ0)∥

≤ 4E∥Z(s, a; θ0)∥+ 4E∥Z(m)(s, a; θ0)∥

≤ 4 ·
{m−1∑

t=0

γt · sup
s,a

E∥R(s, a)∥+ (1 + γm) · sup
s,a

E∥Z(s, a; θ0)∥
}
, (126)
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which allows us to obtain the following bound,

Line (110) ≤ 4 ·
√
pmin

2
· ϵ ·

[
(1 + γm) · diam(Θ; η̃) + 4

m−1∑
t=0

γt · sup
s,a

E∥R(s, a)∥

+ 4(1 + γm) · sup
s,a

E∥Z(s, a; θ0)∥+m

m−1∑
t=0

γt · 2√pmin · ϵ0 +
1

N
·m

m−1∑
t=0

γt · 8

pmin

×
{m−1∑

t=0

γt · sup
s,a

E∥R(s, a)∥+ γ · sup
s,a

E∥Z(s, a; θ0)∥
}]

≤ C6 ·
√
pmin · ϵ0 ·

{
diam(Θ; η̃) + 1 +m

m−1∑
t=0

γt +
1

N
· γ · 1

pmin

}
by Definition (125)

≤ C7 ·
√
pmin ·

{
diam(Θ; η̃) +m

m−1∑
t=0

γt ·
(
1 +

1

N
· 1

pmin

)}
· ϵ0.

This allows us to take up Decomposition (108) as

sup
θ∈Θ

∣∣∣∣F̂m(θ)− Fm(θ)

∣∣∣∣ ≤ Line (109) + Line (110)

≤ 8 ·
{
sup
θ∈Θ
Ē1/2θ +

√
E3(m) +

√
G(m)

}
·
{√

E3(m)

N1/4
+
√
G(m) ·

√
ϵ0

}
+ C7 ·

√
pmin ·

{
diam(Θ; η̃) +m

m−1∑
t=0

γt ·
(
1 +

1

N
· 1

pmin

)}
· ϵ0. (127)

Now let us bound supθ∈Θ Ēθ := supθ∈Θ Ē
{
Υθ, (T π)mΥθ

}
, based on

sup
θ∈Θ
Ēθ = sup

θ∈Θ

∣∣Ēθ − Ēθ0 ∣∣+ Ēθ0 .
The first term can be bounded with the same trick (102)

sup
θ∈Θ

∣∣Ēθ − Ēθ0∣∣ ≤ sup
θ∈Θ

{∑
s,a

bµ(s, a) ·
∣∣Eθ(s, a)− Eθ0(s, a)∣∣} ≤ 4(1 + γm) · diam(Θ; η̃),

The second term can be bounded as following using (126),

Ēθ0 ≤ 4 ·
{m−1∑

t=0

γt · sup
s,a

E∥R(s, a)∥+ (1 + γm) · sup
s,a

E∥Z(s, a; θ0)∥
}
.

Then we eventually have

sup
θ∈Θ
Ēθ ≤ 4 ·

{
(1 + γm) · diam(Θ; η̃) +

m−1∑
t=0

γt · sup
s,a

E∥R(s, a)∥

+ (1 + γm) · sup
s,a

E∥Z(s, a; θ0)∥
}
let
= H(m). (128)

This allows us to rewrite Decomposition (127) as

sup
θ∈Θ

∣∣∣∣F̂m(θ)− Fm(θ)

∣∣∣∣ ≤ 8 ·
{√

E3(m) +
√
G(m) +

√
H(m)

}
·
{√

E3(m)

N1/4
+
√
G(m) ·

√
ϵ0

}
+ C7 ·

√
pmin ·

{
diam(Θ; η̃) +m

m−1∑
t=0

γt ·
(
1 +

1

N
· 1

pmin

)}
· ϵ0. (129)

The probability bound (121) can be integrated for all t ∈ {0, 1, 2, · · · ,m− 1},
1− 2m · exp(−u2)−m · (2|S × A|+ 6N) (130)

× exp

{
−C5 · pmin ·N · ϵ21

d2 ·
(∑m−1

t=0 γt
)2 · ( sups,a ∥R(s, a)∥ψ2

)2
+ γ2 ·

(
sups,a E∥Z(s, a; θ0)∥

)2},
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but still conditioned on Ω
(ϵ)
S×A. That is, denoting the event (129) asE, we have P(E|Ω(ϵ)

S×A) ≥(130).
Then we can employ the same trick (75) to obtain

P(E) ≥ P(E ∩ Ω
(ϵ)
S×A) ≥ 1− (1− P(Ω(ϵ)

S×A))− (1− P(E|Ω(ϵ)
S×A)) (131)

≥ 1− C8 · exp(−C9 · p2min ·N · ϵ2)− 2m · exp(−u2)−m · (2|S × A|+ 6N) by Bound (77)

× exp

{
−C5 · pmin ·N · ϵ21

d2 ·
(∑m−1

t=0 γt
)2 · ( sups,a ∥R(s, a)∥ψ2

)2
+ γ2 ·

(
sups,a E∥Z(s, a; θ0)∥

)2}
≥ 1− C10 ·m · (|S × A|+N)× exp

{
− C11 · p2min ·N · ϵ20/Cden(m)

}
by Equation (125),

where

Cden(m) := d2 ·
(m−1∑
t=0

γt
)2 · ( sup

s,a
∥R(s, a)∥ψ2

)2
+ γ2 ·

(
sup
s,a

E∥Z(s, a; θ0)∥
)2

+ 1. (132)

Now we can switch the notation ϵ0 into ϵ. Then so far, we have verified that we have the following
bound for ∀ϵ ∈ (0, 1],

sup
θ∈Θ

∣∣∣∣F̂m(θ)− Fm(θ)

∣∣∣∣ ≤ 8 ·
{√

E(m) +
√
G(m) +

√
H(m)

}
·
{√

E(m)

N1/4
+

√
G(m) ·

√
ϵ

}
(133)

+ C7 ·
√
pmin ·

{
diam(Θ; η̃) +m

m−1∑
t=0

γt ·
(
1 +

1

N
· 1

pmin

)}
· ϵ, (134)

with probability larger than

1− C10 ·m · (|S × A|+N) · exp
{
− C11 · p2min ·N · ϵ2/Cden(m)

}
,

where we have

E(m) = C4 ·m2 · 1

p2min

·
{
γm ·

∫ ∞

0

√
logN (Θ, η̃, t)dt+

1√
N
·
m−1∑
t=0

γt · sup
s,a

E∥R(s, a)∥

+
1√
N
· γ · sup

s,a
E∥Z(s, a; θ0)∥

}
.

G(m) =
2

√
pmin

·m
m−1∑
t=0

γt + C4 ·m2γm ·
∑
s,a

√
bµ(s, a) · diam(Θ; η̃)

H(m) = 4 ·
{
(1 + γm) · diam(Θ; η̃) +

m−1∑
t=0

γt · sup
s,a

E∥R(s, a)∥

+ (1 + γm) · sup
s,a

E∥Z(s, a; θ0)∥
}
.

Now let us further simplify Lines (133) and (134), since they are complicated.

(Line 133) ≤ 8 ·
{√

E(m) +
√
G(m) +

√
H(m)

}
·
{√

E(m) +
√
G(m)

}
·
(

1

N1/4
+
√
ϵ

)
≤ C12 ·

{
E(m) +G(m) +H(m)

}
·
(

1

N1/4
+
√
ϵ

)
(135)

Since we have

E(m) +G(m) ≤ C13 ·m2 · 1

p2min

·
{
γm ·

∫ ∞

0

√
logN (Θ, η̃, t)dt+ γm · diam(Θ; η̃)

+
1√
N
·
(m−1∑

t=0

γt · sup
s,a

E∥R(s, a)∥+ sup
s,a

E∥Z(s, a; θ0)∥
)
+ 1

}
,
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due to m
∑m−1
t=0 γt ≤ m2 and Inequality (82). Then we can get the following,

E(m) +G(m) +H(m)

≤ C13 ·m2 · 1

p2min

·
{
γm ·

∫ ∞

0

√
logN (Θ, η̃, t)dt+ γm · diam(Θ; η̃)

+
1√
N
·
(m−1∑

t=0

γt sup
s,a

E∥R(s, a)∥+ sup
s,a

E∥Z(s, a; θ0)∥
)
+ 1

}

+ 4 ·
{
(1 + γm) · diam(Θ; η̃) +

m−1∑
t=0

γt · sup
s,a

E∥R(s, a)∥+ (1 + γm) · sup
s,a

E∥Z(s, a; θ0)∥
}

≤ C14 ·m2 · 1

p2min

·
{
γm ·

∫ ∞

0

√
logN (Θ, η̃, t)dt+ diam(Θ; η̃)

+

m−1∑
t=0

γt · sup
s,a

E∥R(s, a)∥+ (1 + γm) · sup
s,a

E∥Z(s, a; θ0)∥+ 1

}
.

which further allows us to incorporate with (134) as follows,

sup
θ∈Θ

∣∣∣∣F̂m(θ)− Fm(θ)

∣∣∣∣ ≤ Line (133) + Line (134)

≤ C14 ·m2 · 1

p2min

·
{
γm ·

∫ ∞

0

√
logN (Θ, η̃, t)dt+ diam(Θ; η̃)

+

m−1∑
t=0

γt · sup
s,a

E∥R(s, a)∥+ (1 + γm) · sup
s,a

E∥Z(s, a; θ0)∥+ 1

}
·
(

1

N1/4
+
√
ϵ

)

+ C7 ·
√
pmin ·

{
diam(Θ; η̃) +m

m−1∑
t=0

γt ·
(
1 +

1

N
· 1

pmin

)}
· ϵ

≤ C15 ·m2 · 1

p2min

·
{
γm ·

∫ ∞

0

√
logN (Θ, η̃, t)dt+ diam(Θ; η̃) (∵ ϵ ≤

√
ϵ ≤ 1)

+

m−1∑
t=0

γt · sup
s,a

E∥R(s, a)∥+ (1 + γm) · sup
s,a

E∥Z(s, a; θ0)∥+ 1

}
·
(

1

N1/4
+
√
ϵ

)
≤ C16 ·m2 · 1

p2min

·
{
L · (γm√p+ 1) · diam(Θ; ∥ · ∥) by Remark 2 and Assumption 7

+

m−1∑
t=0

γt · sup
s,a

E∥R(s, a)∥+ (1 + γm) · sup
s,a

E∥Z(s, a; θ0)∥+ 1

}
·
(

1

N1/4
+
√
ϵ

)
.

Now we have the following result for an arbitrary ϵ ∈ (0, 1],

sup
θ∈Θ

∣∣∣∣F̂m(θ)− Fm(θ)

∣∣∣∣ ≤ C16 ·m2 · 1

p2min

· C(m)
env (Θ) ·

(
1

N1/4
+
√
ϵ

)
(136)

with probability larger than

1− C10 ·m · (|S × A|+N) · exp
{
− C11 · p2min ·N · ϵ2/Cden(m)

}
(137)

where

C(m)
env (Θ) := L · (γm√p+ 1) · diam(Θ; ∥ · ∥) +

m−1∑
t=0

γt · sup
s,a

E∥R(s, a)∥

+ (1 + γm) · sup
s,a

E∥Z(s, a; θ0)∥+ 1 (138)

This gives us the desired result of Lemma 2.

41



Under review as a conference paper at ICLR 2024

B.3 OBTAINING THE BOUND OF BOOSTRAP-BASED OBJECTIVE FUNCTION (23)

Our final estimator of the objective function F̂ (B)
m (23) is based on bootstrap, not F̂m (21) covered

in Lemma 2. So we shall develop it into following.
Lemma 4. Under same assumptions of Lemma 2, for a fixed m ∈ N and arbitrary ϵ, ϵ′ ∈ (0, 1],

sup
θ∈Θ

∣∣∣∣F̂ (B)
m (θ)− Fm(θ)

∣∣∣∣ ≤ C32

p2min

·B(m)
env (Θ) ·

{
m2 ·

(
1

N1/4
+
√
ϵ

)
+m ·

(
1

M1/4
+
√
ϵ′
)}

holds with probability larger than
1−D(N)− C1 ·m · (|S × A|+N) · exp(−C2 · p2min ·N · ϵ2/Cden(m))

− C1 · (|S × A|+M) · exp(−C2 · p2min ·M · ϵ′
2
/Bden(m)),

where Cden(m) and Bden(m) are defined in (132) and (169), and D(N)→ 0 as in (161).

B.3.1 THREE STAGES OF PROBABILITY SPACE

We can decompose the term supθ∈Θ |F̂
(B)
m (θ)− Fm(θ)| as follows,

sup
θ∈Θ

∣∣∣∣F̂ (B)
m (θ)− Fm(θ)

∣∣∣∣ ≤ sup
θ∈Θ

∣∣∣∣F̂ (B)
m (θ)− F̂m(θ)

∣∣∣∣+ sup
θ∈Θ

∣∣∣∣F̂m(θ)− Fm(θ)

∣∣∣∣. (139)

At this point, we should recognize that our probability space (36) is expanded due to bootstrapping
procedure reflected in F̂ (B)

m . Now our probability space (Ω,Σ,P) can be factorized into three stages,
Stage 1: (ΩS×A,ΣS×A,PS×A)⇒ determines which state-action pairs Si, Ai are sampled, (140)

Stage 2: (Ω(N),Σ(N),P(N))⇒ conditioned on (Si, Ai), determines Ri, S′
i ∼ p(· · · |Si, Ai),

Stage 3: (Ω(D)
B ,Σ

(D)
B ,P(D)

B )⇒ conditioned on D, determines the bootstrapped trajectories in (22).

We have already bounded supθ∈Θ |F̂m(θ) − Fm(θ)| of (139) in Lemma 2, which is controlled by
Stage 1 and 2 probability spaces (140). Now the remaining term supθ∈Θ |F̂

(B)
m (θ) − F̂m(θ)| of

(139) is solely based on Stage 3 probability space (140), conditioned on the observed data D =
{(si, ai, ri, s′i)}Ni=1. However, since the bootstrapped probability space (Stage 3) is affected by what
was observed in the previous two stages, we will assume some nice properties are satisfied in Stage
1 and Stage 2 probability spaces, which are already mentioned within the proof of Lemma 2 in B.2.

B.3.2 INHERITED RESULTS FROM LEMMA 2

Here we will define two events. The first event can be viewed as an equivalent event to Ω
(ϵ)
S×A (38)

E1,a :=

{
ω ∈ ΩS×A : Facts (39) are satisfied.

}
. (141)

Next, we will define the second event E1,b where two things are satisfied. We will inherit (123) and
modify it according to (125), which leads to following based on Definitions (124),

ΓN,m ≤ E1(m) · √pmin · ϵ+ E2(m) · pmin · ϵ+
1√
N
· E3(m). (142)

Note that we switched the notation ϵ0 ∈ (0, 1] with ϵ, as they did right before Line (133). We will
also inherit the final result (136),

sup
θ∈Θ

∣∣∣∣F̂m(θ)− Fm(θ)

∣∣∣∣ ≤ C1 ·m2 · 1

p2min

· C(m)
env (Θ) ·

(
1

N1/4
+
√
ϵ

)
. (143)

Now we will define a new event

E1,b :=

{
ω ∈ Ω(N) : Both (142) and (143) hold.

}
, (144)

We have derived in (131) that
1− P(Ec1,a)− P(Ec1,b|E1,a)

≥ 1− C2 ·m · (|S × A|+N) · exp
{
− C3 · p2min ·N · ϵ2/Cden(m)

}
, (145)

since E and Ω
(ϵ)
S×A of (131) can be switched into E1,a (141) and E1,b (144).

42



Under review as a conference paper at ICLR 2024

B.3.3 IMPLICATIONS OF STATEMENTS IN B.3.2

Let us assume that the events E1,a and E1,b both hold, and then bound the term supθ∈Θ |F̂
(B)
m (θ)−

F̂m(θ)| of (139). We need to emphasize that at this moment, D is given, and Stage 3 probability
space (140) is the only source of probability. In other words, we can consider F̂m as our population
objective function, which is based upon b̂µ (10) and p̂m(· · · |s, a). p̂m(· · · |s, a) represents the em-
pirical measure of (

∑m−1
t=0 γtR̂(t), Ŝ(m)) conditioned on initial state-action pair s, a that can occur

by applying p̂(r, s′|s, a) and π(a|s) form consecutive times (20). In other words, by treating (T̂ π)m
as the population operator and Bm as its approximation, we can obtain

sup
θ∈Θ

∣∣∣∣F̂ (B)
m (θ)− F̂m(θ)

∣∣∣∣ = sup
θ∈Θ

∣∣∣∣ ˆ̄E(Υθ,BmΥθ
)
− ˆ̄E

{
Υθ, (T̂ π)mΥθ

}∣∣∣∣
≤ 8 · Γ̃1/2

B,m ·
{
Γ̃
1/2
B,m + sup

θ∈Θ

ˆ̄E
{
Υθ, (T̂ π)mΥθ

}1/2
}

by Derivation (99),

where we have a new term that we will refer to as bootstrap discrepancy

Γ̃B,m := sup
θ∈Θ

ˆ̄E
{
(T̂ π)mΥθ,BmΥθ

}
. (146)

Since the other term can be further bounded as

sup
θ∈Θ

ˆ̄E
{
Υθ, (T̂ π)mΥθ

}
≤ 3

2
sup
θ∈Θ
Ē
{
Υθ, (T̂ π)mΥθ

}
by Facts (39) in B.3.2

≤ 3 · sup
θ∈Θ
Ēθ + 3 · ΓN,m by Relaxed Triangle Inequality (32),

where ΓN,m is defined in (98). Then we obtain

sup
θ∈Θ

∣∣∣∣F̂ (B)
m (θ)− F̂m(θ)

∣∣∣∣ ≤ C4 · Γ̃1/2
B,m ·

{
Γ̃
1/2
B,m + sup

θ∈Θ
Ē1/2θ + Γ

1/2
N,m

}
. (147)

Let us bound the three terms one by one. First, we can bound the supremum term as follows,

sup
θ∈Θ
Ē1/2θ ≤ 2 ·

{√
1 + γm ·

√
L ·

√
diam(Θ; ∥ · ∥) +

(m−1∑
t=0

γt · sup
s,a

E∥R(s, a)∥
)1/2

+

(
(1 + γm) · sup

s,a
E∥Z(s, a; θ0)∥

)1/2}
by Inequality (128) and Assumption 7. (148)

Based on what we have in B.3.2, we can further bound Bellman discrepancy as follows,

Γ
1/2
N,m ≤

{
E1(m) · √pmin · ϵ+ E2(m) · pmin · ϵ+

1√
N
· E3(m)

}1/2

by Inequality (142)

≤
[

C6√
pmin

·m2 ·
{
1 + γm · L · diam(Θ; ∥ · ∥)

}
· ϵ+ C7√

N
· m

2

p2min

· L√p · γm · diam(Θ; ∥ · ∥)

+
C7

N
· m

2

p2min

·
(m−1∑

t=0

γt · sup
s,a

E∥R(s, a)∥+ γ · sup
s,a

E∥Z(s, a; θ0)∥
)]1/2

by Equation (124)

≤ C8 ·
m

p
1/4
min

·
{
1 + γm/2 ·

√
L ·

√
diam(Θ; ∥ · ∥)

}
·
√
ϵ (∵

√
x+ y + z ≤

√
x+
√
y +
√
z)

+
C8

N1/4
· m

pmin
·
√
L · p1/4 · γm/2 ·

√
diam(Θ; ∥ · ∥)

+
C8√
N
· m

pmin
·
{(m−1∑

t=0

γt · sup
s,a

E∥R(s, a)∥
)1/2

+

(
γ · sup

s,a
E∥Z(s, a; θ0)∥

)1/2}
, (149)

where the second last inequality can be derived by putting together Assumption 7, Inequality (82),
and Remark 2. Since Bounds (148) and (149) hold under what we already have in B.3.2, so there is
no additional probability term that we have to subtract from the probability (145).
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B.3.4 BOUNDING BOOTSTRAP DISCREPANCY

In further bounding (147), bootstrap discrepancy Γ̃B,m is the only term is probabilistic due to Stage
3 probability space (140). Comparing (20) and (22), we can see that Bm is in fact the single-
step estimator of (T̂ π)m that can be viewed as a new population operator in the new probability
space generated by bootstrapping from the already-observed data D. In this regard, the relationship
between Bm and (T̂ π)m aligns with that between T̂ π and T π , only with a few differences. The
reward R is replaced by discounted sum

∑m
t=1 γ

t−1R̂(t), S′ is replaced by Ŝ(m), A′ is replaced
by Â(m), and the discount rate γ is replaced by γm. In addition, several other quantities are also
replaced as follows,

bµ(s, a)← b̂µ(s, a), E(· · · )← Ẽ(· · · ), ∥ · ∥ψ2
← ∥ · ∥ψ̃2

, N ←M,

pmin ← p̂min := min{b̂µ(s, a) : b̂µ(s, a) > 0} = min{b̂µ(s, a)} by Facts (39). (150)

where Ẽ(· · · ) (11) and ∥ · ∥ψ̃2
are the expectation and subgaussian norms corresponding to the

conditional probability measure P(· · · |D). With the replacements by the estimated quantities (that
will now be regarded as a new population quantity in Stage 3 probability space), we can replicate
the proofs of A.6.3.

Analogous to Bound (68), for arbitrary values of ϵ′1 > 0 and u′ > 0,

Γ̃B,m ≤
C9γ

m

√
M
·
∑
s,a

√
b̂µ(s, a) ·

(∫ ∞

0

√
logN (Θ, η̃, t)dt+ u′ · diam(Θ; η̃)

)
(151)

+ 2ϵ′1 +
1

M
· 8

p̂min
·
(
sup
s,a

Ẽ
∥∥∥∥ m∑
t=1

γt−1R̂(t)(s, a)

∥∥∥∥+ γm · sup
s,a

E∥Z(s, a; θ0)∥
)}

,

where the random variable (vector) R̂(t)(s, a) is the same term with R̂(t) defined in Definition (20),
with probability larger than

1− 2 exp(−u′2)− (2|S × A|+ 6M)×

exp

{
−C10 · p̂min ·M · ϵ′1

2(
sups,a

∥∥∥∑m
t=1 γ

t−1R̂(t)(s, a)∥
∥∥
ψ̃2

+ γm · sups,a E∥Z(s, a; θ0)∥
)2}

− C11 · exp(−C12 · p̂2min ·N · ϵ′2
2
). (152)

where Line (152) is added because of conditioning on that each s, a is observed sufficiently many
times as initial state-action pairs, which is analogous to Ω

(ϵ)
S×A in Bound (77).

Now adjusting the variables as follows with ϵ′ ∈ (0, 1],

ϵ′1 =
√
p̂min · ϵ′ & u′ =

√
M · p̂min · ϵ′ &

ϵ′2 =
ϵ′(

sups,a
∥∥∥∑m

t=1 γ
t−1R̂(t)(s, a)∥

∥∥
ψ̃2

+ γm · sups,a E∥Z(s, a; θ0)∥+ 1
)2 ∈ (0, 1],

we can take up Bound (151) as follows,

Γ̃B,m ≤
1

M
· 8

p̂min
·
( m∑
t=1

γt−1 · sup
s,a

Ẽ∥R̂(s, a)∥+ γm · sup
s,a

E∥Z(s, a; θ0)∥
)

+
C13√
M
· γm ·

∑
s,a

√
b̂µ(s, a) · L

√
p · diam(Θ; ∥ · ∥) + C14 · (1 + γm) ·

√
p̂min · ϵ′,
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where we used
∑
s,a

√
b̂µ(s, a) ≤ 1/

√
p̂min (analogous to (82)) and Remark 2. The probability

bound (152) has the following lower bound,

1− C15 · (|S × A|+M)

× exp

{
−C16 · p̂2min ·M · ϵ′

2(
sups,a

∥∥∥∑m
t=1 γ

t−1R̂(t)(s, a)∥
∥∥
ψ̃2

+ γm · sups,a E∥Z(s, a; θ0)∥+ 1
)2}

≥ 1− C15 · (|S × A|+M)

× exp

{
−C16 · p̂2min ·M · ϵ′

2(∑m
t=1 γ

t−1 · sups,a
∥∥∥R̂(t)(s, a)∥

∥∥
ψ̃2

+ γm · sups,a E∥Z(s, a; θ0)∥+ 1
)2}.

Then we finally achieve the following bound for an arbitrary ϵ′ ∈ (0, 1],

Γ̃B,m ≤
1

M
· 8

p̂min
·
( m∑
t=1

γt−1 · sup
s,a

Ẽ∥R̂(s, a)∥+ γm · sup
s,a

E∥Z(s, a; θ0)∥
)

(153)

+
C13√
M
· γm ·

∑
s,a

√
b̂µ(s, a) · L

√
p · diam(Θ; ∥ · ∥) + C14 · (1 + γm) ·

√
p̂min · ϵ′,

with probability larger than

1− C15 · (|S × A|+M) (154)

× exp

{
−C16 · p̂2min ·M · ϵ′

2(∑m
t=1 γ

t−1 · sups,a
∥∥∥R̂(t)(s, a)∥

∥∥
ψ̃2

+ γm · sups,a E∥Z(s, a; θ0)∥+ 1
)2}.

Now we will define the following event, whose probability bound is shown under E1,a ∩ E1,b.

E2 :=

{
ω ∈ Ω

(D)
B : (153) holds.

}
, P(E2|E1,a ∩ E1,b) ≥ (154).

B.3.5 EXPRESSING ESTIMATED QUANTITIES OF (153) AND (154) WITH POPULATION
QUANTITIES

The bounds (153) and (154) are not yet useful though, since they are not fully represented with pop-
ulation quantities. This is because we are caring about Stage 3 probability space (140) conditioned
upon the observed data D (that is associated with Stage 1 and 2 probability spaces). So we hope to
bound the following terms with the corresponding population quantities,∑

s,a

√
b̂µ(s, a) & p̂min & sup

s,a
Ẽ∥R̂(s, a)∥ & sup

s,a

∥∥∥R̂(s, a)∥∥∥
ψ̃2
, (155)

but it comes with a price, that is subtraction of probability.

Let us first condition upon E1,a (141). Then the first term can be bounded readily as follows,∑
s,a

√
b̂µ(s, a) ≤

∑
s,a

√
3

2
bµ(s, a) =

√
3

2
·
∑
s,a

√
bµ(s, a) by Facts (39) in B.3.2.

For the second term, we should obtain both lower bound and upper bound, since it appears in both
denominator and numerator of Bound (153). Using Facts (39), we can bound p̂min (150) as follows,
where ŝ, â let= argmins,a∈S×A b̂µ(s, a) and s∗, a∗

let
= argmins,a∈S×A bµ(s, a),

For ∀s, a, b̂µ(s, a) ≥
1

2
bµ(s, a) ≥

1

2
pmin ∴ p̂min ≥

1

2
pmin,

p̂min = b̂µ(ŝ, â) ≤ b̂µ(s∗, a∗) ≤
3

2
bµ(s∗, a∗) =

3

2
pmin,

∴
1

2
pmin ≤ p̂min ≤

3

2
pmin.
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Unlike the first two terms of (155) that could be bounded as above solely E1,a, the remaining two
terms cannot be deterministically bounded, necessitiating the derivation of probabilistic bound.

Since we are conditioning on E1,a (141), we should deal with Stage 2 probability space (140), using
the conditional probability P(N)(· · · ) introduced below Definition (38). Based on Derivation (73)
for an arbitrary ϵ′3 ∈ (0, 1],

P(N)

[
sup
s,a

Ẽ∥R̂(s, a)∥ ≤ sup
s,a

E∥R(s, a)∥+√pmin · ϵ′3
]

≥ 1− 2|S × A| · exp
{

−C17 · p2min ·N · ϵ′3
2

d2 ·
(
sups,a ∥R(s, a)∥ψ2

)2}, (156)

Now let us bound the forth term of (155). First, let s, a ∈ S ×A be arbitrary. Define two random
variables U(s, a) := ∥R(s, a)∥ and Û(s, a) := ∥R̂(s, a)∥, along with the following functions,

As,a(t) := E
{
exp

(
U(s, a)2

t2

)}
,

Âs,a(t) := Ẽ
{
exp

(
Û(s, a)2

t2

)}
=

1

N(s, a)

N(s,a)∑
i=1

exp

(
Ui(s, a)

2

t2

)
,

where Ui(s, a) = ∥Ri(s, a)∥ (1 ≤ i ≤ N(s, a)) represents the samples. Let t0(s, a) > 0 be the
value such that

As,a
(
t0(s, a)

)
= 1.

It is obvious to see t0(s, a) > ∥∥R(s, a)∥∥ψ2
, based on that As,a(∥∥R(s, a)∥∥ψ2

) = 2 holds and
As,a(t) is a strictly decreasing function. We can bound its probability term as follows,

P(N)
(∥∥∥R̂(s, a)∥∥∥

ψ̃2
≤ t0(s, a)

)
= P(N)

{
Âs,a

(
t0(s, a)

)
≤ 2

}
by Definition (33)

≥ P(N)

{∣∣∣∣Âs,a(t0(s, a))−As,a(t0(s, a))∣∣∣∣ ≤ 2−As,a
(
t0(s, a)

)}
≥ 1− E(N)

∣∣Âs,a(t0(s, a))−As,a(t0(s, a))∣∣ by Markov’s Inequality. (157)

Note that we could apply Markov’s Inequality in the last line since E|As,a(t)| <∞ by subgaussian-
ity assumption 3 that implies ∥U(s, a)∥ = ∥∥R(s, a)∥∥ψ2 < ∞. Now let us shrink the expectation
term (157) with the following lemma that is proved in C.2.8,
Lemma 5. If Xi (1 ≤ i ≤ n) are iid with E(X1) = 0, E|X1| < ∞, then the expectation of the
sample mean shrinks to zero as follows,

E
∣∣X̄n

∣∣ ≤ inf
z>0

[
1√
n
·
{
E
{
X2

1 · 1(|X1| ≤ z)
}}1/2

+ E
{
|X1| · 1(|X1| > z)

}]
→ 0 as n→∞.

Note that we have a deterministic sequence its convergence to zero is guaranteed, however its speed
depends on the tail of the distribution X1.

With the following new notation

V (s, a) := exp

(
U(s, a)2

t0(s, a)2

)
= exp

(
∥R(s, a)∥2

t0(s, a)2

)
,

we can apply Lemma 5, we have

E(N)
∣∣Âs,a(t0(s, a))−As,a(t0(s, a))∣∣

≤ inf
z>0

[
1√

N(s, a)
·
{
E
{
V (s, a)2 · 1

(
V (s, a) ≤ z

)}}1/2

+ E
{
V (s, a) · 1

(
V (s, a) > z

)}]

≤
√

2

pmin
· inf
z>0

[
1√
N
·
{
E
{
V (s, a)2 · 1

(
V (s, a) ≤ z

)}}1/2

+ E
{
V (s, a) · 1

(
V (s, a) > z

)}]
,

(158)
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where the last line holds by Facts (39). Now defining the following new variable

t∗0 := sup
s,a

t0(s, a), ∴ As,a(t
∗
0) ≤ 1 for ∀s, a ∈ S ×A, (159)

we have the following,

P(N)

{
sup
s,a

∥∥∥R̂(s, a)∥∥∥
ψ̃2
≤ t∗0

}
= P(N)

{∥∥∥R̂(s, a)∥∥∥
ψ̃2
≤ t∗0 for ∀s, a ∈ S ×A

}
≥ P(N)

{∥∥∥R̂(s, a)∥∥∥
ψ̃2
≤ t0(s, a) for ∀s, a ∈ S ×A

}
≥ 1−

∑
s,a

E(N)
∣∣Âs,a(t0(s, a))−As,a(t0(s, a))∣∣ by Bound (157)

≥ 1−
∑
s,a

√
2

pmin
· inf
z>0

[
1√
N
·
{
E
{
V (s, a)2 · 1

(
V (s, a) ≤ z

)}}1/2

+ E
{
V (s, a) · 1

(
V (s, a) > z

)}]
≥ 1− |S × A| ·

√
2

√
pmin

× inf
z>0

[
1√
N
· sup
s,a

{
E
{
V (s, a)2 · 1

(
V (s, a) ≤ z

)}}1/2

+ sup
s,a

E
{
V (s, a) · 1

(
V (s, a) > z

)}]
≥ 1− |S × A| ·

√
2

√
pmin

· inf
r>2

{
N

1
r−

1
2 + sup

s,a
E
{
V (s, a) · 1

(
V (s, a) > N1/r

)}}
∵ z

let
= N1/r

= 1−D(N), (160)

where the third inequality holds by Inequality (158), and D(N) is defined as follows,

D(N) := |S × A| ·
√
2

√
pmin

· inf
r>2

{
N

1
r−

1
2 + sup

s,a
E
{
V (s, a) · 1

(
V (s, a) > N1/r

)}}
, (161)

∴ D(N)→ 0 as N →∞, since sup
s,a

E
{
V (s, a)

}
= sup

s,a
As,a

(
t0(s, a)

)
= 1 <∞.

By letting ϵ′3 = ϵ′ ∈ (0, 1], we can bound all four estimated quantities (155) at the same time as
follows, ∑

s,a

√
b̂µ(s, a) ≤

√
3

2
·
∑
s,a

√
bµ(s, a) &

1

2
pmin ≤ p̂min ≤

3

2
pmin, (162)

sup
s,a

Ẽ∥R̂(s, a)∥ ≤ sup
s,a

E∥R(s, a)∥+ ϵ′ & sup
s,a

∥∥∥R̂(s, a)∥∥∥
ψ̃2
≤ t∗0,

with probability larger than

1− 2|S × A| · exp
{

−C17 · p2min ·N · ϵ′
2

d2 ·
(
sups,a ∥R(s, a)∥ψ2

)2}−D(N). (163)

Let us define a new event

E3 :=

{
ω ∈ Ω(N) : (162) holds.

}
, P(E3|E1,a) ≥ (163). (164)

Now that we have bounded the estimated quantities with its population counterparts (162), we can
rewrite the bounds (153) and (154) as follows,

Γ̃B,m ≤
1

M
· 16

pmin
·
( m∑
t=1

γt−1 · sup
s,a

(E∥R(s, a)∥+ 1) + γm · sup
s,a

E∥Z(s, a; θ0)∥
)

(165)

+
C18√
M
· γm ·

∑
s,a

√
bµ(s, a) · L

√
p · diam(Θ; ∥ · ∥) + C19 · (1 + γm) · √pmin · ϵ′,

47



Under review as a conference paper at ICLR 2024

with probability larger than

1− C20 · (|S × A|+M) · exp
{

−C21 · p2min ·M · ϵ′
2(∑m

t=1 γ
t−1 · t∗0 + γm · sups,a E∥Z(s, a; θ0)∥+ 1

)2}. (166)

This means that

E′
2 :=

{
ω ∈ Ω

(D)
B : (165) holds.

}
, P(E′

2|E1,a ∩ E1,b ∩ E3) ≥ (166). (167)

Putting together (145), (167), (164), we obtain the following for arbitrary ϵ, ϵ′ ∈ (0, 1],
P(E1,a ∩ E1,b ∩ E′

2 ∩ E3) = P(E′
2|E1,a ∩ E1,b ∩ E3) · P(E1,b ∩ E3|E1,a) · P(E1,a)

=
{
1− P(E′

2
c|E1,a ∩ E1,b ∩ E3)

}
·
{
1− P(Ec1,b|E1,a)− P(Ec3|E1,a)

}
·
{
1− P(Ec1,a)

}
≥ 1− P(E′

2
c|E1,a ∩ E1,b ∩ E3)− P(Ec1,b|E1,a)− P(Ec3|E1,a)− P(Ec1,a)

≥ 1−D(N)− C2 ·m · (|S × A|+N) · exp(−C3 · p2min ·N · ϵ2/Cden(m))

− 2|S × A| · exp
{

−C17 · p2min ·N · 12

d2 ·
(
sups,a ∥R(s, a)∥ψ2

)2}−D(N) (∵ We let ϵ′3 = 1.)

− C20 · (|S × A|+M) · exp
{

−C21 · p2min ·M · ϵ′
2(∑m

t=1 γ
t−1 · t∗0 + γm · sups,a E∥Z(s, a; θ0)∥+ 1

)2}
≥ 1−D(N)− C22 ·m · (|S × A|+N) · exp(−C23 · p2min ·N · ϵ2/Cden(m))

− C22 · (|S × A|+M) · exp(−C23 · p2min ·M · ϵ′
2
/Bden(m)). (168)

where

Bden(m) :=
(m−1∑
t=0

γt
)2 · t∗02 + γ2m ·

(
sup
s,a

E∥Z(s, a; θ0)∥
)2

+ 1. (169)

B.3.6 SUMMARIZATION

Now all three terms of Inequality (147) are bounded in Inequalities (148), (149), (165), with proba-
bility larger than (168). Since the square-root of bootstrap discrepancy can be bounded as

Γ̃
1/2
B,m ≤

1√
M
· 4
√
pmin

·
{(m−1∑

t=0

γt · sup
s,a

E∥R(s, a)∥
) 1

2

+ γm/2 ·
(
sup
s,a

E∥Z(s, a; θ0)∥
) 1

2

+ 1

}
+

C24

M1/4
· γm/2 ·

(∑
s,a

√
bµ(s, a)

)1/2

·
√
L · p1/4 ·

√
diam(Θ; ∥ · ∥)

+ C25 ·
√
1 + γm · p1/4min ·

√
ϵ′, (170)

Skipping all the messy calculations, we can obtain the following bound using M,N ≥ 1,

Γ̃
1/2
B,m + sup

θ∈Θ
Ē1/2θ + Γ

1/2
N,m

≤ C26 ·
m

p
1/4
min

·
{
1 + γm/2 ·

√
L · p1/4 ·

√
diam(Θ; ∥ · ∥)

}
· (
√
ϵ+
√
ϵ′)

+ C27 ·
m

pmin
·
{√

L · p1/4 ·
√
diam(Θ; ∥ · ∥)

+
(m−1∑
t=0

γt
)1/2 · ( sup

s,a
E∥R(s, a)∥

)1/2
+

(
sup
s,a

E∥Z(s, a; θ0)∥
)1/2

+ 1

}
≤ C28 ·

m

pmin
·
{√

L · p1/4 ·
√

diam(Θ; ∥ · ∥) (∵ ϵ, ϵ′ ≤ 1)

+
(m−1∑
t=0

γt
)1/2 · ( sup

s,a
E∥R(s, a)∥

)1/2
+

(
sup
s,a

E∥Z(s, a; θ0)∥
)1/2

+ 1

}
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Then we can go back to Inequality (147), and obtain the following bound using Inequalities (170)
and (82),

sup
θ∈Θ

∣∣∣∣F̂ (B)
m (θ)− F̂m(θ)

∣∣∣∣
≤ C29 ·

m

pmin
·
{√

L · p1/4 ·
√
diam(Θ; ∥ · ∥)

+
(m−1∑
t=0

γt
)1/2 · ( sup

s,a
E∥R(s, a)∥

)1/2
+

(
sup
s,a

E∥Z(s, a; θ0)∥
)1/2

+ 1

}

×
[

1√
M
· 1
√
pmin

·
{(m−1∑

t=0

γt · sup
s,a

E∥R(s, a)∥
)1/2

+ γm/2 ·
(
sup
s,a

E∥Z(s, a; θ0)∥
)1/2

+ 1

}

+
1

M1/4
· γm/2 ·

(∑
s,a

√
bµ(s, a)

)1/2

·
√
L · p1/4 ·

√
diam(Θ; ∥ · ∥) +

√
1 + γm · p1/4min ·

√
ϵ′
]

≤ C31

p
3/2
min

·m ·B(m)
env (Θ) ·

(
1

M1/4
+
√
ϵ′
)

where

B(m)
env (Θ) := L

√
p · diam(Θ; ∥ · ∥) +

m−1∑
t=0

γt · sup
s,a

E∥R(s, a)∥+ sup
s,a

E∥Z(s, a; θ0)∥+ 1 (171)

Now the final task is to incorporate this with the bound of Lemma 2, based on Decomposition
(139). As we mentioned in B.3.2, we already inherited the bound, so we do not have to subtract any
additional probability from the current bound (168). Then we have

sup
θ∈Θ

∣∣∣∣F̂ (B)
m (θ)− Fm(θ)

∣∣∣∣ ≤ sup
θ∈Θ

∣∣∣∣F̂ (B)
m (θ)− F̂m(θ)

∣∣∣∣+ sup
θ∈Θ

∣∣∣∣F̂m(θ)− Fm(θ)

∣∣∣∣
≤ C1 ·

1

p2min

·m2 · C(m)
env (Θ) ·

(
1

N1/4
+
√
ϵ

)
+
C31

p
3/2
min

·m ·B(m)
env (Θ) ·

(
1

M1/4
+
√
ϵ′
)

≤ C32

p2min

·B(m)
env (Θ) ·

{
m2 ·

(
1

N1/4
+
√
ϵ

)
+m ·

(
1

M1/4
+
√
ϵ′
)}

by (138) and (171),

with probability larger than

1−D(N)− C22 ·m · (|S × A|+N) · exp(−C23 · p2min ·N · ϵ2/Cden(m))

− C22 · (|S × A|+M) · exp(−C23 · p2min ·M · ϵ′
2
/Bden(m)).
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B.4 PROOF OF THEOREM 3

B.4.1 INACCURACY OF PARAMETER ESTIMATION

Our idea is that largerN,M,mwill lead to tighter (probabilistic) bound of supθ∈Θ |F̂
(B)
m (θ)−F (θ)|,

which can be decomposed as follows,

sup
θ∈Θ

∣∣∣∣F̂ (B)
m (θ)− F (θ)

∣∣∣∣ ≤ sup
θ∈Θ

∣∣∣∣F̂ (B)
m (θ)− Fm(θ)

∣∣∣∣+ sup
θ∈Θ

∣∣∣∣Fm(θ)− F (θ)
∣∣∣∣.

Note that the first term of RHS is the probabilistic term that we bounded in Lemma 4, and the second
term is a deterministic term that can be bounded based on following (proof in C.2.9)

sup
θ∈Θ

∣∣∣∣Fm(θ)− F (θ)
∣∣∣∣ ≤ 4γm · Cbias where Cbias := η̃(θ̃, π) + L · diam(Θ; ∥ · ∥), (172)

with η̃(θ, π) := η̃
{
Υθ,Υπ

}
. (173)

Then combined with Lemma 4, we have

P
{
sup
θ∈Θ

∣∣∣∣F̂ (B)
m (θ)− F (θ)

∣∣∣∣ ≤ A(m,N,M, ϵ, ϵ′) + 4γm · Cbias

}
(174)

≥ 1−D(N)− C1 ·m · (|S × A|+N) · exp(−C2 · p2min ·N · ϵ2/Cden(m))

− C1 · (|S × A|+M) · exp(−C2 · p2min ·M · ϵ′
2
/Bden(m)),

where

A(m,N,M, ϵ, ϵ′) :=
C3

p2min

·B(m)
env (Θ)×

{
m2 ·

(
1

N1/4
+
√
ϵ

)
+m ·

(
1

M1/4
+
√
ϵ′
)}

. (175)

Now in order to relate the bound (174) to the estimation inaccuracy of θ̂(B)
m (23), we shall use the

function ψ(·) introduced by Example 1.3 of Sen (2018),

ψ(δ) := inf
θ∈Θ:∥θ−θ̃∥≥δ

F (θ)− F (θ̃) and ψ−1(y) := inf

{
δ > 0 : ψ(δ) ≥ y

}
. (176)

Depending on whether Θ includes any element in the outermost boundary, ψ(·) can be defined
either for 0 ≤ δ < supθ∈Θ ∥θ − θ̃∥ or 0 ≤ δ ≤ supθ∈Θ ∥θ − θ̃∥. We will extend the function in the
following trivial way of extending horizontally from the rightmost point,

ψ(δ) :=

{
ψ(supθ∈Θ ∥θ − θ̃∥) if ψ(supθ∈Θ ∥θ − θ̃∥) is defined,
sup0≤δ′<supθ∈Θ ∥θ−θ̃∥ ψ(δ

′) otherwise.

There are several important properties of ψ(·) that are proved in C.2.10 based on Assumption 6.

Remark 3. The function ψ (176) satisfies the following properties.

1. ψ−1(·) is an increasing function such that ψ−1(y) → 0 as y → 0 and ψ−1(y) = ∞ for
y > supδ>0 ψ(δ).

2. limϵ→0+ ψ
{
ψ−1(y) + ϵ

}
≥ y holds for all y ∈ [0, ψ(supθ∈Θ ∥θ − θ̃∥)].

3. Let F̂ : Θ ⊂ Rp → R be an arbitrary estimate of F (21) that have minimizer(s) within Θ.
For an arbitrary value δ > 0, if there exists a minimizer ∃θ̂ ∈ argminθ∈Θ F̂ (θ) such that
∥θ̂ − θ̃∥ > δ, then supθ∈Θ |F̂ (θ)− F (θ)| ≥ 1

2 limδ′→δ+ ψ(δ
′) holds.

Based on the Remark 3 (3rd statement), we have the following bound for ψ+(δ) := limδ′→δ+ ψ(δ
′),

P
{
∃θ̂(B)
m ∈ Θ such that ∥θ̂(B)

m −θ̃∥ ≥ δ
}
≤ P

{
sup
θ∈Θ

∣∣∣∣F̂ (B)
m (θ)− F (θ)

∣∣∣∣ ≥ 1

2
ψ+(δ)

}
.
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Now letting δ = ψ−1{2 ·A(m,N,M, ϵ, ϵ′) + 8γm · Cbias}, we have

P
{
∃θ̂(B)
m ∈ Θ such that ∥θ̂(B)

m − θ̃∥ ≥ ψ−1

(
2 ·A(m,N,M, ϵ, ϵ′) + 8γm · Cbias

)}
≤ P

{
sup
θ∈Θ

∣∣∣∣F̂ (B)
m (θ)− F (θ)

∣∣∣∣ ≥ A(m,N,M, ϵ, ϵ′) + 4γm · Cbias

}
by Remark 3 (2nd Statement)

≤ D(N) + C1 ·m · (|S × A|+N) · exp(−C2 · p2min ·N · ϵ2/Cden(m))

+ C1 · (|S × A|+M) · exp(−C2 · p2min ·M · ϵ′
2
/Bden(m)) by (174). (177)

B.4.2 SIMPLIFYING THE PROBABILITY TERM

Let δ1, δ2 ∈ (0, 1) be arbitrary. Now let us simplify the result (177) by letting

ϵ =

√
Cden(m)

C2 · p2min

·

√
1

N
· log

(
C1 ·m · (|S × A|+N)

δ1

)
, (178)

ϵ′ =

√
Bden(m)

C2 · p2min

·

√
1

M
· log

(
C1 · (|S × A|+M)

δ2

)
,

Recall that we have to ensure ϵ, ϵ′ ∈ (0, 1]. Furthermore, since A(m,N,M, ϵ, ϵ′) in (175) contains
(N1/4 +

√
ϵ) and (M1/4 +

√
ϵ′). Since ϵ and ϵ′ (178) decays in a slower rate than N1/4 and M1/4,

we can ignore them when the sample size is sufficiently large. To ensure these, we will assume
N ≥ Nm(δ1), M ≥ Mm(δ2) where Nm(δ1) and Mm(δ2) are the smallest integers such that
N ≥ Nm(δ1), M ≥Mm(δ2) implies the following, with Cden(m) (132) and Bden(m) (169),

1

N
≤ Cden(m)

C2 · p2min

· 1
N
· log

(
C1 ·m · (|S × A|+N)

δ1

)
≤ 1, (179)

1

M
≤ Bden(m)

C2 · p2min

· 1

M
· log

(
C1 · (|S × A|+M)

δ2

)
≤ 1.

Then let us bound the term A(m,N,M, ϵ, ϵ′) of Equation (175) as follows, using the values of ϵ, ϵ′
specified in Equation (178) and assuming (179). Skipping the calculation details, we can derive
A(m,N,M, ϵ, ϵ′) ≤ Cmodel×[

m2 ·
{

1

N
· log

(
C1 ·m · (|S × A|+N)

δ1

)} 1
4

+m ·
{

1

M
· log

(
C1 · (|S × A|+M)

δ2

)} 1
4
]

let
= A1(m,N,M, δ1, δ2). (180)

where

Cmodel :=
C4

p
5/2
min

·
{
L2p · diam(Θ; ∥ · ∥)2 +

(
1

1− γ

)2

·max
{
d · sup

s,a
∥R(s, a)∥ψ2

, t∗0
}2

+
(
sup
s,a

E∥Z(s, a; θ0)∥
)2

+ 1

}3/4

, (181)

Now we can rewrite Bound (177) as follows by Remark 3 (1st Statement),

P
{
∀θ̂(B)
m ∈ argmin

θ∈Θ
F̂ (B)
m (θ), ∥θ̂(B)

m − θ̃∥ ≤ ψ−1

(
2 ·A1(m,N,M, δ1, δ2) + 8γm · Cbias

)}
≥ 1−D(N)− δ1 − δ2.

Next, we can analyze the convergence rate of our estimated distribution towards the best approxi-
mation Υθ̃ in Energy Distance, based on following relationship with Euclidean distance,

E
{
Υθ1(s, a),Υθ2(s, a)

}
=

{
E∥Zα(s, a; θ1)− Zβ(s, a; θ2)∥ − E∥Zα(s, a; θ1)− Zβ(s, a; θ1)∥

}
+

{
E∥Zα(s, a; θ1)− Zβ(s, a; θ2)∥ − E∥Zα(s, a; θ2)− Zβ(s, a; θ2)∥

}
≤ η̃(θ1, θ1) + η̃(θ1, θ2) + η̃(θ1, θ2) + η̃(θ2, θ2) by Trick (49)
≤ 2η̃(θ1, θ2) ≤ 2L · ∥θ1 − θ2∥, by Assumption 7
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which leads to

Ē
(
Υ
θ̂
(B)
m
,Υθ̃

)
=

∑
s,a

bµ(s, a) · E
{
Υ
θ̂
(B)
m

(s, a),Υθ̃(s, a)

}
≤ 2L · ∥θ̂(B)

m − θ̃∥,

B.4.3 FINITE SAMPLE ERROR BOUND

Under Assumptions 1, 3–8, for a fixed step level m ∈ N and arbitrary δ1, δ2 ∈ (0, 1), given that
N ≥ max{Nm(δ1), 2}, M ≥ max{Mm(δ2), 2} defined in (179), we have the following bound
with probability larger than 1−D(N)− δ1 − δ2, all values of θ̂(B)

m ∈ argminθ∈Θ F̂
(B)
m (θ) satisfy

∥θ̂(B)
m − θ̃∥ ≤ ψ−1

(
2Cmodel ·

[
m2 ·

{
1

N
· log

(
C1 ·m · (|S × A|+N)

δ1

)} 1
4

(182)

+m ·
{

1

M
· log

(
C1 · (|S × A|+M)

δ2

)} 1
4
]
+ 4γm · Cbias

)
,

along with

Ē
(
Υ
θ̂
(B)
m
,Υθ̃

)
≤ 2L · ∥θ̂(B)

m − θ̃∥, (183)

whereD(N)→ 0 asN →∞ (184), and ψ−1 (176) is an increasing function that ensures ψ−1(y)→
0 as y → 0, as stated in Remark 3 (1st statement).

Here is the recap of definitions of the terms that we used in Equations (161), (172), (181), (159),

D(N) := |S × A| ·
√
2

√
pmin

· inf
r>2

{
N

1
r−

1
2 + sup

s,a
E
{
V (s, a) · 1

(
V (s, a) > N1/r

)}}
→ 0 as N →∞ where V (s, a) := exp

(
∥R(s, a)∥2

t0(s, a)2

)
,

Cbias := η̃(θ̃, π) + L · diam(Θ; ∥ · ∥),

Cmodel :=
C4

p
5/2
min

·
{
L2p · diam(Θ; ∥ · ∥)2 +

(
1

1− γ

)2

·max
{
d · sup

s,a
∥R(s, a)∥ψ2

, t∗0
}2

+
(
sup
s,a

E∥Z(s, a; θ0)∥
)2

+ 1

}3/4

,

t∗0 := sup
s,a

t0(s, a) where t0(s, a) > 0 are values such that E
{
exp

(
∥R(s, a)∥2

t0(s, a)2

)}
= 1. (184)

Just for a brief note, minimizer(s) of the estimated objective function θ̂(B)
m ∈ argminθ∈Θ F̂

(B)
m (θ)

always exists due to continuity of F̂ (B)
m (proof in C.2.11).

B.4.4 ASYMPTOTIC SETTING

Based on the finite-sample error bound provided in B.4.3, we will now assume N,M,m are large
enough to satisfy the assumptionsN ≥ max{Nm(δ1), 2}, M ≥ max{Mm(δ2), 2}. We should also
assume the following holds as N,M,m→∞ (terms defined in (180) and (172)),

2 ·A1(m,N,M, δ1, δ2) + 8γm · Cbias → 0 (185)

where the LHS is exactly the term inside ψ−1(·) in (182). This condition is necessary to ensure that
the RHS of Bound (182) to have a finite value by Remark 3 (1st statement). It should be verified that
these conditions hold in the asymptotic sense, which we will discuss in the following section B.4.5
where we choose the actual growing speed of M and m with respect to N .

By Assumption 6, we could derive the following within the proof of Remark 3 in C.2.10 (1st state-
ment),

ψ−1(y) ≤ 1

cq1/q
· y1/q for ∀y ∈ [0, sup

δ>0
ψ(δ)) by (197).

52



Under review as a conference paper at ICLR 2024

Based on this, by letting δ1 = δ2 = δ/2 in (182), we have following with probability larger than
1−D(N)− δ,

∥θ̂(B)
m − θ̃∥ ≲

[
m2 ·

{
1

N
· log

(
2mN

δ

)} 1
4

︸ ︷︷ ︸
data

+m ·
{

1

M
log

(
2M

δ

)} 1
4

︸ ︷︷ ︸
bootstrap

+ γm︸︷︷︸
bias

] 1
q

, (186)

where ≲ means bounded by the given bound (RHS) multiplied by a positive number that does not
depend onN,M,m. Each of the three terms (186) corresponds to the inaccuracy associated with the
observed data {(si, ai, ri, s′i)}Ni=1, the resampled trajectories (22), and the extent of non-realizability.
Each can be reduced by increasing N , M , and m, however larger m makes the first two terms more
challenging for to shrink, so it resembles bias-variance trade-off.

Accordingly to (186), the conditions of N,M,m (185) can be rewritten as following,
N ≥ max{Nm(δ/2), 2}, M ≥ max{Mm(δ/2), 2}, (187)

based on Definitions (179), along with the following based on Definition (180),

2Cmodel ·
[
m2 ·

{
1

N
· log

(
2C1 ·m · (|S × A|+N)

δ

)} 1
4

+m ·
{

1

M
· log

(
2C1 · (|S × A|+M)

δ

)} 1
4
]
+ 8γm · Cbias → 0. (188)

B.4.5 OPTIMAL CONVERGENCE RATE

Now we will assume an asymptotic case where the sample size grows to infinityN →∞, andM,m
grow accordingly with a chosen rate. Towards that end, we have to achieve two goals. First, we have
to ensure that (187) and (188) are satisfied as N →∞. Second, we have to make (186) shrink in the
fastest possible rate. As long as M (which we can let to be arbitrarily large) grows in the same rate
with (or faster than) N ,

M = ⌊C5 ·N⌋ for arbitrary C5 > 0, (189)
the second term of (186) becomes ignorable in the asymptotic sense.

As noted below (186), increasing m has trade-off effect, so we shall derive an appropriate speed of
m, and then verify that it can satisfy (187) with large enough N . Using (189), we can take up (186)
as follows for sufficiently large N ,

∥θ̂(B)
m − θ̃∥ ≲

[
m2 ·

{
1

N
· log

(
mN

δ

)} 1
4

+ γm
] 1

q

.

Now we choose the optimal level of m that makes the two terms converge in the same rate,

γm ≈ m2 · 1

N1/4
·
(
log(mN)

)1/4
.

However, this relationship is very intricate, so we could not calculat m that makes both sides per-
fectly match. So we alternatively solved an easier equation that gives us the following relationship,

γm ≈ C6 ·
(
logN

N

)1/4

, ∴ m
let
=

⌊
1

4
· log 1

γ

(
C7 ·N
logN

)⌋
. (190)

Note that the values of C6, C7 > 0 can be arbitrary, as long as C7 = C−4
6 holds. Skipping the

calculation details, it can be ascertained that the orders (189) and (190) ensures (187) and (188)
to hold as N → ∞. This can be verified based on the fact that supm∈N Cden(m) < ∞ and
supm∈NBden(m) <∞, which are defined in (132) and (169).

Furthermore, it allows us to achieve{
m8

N
· log

(
mN

δ

)} 1
4

≲
1

N
1
4

·
{
log 1

γ

(
C8N

logN

) 1
4
}2

·
(
log

[
N ·

{
log 1

γ

(
C8N

logN

) 1
4
}/

δ

]) 1
4

,

which eventually leads to following when combined with (183),

Ē
(
Υ
θ̂
(B)
m
,Υθ̃

)
≤ Op

[
1

N1/(4q)
·
{
log 1

γ

(
N

logN

)}2/q

·
[
log

{
N · log 1

γ

(
N

logN

)}]1/(4q)]
,

which gives us desired result of Theorem 3.
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C SUPPORTING RESULTS

C.1 BORROWED RESULTS

Theorem 4. (Dudley’s integral inequality) Assume the following two conditions.

1. (Subgaussian process) The stochastic process (Xt)t∈T ∈ R lies in the domain (T , η) which
is a metric space w.r.t. the metric η with constantK0, that is ∥Xt−Xs∥ψ2

≤ K0 ·η(t, s). To
elaborate, η : T ×T → R+ satisfies the following properties, (Theorem 8.1.6 of Vershynin
(2018))

(a) η(x, x) = 0 for ∀x ∈ T ,
(b) η(x, y) > 0 if x ̸= y,
(c) η(x, y) = η(y, x) for ∀x, y ∈ T ,
(d) η(x, y) ≤ η(x, z) + η(z, y) for ∀x, y ∈ T .

2. (Separability) There exists a set ∃T̃ ⊂ T and ∃Ω̃ ∈ Σ ,where (Ω,Σ,P) is the correspond-
ing probability space, such that (Definition 4.4 of Sen (2018))

(a) P(Ω̃) = 1,
(b) T̃ is countable,
(c) ∀w ∈ Ω̃, ∀t ∈ T , there is ∃(tn)n∈N ∈ T̃ such that limn→∞Xtn(w) = Xt(w) holds.

Then letting N (E, η, ϵ) be the covering number (34) of set E w.r.t. η with ϵ > 0, diam(T ; η) be
the diameter of T w.r.t. η, and C1 > 0 be a certain universal constant, for ∀t0 ∈ T , we have the
following with probability bigger than 1− 2 exp(−u2),

sup
t∈T
|Xt −Xt0 | ≤ K0C

{∫ ∞

0

√
logN (T , η, ϵ)dϵ+ u · diam(T ; η)

}
for ∀u > 0.

Theorem 5. (Hoeffding’s inequality for iid cases) For X1, · · · , Xn that are iid distributed from
some subgaussian distribution, for ∀ϵ ≥ 0, we have the following (Theorem 2.6.2 of Vershynin
(2018)),

P
(∣∣∣∣ 1n

n∑
i=1

Xi − µ
∣∣∣∣ ≥ ϵ) ≤ 2 · exp

(
−C · n · ϵ2

∥X1 − µ∥2ψ2

)
.

Theorem 6. (Adapted version of vector Bernstein inequality in Lemma 18 of Kohler & Lucchi
(2017)) Let X1, · · ·Xn ∈ Rd be independent random vectors that satisfy

E(Xi) = 0, ∥Xi∥ ≤ µ, E
{
∥Xi∥2

}
≤ σ2 for ∃µ, σ > 0.

Then we have the following for ∀ϵ ∈ (0, σ2/µ),

P
(∥∥∥∥ 1

N

N∑
i=1

Xi

∥∥∥∥ ≥ ϵ) ≤ exp

{
−N · ϵ

2

8σ2
+

1

4

}
.

Lemma 6. (Lemma S4 of Wang et al. (2022)) When m is even, we can decompose {(j, j′) : 1 ≤
j < j′ ≤ n} into (n− 1) groups, each of which contains n/2 pairs of (j, j′) that share no repeated
components at all.
Proposition 1. (Proposition 2.6.1 of Vershynin (2018)) Let X1, · · · , Xn be independent mean-zero
subgaussian random variables. Then we have∥∥∥∥ n∑

i=1

Xi

∥∥∥∥2
ψ2

≤ C ·
n∑
i=1

∥Xi∥2ψ2
.

C.2 SUBPROOFS WITHIN THE MAIN PROOF

C.2.1 PROOF OF REMARK 1

Properties 1 and 2 are mentioned in Example 2.5.8 of Vershynin (2018).
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Property 3 can be verified by following,∥∥E(X)
∥∥
ψ2

= inf

{
t > 0 : E

(
E(X)2

t2

)
≤ 2

}
= inf

{
t > 0 :

E(X)2

t2
≤ 2

}
.

Since the following holds for ∀t > 0

E(X)2

t2
≤ E

(
X2

t2

)
,

this directly proves ∥E(X)∥ψ2 ≤ ∥X∥ψ2 .

Property 4 can be verified as follows. Let x = (x1, · · · , xd)⊺ ∈ Rd with unit norm ∥x∥ = 1 be
arbitrary. Denoting the canonical vectors as e1, · · · , ed, we have∣∣⟨X,x⟩∣∣ = ∣∣⟨X, x1e1⟩+ · · ·+ ⟨X, xded⟩∣∣

≤ |x1| ·
∣∣⟨X, e1⟩∣∣+ · · · |xd| · ∣∣⟨X, ed⟩∣∣

≤ |x1| · ∥X∥ψ2
+ · · ·+ |xd| · ∥X∥ψ2

by the definition in Equation (33)
≤ d∥X∥ψ2 ∵ |xj | ≤ 1 for ∀j ∈ {1, · · · , d}.

Property 5 is verified in Exercise 2.7.10 of Vershynin (2018).

C.2.2 PROOF OF FACTS (39)

Letting b̂(1)µ (s, a) and b̂(2)µ (s, a) be the components of p̂(1) and p̂(2) (37) corresponding to (s, a), we
have

b̂(1)µ (s, a) =
N1(s, a)

⌊N/2⌋
& b̂(2)µ (s, a) =

N2(s, a)

N − ⌊N/2⌋
,

with N1(s, a) =

⌊N/2⌋∑
i=1

1
{
(Si, Ai) = (s, a)

}
& N2(s, a) =

N∑
i=⌊N/2⌋+1

1
{
(Si, Ai) = (s, a)

}
.

Let us first prove Fact 1. Letting s, a ∈ S ×A be arbitrary, we have the following,∣∣∣∣b̂(1)µ (s, a)− bµ(s, a)
∣∣∣∣ ≤ sup

s,a

∣∣∣∣b̂(1)µ (s, a)− bµ(s, a)
∣∣∣∣ = ∥p̂(1) − p∥∞

≤ ∥p̂(1) − p̂∥ ≤ 1

2
pmin · ϵ ≤

1

2
bµ(s, a) · ϵ (191)

≤ 1

2
bµ(s, a) (∵ ϵ < 1).

With the same logic, we also have∣∣∣∣b̂(2)µ (s, a)− bµ(s, a)
∣∣∣∣ ≤ 1

2
bµ(s, a),

which gives us

b̂(1)µ (s, a), b̂(2)µ (s, a) ∈
[
1

2
bµ(s, a),

3

2
bµ(s, a)

]
, (192)

that further implies Fact 1 based on Equation (37).

Regarding Fact 2, we have N1(s, a) ≥ 1 by following based on Equation (192),

N1(s, a)

N/2
=

1

2
bµ(s, a) ≥

1

2
pmin > 0.

We also have N2(s, a) ≥ 1 by the same logic, so this leads to N(s, a) = N1(s, a) +N2(s, a) ≥ 2.

Showing Fact 3 is straightforward by Equation (37) and Definition (38),

∥p̂− p∥ ≤ ⌈N/2⌉
N
∥p̂(1) − p∥+ N − ⌈N/2⌉

N
∥p̂(2) − p∥ < 1

2
pmin · ϵ.

55



Under review as a conference paper at ICLR 2024

C.2.3 PROOF OF COROLLARY 1

Based on Proposition 1, we have∥∥∥∥ 1n
n∑
i=1

Xi

∥∥∥∥2
ψ2

≤ C ·
n∑
i=1

∥∥∥∥Xi

n

∥∥∥∥2
ψ2

≤ C

n2
· n · ∥X1∥2ψ2

=
C

n
∥X1∥2ψ2

,

which directly implies the desired result.

C.2.4 PROOF OF LEMMA 1

Let us temporarily assume that N ∈ N is an even number. Newly define Yij := (Xij +Xji)/2 for
1 ≤ i < j ≤ N . Then by Lemma 6, we can group them into N − 1 groups G1, · · · , GN−1, each
of which contains N/2 pairs of (i, j) where no pairs overlap in any components. Based on this, we
can obtain the following bound,

P
{∣∣∣∣ 1

N(N − 1)

∑
i ̸=j

Xij − E(X12)

∣∣∣∣ ≥ ϵ} ≤ P
{∣∣∣∣ 1

N(N − 1)/2

∑
i<j

Yij − E(Y12)
∣∣∣∣ ≥ ϵ}

≤ P
{

1

N − 1

N−1∑
k=1

∣∣∣∣ 1

N/2

∑
(i,j)∈Gk

Yij − E(Y12)
∣∣∣∣ ≥ ϵ}

≤ P
{∣∣∣∣ 1

N/2

∑
(i,j)∈Gk

Yij − E(Y12)
∣∣∣∣ ≥ ϵ for ∃k ∈ {1, · · · , N − 1}

}

≤ (N − 1) · P
{∣∣∣∣ 1

N/2

∑
(i,j)∈G1

Yij − E(Y12)
∣∣∣∣ ≥ ϵ}

≤ 2N · exp
{

−C2 ·N · ϵ2

∥X12 − E(X12)∥2ψ2

}
, by Theorem 5 (193)

where the last line holds because ∥Y12−E(Y12)∥ψ2 = ∥ 12 (X12−E(X12))+
1
2 (X21−E(X21))∥ψ2 ≤

∥X12 − E(X12)∥ψ2 .

Now let us expand our result towards odd numbers N ∈ N. Since we are assuming N ≥ 2 in our
assumption, N being odd implies that N ≥ 3. Then we can obtain the following result,

P
{∣∣∣∣ 1

N(N − 1)

∑
i ̸=j

Xij − E(X12)

∣∣∣∣ ≥ ϵ} = P
{∣∣∣∣ 1

N(N − 1)/2

∑
i<j

Yij − E(Y12)
∣∣∣∣ ≥ ϵ}

≤ P
{∣∣∣∣N − 2

N
· 1

(N − 1)(N − 2)/2

N−1∑
i<j

{
Yij − E(Y12)

}∣∣∣∣ ≥ ϵ

2
by technique (56)

or
∣∣∣∣ 1

N/2
· 1

N − 1

N−1∑
i=1

{
YiN − E(Y12)

}∣∣∣∣ ≥ ϵ

2

}

≤ P
{∣∣∣∣ 1

(N − 1)(N − 2)/2

N−1∑
i<j

{
Yij − E(Y12)

}∣∣∣∣ ≥ ϵ

2

}

+ P
{∣∣YiN − E(Y12)

∣∣ ≥ N

4
ϵ for ∃i ∈ {1, · · · , N − 1}

}
≤ 2(N − 1) · exp

{
−C2 ·N · (ϵ/2)2

∥X12 − E(X12)∥2ψ2

}
+ (N − 1) · P

{∣∣Y12 − E(Y12)
∣∣ ≥ N

4
ϵ

}
by (193)

≤ 4N · exp
{

C3 ·N · ϵ2

∥X12 − E(X12)∥2ψ2

}
, by Theorem 5

where the third last line holds since N − 1 is an even number.
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C.2.5 PROOF FOR COROLLARY 2

It is trivial for ϵ > 1 since the probability term in the LHS shall be 0, so we will assume ϵ ∈ (0, 1).
Let Yi := Xi − p, and we can see that

E(Y1) = 0 ∈ RH ,

∥Y1∥ = ∥X1 − p∥ ≤ ∥X1∥+ ∥p∥ ≤ 2
(
∵ ∥p∥ =

√√√√ H∑
h=1

p2h ≤

√√√√ H∑
h=1

ph = 1
)
.

Therefore we can let µ = 2 and σ2 = 4, and applying Theorem 6 gives us the desired result for
ϵ ∈ (0, 2), so it validates the result for ϵ ∈ (0, 1).

C.2.6 PROOF OF REMARK 2

Let t > 0 be arbitrarily chosen. Under Assumption 7, ∥θ1 − θ2∥ ≤ t/L implies η̃(θ1, θ2) ≤ t.
Letting M0 = N (Θ, ∥ · ∥, t/L) defined in Equation (34), and θ1, · · · , θM0 to be such centers, we
have

Θ ⊂
M0⋃
i=1

N∥·∥(θi, t/L) ⊂
M0⋃
i=1

Nη̃(θi, t), ∴ N (Θ, η̃, t) ≤M0 = N (Θ, ∥ · ∥, t/L),

which leads to∫ ∞

0

√
logN (Θ, η̃, t)dt ≤

∫ ∞

0

√
logN (Θ, ∥ · ∥, t/L)dt ≤ L ·

∫ ∞

0

√
logN (Θ, ∥ · ∥, t)dt.

≤ L ·
∫ diam(Θ;∥·∥)

0

√
logN (Θ, ∥ · ∥, t)dt, (194)

where the last line holds since we haveN (Θ, ∥ · ∥, t) = 1 for ∀t ≥ diam(Θ; ∥ · ∥). Here we can use
the well-known Volume Comparison Lemma that states the following for Br(p) = {θ ∈ Rp : ∥θ∥ ≤
r} and for ∀t > 0, (

r

t

)p
≤ N (Br(d), ∥ · ∥, t) ≤

(
1 +

2r

t

)p
.

By applying this, we can take up from Inequality (194) as follows,∫ ∞

0

√
logN (Θ, η̃, t)dt ≤ L ·

∫ diam(Θ;∥·∥)

0

√
p · log

{
1 +

2 · diam(Θ; ∥ · ∥)
t

}
dt

≤ L ·
∫ diam(Θ;∥·∥)

0

√
p · log

{
3 · diam(Θ; ∥ · ∥)

t

}
dt

= 3 · diam(Θ; ∥ · ∥) · L√p ·
∫ 1/3

0

√
log

(
1

t

)
dt

≤ 6
√
2π · L√p · diam(Θ; ∥ · ∥), (195)

where the last line holds since∫ 1/3

0

√
log

(
1

t

)
dt ≤

∫ √
log 3

∞
z · (−2z exp(−z2))dt where z =

√
log

(
1

t

)
≤ 2

∫ ∞

−∞
z2 exp(−z2)dt

= 2
√
2π

∫ ∞

−∞
z2

1√
2π

exp(−z2)dt

= 2
√
2π.
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C.2.7 PROOF OF LEMMA 3

Letting µ0, µ1, µ2 ∈ P be arbitrary, we have the following decomposition, where ρ is the metric
such that E(P,Q) = ρ2(P,Q) as mentioned in Property 3,

E(µ0, µ1) = ρ2(µ0, µ1) ≤
{
ρ(µ0, µ1) + ρ(µ2, µ1)

}2

= ρ2(µ0, µ2) + 2 · ρ(µ0, µ1) · ρ(µ2, µ1) + ρ2(µ2, µ1)

= E(µ0, µ2) +
√
E(µ1, µ2) ·

{
2
√
E(µ0, µ2) +

√
E(µ1, µ2)

}
.

Now let us extend this result towards Ē as follows,

Ē(Υ0,Υ1) ≤ Ē(Υ0,Υ2) +
∑
s,a

bµ(s, a) ·
√
E{Υ1(s, a),Υ2(s, a)}

×
{
2
√
E{Υ0(s, a),Υ2(s, a)}+

√
E{Υ1(s, a),Υ2(s, a)}

}
= Ē(Υ0,Υ2) +

∑
s,a

[√
bµ(s, a) · E{Υ1(s, a),Υ2(s, a)}

×
√
bµ(s, a) ·

{
2
√
E{Υ0(s, a),Υ2(s, a)}+

√
E{Υ1(s, a),Υ2(s, a)}

}]
≤ Ē(Υ0,Υ2) +

(∑
s,a

bµ(s, a) · E{Υ1(s, a),Υ2(s, a)}
)1/2

×
[∑
s,a

bµ(s, a) ·
{
2
√
E{Υ0(s, a),Υ2(s, a)}+

√
E{Υ1(s, a),Υ2(s, a)}

}2]1/2
≤ Ē(Υ0,Υ2) + Ē(Υ1,Υ2)

1/2

×
[∑
s,a

bµ(s, a) · 2 ·
{
4E{Υ0(s, a),Υ2(s, a)}+ E{Υ1(s, a),Υ2(s, a)}

}]1/2
≤ Ē(Υ0,Υ2) + 4 · Ē(Υ1,Υ2)

1/2 ·
{
Ē(Υ0,Υ2) + Ē(Υ1,Υ2)

}1/2
,

where the third line used Cauchy-Schwartz inequality, the forth line is based on (x+ y)2 ≤ 2(x2 +
y2). Eventually we have

Ē(Υ0,Υ1)− Ē(Υ0,Υ2) ≤ 4 · Ē(Υ1,Υ2)
1/2 ·

{
Ē(Υ0,Υ2) + Ē(Υ1,Υ2)

}1/2
,

and by the symmetry, we also have

Ē(Υ0,Υ2)− Ē(Υ0,Υ1) ≤ 4 · Ē(Υ1,Υ2)
1/2 ·

{
Ē(Υ0,Υ1) + Ē(Υ1,Υ2)

}1/2
.

This eventually leads to∣∣∣∣Ē(Υ0,Υ1)− Ē(Υ0,Υ2)

∣∣∣∣
≤ 4 · Ē(Υ1,Υ2)

1/2 ·
[
max

{
Ē(Υ0,Υ1), Ē(Υ0,Υ2)

}
+ Ē(Υ1,Υ2)

]1/2
.

C.2.8 PROOF OF LEMMA 5

Let z > 0 be arbitrary, and let Ei = Xi · 1
{
|Xi| ≤ z

}
and Fi = Xi · 1

{
|Xi| > z

}
. Since we have

Xi = Ei + Fi, we have

E
∣∣∣∣ n∑
i=1

Xi

∣∣∣∣ ≤ E
∣∣∣∣ n∑
i=1

Ei

∣∣∣∣+ E
∣∣∣∣ n∑
i=1

Fi

∣∣∣∣.
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Note that each term satisfies

E
∣∣∣∣ n∑
i=1

Ui

∣∣∣∣ ≤ E
{( n∑

i=1

Ei
)2}1/2

=

√√√√V
( n∑
i=1

Ei

)
∵ E(E1) = 0

≤
√
n · V(E1)

1/2 =
√
n ·

[
E
{
X2

1 · 1
(
|X1| ≤ z

)}]1/2
E
∣∣∣∣ n∑
i=1

Vi

∣∣∣∣ ≤ n · E|V1| = n · E
{
|X1| · 1

(
|X1| > z

)}
,

which leads to

E
∣∣X̄n

∣∣ ≤ 1√
n
·
{
E
{
X2

1 · 1(|X1| ≤ z)
}}1/2

+ E
{
|X1| · 1(|X1| > z)

}
.

Since z > 0 was arbitrary, we eventually have

E
∣∣X̄n

∣∣ ≤ inf
z>0

[
1√
n
·
{
E
{
X2

1 · 1(|X1| ≤ z)
}}1/2

+ E
{
|X1| · 1(|X1| > z)

}]
→ 0 as n→∞.

C.2.9 PROOF OF EQUATION (172)

Since we have∣∣Fm(θ)− F (θ)
∣∣ = ∣∣Ē{Υθ, (T π)mΥθ

}
− Ē

{
Υθ,Υπ

}∣∣
≤

∑
s,a

bµ(s, a) ·
∣∣∣∣E{Υθ(s, a), (T π)mΥθ(s, a)

}
− E

{
Υθ(s, a),Υπ(s, a)

}∣∣∣∣,
we can further bound it using the technique shown in Line (101). With a new notation Z(s, a;π) =
Zπ(s, a) and the abuse of notation (T π)mθ introduced in Definition (114), we can derive∣∣∣∣E{Υθ(s, a), (T π)mΥθ(s, a)

}
− E

{
Υθ(s, a),Υπ(s, a)

}∣∣∣∣
≤ 2 · η̃

{
(T π)mθ, π

}
+ η̃

{
(T π)mθ, π

}
+ η̃

{
(T π)mθ, π

}
by Assumption 5

≤ 4γm · η̃(θ, π) by Assumption 8 ,

≤ 4γm ·
{
η̃(θ̃, π) + sup

θ
η̃(θ, θ̃)

}
≤ 4γm ·

{
η̃(θ̃, π) + L · diam(Θ; ∥ · ∥)

}
, (196)

where the last line used Assumption 7. Again, as we did in Trick (102), we used the contractive
property (Assumption 8) of Bellman operator with respect to η̃ in the third inequality.

C.2.10 PROOF OF REMARK 3

Let us show the first fact. ψ−1(·) is an increasing function, since the following holds for arbitrary
y1, y2 (y1 ≤ y2),

ψ−1(y1) = inf
δ>0

{
ψ(δ) ≥ y1

}
≤ inf
δ>0

{
ψ(δ) ≥ y2

}
= ψ−1(y2).

If y > supδ>0 ψ(δ), then ψ−1(y) = inf(∅) := ∞ by definition of infimum. To prove
limy→0 ψ

−1(y) = 0, it suffices to show right-side convergence. Towards that end, we let δ > 0

be sufficiently small, that is δ < supθ∈Θ ∥θ − θ̃∥, which leads to following by Definition (176),

ψ(δ) = inf
θ∈Θ:∥θ−θ̃∥≥δ

F (θ)− F (θ̃) ≥ cq · δq by Assumption 6,

∴ ψ−1(y) ≤ 1

cq1/q
· y1/q for ∀y ∈ [0, sup

δ>0
ψ(δ)). (197)

This gives us ψ−1(y)→ 0 as y → 0.
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The second fact can be shown as follows. Let y ∈ [0, ψ(supθ∈Θ ∥θ − θ̃∥)] be arbitrary (ψ−1(y) <
∞), and let ϵ > 0 be arbitrarily small. Letting δ0 := infδ>0

{
ψ(δ) ≥ y

}
, we have following,

ψ
{
ψ−1(y) + ϵ

}
= ψ

[
inf
δ>0

{
ψ(δ) ≥ y

}
+ ϵ

]
= ψ(δ0 + ϵ) ≥ y,

∴ lim
ϵ→0+

ψ
{
ψ−1(y) + ϵ

}
≥ y.

The third fact can be validated by extending the proof of Example 1.3. of Sen (2018). Suppose
that there exists a minimizer θ̂ ∈ argminθ∈Θ F̂ (θ) such that ∥θ̂ − θ0∥ ≥ δ. Now we temporarily
make new notations G = −F and Ĝ = −F̂ , which leads to θ̂ ∈ argmaxθ∈Θ Ĝ(θ) and ψ(δ) =

G(θ̃)− supθ∈Θ:∥θ−θ̃∥≥δ G(θ). Then we have Ĝ(θ̃) ≤ supθ∈Θ:∥θ−θ̃∥≥δ Ĝ(θ), which leads to

sup
θ∈Θ:∥θ−θ̃∥≥δ

Ĝ(θ)− Ĝ(θ̃) + ψ(δ) ≥ ψ(δ),

∴ sup
θ∈Θ:∥θ−θ̃∥≥δ

{
(Ĝ(θ)−G(θ))− (Ĝ(θ)−G(θ̃))

}
≥ ψ(δ),

from which we can derive supθ∈Θ |F̂ (θ)− F (θ)| ≥ 1
2ψ(δ). Up to this point we have derived

∃θ̂ ∈ argmin
θ∈Θ

F̂ (θ) such that ∥θ̂ − θ0∥ ≥ δ → sup
θ∈Θ
|F̂ (θ)− F (θ)| ≥ 1

2
ψ(δ). (198)

Now let us assume that there exists a value θ̂ ∈ Θ such that ∥θ̂−θ̃∥ > δ. Then we have ∥θ̂−θ̃∥ = δ+

ϵ0 for some ϵ0 > 0. By (198), we have supθ∈Θ |F̂ (θ)−F (θ)| ≥ 1
2ψ(δ+ϵ0) ≥

1
2 limϵ→0+ ψ(δ+ϵ),

by using the fact that ψ(·) is an increasing function. This gives us the desired result.

C.2.11 CONTINUITY OF BOOTSTRAP-BASED OBJECTIVE FUNCTION (23)

By replicating the trick (102), we have∣∣∣∣E{Υθ1(s, a),BmΥθ1(s, a)

}
− E

{
Υθ2(s, a),BmΥθ2(s, a)

}∣∣∣∣
≤ 4 · η̃(θ1, θ2) + 4 · η̃

{
BmΥθ1 ,BmΥθ2

}
≤ 4(1 + γm) · η̃(θ1, θ2) by Assumption 8

≤ 8L · ∥θ1 − θ2∥ by Assumption 7,

which further leads to |F̂ (B)
m (θ1)− F̂ (B)

m (θ2)| ≤ 8L · ∥θ1 − θ2∥, implying Lipschitz continuity.

C.3 FURTHER DISCUSSION

C.3.1 RATE MISMATCH BETWEEN THEOREM 2 AND B.4.3

Below Theorem 3, we have mentioned that the theoretical result for nonrealizable scenario B.4.3
does not degenerate to Theorem 2 under realizable setting with m = 1. There are two factors that
slow down the convergence rate throughout the proof of Appendix B.

First, we are forming multi-step trajectories by resampling from the collected data
{(si, ai, ri, s′i)}Ni=1, as mentioned before (22). This practice of re-using the samples no longer guar-
antees the independence of the data that we use. Then we cannot make use of common tricks for
showing sample mean converging to the population mean (e.g. Theorems 4, 5, 6 employed in A.6.3
and A.6.4), since since they require independence of samples. Therefore, we resort to another trick,
that is Lemma 3 that resembles triangular inequality, but slows down the rate by 1/2.

Second, in non-realizable cases, the converging target is no longer the true distribution. Instead, we
compromise our goal into the “best approximation” Υθ̃ defined in (21). That being said, Theorem
2, which only required us to derive the convergence rate of estimated Bellman residual (our objec-
tive function), is not enough now. Therefore, unlike realizable scenario, it requires one additional
procedure, which is obtaining convergence of the minimizing parameter. This leads us to take into
account the function ψ(·) in (176), which further slows down the rate by 1/q.

Due to the aforementioned reasons, the rate in non-realizable scenario is slower than realizable
scenario by 1/(2q), that is

√
logN/N verses 4q

√
logN/N .
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C.3.2 REGARDING LINEAR MDP

Linear MDP may be useful in expanding our method into continuous state-action space by ex-
pressing the transition probability and reward distribution as linear combinations of multiple fea-
tures ϕ(·, ·) : S ×A → Rn. To elaborate, it may allow us to construct an unbiased esti-
mate of energy distance for continuous state-action space, where a single s, a cannot be ob-
served twice or more (almost surely). In such cases, our current estimation in Equation (10)
leads to a biased estimate of the third term of expansion of E{Υθ(s, a), T πΥθ(s, a)} shown in
Equation (9), which is E∥Rα + γ · Zα(S′

α, A
′
α; θ) − Rβ − γ · Zβ(S′

β , A
′
β ; θ)∥. Here, we have

(Rα, S
′
α), (Rβ , S

′
β) ∼ p(· · · |s, a) and A′

α ∼ π(·|S′
α), A

′
β ∼ π(·|S′

β), where α, β are for indicat-
ing independent copies. According to our current way of estimation (10), our estimate becomes
E∥γ · Zα(s′, A′

1; θ)− γ · Zβ(s′, A′
2; θ)∥ with A′

1, A
′
2 ∼ π(·|s′) being independent. This is because

the terms R̂α = r and R̂β = r have the same value, and are thereby cancelled out when there is only
a single observation (s, a, r, s′). This bias might be prevented if we can estimate the distribution of
terms R̂α, R̂β ∼ p̂(· · · |s, a) (for s, a that was observed only once) by expressing them with features.
In addition, leveraging the structure of the linear MDP may improve the efficiency of our method.
It will be interesting to see what the structure of return distribution induced by the linear MDP is,
which requires further investigation.
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D OTHER MATERIALS

D.1 COMPARISON BETWEEN DRL METHODS IN DETAILS

In Table 3, we specified the “contractive distance,” which is the distance that makes Bellman oper-
ator contractive, or that compined with projected operators ΠC ,ΠW1 : P(Rd)S×A → P(Rd)S×A.
Each of these is the projection towards categorized support items (Bellemare et al., 2017a) and with
respect to Wassserstein-1 metric (Dabney et al., 2018b), respectively. Then we compared them with
the objective functions, and most methods had misalignment between these two. That is, the con-
traction and objective function are either based upon different distances, or their ways of extension
(expecation or supremum) are different. FLE (Wu et al., 2023) and EBRM are the only two methods
that could overcome this issue, which allowed them to prove convergence of the estimation towards
some target with a certain rate (Table 4).

Table 3: Comparison between Contractive Distances and Objective Functions

Method Operator & Contractive Distance Objective Function
Categorical T π: Wasserstein-1 Cross Entropy
algorithm (supremum-extended) (expectation-extended)
(Bellemare et al., 2017b) ΠCT π: Cramer distance
(Rowland et al., 2018) (supremum-extended)
QRTD/QRDQN
(Dabney et al., 2018a)
IQN ΠW1

T π: Wasserstein-∞ quantile Huber Loss
(Dabney et al., 2018a) (supremum-extended) (expectation-extended)
FQF
(Yang et al., 2019)
EDRL no additional result Expectile Regression Loss
(Rowland et al., 2019) about contraction (expectation-extended)
MMDRL T π: supremum-extended MMDk MMD2

k
(Nguyen-Tang et al., 2021) (unrectified kernel) (expectation-extended)

(supremum-extended)
SinkhornDRL T π: Sinkhorn Divergence Sinkhorn Divergence
(Sun et al., 2022) (supremum-extended) (expectation-extended)
MD3QN T π: Wasserstein-p (p ≥ 1) MMD2

k (gaussian kernel)
(Zhang et al., 2021) (supremum-extended) (expectation-extended)
FLE T π: Squared Wasserstein-p (p ≥ 1) log-Likelihood
(Wu et al., 2023) (expectation-extended) (expectation-extended)

T π , (T π)m (m ≥ 2)
EBRM : Energy Distance Energy Distance
(our method) (expectation-extended) (expectation-extended)

(not exactly contraction: Theorem 1)
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Table 4: Convergence towards some target distribution

Method Convergence towards Target
Categorical (ΠCT π)mΥ0 → ΥC ̸= Υπ as m→∞
algorithm Convergence rate not suggested
(Bellemare et al., 2017a) (Assumption: bounded reward)
(Rowland et al., 2018)
QRTD/QRDQN
(Dabney et al., 2018a)
IQN NA
(Dabney et al., 2018a)
FQF
(Yang et al., 2019)
EDRL only implies convergence of expectation, not the distribution.
(Rowland et al., 2019)
MMDRL NA
(Nguyen-Tang et al., 2021)
SinkhornDRL NA
(Sun et al., 2022)
MD3QN NA
(Zhang et al., 2021)
FLE (T π)mΥ0 → Υπ as m→∞
(Wu et al., 2023) Convergence rate suggested

(Assumption: bounded reward, completeness)
EBRM Convergence towards truth / best approximation
(our method) Convergence rate suggested

D.2 REALIZABLE AND NONREALIZABLE MODELS

D.2.1 INTRODUCTION OF SIMULATION SETTINGS

With the state-action space in Section 5, let us assume that s, a is given. The agent moves by one
in the direction of a ∈ {−1, 1}, that is s′ = s + a (value of which fully determines the reward
distribution (199)). If the agent is already blocked by the direction, that is (s, a) = (1,−1) or
(s, a) = (30, 1), it stays at the same position s′ = s. With given values ofA0 > 0, p0 ∈ (0, 1), σ2

0 >
0, our transition p(r, s′|s, a) is characterized by:

Conditioned on S +A = k, R ∼ N(µk, σ
2
0) where µk =

{
A0 · pk0 (k = 0, · · · , 30)
0 (k = 31)

(199)

and S′ = k if k ∈ {1, · · · , 30}, S′ = 30 if k = 31, S′ = 1 if k = 0.

We assume infinite-horizontal setting. Following the environment (199) and target policy (24), we
have Υπ(s, a) to be normal distributions, with expectation and variance as follows,

E
{
Zπ(i,−1)

}
= A0 · pi−1

0 · 1− (γp0)
32−i

1− γp0
(i ≥ 2), V

{
Zπ(i,±1)

}
=

σ2
0

1− γ2
(i ≥ 1),

(200)

E
{
Zπ(i, 1)

}
= A0 · pi+1

0 · 1− (γp0)
30−i

1− γp0
(i ≥ 1), E

{
Zπ(1,−1)

}
= A0 + γ · E

{
Zπ(1, 1)

}
.

We always let A0 = 100, p0 = 0.9 throughout the simulations.

First, we assumed a realizable scenario where the correct model (200) is known (Appendix D.2.2),
only not knowing the values of A0, p0. Here, we always assumed γ = 0.99 and tried two settings
with σ2

0 = 20 and σ2
0 = 5000. Second, we always tried the non-realizable scenario where there is a

model misspecification (201), as will be demonstrated in Appendix D.2.3. Here, we always assumed
σ2 = 20, trying γ = 0.50 and γ = 0.99.
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D.2.2 REALIZABLE SCENARIO

In the realizable scenario, we assume that Equations (200) are known, except the values ofA0 = 100
and p0 = 0.9. The distributions can be plotted as Figure 2, each for σ2

0 = 20 and σ2
0 = 5000.

Figure 2: Red and blue represent the distributions of Zπ(s,−1) and Zπ(s, 1) respectively. The dots
indicate the expectation values and the vertical bars include (Mean± 3·SD).

D.2.3 NON-REALIZABLE SCENARIO

On the other hand, in the non-realizable scenario, we assume that we are not aware of the true model
(200). Instead, we assume that we are only aware of the decreasing trend demonstrated in Figure
2. That being said, we apply the following linear model that holds for all 1 ≤ i ≤ 30. with four
different parameters βL, βR, β1 ∈ R, σ2 > 0,

E
(
Zπ(i,−1)

)
= βL + β1 · i, E

(
Zπ(i, 1)

)
= βR + β1 · i, V

(
Zπ(i,±1)

)
=

σ2

1− γ2
. (201)

This means that the distributions (conditioned on each s, a) have common variance, common slope
in expectations, but different y-intercepts in expectations.

We always assumed σ2
0 = 20 and tried two different settings, γ = 0.50 and γ = 0.99. Denoting

the parameter as θ = (βL, βR, β1, σ
2) and candidate space as Θ = R × R × R− × R+, the best

approximation value θ̃ that minimize the inaccuracy Ē(Υθ,Υπ) are calculated in Table 5. They are
visualized in Figure 3 (true distributions Υπ on left and best approximations Υθ̃ on right).

Table 5: Best approximation values and minimum inaccuracy

Scenario βL βR β0 σ2 Minimum Ē-inaccuracy
γ = 0.50 126.216 116.614 -4.571 203.099 13.238
γ = 0.99 610.970 562.782 -23.246 149.866 63.216
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Figure 3: Red and blue represent the distributions of Zπ(s,−1) and Zπ(s, 1), or Z(s,−1; θ̃) and
Z(s, 1; θ̃), respectively. The dots indicate the expectation values and the vertical bars include
(Mean± 3·SD).
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D.3 TUNING PARAMETERS OF EACH METHOD

D.3.1 EBRM

Energy distance (8) is calculated via numerical integration given the densities of the probability
measures. Here is the algorithm of choosing the step level m, solely based on the observed data, as
mentioned in 4.4. The basic skeleton is based on SLOPE suggested by Su et al. (2020).

Algorithm 3 Lepski’s rule of selecting step level m
Require: 1 = m0 < m1 < · · ·mK

Input: D = {(si, ai, ri, s′i)}Ni=1, J , M , (m1,m2, · · · ,mK)
Output: mk

Estimate θ̂ with single-step estimation (13).
k ← K + 1, OK+1 ← [−∞,∞].
while Ok ̸= ∅ do

k ← k − 1.
if k ̸= 0 then

for j = 1, · · · , J do
Estimate θ̂(B)

mk,j
with multi-step estimation (23) of step level m = mk.

Calculate êk,j := ˆ̄E(Υθ̂,Υθ̂(B)
mk,j

).

end for
Calculate the sample mean (µ̂k) and variance (ŝk) of êk,j (j = 1, · · · , J).
Calculate Ik := [µ̂k ± 1.96 · ŝk].
Ok ← Ok+1 ∩ Ik.

else
Ok ← ∅.

end if
end while

Throughout multiple simulations in each setting (D.2.2 and D.2.3) for each sample size N (demon-
strated in D.4), it is rigorous to pick its own optimal step level m. However, since they do not differ
significantly, we picked the step level m via Algorithm 3 based on the first simulated data, and used
the same value of m throughout the remaining simulations, in order to save computational burden.
We applied the algorithm with M = N and J = 50. Obviously, we had to try larger values of
(m1, · · · ,mK) for non-realizable scenario with γ = 0.99 than γ = 0.50. However, to avoid nu-
merical issues in integration caused by extremely small γm, we limited the choice of step levels into
m ≤ 4 (γ = 0.50) and m ≤ 250 (γ = 0.99). The corresponding intervals Ik are visualized in
Figures 4 and 5, and the selected step level m∗ is specified in Table 6.

Table 6: Selected step level m∗

Realizable N = 500 N = 1000 N = 2000 N = 5000 N = 10000 N = 20000
σ2 = 20 1 1 1 1 1 1

Realizable N = 2000 N = 5000 N = 10000 N = 20000 N = 50000 N = 105

σ2 = 5000 1 1 1 1 1 1

Non-realizable N = 2000 N = 3000 N = 5000 N = 10000
γ = 0.50 1 1 1 2
γ = 0.99 100 160 200 250
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Figure 4: Realizable, σ2
0 = 20 (top 6 figures) σ2

0 = 5000 (bottom 6 figures)
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Figure 5: Non-realizable, γ = 0.50 (top 4 figures) and γ = 0.99 (bottom 4 figures). To prevent
numerical issues, we set an upper limitm ≤ 250 in γ = 0.99, so we havem∗ = 250 forN = 10000.

D.3.2 FLE

Wu et al. (2023) did not officially suggest a rule of selecting the number of partitions T and their
sizes |D1|, · · · , |DT |, so we utilized its asymptotic result (Corollary 4.14 of (Wu et al., 2023)) to
construct the following heuristic rule based on pre-determined values of N0, T0, and l > 0,

T (N)
let
= log(

1
γ

)1− 1
2l

{
1

C
·
(

N

logN

) 1
2l
}
, where C0 > 0 satisfies T (N0) = T0. (202)

Note that larger value of l slows down the increasing speed of T (N). In addition, we prevent the
number of partition T from becoming too small, we put a lower bound T̃

T ∗(N) = max

{
T̃ , ⌊T (N)⌋

}
.

Then each partition has |Dt| = ⌊N/T ∗(N)⌋, but may have some remaining observations when N
is not divisble by the chosen T . In this case, we included all the remaining observations into the
last partition DT . The tuning parameters are chosen after multiple numerical experiments, and the
following choice (Table 7) seemed to work best.
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Table 7: Tuning parameters of FLE

Sample size l N0 T0 T̃
realizable, σ = 50 10 2000 25 15
realizable, σ = 5000 10 20000 25 15
non-realizable, γ = 0.50 0.7 3000 10 10
non-realizable, γ = 0.99 10 2000 25 15

D.3.3 QRTD

QRTD suggested in Equation (12) of Dabney et al. (2018b) was originally designed for updating
value distributions only conditioned on the state s ∈ S , not the action a ∈ A. However, we could
readily develop it towards the action-value distributions conditioned on s, a ∈ S ×A. That is, with
τi ∈ [0, 1] (1 ≤ i ≤ Nτ ) being cdf values and θi(s, a) being the corresponding quantile value, they
model the distribution to be uniform across θi(s, a),

Zθ(s, a) =
1

Nτ

Nτ∑
i=1

δθi(s,a).

In analogy to Equation (12) of Dabney et al. (2018b), we update it as follows, whenever a single
new observation (s, a, r, s′) is collected,

Sample i ∼ Unif
{
1, · · · , Nτ

}
(203)

θi(s, a)← θi(s, a) + α0 · {τi − 1(r + γz′ < θi(s, a))} where z′ ∼ Zθ(s′, a′), a′ ∼ π(·|s′).

The number of quantiles is chosen to be 99, that is τi = i/100 (1 ≤ i ≤ 99). As mentioned beneath
Equation (12) of Dabney et al. (2018b), we repeat the procedure (203) for multiple times within each
iteration, which we let to be the same as Nτ = 99 times in our case. We chose α0 = 5 for σ2 = 20
and α0 = 2 for σ2 = 5000 of realizable cases, since they worked fine empirically.
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D.4 SIMULATION RESULTS

D.4.1 REALIZABLE SCENARIO

The following is the simulation result in the realizable setting (Section D.2.2), where we tried a more
variety of sample sizes than Table 2. With the tuning parameters specified in D.3 for each method,
we compared EBRM, FLE, and QRTD. EBRM showed the lowest inaccuracy in all cases (Table 8).

Table 8: Mean Ē-inaccuracy (standard deviation in parenthesis) over 100 simulations under realiz-
ability (γ = 0.99) for σ2

0 = 20 (top) versus σ2
0 = 5000 (bottom). Smallest inaccuracy values are in

boldface.
Sample size 500 1000 2000 5000 10000 20000
EBRM 0.164 0.066 0.046 0.019 0.008 0.005

(0.227) (0.087) (0.060) (0.022) (0.010) (0.007)
FLE 17.729 8.802 5.533 2.385 1.220 0.761

(15.438) (9.175) (6.448) (2.883) (1.618) (0.888)
QRTD 149.338 64.259 48.679 46.032 49.402 49.965

(25.221) (23.160) (34.323) (30.909) (34.617) (31.458)

Sample size 2000 5000 10000 20000 50000 100000
EBRM 0.728 0.301 0.128 0.074 0.028 0.018

(0.920) (0.354) (0.167) (0.105) (0.034) (0.022)
FLE 24.603 14.482 6.528 5.062 2.662 1.522

(25.768) (16.101) (7.814) (6.007) (3.386) (1.985)
QRTD 105.274 75.173 70.483 74.398 73.533 77.358

(11.728) (21.515) (33.965) (52.039) (70.004) (62.997)

As was mentioned in Section 5, we also measured the estimation inaccuracy with expectation-
extended (6) Wasserstein-1 metric W1(Υ1,Υ2) for fairness. This could be approximated with R
package transport using randomly generated samples. The superiority of EBRM remains un-
changed.

Table 9: Mean W1-inaccuracy (standard deviation in parenthesis) over 100 simulations under real-
izability (γ = 0.99) for σ2

0 = 20 (top) versus σ2
0 = 5000 (bottom). Smallest inaccuracy values are

in boldface.
Sample size 500 1000 2000 5000 10000 20000
EBRM 2.176 1.523 1.339 0.985 0.782 0.706

(1.442) (0.864) (0.651) (0.388) (0.227) (0.171)
FLE 22.912 15.755 12.374 8.036 5.694 4.590

(12.774) (9.229) (7.843) (5.091) (3.773) (2.856)
QRTD 105.561 64.290 56.739 54.397 57.145 57.953

(12.418) (13.936) (23.716) (22.259) (24.314) (22.252)

Sample size 2000 5000 10000 20000 50000 100000
EBRM 21.221 15.532 12.371 11.178 9.971 9.694

(10.337) (6.117) (3.595) (2.717) (1.143) (0.802)
FLE 101.232 79.628 53.745 49.426 35.453 27.493

(58.586) (46.772) (33.948) (29.198) (21.370) (16.038)
QRTD 274.405 236.383 223.537 223.399 218.028 224.539

(11.003) (22.376) (38.935) (63.145) (82.134) (76.002)

Lastly, we also used W1 to compare the marginal distributions Υmarginal which is defined as the
mixture of {Υ(s, a) : s, a ∈ S ×A} with weights {bµ(s, a) : s, a ∈ S ×A}, as noted in Corollary
4.14 of Wu et al. (2023).
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Table 10: Mean W1-inaccuracy of marginal distributions (standard deviation in parenthesis) over
100 simulations under realizability (γ = 0.99) for σ2

0 = 20 (top) versus σ2
0 = 5000 (bottom).

Smallest inaccuracy values are in boldface.

Sample size 500 1000 2000 5000 10000 20000
EBRM 2.052 1.406 2.052 0.843 0.629 0.508

(1.524) (1.005) (0.778) (0.556) (0.350) (0.255)
FLE 22.835 15.694 12.328 8.013 5.596 4.591

(12.810) (9.272) (7.859) (5.113) (3.786) (2.945)
QRTD 97.856 56.694 47.738 45.764 49.851 49.877

(13.235) (14.905) (25.251) (25.656) (27.463) (25.945)

Sample size 2000 5000 10000 20000 50000 100000
EBRM 18.021 11.613 7.528 5.441 3.607 3.062

(12.227) (8.077) (5.306) (4.184) (2.487) (1.981)
FLE 94.556 71.430 46.740 44.915 31.774 23.378

(62.630) (51.205) (36.986) (31.905) (23.190) (18.076)
QRTD 247.308 198.257 191.908 195.787 194.908 202.076

(16.843) (29.911) (48.057) (73.533) (91.526) (86.031)

D.4.2 NON-REALIZABLE SCENARIO

Now we tried non-realizable settings with the misspecified model (201) of Section D.2.3, based on
tuning parameters determined in Tables 6 and 7. We could see EBRM approached the minimum
possible level of Energy Distance (13.327 for γ = 0.50 and 63.216 for γ = 0.99) as we increased
the sample size N . This forms contrast with FLE that even deteriorated as sample size grows, which
we can supposedly attribute to huge violation of completeness that FLE is based upon.

Table 11: Mean Ē-inaccuracy (standard deviation in parenthesis) under non-realizability for γ =
0.50 (top) VS γ = 0.99 (bottom). Smallest inaccuracy values are in boldface. Minimum possible
Ē-inaccuracy values are 13.237 (γ = 0.50) and 63.216 (γ = 0.99).

Sample size 2000 3000 5000 10000
EBRM 14.323 14.306 14.299 13.544

(0.209) (0.152) (0.128) (0.065)
FLE 15.199 15.206 15.171 15.171

(0.490) (0.374) (0.306) (0.227)

Sample size 2000 3000 5000 10000
EBRM 124.162 96.462 82.102 70.381

(42.117) (48.178) (37.470) (9.503)
FLE 448.837 488.535 625.682 781.287

(38.256) (43.141) (41.130) (41.192)
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Table 12: Mean W1-inaccuracy (standard deviation in parenthesis) under non-realizability for γ =
0.50 (top) VS γ = 0.99 (bottom). Smallest inaccuracy values are in boldface.

Sample size 2000 3000 5000 10000
EBRM 19.245 19.232 19.202 17.589

(0.405) (0.308) (0.258) (0.240)
FLE 15.036 15.049 15.047 15.037

(0.392) (0.330) (0.256) (0.197)

Sample size 2000 3000 5000 10000
EBRM 168.231 108.196 91.621 82.293

(24.009) (24.756) (17.601) (5.490)
FLE 258.802 280.319 350.925 433.074

(19.127) (21.680) (20.697) (21.534)

Table 13: Mean W1-inaccuracy of marginal distributions (standard deviation in parenthesis) under
non-realizability for γ = 0.50 (top) VS γ = 0.99 (bottom). Smallest inaccuracy values are in
boldface.

Sample size 2000 3000 5000 10000
EBRM 14.098 14.088 14.087 13.218

(0.227) (0.167) (0.142) (0.093)
FLE 13.954 13.977 13.968 13.970

(0.359) (0.292) (0.234) (0.184)

Sample size 2000 3000 5000 10000
EBRM 106.850 84.839 73.338 66.560

(39.076) (29.761) (17.974) (5.392)
FLE 258.141 279.687 349.984 432.014

(19.073) (21.771) (20.467) (21.903)
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