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ABSTRACT

Characterizing the computational power of neural network architectures in terms
of formal language theory remains a crucial line of research, as it describes lower
and upper bounds on the reasoning capabilities of modern AI. However, when em-
pirically testing these bounds, existing work often leaves a discrepancy between
experiments and the formal claims they are meant to support. The problem is that
formal language theory pertains specifically to recognizers: machines that receive
a string as input and classify whether it belongs to a language. On the other hand,
it is common instead to evaluate language models on proxy tasks, e.g., language
modeling or sequence-to-sequence transduction, that are similar in only an infor-
mal sense to the underlying theory. We correct this mismatch by training and
evaluating neural networks directly as binary classifiers of strings, using a general
method that can be applied to a wide variety of languages. As part of this, we
extend an algorithm recently proposed by Snæbjarnarson et al. (2025) for efficient
length-controlled sampling of strings from regular languages. We provide results
on a variety of languages across the Chomsky hierarchy for three neural architec-
tures: a simple RNN, an LSTM, and a causally-masked transformer. We find that
the RNN and LSTM often outperform the transformer, and that auxiliary train-
ing objectives such as language modeling can help, although no single objective
uniformly improves performance across languages and architectures. Our contri-
butions will facilitate theoretically sound empirical testing of language recogni-
tion claims in future work. We have released our datasets as a benchmark called
FLaRe1 (Formal Language Recognition), along with our code.2

1 INTRODUCTION

Large language models (LLMs) based on neural networks have been hailed for their impressive rea-
soning abilities. However, the precise scope of what they can and cannot do is hard to pin down. For-
tunately, formal language theory gives us a vocabulary for ascribing hard limits to the kinds of com-
putations neural networks can perform. For example, results from formal language theory allow us to
know with certainty that a transformer LM (without extra chain-of-thought steps) cannot determine
whether two regular expressions with repetition operators are equivalent; a transformer LM runs in
quadratic time, but the aforementioned problem provably requires exponential time (Sipser, 2013).

A long line of research has attempted to precisely characterize the class of problems neural archi-
tectures can solve in terms of formal languages (Siegelmann & Sontag, 1995; Gers & Schmidhuber,
2001; Weiss et al., 2018b; Merrill et al., 2020; Strobl et al., 2024b; Yang et al., 2024, inter alia).
Research in this line comes in two flavors: formal results that mathematically prove language class
bounds, often under simplifying assumptions, and empirical results that, in complementary fashion,
provide evidence of these bounds in practice. Simplifying assumptions for the transformer archi-
tecture have included the absence of layer normalization, the use of hard attention, and the use
of special positional encodings; see Strobl et al. (2024b) for a survey. Formal expressivity results

1https://github.com/rycolab/flare
2https://github.com/rycolab/neural-network-recognizers
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Figure 1: Summary of our empirical expressivity results. Dots represent languages, which are listed
in Table 1. A filled dot means that the architecture exhibits perfect length generalization (see Table 2
under “Expressivity”). R = regular, DCF = deterministic context-free, CF = context-free, CS =
context-sensitive. All architectures are limited to regular languages and the DCF language Majority.
The transformer is strictly less expressive than the RNN/LSTM on the languages we tested.

also typically do not comment on whether solutions are practically reachable through training, even
though the bias imposed by the training algorithm may render the set of solvable problems much
smaller than suggested by formal expressivity results (Hahn & Rofin, 2024). Empirical results are
therefore important for validating the practical relevance of formal results.

This paper aims to reconcile a subtle but important disconnect between empirical results and claims
about computational power. Formal language theory deals in recognizers: machines that receive
a string as input and classify whether it is a member of a language. For instance, the Chomsky
hierarchy and the classes P and NP are defined in terms of recognizers. However, some machine
learning papers overlook the finer points of these definitions. For instance, the recent study by
Delétang et al. (2023) purports to relate the expressivity of neural language models to the Chomsky
hierarchy with experiments that use neural networks as string-to-string functions. However, the
mismatch between the experimental setup and the actual definition of the Chomsky hierarchy means
that the paper would provide evidence about an analogous hierarchy of functions, which is not as well
understood formally. There are multiple ways to fix this mismatch: one could change the theoretical
claims to those of a hierarchy of string-to-string functions (Strobl et al., 2024a) without changing the
experiments;3 or, one could change the experiments to recognition to match the Chomsky hierarchy.
In this paper, we explore the latter approach.

Specifically, we propose a method of training neural networks as recognizers that suits a wide variety
of languages, and we use it to test simple RNNs, LSTMs, and transformers on 18 formal languages
across the Chomsky hierarchy. Our method for generating data only requires two language-specific
algorithms: randomly sampling positive examples within a particular length range, and membership
testing. We provide efficient instantiations for the class of regular languages based on work by Snæb-
jarnarson et al. (2025). We generate adversarial negative examples by modifying positive examples,
obviating the need for language-specific negative sampling (cf. Weiss et al., 2018b; Someya et al.,
2024; Bhattamishra et al., 2024). Like Delétang et al. (2023), our evaluation focuses on length gen-
eralization, but we also include two sets of experiments that carefully distinguish between tests of
inductive bias and expressivity. We also compare multiple training objectives in a multi-task learning
setup. We find that the transformer generally underperforms the RNN and LSTM, and all architec-
tures are limited to low levels of the Chomsky hierarchy (Figure 1). We have publicly released our
datasets as a benchmark called FLaRe (Formal Language Recognition), along with our code.

2 BACKGROUND

An alphabet, denoted Σ throughout this paper, is a non-empty, finite set of elements called symbols.
A string over Σ is a finite sequence of symbols in Σ. We use ε to denote the empty string. A
language (or formal language) over Σ is a (possibly infinite) set of strings over Σ. Let Σ∗ denote

3Hierarchies of language models have also been studied (Icard, 2020; Borenstein et al., 2024).
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the language of all possible strings over Σ. A recognizer is any computational device that receives a
string as input and produces a decision to accept or reject it as output, and we say that it recognizes
the language of strings that it accepts. A language class is a (possibly infinite) set of languages.
Throughout the rest of this paper, let us assume we are dealing with a specific language L over
alphabet Σ. For any string w ∈ Σ∗, we call the proposition w ∈ L the label of w.

2.1 FINITE AUTOMATA AND REGULAR LANGUAGES

Definition 1. A partial deterministic finite automaton (partial DFA) is a tupleA = (Q,Σ, δ, q0, F )
where (1) Q is a finite set of states, (2) Σ is an alphabet, (3) δ : Q× Σ→ Q ∪ {∅} is the transition
function, where ∅ indicates the absence of a transition, (4) q0 ∈ Q is the start state, and (5) F ⊆ Q
is the set of accepting states. If δ(q, a) = r ̸= ∅, we say that A has a transition from q to r that
scans a, and we write q

a−→ r ∈ δ. We define |δ| def
= |{(q, a) ∈ Q× Σ | δ(q, a) ̸= ∅}|.

Our definition of DFA is partial in the sense that we do not require an outgoing transition to exist
for all (q, a) ∈ Q× Σ. For simplicity, from now on, we will simply refer to partial DFAs as DFAs.
We call a sequence π of connecting states and transitions a path. If π’s transitions scan a1, . . . , an,
we say that π scans the string w = a1 · · · an. For any string w ∈ Σ∗, if there is a path that starts
in q0, scans w, and ends in an accepting state, we say that A accepts w and rejects it otherwise.
We say that A recognizes the language {w ∈ Σ∗ | A accepts w}. A language is regular if there is
a DFA that recognizes it. If all states in a DFA are reachable from the start state and can lead to an
accepting state, we call it trim.

Because we will present algorithms that use semirings and weighted DFAs, we introduce them here.

Definition 2. A monoid is a tuple (K,⊙, I), where K is a set, ⊙ is an associative binary operation,
and I ∈ K, called the identity element, satisfies I⊙ a = a⊙ I = a for all a ∈ K. If a⊙ b = b⊙ a
for all a, b ∈ K, we say that the monoid is commutative.

Definition 3. A semiring is a tuple (K,⊕,⊗,0,1) where (K,⊕,0) is a commutative monoid and
(K,⊗,1) is a monoid. Additionally, ⊗ distributes over ⊕: a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) and
(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c); furthermore, 0 is absorbing with respect to ⊗: 0⊗ a = a⊗0 = 0.

Definition 4. A weighted deterministic finite automaton (WDFA) over a semiring (K,⊕,⊗,0,1)
is a tuple A = (Q,Σ, δ, q0, ρ) such that (1) Q, Σ, and q0 are defined as in Def. 1,
(2) δ : Q × Σ → (Q × K) ∪ {∅} is the transition function, and (3) ρ : Q → K is the accept
weight function. If δ(q, a) = (r, w), we say that A has a transition from q to r that scans a with

weight w, and we write q
a/w−−→ r ∈ δ.

Rather than accepting or rejecting a string, a WDFA assigns it a weight. The weight of a path is
the product of the weights of its transitions and the accept weight of its last state. The weight of a
string is the weight of the path that scans it, or 0 if one does not exist. We can assign probabilities
to strings with the real semiring (R≥0,+,×, 0, 1) or, for numerical stability, the log semiring (R∪
{−∞}, log(exp(·) + exp(·)),+,−∞, 0). A WDFA must constitute a probability distribution in or-
der to allow sampling from it. One way to achieve this is by locally normalizing the WFDA per state.

Definition 5. A WDFA A = (Q,Σ, δ, q0, ρ) over the real semiring is called a probabilistic DFA

(PDFA) if for all q ∈ Q,
(∑

q
a/p−−→r∈δ

p

)
+ ρ(q) = 1, and A induces a probability distribution

over Σ∗.4

3 METHOD

We now give a method for generating datasets of formal languages and training neural networks
as recognizers. We address a number of challenges cited in past work, namely length-constrained
sampling, negative sampling, and the paucity of the training signal when training on binary labels.

4This second condition, known as tightness, is easily checkable in the case of WDFAs (Du et al., 2023).
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3.1 DATASET GENERATION

Here, we describe how to generate a set of N string–label pairs for language L, where the length
of every string falls in the range [nmin, nmax]. To do this, we will require two language-specific
algorithms: (1) an algorithm for sampling a string w from L such that |w| ∈ [nmin, nmax] (using a
distribution to be described in §3.1.1), and (2) an algorithm for determining whether a string w ∈ Σ∗

is a member of L.5 To generate N strings, we uniformly sample a label from {0, 1}N times, ensur-
ing a balanced dataset, and we generate a positive (§3.1.1) or negative (§3.1.3) string accordingly.

3.1.1 POSITIVE SAMPLING

The choice of probability distribution we sample from is important, as it affects the quality of train-
ing and evaluation; at a minimum, it should assign non-zero probability to all strings in L with
lengths in [nmin, nmax]. We detail our choices below.

When L is regular, we assume we have a trim DFAA = (Q,Σ, δ, q0, F ) that recognizes it. The set of
actions that may occur at each state consists of its outgoing transitions and, if it is an accepting state,
acceptance. We convert A to a PDFA A′ by assigning uniform probabilities to these actions at each
state (details in Algorithm 1). Let pA′ denote the probability distribution defined byA′, and W a pA′-
distributed string-valued random variable. Let NA′

def
= {n ∈ [nmin, nmax] | ∃w ∈ Σn, pA′(w) > 0}.

First, we sample a length n uniformly from NA′ . Then, we sample a string from the conditional
distribution pA′(W | |W| = n). This amounts to sampling from the distribution

p(w) = 1[ |w| ∈ NA′ ]
1

|NA′ |
pA′(W = w | |W| = |w|). (1)

We will show how to sample from NA′ and pA′(W | |W| = n) efficiently in §3.1.2. For non-regular
languages, we use language-specific distributions detailed in App. E.

3.1.2 EFFICIENT LENGTH-CONSTRAINED SAMPLING FOR REGULAR LANGUAGES

How do we compute NA′ and sample from pA′(W | |W| = n) efficiently? One approach would
be to construct a PDFA for pA′(W | |W| = n). We could do this by intersecting A′ with a DFA
that recognizes Σn, which would take O((|Q|+ |δ|)n) time. This would result in a WDFA that
is not necessarily probabilistic, so as a prerequisite for sampling from it, we would need to re-
distribute its weights to locally sum to 1 (Def. 5), using a procedure known as weight pushing
(Mohri, 2009) that would run in O((|Q|n)3 + |δ|n) time. Supposing nmin = 0, it would thus take
O(|Q|3n4

max + |δ|n2
max) time to do this for all lengths. This would not be scalable for our experi-

ments, in which we sample strings up to length nmax = 500. Fortunately, we can improve this by
a factor of O(n2

max) using an object proposed by Snæbjarnarson et al. (2025) called the binning
semiring. The key idea is to share computation among the different lengths by running a version
of the weight pushing algorithm—only once—that computes the normalized weights for all lengths.
Instead of weighting the DFA with probabilities, we use vectors that bin probabilities by each length
in [0, nmax].
Definition 6. LetW = (K,⊕,⊗,0,1) be a semiring, and let D ∈ Z≥0. For v ∈ KD+1, we write
v = (v0,v1, . . . ,vD). The Dth-order binning semiring with respect to the base semiringW is the
semiringWD = (KD+1, ⊕ , ⊗ , 0 , 1 ), where:

(u ⊕ v)i
def
= ui ⊕ vi (u,v ∈ KD+1; 0 ≤ i ≤ D) (2a)

(u ⊗ v)i
def
=

i⊕
j=0

uj ⊗ vi−j (u,v ∈ KD+1; 0 ≤ i ≤ D) (2b)

0
def
= (0, . . . ,0) 1

def
= (1,0, . . . ,0) (2c)

The indices of the vectors in the Dth-order binning semiring represent the values of an integer
counter from 0 to D; the meaning of the counter depends on how the semiring is used. We will use

5This is directly comparable to the classical learning theory of Gold (1967), which assumes the availability
of a “text” of positive examples and an “informant” that provides labels.
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the counter to keep track of the number of symbols scanned by a DFA, i.e., the length of a sampled
string. To do length-constrained sampling from the PDFA A′, we lift it to a nmax

th-order binning

semiring-weighted DFA AD as follows. For every transition q
a/p−−→ r in A′, we set the weight

of q a−→ r in AD to (0, p,0, . . . ,0), indicating that the transition scans exactly one symbol with
probability p. For every state with accept weight p, we set its accept weight in AD to (p,0, . . . ,0),
indicating that it accepts (and scans no symbols) with probability p. A similar interpretation applies
to anything with a weight, including transitions, accepting states, paths, and strings.

Running a semiring generalization of weight pushing onAD allows us to compute exactly the quan-
tities we need for efficient sampling from pA′(W | |W| = n). The key idea is that for every state
and 0 ≤ i ≤ D, it computes a probability distribution over actions (transitioning or accepting) con-
ditioned on scanning exactly i symbols in the future. Then NA′ is the set of all n for which we can
perform any action at q0 with nonzero probability, conditioned on scanning n symbols in the future.
The preprocessing step now takes O(|Q|3n2

max + |δ|n2
max) time, and sampling a string of length n

takes O(n log |δ|out) time, where |δ|out is the maximum out-degree of A. See App. B for details.

3.1.3 NEGATIVE SAMPLING AND MEMBERSHIP TESTING

To generate a negative example, we repeatedly propose a random string w until we achieve that
w /∈ L using a membership testing algorithm for L. We propose w in one of two ways, with uniform
probability. Half the time, we uniformly sample a length n from [nmin, nmax], then uniformly sam-
ple w from Σn. For many languages, this is very likely to produce a negative example, but one that
is so superficially dissimilar to positive examples that the classification problem becomes too easy
and fails to demonstrate the underlying algorithm. Prior work, therefore, typically uses language-
specific rules to generate adversarial negative samples (Weiss et al., 2018b; Bhattamishra et al., 2024;
Someya et al., 2024). To keep our methodology more general, the other half of the time, we propose
w by sampling a positive example and perturbing it with random edits (cf. Weiss et al., 2018a). More
precisely, we (1) sample the number of edits K from a geometric distribution that heavily favors
small K, and (2) iteratively apply K uniformly-sampled edits (single-symbol insertion, replace-
ment, or deletion). See App. A for details. Typically, this is much more likely to produce negative
examples that are difficult to distinguish from positive ones (see also our analysis in Figure 2).

Membership testing is necessary because it is possible that a random string w is inadvertently a
member of L. DFAs have a straightforward O(n)-time membership testing algorithm: start in the
initial state, follow the unique w-scanning path (if it exists), and accept if it ends in an accepting
state. For non-regular languages, we use language-specific membership testing algorithms detailed
in App. E. A limitation of this rejection sampling approach is that it is impractical when the com-
plement of L is small, i.e., when the expected probability of successfully sampling a negative string
is small. For many languages of interest, including all those we test in this paper, this probability is
reasonably large regardless of n, in which case it is not an issue.

3.2 NEURAL NETWORK ARCHITECTURES

We compare three neural network architectures: (1) a multi-layer simple RNN (Elman, 1990) with a
tanh activation function and learned initial hidden states, (2) a multi-layer LSTM (Gers & Schmid-
huber, 2001) with decoupled input and forget gates and learned initial hidden states, and (3) a
causally masked transformer encoder (Vaswani et al., 2017) with pre-norm (Wang et al., 2019;
Nguyen & Salazar, 2019) and sinusoidal positional encodings. In all cases, the model, M , receives
a string of symbols w = w1 · · ·wn ∈ Σn as input and produces a sequence of hidden vectors
h0,h1, . . . ,hn ∈ Rd, which are used to compute logits for the loss terms. For the simple RNN and
LSTM, the hidden vectors are the hidden states of the last layer. For the transformer, the hidden
vectors are the outputs of the last layer, and we always prepend a reserved BOS symbol to the input
to compute h0. See App. C for details.

We apply a learned affine transformation, called the recognition head, to the last hidden vector to
classify whether the string is a member of the language. Let σ(·) be the pointwise logistic function.
Then, we model the probability of acceptance as

pM (w ∈ L)
def
= σ(wR · hn + bR), (3)

5
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where wR ∈ Rd and bR ∈ R are learnable parameters. We say that the model accepts w if
pM (w ∈ L) ≥ 1

2 and rejects it otherwise.

3.3 TRAINING OBJECTIVES

In all experiments, we train a neural network to classify whether an input string is in L by minimizing
the binary cross-entropy of the recognition head (cf. Weiss et al., 2018b; Bhattamishra et al., 2023;
van der Poel et al., 2024; Hahn & Rofin, 2024; Bhattamishra et al., 2024). For any probability p and
proposition ϕ, we define the binary cross-entropy Hϕ(p) as follows:

Hϕ(p)
def
=

{
− log(p) if ϕ
− log(1− p) otherwise.

(4)

We minimize the following loss function:

LR(M,w)
def
= Hw∈L(pM (w ∈ L)) . (5)

However, using LR(M,w) as the only term in the training objective might not be enough. For one,
it might be difficult to learn to orchestrate a large number of internal computational steps given
only a single bit of information per example. Moreover, the gradient originates only from the last
timestep, which is problematic for the RNN and LSTM, which are susceptible to the exploding
and vanishing gradient problems. It is presumably for these reasons, in addition to the need for
negative sampling, that most prior work has shied away from a pure language recognition training
objective. One way to alleviate these issues is to provide the model with hints about intermediate
computational steps. Indeed, a common setup in past work is to have the model predict, for each
timestep t, the set of symbols that may appear at position t given the prefix w<t

def
= w1 · · ·wt−1

(Cleeremans et al., 1989; Gers & Schmidhuber, 2001; Schmidhuber et al., 2002; Rodriguez &
Wiles, 1997; Suzgun et al., 2019a;b;c; Bhattamishra et al., 2020a;b;c; Ebrahimi et al., 2020). Other
work uses language modeling, eschewing negative sampling entirely (Merrill, 2019; Hewitt et al.,
2020; DuSell & Chiang, 2020; 2022; 2023; 2024; Liu et al., 2023; Akyürek et al., 2024; Someya
et al., 2024; Borenstein et al., 2024).

To this end, we include experiments that add one or both of the following auxiliary loss terms
to the training objective for positive examples: (1) a language modeling loss term, LLM(M,w),
which requires the model to learn a distribution over the next symbol at each position, and (2) a
next-symbol prediction6 loss term, LNS(M,w), which requires the model to predict whether each
symbol may appear next at each position, given the prefix of w seen so far.

When we include the language modeling loss term, we add a language modeling head to the model
that computes conditional probabilities pM (a | w<t) for each timestep t and symbol a. We average
cross-entropy over timesteps to get the loss term. We now define this formally. Let ΣEOS

def
= Σ ∪

{EOS} and E ∈ R|ΣEOS|×d be a matrix of output embeddings, which is tied to the input embeddings
of the model. Then we define the loss term as follows:

pM (a | w<t)
def
= softmax(Eht−1)a (1 ≤ t ≤ n+ 1; a ∈ ΣEOS) (6a)

LLM(M,w)
def
=

1

n+ 1

n+1∑
t=1

− log pM (wt | w<t) (wn+1
def
= EOS). (6b)

Likewise, when we include the next-symbol prediction loss term, we add a next-symbol prediction
head. For any string u ∈ Σ∗, we define the set of valid next symbols NEXTL(·) as follows:

NEXTL(u)
def
= {a ∈ Σ | ∃v ∈ Σ∗, uav ∈ L} ∪ {EOS | u ∈ L}. (7)

We use binary cross-entropy to train the model to discern whether each symbol a ∈ ΣEOS is in
NEXTL(w<t), by computing the probability pM (a ∈ NEXTL(w<t)). We average cross-entropy
over symbol types and timesteps to get the loss term, which we denote formally as

pM (a ∈ NEXTL(w<t))
def
= σ(WNSht−1 + bNS)a (1 ≤ t ≤ n+ 1; a ∈ ΣEOS) (8)

6This is often called next character prediction in prior work.
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LNS(M,w)
def
=

1

n+ 1

n+1∑
t=1

1

|ΣEOS|
∑

a∈ΣEOS

Ha∈NEXTL(w<t)(pM (a ∈ NEXTL(w<t))) , (9)

where WNS ∈ R|ΣEOS|×d and bNS ∈ R|ΣEOS| are learned parameters. We say that at each timestep t,
the model predicts the set {a ∈ ΣEOS | pM (a ∈ NEXTL(w<t)) ≥ 1

2}. Unlike language modeling,
next-symbol prediction adds additional information to the training data, as NEXTL(w<t) can include
information about unobserved strings. For trim partial DFAs, we can easily precompute the set of
valid next symbols for each state based on the outgoing transitions (Algorithm 6). We use language-
specific rules for non-regular languages (App. E). The full loss function with all terms is

L(M,w)
def
= LR(M,w) + λLMLLM(M,w) + λNSLNS(M,w), (10)

where λLM, λNS ∈ R≥0 are coefficients that determine the importance of each auxiliary loss term.
Whenever an auxiliary loss term is not included, this is equivalent to setting λLM or λNS to 0. Note
that we never include them for negative examples. When computing the loss for a whole minibatch
of examples, we average the loss L(M,w) of the individual examples.

3.4 COMPARISON TO PRIOR WORK

Many past papers have used neural networks for language recognition, but each uses a slightly dif-
ferent methodology. Our work is an attempt to unify this methodology, to extend it to the broadest
possible class of languages, to compare different training objectives, and to spur theoretically sound
empirical work in the future. MLRegTest (van der Poel et al., 2024) proposes a recognition setup that
is specific to regular languages, whereas our method generalizes to any language that has tractable
algorithms for length-constrained positive sampling and membership testing, and whose comple-
ment is not small. MLRegTest samples efficiently from regular languages with small complements
by constructing a PDFA for the complement directly, but this technique is not available for many
higher language classes. As for positive sampling from DFAs, they sample uniformly from the set of
strings of length n, using an intersection-based approach similar to that described in §3.1.2. Their
preprocessing step runs in O(|Σ||Q|nmax(nmax − nmin) log(|Q|nmax)) time (App. F), whereas ours
runs in O(|Q|3n2

max + |δ|n2
max) time. Weiss et al. (2018a) also employ a perturbation-based neg-

ative sampling method that edits positive samples up to 9 times; we allow an unlimited number of
edits and provide a way of analyzing the ground-truth edit distance distribution in §5, Figure 2.

4 EXPERIMENTS

We test the performance of the three architectures in §3.2 on a variety of formal languages (Ta-
ble 1) that have proven to be of particular interest in prior work, and that come from various lev-
els of the Chomsky hierarchy. These include analogs of the transduction tasks used by Delétang
et al. (2023). For each regular language, we generate datasets using a hand-crafted DFA and the
algorithms described in §3.1.2. For the other languages, we use language-specific algorithms for
length-constrained sampling and membership testing. We describe all languages in more detail in
App. E. We call this collection of datasets FLaRe (Formal Language Recognition).

For each language, we sample a single, fixed training set of 10k examples with lengths in [0, 40].
We run separate experiments with two different validation sets that are designed to address different
scientific questions, each with 1k examples: a short validation set with string lengths in [0, 40], and
a long validation set with string lengths in [0, 80]. For any finite training set of strings, there are
infinitely many valid ways of extrapolating to longer strings; we refer to the way that a neural net-
work architecture disambiguates these possible solutions as its inductive bias. The short validation
set reveals an architecture’s inductive bias in the absence of any disambiguating information about
how it should generalize to longer lengths, as in the experiments of Delétang et al. (2023). The long
validation set, on the other hand, does include longer strings, and so the model’s performance on
strings that are longer than those in the training set modulates the learning rate schedule, early stop-
ping schedule, and model selection. In this way, it is more in line with expressivity work that seeks
to understand whether an architecture admits a certain solution at all, regardless of its inductive bias.

We use 5 layers for all models in all experiments. We automatically adjust the hidden vector size d so
that the number of parameters is as close as possible to 64k, excluding extra parameters for language
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Table 1: Formal languages tested in this paper and included in FLaRe. For each language, we show
the language class that it belongs to: regular (R), deterministic context-free (DCF), context-free
(CF), or context-sensitive (CS). Each language does not belong to the previous language classes.
Let cu(w) be the number of times substring u occurs in w, let wi→a be w with its ith symbol
replaced with a, and let ⟨x⟩ be the little-endian binary encoding of x ∈ Z≥0. See App. E for details.

Class Language Description Example String

R Even Pairs {w ∈ {0, 1}∗ | c01(w) + c10(w) is even} 010110
= {aua | a ∈ {0, 1}, u ∈ {0, 1}∗} ∪ {ε, 0, 1}

Repeat 01 {(01)n | n ≥ 0} 010101
Parity {w ∈ {0, 1}∗ | c1(w) is odd} 11011001
Cycle Navigation A sequence of left (<), right (>), stay (=) moves on a 5-

position cycle, then the final position (0-indexed).
>>=<>2

Modular Arithmetic Expression involving {+,−,×} and {0, . . . , 4}, then
the result mod 5. No operator precedence.

1-3×2=1

Dyck-(2, 3) Strings of balanced brackets with 2 bracket types and a
maximum depth of 3.

[()([])]()

First {1w | w ∈ {0, 1}∗} 100010

DCF Majority {w ∈ {0, 1}∗ | c1(w) > c0(w)} 101101
Stack Manipulation A stack from bottom to top, a sequence of push and pop

operations, and the resulting stack from top to bottom.
011 POP =10

Marked Reversal {w#wR | w ∈ {0, 1}∗} 001#100

CF Unmarked Reversal {wwR | w ∈ {0, 1}∗} 001100

CS Marked Copy {w#w | w ∈ {0, 1}∗} 001#001
Missing Duplicate {(ww)i→_ | w ∈ {0, 1}∗, 1 ≤ i ≤ 2|w|, (ww)i = 1} 1_011101
Odds First {a1b1 · · · anbna#a1 · · · anab1 · · · bn | 01010=00011

n ≥ 0; ai, bi ∈ {0, 1}; a ∈ {0, 1, ε}}
Binary Addition {⟨x⟩0i+⟨y⟩0j=⟨x+ y⟩0k | x, y, i, j, k ∈ Z≥0} 110+01=10100
Binary Multiplication {⟨x⟩0i×⟨y⟩0j=⟨xy⟩0k | x, y, i, j, k ∈ Z≥0} 110×0100=011
Compute Sqrt {⟨x⟩0i=⟨⌊

√
x⌋⟩0j | x, i, j ∈ Z≥0} 01010=1100

Bucket Sort Sequence of integers in {1, . . . , 5}, then # and the
sorted sequence.

45134#13445

modeling and next-symbol prediction heads. This ensures that all models are of comparable size
across architectures and languages. For the simple RNN and LSTM, d is the size of the hidden
state vectors. For the transformer, d is the model size dmodel. Every time we train a model, we
randomly sample certain hyperparameters (Bergstra & Bengio, 2012), namely initial learning rate,
minibatch size, and (when required) λLM and λNS. For every combination of architecture, loss
function variant, and type of validation set, we train 10 models. We use four loss function variants:
recognition with(out) language modeling and with(out) next-symbol prediction. Therefore, for every
architecture and validation set, we train 40 models. See App. D for details.

5 RESULTS

To test whether a model has learned the underlying recognition algorithm, our evaluation focuses
on the ability to generalize to inputs that are longer than those seen in training (cf. Delétang et al.,
2023). In Table 2, we show recognition accuracy on a test set with string lengths in [0, 500]. It has
5,010 examples, or an average of 10 examples per length. Under “Inductive Bias,” we select the loss
function with the highest mean accuracy on the test set from among the models trained on the short
validation set, and we report this mean accuracy. Although we could select a single model based on
performance on the validation set, this would result in noise due to the vagaries of model selection;
we find that the mean accuracy that each architecture converges to when aggregated across multiple
runs is more informative. Under “Expressivity,” we show the maximum test accuracy across all 40
models trained on the long validation set. See unabridged results and additional metrics in App. G.

We find that the RNN and LSTM outperform the transformer in most cases. In the inductive bias
experiments, the transformer outperforms the RNN and LSTM only on Even Pairs, First, and Major-
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Table 2: Accuracy on a test set with strings in the length range [0, 500]. The training data is in
the length range [0, 40]. “Inductive Bias” uses validation data in the length range [0, 40]. We show
mean accuracy and standard deviation across 10 runs for the loss function with the highest mean
accuracy on the test set. “Expressivity” uses validation data in the length range [0, 80]. We show
maximum accuracy across all 10 runs of all 4 loss functions. “Tf” = transformer, “RNN” = simple
RNN, “LSTM” = LSTM. Best scores among all three architectures are in bold.

Inductive Bias Expressivity

Language Tf RNN LSTM Tf RNN LSTM

Even Pairs 0.99±0.01 0.60±0.20 0.83±0.22 1.00 1.00 1.00
Repeat 01 0.72±0.09 0.97±0.07 0.97±0.07 0.86 1.00 1.00
Parity 0.56±0.03 0.71±0.24 0.90±0.20 0.60 1.00 1.00
Cycle Navigation 0.84±0.05 0.93±0.01 0.90±0.04 0.93 0.93 0.93
Modular Arithmetic 0.69±0.11 1.00±0.00 0.98±0.03 0.88 1.00 1.00
Dyck-(2, 3) 0.70±0.09 0.95±0.05 0.91±0.10 0.82 1.00 0.98
First 0.98±0.04 0.80±0.24 0.94±0.14 1.00 1.00 1.00
Majority 0.97±0.04 0.90±0.03 0.95±0.04 1.00 0.95 1.00
Stack Manipulation 0.66±0.14 0.84±0.16 0.75±0.17 0.87 0.93 0.91
Marked Reversal 0.64±0.12 0.70±0.18 0.74±0.17 0.87 0.95 0.95
Unmarked Reversal 0.58±0.03 0.72±0.08 0.76±0.01 0.63 0.81 0.88
Marked Copy 0.63±0.11 0.76±0.15 0.69±0.15 0.86 0.95 0.95
Missing Duplicate 0.66±0.08 0.82±0.10 0.85±0.07 0.86 0.95 0.94
Odds First 0.59±0.11 0.79±0.15 0.67±0.14 0.86 0.95 0.96
Binary Addition 0.64±0.13 0.74±0.12 0.74±0.12 0.88 0.92 0.92
Binary Multiplication 0.70±0.11 0.74±0.13 0.78±0.12 0.92 0.92 0.92
Compute Sqrt 0.67±0.10 0.78±0.12 0.84±0.07 0.86 0.89 0.89
Bucket Sort 0.63±0.08 0.84±0.09 0.69±0.13 0.88 0.96 0.83

ity. In the expressivity experiments, it is never the best (except by a hair on Binary Multiplication),
and it only outperforms the LSTM on Bucket Sort. In terms of languages that the architectures can
solve perfectly in the expressivity experiments, all architectures are limited to regular languages and
Majority (Figure 1). The transformer almost reaches, but does not quite reach, 100% accuracy on
Majority. We do see differences based on a language’s sensitivity, i.e., the tendency that changing a
bit in a string changes its label. Transformers struggle on high-sensitivity languages (Parity) and do
well on low-sensitivity languages (Even Pairs, First), in accordance with prior work (Hahn, 2020;
Bhattamishra et al., 2023; Hahn & Rofin, 2024). The LSTM outperforms the RNN on some lan-
guages that involve long-range dependencies (Even Pairs, First), likely thanks to its memory cell.
The LSTM can use its memory cell as a set of counters, which is useful for certain languages (Weiss
et al., 2018b); accordingly, we see that it outperforms the RNN on Majority, but surprisingly not
on Bucket Sort. Although Yao et al. (2021) gave a construction showing that the transformer can
recognize bounded Dyck languages, we see that it struggles on Dyck-(2, 3).

Although it is possible, in principle, for a model’s inductive bias to differ substantially from its ex-
pressivity, we see a remarkable consistency between inductive bias and expressivity. As expected, all
expressivity scores are higher than the corresponding inductive bias score. However, the ranking of
the architectures remains the same between inductive bias and expressivity for almost all languages;
it only changes slightly for Missing Duplicate and Odds First, and more noticeably for Bucket Sort.

Certain auxiliary loss terms do help in isolated cases: for example, next-symbol prediction is crucial
for the RNN to learn Even Pairs (Table 4). On the other hand, they are sometimes detrimental; for
example, language modeling results in lower accuracy for the LSTM on Parity (Table 6). However,
no term has a consistently positive or negative impact across languages and architectures (Table 3).
In fact, recognition alone is the most frequent best loss function, followed by next-symbol prediction;
loss functions that include language modeling help the least often. Remarkably, the RNN gets a
mean accuracy of 100% in the inductive bias experiments for Modular Arithmetic, using only a
recognition training objective.

We see accuracy ceilings in the expressivity results for Cycle Navigation, Binary Addition, Binary
Multiplication, and Compute Sqrt. To investigate this, we looked at the examples with the highest
cross-entropy. For Cycle Navigation, all architectures struggle on negative examples that have the
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Figure 2: Recognition cross-entropy (lower is better) as a function of edit distance for the trans-
former model shown under “Expressivity” in Table 2, on a separate dataset of 50 negative examples
in the length range [0, 500]. The dashed lines show log 2, the threshold for incorrect predictions.
Despite being trained on a large proportion of negative examples with low edit distance, the trans-
former still struggles on examples that resemble positive examples.

right format but the wrong digit at the end;7 in contrast, the RNN and LSTM got perfect accuracy on
a related task in Delétang et al. (2023). On Binary Addition, the transformer and RNN/LSTM fail for
different reasons. The RNN/LSTM only misclassify negative examples that have the right format but
incorrect arithmetic, but the transformer also misclassifies positive examples and negative examples
that have extra +, ×, or = symbols. The RNN and LSTM fail on Compute Sqrt for dissimilar reasons;
the RNN sometimes accepts invalid formats. Using larger models does not solve the problem; in
most cases, accuracy does not improve with model size (App. H).

How does using recognizers instead of string-to-string functions affect our findings? The most com-
parable sets of experiments are those of Delétang et al. (2023, Tables B.1 and B.5) and our inductive
bias experiments. Whereas they found that transformers struggle on Even Pairs and the RNN/LSTM
excel, we see the opposite. We both show that transformers struggle on Parity. Whereas they showed
that the RNN/LSTM perfectly solve Cycle Navigation, our results show otherwise, perhaps because
in our version, the model must additionally validate the format of the string rather than predict a
single digit. We see the same model ranking on Stack Manipulation, but not on Marked Reversal,
Odds First, Binary Addition, Binary Multiplication, Compute Sqrt, and Bucket Sort. Notably, the
RNN overperforms in our experiments, possibly due to our use of dropout, multiple layers, and a
different activation function. Whereas Delétang et al. (2023) found that accuracy often decreases
sharply with length, we find that recognition cross-entropy is usually stable (App. I).

In order to examine how the similarity of negative examples to positive examples affects classifica-
tion difficulty, for Repeat 01 and Dyck-(2, 3), we plot the transformer’s recognition cross-entropy
vs. the minimum edit distance between a string and any string in the language in Figure 2 (we do
not plot the RNN and LSTM because they get almost 100% accuracy). Note that the number of edits
K performed in §3.1 is an upper bound for, but not necessarily equal to, the true edit distance. We
give formal definitions and algorithms for computing edit distance in App. J. We do see that for both
languages, the lower the edit distance is, the more the transformer struggles, particularly near 1 and
2 edits. This confirms that strings with few perturbations are indeed adversarial (cf. van der Poel
et al., 2024), even when the training distribution is highly skewed toward few edits.

6 CONCLUSION

We have proposed a general method for training neural networks as recognizers of formal languages,
filling a crucial gap between formal results and experiments meant to support them. We also gave a
new, efficient algorithm for length-constrained sampling of strings from regular languages. We pro-
vided results for RNNs, LSTMs, and transformers on a wide range of formal languages commonly
used in prior work, showing that RNNs and LSTMs often outperform transformers. An interesting
question to address in future work is why transformers perform so much better on natural language
than on formal languages. We tested auxiliary training objectives that have been previously used as
a proxy for recognition and found that these do not improve model performance reliably. We have
publicly released our datasets as a benchmark called FLaRe (Formal Language Recognition).

7Using larger models, more adversarial examples, and more training data did not alleviate this issue.
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A DETAILS OF PERTURBATION SAMPLING

We perform perturbation sampling as follows. Given a positive string w ∈ L with |w| ∈
[nmin, nmax], we first sample a number of edits K from a geometric distribution with a success
probability of p = 1

2 . Note that this is highly skewed toward small K, ensuring that strings with
few edits (i.e., similar to positive examples) are well-represented in the dataset. Then, K times, we
randomly apply an edit as follows. Let w′ be the current edited version of w. We uniformly sample
a type of edit: insertion, replacement, or deletion. We disallow insertion if it would increase |w′|
beyond nmax, and deletion if it would decrease it below nmin. We disallow replacement if |Σ| = 1.
For each insertion, we uniformly sample an insertion position from {1, . . . , |w′| + 1} and a sym-
bol to insert from Σ. For each replacement, we uniformly sample a replacement position i from
{1, . . . , |w′|} and a new symbol from Σ \ {w′

i}. For each deletion, we uniformly sample a deletion
position from {1, . . . , |w′|}.

B DETAILS OF LENGTH-CONSTRAINED SAMPLING FOR REGULAR
LANGUAGES

Here, we discuss our length-constrained sampling algorithm for regular languages, and the binning
semiring, in more detail.

B.1 FURTHER EXPOSITION OF THE BINNING SEMIRING

Notice that if u is a vector whose only non-zero element is ui, and v is a vector whose only non-zero
element is vj , then u ⊗ v is a vector with the value ui ⊗ vj at index i+ j and 0 elsewhere. More
generally, Eq. (2b) convolves the two vectors, in effect marginalizing over all ways of reaching a
count of i for each 0 ≤ i ≤ D.

In the case of AD (§3.1.2), in which all transition and accept weights are vectors with at most
one non-zero element, the weight of any path is also a vector with at most one non-zero element,
whose index is equal to the number of symbols the path scans, and whose value is the product
of the original transition probabilities. We combine the weights of multiple paths by adding them
elementwise (Eq. (2a)).
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When the base semiring is the log semiring, as in AD, the ⊕ operation can be computed in O(D)
time, and the ⊗ operation (Eq. (2b)) in O(D2) time. When the base semiring is the real semiring,
the ⊗ operation can be computed in only O(D logD) using the fast Fourier transform, but since
this results in underflow when multiplying many probabilities, we do not use it in this paper.

B.2 CLOSED SEMIRINGS

A key component of our method is the semiring generalization of weight pushing (Mohri, 2009).
Weight pushing sums over an infinite number of paths in a WDFA, which requires the ability to
perform infinite summations in its semiring.

Definition 7. Let (K,⊕,⊗,0,1) be a semiring. Let a⊗i =
⊗i

j=1 a, and a∗ =
⊕∞

i=0 a
⊗i. If a∗ is

defined and in K for all a ∈ K, we say the semiring is closed.

In the real semiring, a∗ = 1
1−a . In the log semiring, a∗ = log 1

1−exp a = − log(1− exp(a)).

If a semiringW = (K,⊕,⊗,0,1) is closed, so is any Dth-order binning semiring with respect toW ,
i.e., WD = (KD+1, ⊕ , ⊗ , 0 , 1 ). We write v ∗ def

= ⊕∞
j=0 v

⊗ j . It has the following closed-form
solution.

(v ∗ )i = v∗
0 ⊗

 1 i ⊕
i⊕

j=1

vj ⊗ (v ∗ )i−j

 (0 ≤ i ≤ D) (11)

A derivation is given by Snæbjarnarson et al. (2025). The elements (v ∗ )i can be computed in order
of increasing i. Assuming ⊕, ⊗, and ∗ run in O(1) time, the total time complexity is O(D2), since
it involves O(D) iterations, each of which takes O(D) time.

B.3 ALGORITHMS

Here, we describe our algorithms for sampling strings from regular languages in more detail. Given a
DFAA and length range [nmin, nmax], we run the following steps once and for all for each language:

1. convert A to a PDFA A′, then convert A′ to a WDFA AD over the nmax
th-order binning

semiring with respect to the log semiring in O((|Q|+ |δ|)nmax) time (Algorithm 1);
2. push the weights of AD to get a new WDFA A′

D over the nmax
th-order binning semiring

with respect to the real semiring in O((|Q|3 + |δ|)n2
max) time (Algorithm 2), using the

backward algorithm (Algorithm 3) and Lehmann’s algorithm (Algorithm 4);
3. compute the subset of valid lengths NA′ ⊆ [nmin, nmax] in O(nmax − nmin) time (Algo-

rithm 5);
4. precompute the next-symbol sets for each state in O(|Q|+ |δ|) time (Algorithm 6).

The total runtime of these preprocessing steps is O(|Q|3n2
max + |δ|n2

max), being dominated by the
weight pushing step.

Afterwards, we can sample strings as many times as desired as follows:

1. uniformly sample a length n from NA′ in O(1) time;
2. sample a string of length n with next-symbol sets in O(n log |δ|out) time, where |δ|out is

the maximum out-degree of the automaton (Algorithm 7).
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Algorithm 1 Convert a partial DFA A to a WDFAAD over the nmax
th-order binning semiring with

respect to the log semiring. This implicitly creates an intermediate PDFA A′ over the real semiring
with uniform probabilities. Time complexity: O((|Q|+ |δ|)nmax).

1. def LIFTWEIGHTS(A = (Q,Σ, δ, q0, F ), nmax):
2. let AD = (Q,Σ, δ′, q0, ρ) be a new WDFA over the nmax

th-order binning semiring
with respect to the log semiring

3. for q ∈ Q :
4. k ← 0
5. for q

a−→ r ∈ δ :
6. k ← k + 1
7. if q ∈ F :
8. k ← k + 1
9. p← − log k ▷Set the probability to 1

k
(in log space)

10. for q
a−→ r ∈ δ :

11. add q
a/(−∞,p,−∞,...,−∞)−−−−−−−−−−−−−−→ r to δ′

12. if q ∈ F :
13. ρ(q)← (p,−∞, . . . ,−∞)
14. else
15. ρ(q)← (−∞, . . . ,−∞)

16. return AD

Algorithm 2 Weight pushing on AD, where AD is a WDFA over the Dth-order binning semiring
with respect to the log semiring. Given AD, produce a WDFA A′

D over the Dth-order binning
semiring with respect to the real semiring that is suitable for length-constrained sampling (Algo-
rithm 7). Also return the allsum weight z, which can be used to compute the set of valid lengths
(Algorithm 5). Time complexity: O((|Q|3 + |δ|)D2).

1. def PUSHWEIGHTS(AD = (Q,Σ, δ, q0, ρ)):
2. β ← BACKWARD(AD)
3. let A′

D = (Q,Σ, δ′, q0, ρ
′) be a new WDFA over the Dth-order binning semiring with

respect to the real semiring
4. for q ∈ Q :
5. let T be an empty mapping from Σ to (R ∪ {−∞})D+1

6. for q
a/v−−→ r ∈ δ :

7. T [a]← v ⊗ β[r]

8. T ← softmax
a

T [a, :] ▷Convert log probabilities to normalized probabilities. This may safely
return NaN for columns with all −∞.

9. for q
a/v−−→ r ∈ δ :

10. add q
a/T [a]−−−−→ r to δ′

11. z ← β[q0]
12. return (A′

D, z)
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Algorithm 3 Backward algorithm on a WDFA A over the closed semiring (K,⊕,⊗,0,1). Time
complexity: O(T⊕|Q|3 + T⊗|Q|3 + T∗|Q|+ T⊕|δ|), where T⊕, T⊗, and T∗ are the runtimes of ⊕,
⊗, and ∗, respectively.

1. def BACKWARD(A = (Q,Σ, δ, q0, ρ)):
2. let A be a matrix indexed by Q×Q full of 0

3. for q
a/w−−→ r ∈ δ :

4. A[q, r]← A[q, r]⊕ w

5. A← LEHMANN(A)
6. let β be a table indexed by Q
7. for q ∈ Q :
8. β[q]←

⊕
r∈Q

A[q, r]⊗ ρ(r)

9. return β

Algorithm 4 Lehmann’s algorithm for inverting matrix A ∈ KN×N in the closed semiring
(K,⊕,⊗,0,1). Time complexity: O(T⊕N

3 + T⊗N
3 + T∗N), where T⊕, T⊗, and T∗ are the run-

times of ⊕, ⊗, and ∗, respectively.
1. def LEHMANN(A):
2. for k = 1, . . . , N :
3. let A′ be a N ×N matrix full of 0
4. a← A[k, k]∗

5. for i = 1, . . . , N :
6. for j = 1, . . . , N :
7. A′[i, j]← A[i, j]⊕ (A[i, k]⊗ a⊗A[k, j])

8. A← A′

9. for k = 1, . . . , N :
10. A[k, k]← A[k, k]⊕ 1

11. return A

Algorithm 5 Given an allsum weight z ∈ (R ∪ {−∞})D+1, a minimum length nmin, and a max-
imum length nmax, where D ≥ nmax, compute the set of valid lengths NA′ . The allsum weight z
must be the second output of Algorithm 2. Time complexity: O(nmax − nmin).

1. def COMPUTEVALIDLENGTHS(z, nmin, nmax):
2. return {n ∈ {nmin, . . . , nmax} | zn > −∞}

Algorithm 6 Given a trim partial DFA A, precompute the next-symbol set for each state. Time
complexity: O(|Q|+ |δ|).

1. def COMPUTENEXT(A = (Q,Σ, δ, q0, F )):
2. let NEXT be a table indexed by Q
3. for q ∈ Q :
4. NEXT[q]← ∅
5. for q

a−→ r ∈ δ :
6. add a to NEXT[q]

7. if q ∈ F :
8. add EOS to NEXT[q]

9. return NEXT
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Algorithm 7 Sample a string of length n from a WDFA A′
D over the Dth-order binning semiring

with respect to the real semiring, where D ≥ n. Also output a sequence of n+ 1 next-symbol sets.
The DFAA′

D must be the first output of Algorithm 2, and NEXT must be the output of Algorithm 6.
Time complexity: O(n log |δ|out), where |δ|out is the maximum out-degree of A′

D.
1. def SAMPLE(A′

D = (Q,Σ, δ, q0, ρ), n, NEXT):
2. q ← q0
3. w ← ε
4. s← {NEXT[q]}
5. for i = n, . . . , 1 :

6. sample (a, r) ∼ p, where p((a, r)) = vi for q
a/v−−→ r ∈ δ ▷Log. time due to binary search.

7. q ← r
8. w ← wa
9. append NEXT[q] to s

10. return (w, s)

B.4 EXPLANATION AND DETAILS

The log semiring is used in Algorithm 1 instead of the real semiring in order to avoid underflow.

Running a semiring generalization of weight pushing on AD allows us to compute exactly the
quantities we need for efficient sampling from pA′(W | |W| = n). At every state, and for every
0 ≤ i ≤ D, it computes a probability distribution over (1) outgoing transitions and (2) whether to
accept, conditioned on scanning exactly i symbols in the future, according to the probabilities of
A′. It does this by computing (1) for every transition, the sum of the weights of all paths in AD

that start with that transition, and (2) for every state, the sum of the weights of all paths in AD that
start and end at that state. Once we have these weights, which are vectors, if we locally normal-
ize them elementwise at each state, we get the aforementioned probability distributions. Now, a
O(n)-time sampling algorithm for sampling a string of exactly length n becomes straightforward
(Algorithm 7). We start in q0 and initialize a counter i to n. Repeatedly, we sample transitions from
the normalized distributions for index i from the current state and decrement i for every symbol
scanned. We stop when we sample an accept action (this happens implicitly in Algorithm 7 after
i = 1, as the automaton is guaranteed by construction to accept at that point). The set of valid string
lengths NA′ is the set of all n for which we can take any transition or accept at q0, conditioned on
scanning n symbols in the future, with nonzero probability (Algorithm 5).

We now discuss details of the weight pushing algorithm. Let us define a path in a WDFA as follows
(cf. Def. 12).
Definition 8. For any WDFA A = (Q,Σ, δ, q0, ρ), a path is a sequence of states and transitions

π = r0
a1/w1−−−−→ r1 · · · rm−1

am/wm−−−−−→ rm (12)

such that for all i = 0, . . . ,m− 1, ri
ai+1/wi+1−−−−−−−→ ri+1 ∈ δ. We say that π scans the string a1 · · · am

and that the inner path weight of π is

wI(π)
def
=

m⊗
i=1

wi. (13)

The path weight of π is
w(π)

def
= wI(π)⊗ ρ(rm). (14)

Lehmann’s algorithm (Lehmann, 1977) computes the total inner weight of all paths between all pairs
of states. When a WDFA A contains cycles, this set of paths can be infinite, so a closed semiring
with a defined ∗ operation is required. We give Lehmann’s algorithm a table A indexed by Q × Q
such that

A[q, r] =
⊕

q
a/w−−→r∈δ

w (q, r ∈ Q). (15)
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Let Π(A, q ⇝ r) denote the (infinite) set of all paths starting at q and ending at r in A. Lehmann’s
algorithm computes a table A′ indexed by Q×Q where

A′[q, r] =
⊕

π∈Π(A,q⇝r)

wI(π) (q, r ∈ Q). (16)

This allows us to compute the backward weight of each state q, or the total weight of accepting if
starting in q.
Definition 9. For a WDFA A, the backward weight β[q] is the sum of the weights of all paths from
q to any other state.

β[q]
def
=

⊕
r∈Q,

π∈Π(A,q⇝r)

w(π). (17)

The quantity z = β[q0] is the total weight assigned by A to strings in Σ∗. We call it the allsum.

We use the backward weights for weight pushing. Weight pushing redistributes the weights of AD

so that the weight of each transition in A′
D is the normalized (infinite) sum of the weights of all

paths inAD that start with that transition (Algorithm 2, line 7). Note that unlike the standard weight
pushing algorithm (Mohri, 2009), we do not “normalize” the weights by left-multiplying them by
β[q]−1, where, in general, a−1 ∈ K is the solution to the equation a−1⊗ a = 1. The reason for this
is not because computing a−1 is hard; it is possible to do so by solving a system of linear equations.
The issue is that this would result in weights that add up elementwise to 1 = (1,0, . . . ,0), which
would not be useful for our purposes. Instead, we normalize them by dividing them elementwise,
which we do implicitly when we apply softmax (Algorithm 2, line 8).

In our implementation, we precompute the elementwise cumulative sum of the transition weights.
In our Python implementation of Algorithm 7, line 6, we pass the cumulative sum to the
python.choices function as the argument cum_weights in order to avoid recomputing it every
time. Note that python.choices runs in logarithmic time in the length of cum_weights due to its
use of binary search.

An important implementation detail is that all of the operations in Def. 6 and weight pushing are
amenable to vectorization, and we take advantage of this by accelerating it with PyTorch (Paszke
et al., 2019). This significantly improves the runtime of the preprocessing step.

C DETAILS OF NEURAL NETWORK ARCHITECTURES

In this section, we describe each of the neural network architectures referenced in §3.2 in more detail.
Our implementations for all three architectures are based on those provided by PyTorch (Paszke
et al., 2019). Each architecture consists of a configurable number of layers L. Each architecture
uses an input embedding matrix E′ to map each symbol wt of the input string to an embedding
xt = E′

wt
. The size of the embeddings is always d, the size of the hidden vectors. In the following,

DROPOUT(·) indicates the application of dropout.

C.1 SIMPLE RNN

Let h(ℓ)
t denote the hidden state of the ℓth layer at timestep t. We apply dropout to the input embed-

dings, the hidden states between layers, and the hidden states output from the last layer (Zaremba
et al., 2015). Our simple RNN architecture is defined as follows.

h
(0)
t

def
= xt = E′

wt
(1 ≤ t ≤ n) (18a)

h
(ℓ)
0

def
= tanh(w

(ℓ)
0 ) (1 ≤ ℓ ≤ L) (18b)

�h
(ℓ)
t

def
= DROPOUT(h

(ℓ)
t ) (0 ≤ ℓ ≤ L; 0 ≤ t ≤ n) (18c)

h
(ℓ)
t

def
= tanh(W

(ℓ)
h

[
�h

(ℓ−1)
t

h
(ℓ)
t−1

]
+ b

(ℓ)
h ) (1 ≤ ℓ ≤ L; 1 ≤ t ≤ n) (18d)

ht
def
= �h

(L)
t (0 ≤ t ≤ n) (18e)
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Here, w(ℓ)
0 ∈ Rd is a learned parameter, making the initial hidden state h

(ℓ)
0 of each layer learned.

Note that PyTorch’s RNN implementation includes redundant bias parameters bih and bhh; we have
modified it to use a single bias parameter b(ℓ)h per layer instead.

C.2 LSTM

As with the simple RNN, we apply dropout following Zaremba et al. (2015). Our LSTM architecture
is defined as follows. Let ⊙ denote elementwise multiplication.

h
(0)
t

def
= xt = E′

wt
(1 ≤ t ≤ n) (19a)

h
(ℓ)
0

def
= tanh(w

(ℓ)
0 ) (1 ≤ ℓ ≤ L) (19b)

�h
(ℓ)
t

def
= DROPOUT(h

(ℓ)
t ) (0 ≤ ℓ ≤ L; 0 ≤ t ≤ n) (19c)

i
(ℓ)
t

def
= σ(W

(ℓ)
i

[
�h

(ℓ−1)
t

h
(ℓ)
t−1

]
+ b

(ℓ)
i ) (1 ≤ ℓ ≤ L; 1 ≤ t ≤ n) (19d)

f
(ℓ)
t

def
= σ(W

(ℓ)
f

[
�h

(ℓ−1)
t

h
(ℓ)
t−1

]
+ b

(ℓ)
f ) (1 ≤ ℓ ≤ L; 1 ≤ t ≤ n) (19e)

g
(ℓ)
t

def
= tanh(W (ℓ)

g

[
�h

(ℓ−1)
t

h
(ℓ)
t−1

]
+ b(ℓ)g ) (1 ≤ ℓ ≤ L; 1 ≤ t ≤ n) (19f)

o
(ℓ)
t

def
= σ(W (ℓ)

o

[
�h

(ℓ−1)
t

h
(ℓ)
t−1

]
+ b(ℓ)o ) (1 ≤ ℓ ≤ L; 1 ≤ t ≤ n) (19g)

c
(ℓ)
t

def
= f

(ℓ)
t ⊙ c

(ℓ)
t−1 + i

(ℓ)
t ⊙ g

(ℓ)
t (1 ≤ ℓ ≤ L; 1 ≤ t ≤ n) (19h)

h
(ℓ)
t

def
= o

(ℓ)
t ⊙ tanh(c

(ℓ)
t ) (1 ≤ ℓ ≤ L; 1 ≤ t ≤ n) (19i)

c
(ℓ)
0

def
= 0 (1 ≤ ℓ ≤ L) (19j)

ht
def
= �h

(L)
t (0 ≤ t ≤ n) (19k)

Here, w(ℓ)
0 ∈ Rd is a learned parameter, making the initial hidden state h

(ℓ)
0 of each layer learned.

Note that PyTorch’s LSTM implementation includes pairs of redundant bias parameters: bii and bhi,
bif and bhf , big and bhg , and bio and bho. We have modified it so that each pair is replaced with a
single bias parameter per layer.

C.3 TRANSFORMER

We use PyTorch’s transformer implementation. Following Vaswani et al. (2017), we map input
symbols to vectors of size d with a scaled embedding layer and add sinusoidal positional encodings.
Note that Delétang et al. (2023) found that the type of positional encoding does not seem to have a
large impact on the transformer’s performance, whereas Ruoss et al. (2023) found that transformers
with randomized positional encodings perform better on the same set of tasks. We use 8 attention
heads in each layer, and we set the number of hidden units in each feedforward layer to 4d. We use
pre-norm instead of post-norm and apply layer norm to the output of the last layer. We use the same
dropout rate throughout the transformer. We apply it in the same places as Vaswani et al. (2017),
and, as implemented by PyTorch, we also apply it to the hidden units of feedforward sublayers and
to the attention probabilities of scaled dot-product attention operations. We always use BOS as the
first input symbol to the transformer, which has been shown to improve performance on formal
languages (Ebrahimi et al., 2020).

D DETAILS OF EXPERIMENTS

Here, we provide additional details about the models and training procedures used in §4.
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Wherever dropout is applicable, we use a dropout rate of 0.1. For the transformer, when adjusting d
to accommodate the parameter budget, we round it to the nearest multiple of 8, as PyTorch requires
it to be a multiple of the number of attention heads. We use Xavier uniform initialization (Glorot &
Bengio, 2010) to initialize the fully-connected layers in the recognition and next-symbol prediction
heads. For layer norm, we initialize weights to 1 and biases to 0. We initialize all other parameters
by sampling uniformly from [−0.1, 0.1].
For each epoch, we randomly shuffle the training set and group strings of similar lengths into the
same minibatch, enforcing an upper limit of B symbols per batch, including padding, BOS, and EOS
symbols. We train each model by minimizing the loss function defined in §3.3 using Adam (Kingma
& Ba, 2015). We clip gradients with a threshold of 5 using L2 norm rescaling. We take a checkpoint
every 10k examples (i.e., at the end of each epoch), at which point we evaluate the model on the
validation set and update the learning rate and early stopping schedules. We multiply the learning
rate by 0.5 after 5 checkpoints of no decrease in recognition cross-entropy on the validation set,
and we stop early after 10 checkpoints of no decrease. We select the checkpoint with the lowest
recognition cross-entropy on the validation set when reporting results. We train for a maximum of
1k epochs.

Every time we train a model, we randomly sample a number of hyperparameters. We randomly
sample the batch size B from a uniform distribution over [128, 4096]. We randomly sample the
initial learning rate from a log-uniform distribution over [0.0001, 0.01]. We randomly sample the
loss term coefficients λLM and λNS, when they are needed, from a log-uniform distribution over
[0.01, 10].

Our experiments are small enough that we are able to run them in CPU mode, without GPU accel-
eration.

E DETAILS OF LANGUAGES

Here, we give more detailed descriptions of the languages listed in Table 1. For each language, we
indicate whether it is regular (R), deterministic context-free (DCF), context-free (CF), or context-
sensitive (CS); this also indicates that the language does not belong to previous classes.

Even Pairs (R). Binary strings where the total number of 01 and 10 substrings is even. Equiva-
lently, this is the language of binary strings that have the same first and last symbol, or strings with
fewer than two symbols. This is a low-sensitivity language, since only changing the first or last bit
changes membership. This language corresponds to the Even Pairs task of Delétang et al. (2023).
This language is given as an example in Sipser (2013, Chapter 1.4); see also Example 1.11.

Positive Examples Negative Examples
ε
0
11
010100
11101101

01
10100
100110

Repeat 01 (R). The string 01 repeated any number of times. As a star-free language, it is a low-
sensitivity language under the uniform distribution over {0, 1}n for a given string length n, since
most strings are not in the language. However, under our distribution in which exactly half of the
strings are in the language, Repeat 01 can be considered a high-sensitivity language.

Positive Examples Negative Examples
ε
01
0101

0
10101
011001

Parity (R). Binary strings with an odd number of 1s. This is a high-sensitivity language, since
changing any bit changes membership. It appears commonly in the theoretical literature on the rep-
resentational capacity of transformers, since its high sensitivity makes it difficult for transformers
to represent the language (Hahn, 2020; Chiang & Cholak, 2022; Bhattamishra et al., 2023; 2020a;
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Hahn & Rofin, 2024). However, it can easily be learned by RNNs and scratchpad-augmented trans-
formers (Liu et al., 2023; Hahn & Rofin, 2024). This language corresponds to the Parity Check task
of Delétang et al. (2023).

Positive Examples Negative Examples
1
01011

ε
101110

Cycle Navigation (R). Suppose an agent is on a 5-state cycle, numbered from 0 to 4, starting at
state 0. Strings in this language consist of a sequence of moves—move right (>), move left (<), or
stay (=)—followed by the integer corresponding to the state reached after executing the sequence of
moves. This language corresponds to the Cycle Navigation task of Delétang et al. (2023).

Positive Examples Negative Examples
0
>=>><2
<=<>=<3
>=>==<1

3
>=>><4
<=<>=<
4=31<

Modular Arithmetic (R). An expression involving the digits {0, . . . , 4} and the operators
{+, -, ×}, then the result of evaluating that expression in modulo 5 arithmetic. All operators are
left-associative infix operators with equal precedence. Note that this is different from the Modular
Arithmetic (Simple) task of Delétang et al. (2023), which gives higher precedence to ×, which would
result in a more complex DFA.

Positive Examples Negative Examples
3=3
2+4+0-3=3
1-3×2=1

ε
1=4
2+4+0-3=2
1-3×2=0
-1=4
=×3+-0+

Dyck-(2, 3) (R). In general, the language Dyck-(k,m) contains strings of balanced brackets of
k types with a maximum nesting depth of m. We specifically test k = 2 and m = 3. Bounded
Dyck languages have been studied for RNNs (Hewitt et al., 2020; Bhattamishra et al., 2020b) and
transformers (Ebrahimi et al., 2020; Bhattamishra et al., 2020a;b; Yao et al., 2021; Wen et al., 2023)
both in terms of (empirical) representational capacity as well as interpretability. These languages
are star-free (Strobl et al., 2024b), and the language Dyck-(k,m) has a dot-depth of m. In this
sense, bounded Dyck languages span the (infinite) hierarchy of star-free languages, which have
been closely linked to transformers (Yang et al., 2024). Bhattamishra et al. (2020a) argue that
transformers struggle to learn languages beyond dot-depth 1.

Positive Examples Negative Examples
ε
([])
[()]
([()]())[()]

](]))[(]
([]
[(])
([(())]())[()]
)][(

First (R). Binary strings that start with 1. This is a low-sensitivity language, since only changing
the first bit changes membership. More concretely, it is a special case of a 1-Parity language, i.e.,
the Parity language restricted to a single position (Hahn & Rofin, 2024). Bhattamishra et al. (2023)
refer to such functions as 1-Sparse functions. Transformers have been shown to learn such sparse
functions well (Edelman et al., 2022; Bhattamishra et al., 2023; Hahn & Rofin, 2024).

Positive Examples Negative Examples
1
101110

ε
0
0111010
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Majority (DCF). Binary strings with more 1s than 0s. It is between low- and high-sensitivity,
since string membership flips only when half of the bits in the string are 1. This language has
been studied by Pérez et al. (2021); Merrill et al. (2022); Bhattamishra et al. (2023); Strobl (2023).
Although it lies higher on the Chomsky hierarchy than the high-sensitivity languages Parity and
Even Pairs, its lower sensitivity makes it easier for transformers to learn (Bhattamishra et al., 2023;
Hahn & Rofin, 2024).

Positive Examples Negative Examples
1
110
011011010

ε
001
1100

We generate a positive example by first sampling a length n uniformly from [max(nmin, 1), nmax],
then a number of 1s c1 uniformly from [⌊n/2⌋+1, n]. We compute the number of 0s as c0 = n− c1.
We return a random permutation of the string 0c01c1 .

To test whether a string is in the language, we simply return whether the number of 1s is greater than
the number of 0s.

To compute NEXTL(w<t), we always include {0, 1}, and we add EOS if w<t ∈ L.

Stack Manipulation (DCF). Each string starts with a binary string representing the contents of a
stack, written bottom to top. Then, there is a sequence of operations to be performed on the stack,
where popping is indicated with POP , pushing 0 is indicated with the string PUSH 0, and pushing 1
is indicated with the string PUSH 1. Popping from an empty stack is not allowed. Finally, there is
a =, and the contents of the resulting stack are written top to bottom (if the stack were not reversed,
this language would not be context-free). This language corresponds to the Stack Manipulation task
of Delétang et al. (2023); note that their version treats popping from an empty stack as a no-op.

Positive Examples Negative Examples
=
01011 POP PUSH 0 PUSH 1=101010
11 POP PUSH 0=01
01 POP POP PUSH 0 PUSH 1=10

ε
01011 POP PUSH 0 PUSH 1=010101
11= POP PUSH =01
01 POP POP POP PUSH 0 PUSH 1=10

To generate a positive example, we first sample the number of original stack symbols nstack and
then the number of push operations npush. Let npop be the number of pop operations. Note that
the length of the resulting stack is nstack + npush − npop, and the total length of the string is n =
nstack+2npush+npop+1+npush−npop = 2nstack+3npush+1. The minimum value of npush is 0.
So, following simple algebra, we sample nstack uniformly from

[
max(0, ⌈nmin−1

2 ⌉), ⌊nmax−1
2 ⌋

]
, and

then we sample npush uniformly from
[
max(0, ⌈nmin−2nstack−1

3 ⌉), ⌊nmax−2nstack−1
3 ⌋

]
. We sample

an initial stack uniformly from {0, 1}nstack . We then sample a sequence of operations while counting
the number of pushes generated so far and simulating the stack actions. At each step, we sample an
action uniformly from { PUSH , POP }. We disallow POP if the stack is empty. If we sample PUSH ,
we uniformly sample a pushed symbol from {0, 1}. We stop when we sample a PUSH and npush

pushes have already been generated (this allows POP to occur after the last push). We then add =
and the resulting stack.

To test whether a string is in the language, we scan it from left to right while checking that it has the
right format and simulating the stack actions. We push all 0s and 1s at the beginning to a stack. We
scan PUSH and POP commands and perform them on the stack, until we scan =. We reject if PUSH
is not followed by 0 or 1, or if we attempt to pop from an empty stack. We then check that the rest
of the string is equal to the resulting stack.

To compute NEXTL(w<t), we scan w in order of increasing t while simulating the stack actions, as
above. If w<t ends within the initial stack part, we set it to {0, 1, POP , PUSH , =}. If w<t ends with
POP , or a 0 or 1 after a PUSH , we include =, and we include PUSH if fewer than npush pushes have
been seen, and we include POP if the stack is not empty. If w<t ends with PUSH , we set it to {0, 1}.
There is only one correct string for the final stack; if w<t ends within the final stack part, we set it
to {0}, {1}, or {EOS} depending on what the correct string is.

25



Published as a conference paper at ICLR 2025

Marked Reversal (DCF). Strings of the form u#uR, where u is a binary string. This is a classic
example of a deterministic context-free language (Hopcroft et al., 2006). This corresponds to the
Reverse String task of Delétang et al. (2023), which explicitly marks the point when a model should
stop reading w and start generating wR. DuSell & Chiang (2020; 2022; 2023; 2024) showed that
LSTM and transformer language models struggle on a weighted version of this language compared
to stack-augmented neural networks.

Positive Examples Negative Examples
#
011#110
0#0
01001#10010

ε
011#101101
011#11
0#11#110#
011110

Let m = |u|. To generate a positive example, we first sample m uniformly from
[⌈max(0, nmin−1

2 )⌉, ⌊nmax−1
2 ⌋], then we sample u uniformly from {0, 1}m. We then return the string

u#uR. Notice that the string is guaranteed to be in the desired length range.

To test whether a string is in the language, we check whether there is a single #, and whether the
substring after the marker is the reverse of the substring before the marker.

To compute NEXTL(w<t), we scan w in order of increasing t. If w<t ends within the first half
(before the # symbol), then the set of next valid symbols is set to {0, 1, #}. The rest of the string is
deterministic based on w, and we use one of {0}, {1}, or {EOS} as needed.

Unmarked Reversal (CF). Strings of the form uuR, where u is a binary string. This is a classic
example of a nondeterministic context-free language (Hopcroft et al., 2006, p. 254). DuSell &
Chiang (2020; 2022; 2024) showed that LSTM and transformer language models struggle on this
language compared to stack-augmented neural networks.

Positive Examples Negative Examples
ε
011110
00
0100110010

1
01110
011100
11110

Let m = |u|. To generate a positive example, we first sample m uniformly from [⌈nmin

2 ⌉, ⌊
nmax

2 ⌋],
then we sample u uniformly from {0, 1}m. We then return the string uuR.

To test whether a string is in the language, we check whether the length of the string is even and
whether the second half is the reverse of the first half.

To compute NEXTL(w<t), we always include {0, 1}, and we include EOS if w<t ∈ L.

Marked Copy (CS). Strings of the form u#u, where u is a binary string. This is a classic exam-
ple of a mildly context-sensitive language (Joshi, 1985). This language is somewhat similar to the
Duplicate String task of Delétang et al. (2023), which requires a model to read u and output uu,
which is more like the language {u#uu | u ∈ {0, 1}∗}. Jelassi et al. (2024) showed both theoret-
ically and empirically that transformers are better at copying than modern recurrent architectures,
since the latter are constrained by their hidden state bottleneck. This language is also analogous to
the String Equality task in Bhattamishra et al. (2024), who also found that transformers outperform
both modern and classic recurrent architectures. DuSell & Chiang (2023) showed that LSTM lan-
guage models struggle on a weighted version of this language compared to certain stack-augmented
LSTMs.

Positive Examples Negative Examples
#
011#011
0#0
01001#01001

ε
011#01
011011
0##11#01#1

We generate positive examples, test membership, and compute NEXTL(w<t) similarly to Marked
Reversal.
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Missing Duplicate (CS). This language contains strings of the form uu, where u is a binary string,
but where one of the symbols in uu has been replaced with _, and where the replaced symbol was
a 1. This language corresponds to the Missing Duplicate task of Delétang et al. (2023), which does
not explicitly mark the boundary between the two us.

Positive Examples Negative Examples
_1
001000_0
11_01001110100

ε
00100_10
11101001110100
_01_1_00

To generate a positive example, we sample m = |u| uniformly from [max(1, ⌈nmin

2 ⌉), ⌊
nmax

2 ⌋]. To
ensure that u contains at least one 1, we first sample a string u′ uniformly from {0, 1}m, then we
uniformly at random replace one of its symbols with 1 to get u. We uniformly at random pick one
of the 1s in uu and replace it with _ to get the final string w.

To test whether a string is in the language, we check if its length is even and if it contains exactly
one _. We replace the _ with 1 and check if the first half is the same as the second half.

To compute NEXTL(w<t), if w<t does not contain _, we set it to {0, 1, _}. If w<t does contain _,
we include {0, 1}, and we add EOS if w<t ∈ L.

Odds First (CS). A binary string u, then #, then a string v = uoddueven, where uodd is all
the symbols in u at odd positions, and ueven is all the symbols in u at even positions. In other
words, strings in this language are of the form u′a#u′

oddaueven, where u′ is the perfect shuffle of
u′
odd, ueven ∈ {0, 1}∗, and a ∈ {0, 1, ε}. This corresponds to the Odds First task of Delétang et al.

(2023).

Positive Examples Negative Examples
#
1#1
010101#000111
0101010#0000111
10011011#10110101

ε
010101#000110
010101000111
0#1##

To generate a positive example, we first sample a string u as in Marked Reversal. We then return
u#uoddueven.

To test whether a string is in the language, we first check whether it contains exactly one #. We let
the string to the left of # be u, and we check if the string to the right is equal to uoddueven.

To compute NEXTL(w<t), if w<t ends before #, we set it to {0, 1, #}. The rest of the string is
deterministic based on the value of u, and we use either {0}, {1}, or {EOS} to match uoddueven.

Binary Addition (CS). Strings of the form ux+uy=uz , where ux, uy, uz are little-endian binary
encodings (possibly with trailing 0s) of integers x, y, z ∈ Z≥0, and x + y = z. The number 0 is
encoded as 0, but not ε. This language corresponds to the Binary Addition task of Delétang et al.
(2023).

Positive Examples Negative Examples
0+0=0
001+1=101
001000+100=1010000
101+01011=11111
1+11=001

ε
+=
001+1=011
100+1=101
0011101
=0+10=1+

We generate a positive example as follows. Note that, in general, binary encodings must have at
least one bit, and a binary string of length m can only encode integers in [0, 2m − 1]. Let nx =
|ux|, ny = |uy|, nz = |uz|. We first sample nx, ny, nz , then we sample x, y, z that satisfy x ≤
2nx − 1, y ≤ 2ny − 1, z = x + y ≤ 2nz − 1. We sample a total string length n uniformly from
[max(5, nmin), nmax]. Let nx = n′

x + 1, ny = n′
y + 1, nz = n′

z + 1. We sample n′
x, n

′
y, n

′
z using a

Dirichlet distribution with parameters (1, 1, 1) so that nx, ny, nz are equally distributed and always
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sum to n−2. If ny > nx, we swap them, so that nx ≤ ny; this will make the distribution over x less
restrictive on y, because it reduces cases where x is so large that few y can be chosen that satisfy
the constraint on z. We sample x uniformly from [0,min(2nx − 1, 2nz − 1)], and y uniformly from
[0,min(2ny − 1, 2nz − 1− x)]. We encode x, y, z = x+ y as ux, uy, uz , padding them with 0s as
needed to reach lengths of exactly nx, ny, nz . In order to avoid bias in the distribution of x vs. y,
with probability 1

2 , we swap ux and uy . We return ux+uy=uz .

To test whether a string is in the language, we simply check that it has the expected format, parse
x, y, z, and check that x+ y = z.

To compute NEXTL(w<t), we scan w in order of increasing t. Before ux, we set it to {0, 1}. After
any symbol in ux, we set it to {0, 1, +}. Similarly, before uy , we set it to {0, 1}, and after any symbol
in uy , we set it to {0, 1, =}. After =, we must deterministically generate ⟨z⟩, so we set it to {0} or
{1} as needed. After ⟨z⟩, and after any trailing 0s, we set it to {0, EOS}.

Binary Multiplication (CS). Strings of the form ux×uy=uz , where, like Binary Addition,
ux, uy, uz are binary encodings of integers x, y, z ∈ Z≥0, and xy = z. This language corresponds
to the Binary Multiplication task of Delétang et al. (2023).

Positive Examples Negative Examples
0×0=0
001×11=0011
001000×1100=0011000
1001×0111=0111111

ε
×=
001×11=1011
100×1010=0101000
0011101
=0×10=1×

We generate a positive example similarly to Binary Addition. We first sample nx, ny, nz , then we
sample x, y, z that satisfy x ≤ 2nx − 1, y ≤ 2ny − 1, z = xy ≤ 2nz − 1. We sample n, nx, ny, nz

in the same way as Binary Addition, except the Dirichlet distribution has parameters (1, 1, 2). This
means nz tends to be twice as big as nx or ny; we do this because the number of bits required for
xy is approximately the sum of the bits required for x and y. Note that guaranteeing nx ≤ ny is
particularly important here for a good distribution of y. We sample x uniformly from [0, 2nx −1]. If
x > 0, we sample y uniformly from [0,min(2ny −1, ⌊ 2

nz−1
x ⌋)]. Otherwise, we sample y uniformly

from [0, 2ny − 1]. The rest is like Binary Addition, except we return ux×uy=uz .

We test whether a string is in the language and compute NEXTL(w<t) like Binary Addition, except
we use xy = z instead of x+ y = z, and × instead of +.

Compute Sqrt (CS). Strings of the form ux=uz , where, similarly to Binary Addition and Binary
Multiplication, ux, uz are binary encodings of integers x, z ∈ Z≥0, and ⌊

√
x⌋ = z. This language

corresponds to the Compute Sqrt task of Delétang et al. (2023).

Positive Examples Negative Examples
0=0
011=11
00101=001
00101000=00100

ε
=
011=01
0=11=1

We generate a positive example similarly to Binary Addition and Binary Multiplication. Let nx =
|ux|, nz = |uz|. We first sample nx, nz , then we sample x, z that satisfy x ≤ 2nx − 1, z =
⌊
√
x⌋ ≤ 2nz − 1. We sample a total string length n uniformly from [max(3, nmin), nmax]. Let

nx = n′
x + 1, nz = n′

z + 1. We sample n′
x, n

′
z using a Dirichlet distribution with parameters (2, 1),

so that nx and nz sum to n − 2, and nx tends to be twice as big as nz . We do this because the
number of bits required for ⌊

√
x⌋ is about half of that required for x. We sample x uniformly from

[0,min(2nx − 1, 22nz − 1)]. We encode x, z = ⌊
√
x⌋ as ux, uz , padding them with 0s as needed to

reach lengths of exactly nx, nz . We return ux=uz .

To test whether a string is in the language, we simply check that it has the expected format, parse
x, z, and check that ⌊

√
x⌋ = z.
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To compute NEXTL(w<t), we scan w in order of increasing t. Before ux, we set it to {0, 1}. After
any symbol in ux, we set it to {0, 1, =}. After =, we must deterministically generate ⟨z⟩, so we set it
to {0} or {1} as needed. After ⟨z⟩, and after any trailing 0s, we set it to {0, EOS}.

Bucket Sort (CS). A string u ∈ {1, . . . , 5}∗, then #, then the digits of u in sorted order. Note that
it is only necessary to keep track of the counts of each type of digit to recognize this language. This
language corresponds to the Bucket Sort task of Delétang et al. (2023).

Positive Examples Negative Examples
#
4512345#1234455
31204124#01122344
41#14

ε
4512345#1434255
31204124#0112
1#2##12

Let m = |u|. To generate a positive example, we first sample m as in Marked Reversal, then we
sample u uniformly from {1, . . . , 5}m. We then compute the sorted string u′ and return the string
u#u′.

To test whether a string is in the language, we check whether there is a single #, and whether the
substring after the marker is the bucket sort of the substring before the marker.

To compute NEXTL(w<t), we scan w in order of increasing t. If w<t ends within the first half
(before the # symbol), then the set of next valid symbols is set to {1, . . . , 5, #}. The rest of the string
is deterministic based on the value of u, and we use one of {1}, . . . , {5}, {EOS} as needed.

F LENGTH-CONSTRAINED SAMPLING FOR REGULAR LANGUAGES IN
MLREGTEST

MLRegTest (van der Poel et al., 2024) assumes the availability of a complete DFA A =
(Q,Σ, δ, q0, F ) that recognizes L. In order to sample strings within a given length range
[nmin, nmax], it performs the following steps for each length n in [nmin, nmax].

1. Construct a DFA that recognizes Σn and intersect it with A in O(|Σ||Q|n) time, resulting
in an acyclic DFA with O(|Q|n) states.

2. Minimize the DFA in O(|Σ||Q|n log(|Q|n)) time, resulting in O(|Q|n) states.
3. Topologically sort the states, then run a dynamic programming algorithm that counts the

number of accepting paths leading out of each state, all in O(|Σ||Q|n) time. This is equiv-
alent to running the backward algorithm in the counting semiring (Z≥0,+,×, 0, 1).

4. Use the path counts to make the DFA a PDFA encoding the uniform distribution over
L ∩ Σn.

The total runtime of this approach is O(|Σ||Q|nmax(nmax − nmin) log(|Q|nmax)), being dominated
by the minimization step. If minimization is removed, it is only O(|Σ||Q|nmax(nmax − nmin)).

G FULL RESULTS

We show the best loss functions for each architecture, language, and validation set in Table 3.

We show unabridged versions of the results from §5 for all languages in Tables 4 to 21. Every
row is aggregated across 10 runs. The scores shown in each row are of the model with the lowest
recognition cross-entropy on the validation set (this value is shown under “Val. CE”; lower is better).
All columns are accuracy scores except for “Val. CE.” We show the best score in each column in
bold.

Here, we refer to the test set used in §5, which has lengths in [0, 500], as the long test set. We also
report accuracy on a short test set of 1k held-out examples with lengths in [0, 40]. The short test set
only includes examples that do not occur in the training set, short validation set, or long validation
set; it tests how well a model generalizes to unseen strings within the same length distribution. For
languages where the training and validation data already includes all possible strings, we leave this
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Table 3: The best loss functions, corresponding to the accuracy scores reported in Table 2. “R” =
recognition; “LM” = language modeling; “NS” = next-symbol prediction. No single loss function
consistently results in the best performance; the most frequent winner is just R.

Inductive Bias Expressivity

Language Tf RNN LSTM Tf RNN LSTM

Even Pairs R R+LM+NS R R R+NS R
Repeat 01 R R+NS R R R R
Parity R+NS R+NS R+NS R+NS R+LM R
Cycle Navigation R+LM+NS R R R R R
Modular Arithmetic R R R R+NS R R
Dyck-(2, 3) R+LM R+LM+NS R R+NS R+NS R+NS
First R+NS R+LM R+LM R R R
Majority R+LM R+NS R+NS R+LM R+LM+NS R+LM+NS
Stack Manipulation R R+NS R R+LM+NS R R+LM
Marked Reversal R+NS R+NS R R+LM R+LM R+LM
Unmarked Reversal R R+NS R+NS R R+NS R+NS
Marked Copy R+NS R+LM R R+NS R R
Missing Duplicate R+LM+NS R R R+LM+NS R+LM+NS R+LM
Odds First R R R R+LM+NS R R+LM+NS
Binary Addition R R+NS R R+LM R+NS R+NS
Binary Multiplication R+NS R R+NS R+NS R+LM R+NS
Compute Sqrt R R R R R R
Bucket Sort R R+LM+NS R R+NS R+NS R+LM+NS

column blank. We also report accuracy on the training and validation sets to show how well the
model fits the training data.

In order to see the effects of model selection, we also report the mean and maximum accuracy
scores on the long test set across all runs, as it is often the case that the model that generalizes best
to longer strings is not the one with the lowest recognition cross-entropy. Although this kind of
test-set-based model selection is impossible in the wild, for our purposes it is useful for revealing
when an architecture is capable of chancing upon a solution that generalizes, even if it cannot be
reliably found with model selection.

In all rows, “+LM” means a language modeling loss term is added, “+NS” means a next-symbol
prediction loss term is added, “S” means a short validation set is used, and “L” means a long val-
idation set is used. “Train” is accuracy on the training set, “Val. CE” is recognition cross-entropy
on the validation set (which is used as the model selection criterion), “Val.” is accuracy on the val-
idation set, “S. Test” is accuracy on the short test set, “L. Test” is accuracy on the long test set, “L.
Test (Mean)” is “L. Test” averaged across runs with standard deviations, and “L. Test (Max)” is the
maximum.
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Table 4: Full results on the Even Pairs language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 1.000 0.000 1.000 1.000 1.000 0.994 ± 0.01 1.000
Tf (L) 1.000 0.000 1.000 1.000 1.000 0.999 ± 0.00 1.000
Tf (+LM, S) 1.000 0.000 1.000 1.000 0.997 0.978 ± 0.04 1.000
Tf (+LM, L) 1.000 0.000 1.000 1.000 0.923 0.956 ± 0.06 1.000
Tf (+NS, S) 1.000 0.000 1.000 1.000 0.998 0.994 ± 0.01 1.000
Tf (+NS, L) 1.000 0.000 1.000 1.000 1.000 0.996 ± 0.01 1.000
Tf (+LM+NS, S) 1.000 0.000 1.000 1.000 0.992 0.959 ± 0.06 1.000
Tf (+LM+NS, L) 1.000 0.000 1.000 1.000 1.000 0.992 ± 0.01 1.000
RNN (S) 0.549 0.673 0.565 0.513 0.512 0.504 ± 0.01 0.517
RNN (L) 0.542 0.680 0.527 0.480 0.509 0.508 ± 0.01 0.518
RNN (+LM, S) 0.541 0.674 0.559 0.520 0.505 0.506 ± 0.01 0.517
RNN (+LM, L) 0.576 0.658 0.607 0.575 0.640 0.523 ± 0.04 0.640
RNN (+NS, S) 1.000 0.000 1.000 1.000 1.000 0.556 ± 0.15 1.000
RNN (+NS, L) 1.000 0.000 1.000 1.000 1.000 0.621 ± 0.19 1.000
RNN (+LM+NS, S) 1.000 0.000 1.000 1.000 1.000 0.601 ± 0.20 1.000
RNN (+LM+NS, L) 1.000 0.000 1.000 1.000 1.000 0.614 ± 0.20 1.000
LSTM (S) 1.000 0.000 1.000 1.000 1.000 0.831 ± 0.22 1.000
LSTM (L) 1.000 0.000 1.000 1.000 0.761 0.900 ± 0.15 1.000
LSTM (+LM, S) 1.000 0.000 1.000 1.000 1.000 0.554 ± 0.15 1.000
LSTM (+LM, L) 0.538 0.680 0.520 0.518 0.509 0.503 ± 0.01 0.515
LSTM (+NS, S) 1.000 0.000 1.000 1.000 1.000 0.611 ± 0.20 1.000
LSTM (+NS, L) 1.000 0.000 1.000 1.000 1.000 0.697 ± 0.22 1.000
LSTM (+LM+NS, S) 0.539 0.671 0.551 0.508 0.511 0.504 ± 0.01 0.516
LSTM (+LM+NS, L) 0.537 0.681 0.513 0.518 0.497 0.503 ± 0.01 0.517

Table 5: Full results on the Repeat 01 language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.999 0.000 1.000 0.707 0.717 ± 0.09 0.844
Tf (L) 0.994 0.134 0.969 0.593 0.693 ± 0.10 0.857
Tf (+LM, S) 0.998 0.001 1.000 0.833 0.675 ± 0.12 0.847
Tf (+LM, L) 0.997 0.087 0.979 0.617 0.687 ± 0.08 0.838
Tf (+NS, S) 1.000 0.000 1.000 0.546 0.710 ± 0.10 0.842
Tf (+NS, L) 0.971 0.126 0.962 0.845 0.734 ± 0.10 0.845
Tf (+LM+NS, S) 0.999 0.003 1.000 0.681 0.659 ± 0.09 0.842
Tf (+LM+NS, L) 0.997 0.105 0.970 0.592 0.706 ± 0.10 0.850
RNN (S) 1.000 0.000 1.000 1.000 0.935 ± 0.10 1.000
RNN (L) 1.000 0.000 1.000 1.000 0.880 ± 0.10 1.000
RNN (+LM, S) 1.000 0.000 1.000 1.000 0.956 ± 0.09 1.000
RNN (+LM, L) 1.000 0.000 1.000 1.000 0.948 ± 0.08 1.000
RNN (+NS, S) 1.000 0.000 1.000 1.000 0.969 ± 0.07 1.000
RNN (+NS, L) 1.000 0.000 1.000 1.000 0.978 ± 0.07 1.000
RNN (+LM+NS, S) 1.000 0.000 1.000 1.000 0.911 ± 0.11 1.000
RNN (+LM+NS, L) 1.000 0.000 1.000 1.000 0.914 ± 0.10 1.000
LSTM (S) 1.000 0.000 1.000 1.000 0.972 ± 0.07 1.000
LSTM (L) 1.000 0.000 1.000 1.000 0.905 ± 0.13 1.000
LSTM (+LM, S) 1.000 0.000 1.000 0.864 0.928 ± 0.14 1.000
LSTM (+LM, L) 1.000 0.000 1.000 0.939 0.975 ± 0.02 1.000
LSTM (+NS, S) 1.000 0.000 1.000 1.000 0.921 ± 0.10 1.000
LSTM (+NS, L) 1.000 0.000 1.000 1.000 0.982 ± 0.05 1.000
LSTM (+LM+NS, S) 1.000 0.000 1.000 1.000 0.953 ± 0.13 1.000
LSTM (+LM+NS, L) 1.000 0.000 1.000 0.964 0.881 ± 0.20 1.000
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Table 6: Full results on the Parity language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.713 0.503 0.688 0.601 0.538 0.528 ± 0.01 0.544
Tf (L) 0.664 0.620 0.595 0.569 0.521 0.529 ± 0.01 0.543
Tf (+LM, S) 0.764 0.452 0.722 0.680 0.558 0.530 ± 0.01 0.558
Tf (+LM, L) 0.756 0.552 0.658 0.686 0.561 0.532 ± 0.01 0.561
Tf (+NS, S) 0.969 0.060 0.973 0.953 0.559 0.557 ± 0.03 0.630
Tf (+NS, L) 0.903 0.424 0.766 0.882 0.550 0.547 ± 0.02 0.599
Tf (+LM+NS, S) 0.909 0.198 0.895 0.874 0.579 0.552 ± 0.03 0.604
Tf (+LM+NS, L) 0.865 0.444 0.751 0.820 0.587 0.553 ± 0.03 0.591
RNN (S) 0.546 0.677 0.531 0.534 0.521 0.507 ± 0.01 0.525
RNN (L) 0.554 0.687 0.540 0.540 0.522 0.512 ± 0.01 0.541
RNN (+LM, S) 1.000 0.000 1.000 1.000 1.000 0.605 ± 0.20 1.000
RNN (+LM, L) 1.000 0.000 1.000 1.000 1.000 0.572 ± 0.15 1.000
RNN (+NS, S) 1.000 0.000 1.000 1.000 1.000 0.712 ± 0.24 1.000
RNN (+NS, L) 1.000 0.000 1.000 1.000 1.000 0.671 ± 0.19 1.000
RNN (+LM+NS, S) 1.000 0.000 1.000 1.000 1.000 0.706 ± 0.24 1.000
RNN (+LM+NS, L) 1.000 0.000 1.000 1.000 1.000 0.682 ± 0.21 1.000
LSTM (S) 1.000 0.000 1.000 1.000 1.000 0.664 ± 0.22 1.000
LSTM (L) 1.000 0.000 1.000 1.000 1.000 0.705 ± 0.24 1.000
LSTM (+LM, S) 1.000 0.000 1.000 1.000 1.000 0.599 ± 0.20 1.000
LSTM (+LM, L) 0.544 0.686 0.542 0.542 0.497 0.494 ± 0.00 0.497
LSTM (+NS, S) 1.000 0.000 1.000 1.000 1.000 0.902 ± 0.20 1.000
LSTM (+NS, L) 1.000 0.000 1.000 1.000 1.000 0.752 ± 0.25 1.000
LSTM (+LM+NS, S) 1.000 0.000 1.000 1.000 1.000 0.613 ± 0.20 1.000
LSTM (+LM+NS, L) 1.000 0.000 1.000 1.000 1.000 0.547 ± 0.15 1.000

Table 7: Full results on the Cycle Navigation language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.931 0.250 0.911 0.946 0.811 0.836 ± 0.05 0.934
Tf (L) 0.923 0.192 0.938 0.946 0.901 0.844 ± 0.05 0.934
Tf (+LM, S) 0.931 0.249 0.911 0.946 0.805 0.804 ± 0.10 0.933
Tf (+LM, L) 0.926 0.191 0.938 0.946 0.923 0.866 ± 0.05 0.933
Tf (+NS, S) 0.984 0.074 0.973 0.987 0.767 0.812 ± 0.04 0.884
Tf (+NS, L) 0.950 0.169 0.943 0.957 0.776 0.819 ± 0.04 0.927
Tf (+LM+NS, S) 0.931 0.251 0.911 0.946 0.810 0.838 ± 0.05 0.932
Tf (+LM+NS, L) 0.924 0.192 0.938 0.946 0.932 0.838 ± 0.05 0.932
RNN (S) 0.930 0.255 0.910 0.946 0.934 0.930 ± 0.01 0.934
RNN (L) 0.928 0.192 0.939 0.946 0.934 0.917 ± 0.05 0.934
RNN (+LM, S) 0.929 0.254 0.910 0.946 0.934 0.915 ± 0.05 0.934
RNN (+LM, L) 0.931 0.189 0.941 0.946 0.934 0.904 ± 0.09 0.934
RNN (+NS, S) 0.930 0.256 0.910 0.946 0.934 0.900 ± 0.07 0.934
RNN (+NS, L) 0.929 0.190 0.940 0.946 0.934 0.877 ± 0.13 0.934
RNN (+LM+NS, S) 0.928 0.264 0.907 0.946 0.934 0.888 ± 0.11 0.934
RNN (+LM+NS, L) 0.929 0.192 0.940 0.946 0.934 0.839 ± 0.17 0.934
LSTM (S) 0.929 0.257 0.910 0.946 0.934 0.900 ± 0.04 0.934
LSTM (L) 0.929 0.190 0.940 0.946 0.927 0.914 ± 0.03 0.934
LSTM (+LM, S) 0.930 0.252 0.910 0.946 0.934 0.878 ± 0.13 0.934
LSTM (+LM, L) 0.929 0.191 0.940 0.946 0.934 0.828 ± 0.17 0.934
LSTM (+NS, S) 0.931 0.255 0.911 0.946 0.934 0.822 ± 0.16 0.934
LSTM (+NS, L) 0.929 0.193 0.940 0.946 0.923 0.880 ± 0.13 0.933
LSTM (+LM+NS, S) 0.935 0.237 0.912 0.947 0.884 0.874 ± 0.13 0.934
LSTM (+LM+NS, L) 0.929 0.189 0.940 0.946 0.933 0.798 ± 0.20 0.934
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Table 8: Full results on the Modular Arithmetic language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.977 0.093 0.976 0.979 0.643 0.686 ± 0.11 0.812
Tf (L) 0.978 0.117 0.963 0.981 0.829 0.698 ± 0.09 0.830
Tf (+LM, S) 0.983 0.085 0.980 0.980 0.531 0.659 ± 0.11 0.796
Tf (+LM, L) 0.929 0.270 0.889 0.919 0.559 0.676 ± 0.08 0.790
Tf (+NS, S) 0.984 0.085 0.981 0.981 0.740 0.654 ± 0.12 0.869
Tf (+NS, L) 0.975 0.100 0.969 0.976 0.884 0.706 ± 0.09 0.884
Tf (+LM+NS, S) 0.979 0.089 0.976 0.981 0.826 0.671 ± 0.12 0.852
Tf (+LM+NS, L) 0.972 0.122 0.965 0.973 0.582 0.612 ± 0.08 0.793
RNN (S) 0.986 0.080 0.982 0.978 0.997 0.996 ± 0.00 0.997
RNN (L) 0.988 0.062 0.987 0.984 0.997 0.989 ± 0.02 0.997
RNN (+LM, S) 0.987 0.081 0.982 0.980 0.997 0.882 ± 0.10 0.997
RNN (+LM, L) 0.988 0.062 0.987 0.984 0.997 0.964 ± 0.07 0.997
RNN (+NS, S) 0.987 0.079 0.982 0.980 0.997 0.950 ± 0.08 0.997
RNN (+NS, L) 0.988 0.062 0.987 0.984 0.996 0.965 ± 0.07 0.997
RNN (+LM+NS, S) 0.986 0.079 0.982 0.978 0.997 0.966 ± 0.07 0.997
RNN (+LM+NS, L) 0.988 0.062 0.987 0.984 0.997 0.955 ± 0.07 0.997
LSTM (S) 0.986 0.078 0.982 0.978 0.997 0.982 ± 0.03 0.997
LSTM (L) 0.985 0.063 0.987 0.978 0.997 0.955 ± 0.08 0.997
LSTM (+LM, S) 0.986 0.081 0.982 0.978 0.997 0.981 ± 0.03 0.997
LSTM (+LM, L) 0.988 0.061 0.987 0.984 0.997 0.995 ± 0.00 0.997
LSTM (+NS, S) 0.986 0.078 0.982 0.978 0.997 0.952 ± 0.09 0.997
LSTM (+NS, L) 0.988 0.061 0.987 0.984 0.997 0.957 ± 0.07 0.997
LSTM (+LM+NS, S) 0.986 0.081 0.982 0.978 0.964 0.918 ± 0.14 0.997
LSTM (+LM+NS, L) 0.988 0.062 0.987 0.984 0.996 0.950 ± 0.08 0.997

Table 9: Full results on the Dyck-(2, 3) language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.968 0.119 0.969 0.968 0.585 0.630 ± 0.05 0.711
Tf (L) 0.965 0.146 0.953 0.967 0.804 0.690 ± 0.08 0.804
Tf (+LM, S) 0.998 0.010 0.998 0.994 0.604 0.702 ± 0.09 0.811
Tf (+LM, L) 0.979 0.157 0.950 0.975 0.599 0.652 ± 0.06 0.778
Tf (+NS, S) 0.998 0.002 1.000 0.995 0.596 0.622 ± 0.07 0.765
Tf (+NS, L) 0.964 0.163 0.941 0.969 0.756 0.687 ± 0.09 0.819
Tf (+LM+NS, S) 0.996 0.008 0.996 0.991 0.693 0.627 ± 0.05 0.734
Tf (+LM+NS, L) 0.994 0.123 0.959 0.989 0.788 0.693 ± 0.08 0.791
RNN (S) 0.972 0.093 0.976 0.977 0.980 0.907 ± 0.08 0.982
RNN (L) 0.972 0.092 0.979 0.976 0.972 0.929 ± 0.10 0.982
RNN (+LM, S) 0.999 0.005 1.000 0.998 0.991 0.941 ± 0.07 0.991
RNN (+LM, L) 0.999 0.014 0.998 0.998 0.826 0.945 ± 0.05 0.982
RNN (+NS, S) 0.999 0.005 0.999 0.999 0.957 0.952 ± 0.07 0.998
RNN (+NS, L) 0.998 0.014 0.998 0.997 0.988 0.923 ± 0.07 0.996
RNN (+LM+NS, S) 1.000 0.000 1.000 1.000 0.999 0.953 ± 0.05 0.999
RNN (+LM+NS, L) 1.000 0.001 1.000 1.000 0.991 0.922 ± 0.09 0.996
LSTM (S) 0.971 0.097 0.975 0.978 0.982 0.907 ± 0.10 0.982
LSTM (L) 0.971 0.094 0.979 0.978 0.977 0.883 ± 0.10 0.977
LSTM (+LM, S) 0.971 0.100 0.975 0.978 0.982 0.835 ± 0.14 0.982
LSTM (+LM, L) 0.972 0.089 0.979 0.976 0.701 0.868 ± 0.10 0.980
LSTM (+NS, S) 0.972 0.097 0.975 0.977 0.982 0.882 ± 0.16 0.982
LSTM (+NS, L) 0.972 0.091 0.979 0.975 0.976 0.942 ± 0.07 0.983
LSTM (+LM+NS, S) 0.971 0.098 0.974 0.977 0.962 0.838 ± 0.19 0.983
LSTM (+LM+NS, L) 0.972 0.089 0.979 0.977 0.975 0.922 ± 0.10 0.982

33



Published as a conference paper at ICLR 2025

Table 10: Full results on the First language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 1.000 0.000 1.000 1.000 1.000 0.926 ± 0.12 1.000
Tf (L) 1.000 0.000 1.000 1.000 0.987 0.936 ± 0.10 1.000
Tf (+LM, S) 1.000 0.000 1.000 1.000 1.000 0.934 ± 0.08 1.000
Tf (+LM, L) 1.000 0.000 1.000 1.000 1.000 0.974 ± 0.04 1.000
Tf (+NS, S) 1.000 0.000 1.000 1.000 0.952 0.982 ± 0.04 1.000
Tf (+NS, L) 1.000 0.000 1.000 1.000 1.000 0.969 ± 0.08 1.000
Tf (+LM+NS, S) 1.000 0.000 1.000 1.000 0.999 0.935 ± 0.14 1.000
Tf (+LM+NS, L) 1.000 0.000 1.000 1.000 1.000 0.928 ± 0.12 1.000
RNN (S) 1.000 0.000 1.000 1.000 1.000 0.629 ± 0.20 1.000
RNN (L) 1.000 0.000 1.000 1.000 1.000 0.701 ± 0.24 1.000
RNN (+LM, S) 1.000 0.000 1.000 1.000 1.000 0.800 ± 0.24 1.000
RNN (+LM, L) 1.000 0.000 1.000 1.000 1.000 0.800 ± 0.24 1.000
RNN (+NS, S) 1.000 0.000 1.000 1.000 1.000 0.703 ± 0.24 1.000
RNN (+NS, L) 1.000 0.000 1.000 1.000 1.000 0.799 ± 0.25 1.000
RNN (+LM+NS, S) 1.000 0.000 1.000 1.000 1.000 0.750 ± 0.25 1.000
RNN (+LM+NS, L) 1.000 0.000 1.000 1.000 1.000 0.704 ± 0.24 1.000
LSTM (S) 1.000 0.000 1.000 1.000 1.000 0.932 ± 0.15 1.000
LSTM (L) 1.000 0.000 1.000 1.000 1.000 1.000 ± 0.00 1.000
LSTM (+LM, S) 1.000 0.000 1.000 1.000 1.000 0.938 ± 0.14 1.000
LSTM (+LM, L) 1.000 0.000 1.000 1.000 1.000 0.896 ± 0.15 1.000
LSTM (+NS, S) 1.000 0.000 1.000 1.000 1.000 0.850 ± 0.23 1.000
LSTM (+NS, L) 1.000 0.000 1.000 1.000 1.000 0.944 ± 0.09 1.000
LSTM (+LM+NS, S) 1.000 0.000 1.000 1.000 1.000 0.850 ± 0.23 1.000
LSTM (+LM+NS, L) 1.000 0.000 1.000 1.000 0.779 0.912 ± 0.15 1.000

Table 11: Full results on the Majority language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 1.000 0.001 1.000 1.000 0.970 0.946 ± 0.07 0.990
Tf (L) 1.000 0.004 1.000 1.000 0.985 0.943 ± 0.07 0.995
Tf (+LM, S) 1.000 0.001 1.000 1.000 0.992 0.969 ± 0.04 0.992
Tf (+LM, L) 1.000 0.005 1.000 1.000 0.991 0.959 ± 0.05 0.996
Tf (+NS, S) 1.000 0.000 1.000 1.000 0.992 0.961 ± 0.05 0.992
Tf (+NS, L) 1.000 0.005 0.998 1.000 0.985 0.966 ± 0.04 0.993
Tf (+LM+NS, S) 1.000 0.001 1.000 1.000 0.989 0.969 ± 0.02 0.989
Tf (+LM+NS, L) 1.000 0.007 0.998 1.000 0.991 0.975 ± 0.04 0.993
RNN (S) 1.000 0.003 1.000 1.000 0.913 0.868 ± 0.12 0.928
RNN (L) 1.000 0.025 0.997 1.000 0.926 0.834 ± 0.14 0.931
RNN (+LM, S) 1.000 0.000 1.000 1.000 0.918 0.875 ± 0.12 0.924
RNN (+LM, L) 1.000 0.021 0.996 1.000 0.916 0.880 ± 0.13 0.945
RNN (+NS, S) 0.999 0.005 0.999 0.998 0.899 0.896 ± 0.03 0.927
RNN (+NS, L) 0.999 0.030 0.994 0.998 0.934 0.916 ± 0.01 0.934
RNN (+LM+NS, S) 1.000 0.006 0.999 1.000 0.919 0.887 ± 0.07 0.927
RNN (+LM+NS, L) 1.000 0.021 0.997 1.000 0.927 0.877 ± 0.13 0.949
LSTM (S) 1.000 0.000 1.000 1.000 0.979 0.939 ± 0.04 0.997
LSTM (L) 1.000 0.000 1.000 1.000 0.973 0.943 ± 0.02 0.989
LSTM (+LM, S) 1.000 0.000 1.000 1.000 0.980 0.942 ± 0.04 0.998
LSTM (+LM, L) 1.000 0.000 1.000 1.000 0.990 0.946 ± 0.04 0.995
LSTM (+NS, S) 1.000 0.000 1.000 1.000 0.999 0.952 ± 0.04 0.999
LSTM (+NS, L) 1.000 0.000 1.000 1.000 0.989 0.862 ± 0.18 0.997
LSTM (+LM+NS, S) 1.000 0.000 1.000 1.000 1.000 0.913 ± 0.14 1.000
LSTM (+LM+NS, L) 1.000 0.000 1.000 1.000 0.991 0.963 ± 0.04 1.000
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Table 12: Full results on the Stack Manipulation language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.929 0.190 0.917 0.912 0.610 0.664 ± 0.14 0.869
Tf (L) 0.920 0.294 0.885 0.897 0.573 0.640 ± 0.13 0.868
Tf (+LM, S) 0.981 0.072 0.983 0.980 0.515 0.595 ± 0.13 0.854
Tf (+LM, L) 0.935 0.238 0.909 0.922 0.869 0.701 ± 0.14 0.869
Tf (+NS, S) 0.976 0.101 0.973 0.976 0.857 0.591 ± 0.14 0.868
Tf (+NS, L) 0.928 0.255 0.906 0.914 0.545 0.684 ± 0.14 0.869
Tf (+LM+NS, S) 0.981 0.059 0.985 0.979 0.515 0.571 ± 0.11 0.868
Tf (+LM+NS, L) 0.950 0.246 0.914 0.939 0.870 0.608 ± 0.13 0.870
RNN (S) 0.926 0.229 0.923 0.919 0.928 0.834 ± 0.12 0.929
RNN (L) 0.943 0.187 0.940 0.944 0.933 0.783 ± 0.17 0.933
RNN (+LM, S) 0.985 0.070 0.986 0.983 0.520 0.691 ± 0.18 0.930
RNN (+LM, L) 0.925 0.211 0.927 0.919 0.930 0.817 ± 0.12 0.930
RNN (+NS, S) 0.986 0.073 0.986 0.989 0.520 0.838 ± 0.16 0.930
RNN (+NS, L) 0.930 0.208 0.931 0.919 0.927 0.854 ± 0.12 0.930
RNN (+LM+NS, S) 0.988 0.050 0.991 0.990 0.523 0.762 ± 0.20 0.930
RNN (+LM+NS, L) 0.935 0.206 0.934 0.937 0.932 0.852 ± 0.11 0.932
LSTM (S) 0.989 0.047 0.991 0.993 0.987 0.746 ± 0.17 0.987
LSTM (L) 0.956 0.189 0.936 0.951 0.876 0.784 ± 0.07 0.885
LSTM (+LM, S) 0.987 0.045 0.991 0.992 0.551 0.568 ± 0.09 0.818
LSTM (+LM, L) 0.989 0.069 0.986 0.990 0.540 0.674 ± 0.14 0.906
LSTM (+NS, S) 0.987 0.051 0.988 0.992 0.664 0.669 ± 0.14 0.922
LSTM (+NS, L) 0.989 0.063 0.986 0.993 0.750 0.674 ± 0.10 0.799
LSTM (+LM+NS, S) 0.989 0.043 0.991 0.993 0.602 0.528 ± 0.03 0.602
LSTM (+LM+NS, L) 0.988 0.066 0.985 0.993 0.541 0.620 ± 0.13 0.896

Table 13: Full results on the Marked Reversal language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.969 0.116 0.969 0.967 0.552 0.604 ± 0.11 0.847
Tf (L) 0.876 0.316 0.879 0.877 0.616 0.693 ± 0.08 0.758
Tf (+LM, S) 0.969 0.117 0.969 0.967 0.534 0.577 ± 0.08 0.740
Tf (+LM, L) 0.960 0.197 0.943 0.953 0.870 0.689 ± 0.13 0.870
Tf (+NS, S) 0.995 0.032 0.992 0.991 0.541 0.641 ± 0.12 0.827
Tf (+NS, L) 0.969 0.176 0.944 0.967 0.868 0.647 ± 0.12 0.868
Tf (+LM+NS, S) 0.993 0.027 0.995 0.994 0.539 0.580 ± 0.10 0.859
Tf (+LM+NS, L) 0.966 0.170 0.941 0.962 0.853 0.665 ± 0.09 0.853
RNN (S) 0.968 0.119 0.969 0.965 0.603 0.693 ± 0.17 0.947
RNN (L) 0.960 0.131 0.965 0.961 0.594 0.761 ± 0.15 0.947
RNN (+LM, S) 0.969 0.119 0.969 0.967 0.535 0.662 ± 0.14 0.911
RNN (+LM, L) 0.959 0.130 0.965 0.960 0.948 0.793 ± 0.11 0.948
RNN (+NS, S) 0.967 0.124 0.969 0.965 0.544 0.699 ± 0.18 0.948
RNN (+NS, L) 0.968 0.102 0.975 0.966 0.643 0.612 ± 0.12 0.947
RNN (+LM+NS, S) 0.968 0.119 0.969 0.967 0.538 0.651 ± 0.17 0.947
RNN (+LM+NS, L) 0.955 0.136 0.963 0.958 0.947 0.660 ± 0.14 0.947
LSTM (S) 0.969 0.116 0.969 0.967 0.954 0.744 ± 0.17 0.963
LSTM (L) 0.952 0.163 0.950 0.946 0.574 0.755 ± 0.13 0.859
LSTM (+LM, S) 0.999 0.001 1.000 0.992 0.584 0.552 ± 0.05 0.679
LSTM (+LM, L) 0.969 0.103 0.975 0.967 0.596 0.681 ± 0.16 0.947
LSTM (+NS, S) 0.969 0.117 0.969 0.967 0.561 0.653 ± 0.12 0.845
LSTM (+NS, L) 0.969 0.107 0.975 0.967 0.578 0.623 ± 0.10 0.852
LSTM (+LM+NS, S) 0.969 0.116 0.969 0.967 0.617 0.624 ± 0.11 0.946
LSTM (+LM+NS, L) 0.981 0.073 0.981 0.980 0.593 0.585 ± 0.05 0.674
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Table 14: Full results on the Unmarked Reversal language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.970 0.099 0.971 0.969 0.552 0.584 ± 0.03 0.632
Tf (L) 0.818 0.454 0.774 0.839 0.583 0.600 ± 0.04 0.631
Tf (+LM, S) 0.955 0.147 0.952 0.958 0.563 0.552 ± 0.04 0.617
Tf (+LM, L) 0.695 0.558 0.674 0.677 0.559 0.544 ± 0.04 0.623
Tf (+NS, S) 0.963 0.112 0.965 0.949 0.541 0.557 ± 0.02 0.612
Tf (+NS, L) 0.868 0.456 0.779 0.846 0.547 0.578 ± 0.04 0.630
Tf (+LM+NS, S) 0.959 0.127 0.957 0.940 0.540 0.539 ± 0.03 0.578
Tf (+LM+NS, L) 0.752 0.529 0.726 0.748 0.607 0.589 ± 0.04 0.630
RNN (S) 0.975 0.094 0.974 0.977 0.670 0.708 ± 0.09 0.763
RNN (L) 0.970 0.139 0.965 0.962 0.726 0.736 ± 0.05 0.763
RNN (+LM, S) 0.973 0.020 0.982 0.998 0.622 0.715 ± 0.05 0.763
RNN (+LM, L) 0.981 0.097 0.982 0.984 0.748 0.721 ± 0.05 0.763
RNN (+NS, S) 0.976 0.097 0.971 0.968 0.682 0.716 ± 0.08 0.766
RNN (+NS, L) 0.974 0.158 0.957 0.963 0.665 0.744 ± 0.05 0.813
RNN (+LM+NS, S) 0.961 0.061 0.973 0.984 0.636 0.712 ± 0.07 0.763
RNN (+LM+NS, L) 0.971 0.150 0.954 0.961 0.765 0.744 ± 0.04 0.765
LSTM (S) 0.963 0.150 0.954 0.944 0.610 0.685 ± 0.09 0.763
LSTM (L) 0.989 0.056 0.988 0.987 0.746 0.717 ± 0.08 0.763
LSTM (+LM, S) 0.786 0.440 0.774 0.751 0.763 0.711 ± 0.10 0.763
LSTM (+LM, L) 0.786 0.444 0.782 0.751 0.763 0.711 ± 0.10 0.763
LSTM (+NS, S) 0.966 0.145 0.953 0.934 0.743 0.761 ± 0.01 0.763
LSTM (+NS, L) 0.987 0.068 0.982 0.985 0.838 0.731 ± 0.12 0.884
LSTM (+LM+NS, S) 0.786 0.441 0.774 0.751 0.763 0.711 ± 0.10 0.763
LSTM (+LM+NS, L) 0.786 0.444 0.782 0.751 0.763 0.711 ± 0.10 0.763

Table 15: Full results on the Marked Copy language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.970 0.113 0.970 0.977 0.548 0.565 ± 0.04 0.639
Tf (L) 0.859 0.327 0.866 0.872 0.795 0.698 ± 0.07 0.795
Tf (+LM, S) 0.970 0.114 0.970 0.977 0.542 0.614 ± 0.10 0.846
Tf (+LM, L) 0.949 0.206 0.937 0.955 0.625 0.646 ± 0.08 0.785
Tf (+NS, S) 0.991 0.035 0.992 0.991 0.588 0.627 ± 0.11 0.872
Tf (+NS, L) 0.950 0.213 0.922 0.950 0.843 0.693 ± 0.14 0.856
Tf (+LM+NS, S) 0.990 0.025 0.991 0.992 0.550 0.573 ± 0.08 0.827
Tf (+LM+NS, L) 0.963 0.226 0.944 0.970 0.573 0.612 ± 0.08 0.775
RNN (S) 0.970 0.118 0.970 0.977 0.602 0.723 ± 0.15 0.920
RNN (L) 0.958 0.134 0.964 0.965 0.946 0.710 ± 0.14 0.946
RNN (+LM, S) 0.970 0.115 0.970 0.977 0.545 0.756 ± 0.15 0.945
RNN (+LM, L) 0.959 0.135 0.965 0.969 0.595 0.730 ± 0.15 0.945
RNN (+NS, S) 0.970 0.115 0.970 0.977 0.677 0.755 ± 0.14 0.908
RNN (+NS, L) 0.960 0.133 0.965 0.967 0.946 0.757 ± 0.13 0.946
RNN (+LM+NS, S) 0.970 0.117 0.970 0.976 0.598 0.730 ± 0.15 0.946
RNN (+LM+NS, L) 0.961 0.127 0.966 0.968 0.591 0.728 ± 0.14 0.945
LSTM (S) 0.970 0.113 0.970 0.977 0.564 0.691 ± 0.15 0.946
LSTM (L) 0.970 0.099 0.976 0.977 0.649 0.717 ± 0.12 0.946
LSTM (+LM, S) 0.970 0.113 0.970 0.977 0.568 0.582 ± 0.07 0.781
LSTM (+LM, L) 0.970 0.098 0.976 0.977 0.596 0.656 ± 0.09 0.807
LSTM (+NS, S) 0.995 0.041 0.990 0.994 0.568 0.609 ± 0.12 0.962
LSTM (+NS, L) 0.970 0.098 0.976 0.977 0.721 0.664 ± 0.11 0.923
LSTM (+LM+NS, S) 0.970 0.113 0.970 0.977 0.631 0.604 ± 0.09 0.849
LSTM (+LM+NS, L) 0.970 0.098 0.976 0.977 0.657 0.600 ± 0.07 0.760
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Table 16: Full results on the Missing Duplicate language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.938 0.200 0.933 0.949 0.614 0.650 ± 0.09 0.781
Tf (L) 0.856 0.316 0.876 0.874 0.857 0.709 ± 0.10 0.857
Tf (+LM, S) 0.880 0.311 0.871 0.890 0.638 0.608 ± 0.05 0.687
Tf (+LM, L) 0.856 0.315 0.876 0.874 0.782 0.699 ± 0.09 0.796
Tf (+NS, S) 0.953 0.169 0.943 0.952 0.720 0.637 ± 0.10 0.857
Tf (+NS, L) 0.860 0.317 0.875 0.874 0.777 0.651 ± 0.07 0.777
Tf (+LM+NS, S) 0.955 0.166 0.948 0.956 0.696 0.661 ± 0.08 0.760
Tf (+LM+NS, L) 0.864 0.315 0.880 0.874 0.858 0.728 ± 0.11 0.858
RNN (S) 0.946 0.176 0.944 0.949 0.919 0.824 ± 0.10 0.944
RNN (L) 0.951 0.163 0.953 0.957 0.783 0.815 ± 0.07 0.937
RNN (+LM, S) 0.951 0.178 0.946 0.957 0.945 0.789 ± 0.10 0.945
RNN (+LM, L) 0.951 0.163 0.953 0.957 0.945 0.860 ± 0.07 0.945
RNN (+NS, S) 0.959 0.162 0.952 0.959 0.946 0.804 ± 0.14 0.946
RNN (+NS, L) 0.982 0.116 0.967 0.970 0.942 0.879 ± 0.10 0.945
RNN (+LM+NS, S) 0.950 0.179 0.946 0.957 0.945 0.790 ± 0.13 0.945
RNN (+LM+NS, L) 0.951 0.162 0.954 0.957 0.696 0.813 ± 0.15 0.946
LSTM (S) 0.951 0.178 0.946 0.957 0.926 0.852 ± 0.07 0.945
LSTM (L) 0.951 0.162 0.953 0.957 0.922 0.794 ± 0.07 0.922
LSTM (+LM, S) 0.951 0.179 0.946 0.957 0.945 0.795 ± 0.15 0.945
LSTM (+LM, L) 0.951 0.161 0.953 0.957 0.771 0.769 ± 0.12 0.945
LSTM (+NS, S) 0.958 0.163 0.951 0.957 0.946 0.821 ± 0.15 0.946
LSTM (+NS, L) 0.951 0.162 0.953 0.957 0.913 0.784 ± 0.13 0.945
LSTM (+LM+NS, S) 0.954 0.174 0.947 0.957 0.940 0.770 ± 0.18 0.945
LSTM (+LM+NS, L) 0.951 0.162 0.953 0.957 0.904 0.749 ± 0.15 0.904

Table 17: Full results on the Odds First language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.966 0.122 0.968 0.966 0.537 0.592 ± 0.11 0.851
Tf (L) 0.835 0.345 0.853 0.849 0.850 0.730 ± 0.09 0.850
Tf (+LM, S) 0.969 0.116 0.969 0.968 0.536 0.559 ± 0.07 0.754
Tf (+LM, L) 0.958 0.207 0.924 0.959 0.561 0.613 ± 0.09 0.763
Tf (+NS, S) 0.993 0.048 0.991 0.993 0.545 0.537 ± 0.00 0.545
Tf (+NS, L) 0.941 0.236 0.919 0.944 0.861 0.724 ± 0.11 0.861
Tf (+LM+NS, S) 0.995 0.043 0.991 0.998 0.538 0.579 ± 0.08 0.799
Tf (+LM+NS, L) 0.955 0.182 0.937 0.952 0.864 0.693 ± 0.11 0.864
RNN (S) 0.966 0.119 0.968 0.966 0.544 0.793 ± 0.15 0.948
RNN (L) 0.957 0.137 0.962 0.959 0.948 0.795 ± 0.12 0.948
RNN (+LM, S) 0.968 0.119 0.969 0.968 0.542 0.708 ± 0.14 0.948
RNN (+LM, L) 0.959 0.137 0.963 0.959 0.948 0.766 ± 0.15 0.948
RNN (+NS, S) 0.959 0.138 0.963 0.959 0.948 0.789 ± 0.18 0.948
RNN (+NS, L) 0.967 0.116 0.972 0.967 0.594 0.712 ± 0.15 0.948
RNN (+LM+NS, S) 0.969 0.117 0.969 0.968 0.536 0.575 ± 0.08 0.777
RNN (+LM+NS, L) 0.957 0.138 0.961 0.959 0.669 0.758 ± 0.14 0.947
LSTM (S) 0.969 0.116 0.969 0.968 0.572 0.668 ± 0.14 0.921
LSTM (L) 0.969 0.102 0.974 0.968 0.838 0.718 ± 0.15 0.914
LSTM (+LM, S) 0.969 0.115 0.969 0.968 0.617 0.612 ± 0.10 0.857
LSTM (+LM, L) 0.969 0.103 0.974 0.968 0.701 0.687 ± 0.10 0.853
LSTM (+NS, S) 0.997 0.014 0.997 0.997 0.575 0.595 ± 0.13 0.936
LSTM (+NS, L) 0.969 0.104 0.974 0.968 0.611 0.673 ± 0.12 0.906
LSTM (+LM+NS, S) 0.997 0.027 0.995 0.993 0.565 0.597 ± 0.09 0.848
LSTM (+LM+NS, L) 0.969 0.103 0.974 0.968 0.964 0.696 ± 0.13 0.964
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Table 18: Full results on the Binary Addition language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.925 0.235 0.919 0.922 0.673 0.643 ± 0.13 0.913
Tf (L) 0.915 0.262 0.902 0.915 0.645 0.654 ± 0.09 0.778
Tf (+LM, S) 0.974 0.107 0.963 0.962 0.562 0.602 ± 0.10 0.913
Tf (+LM, L) 0.933 0.228 0.917 0.925 0.744 0.713 ± 0.09 0.876
Tf (+NS, S) 0.976 0.084 0.977 0.968 0.632 0.629 ± 0.13 0.914
Tf (+NS, L) 0.924 0.248 0.910 0.924 0.831 0.692 ± 0.10 0.831
Tf (+LM+NS, S) 0.975 0.094 0.968 0.966 0.577 0.615 ± 0.11 0.896
Tf (+LM+NS, L) 0.967 0.154 0.944 0.960 0.850 0.684 ± 0.11 0.854
RNN (S) 0.924 0.227 0.922 0.921 0.549 0.719 ± 0.10 0.879
RNN (L) 0.927 0.236 0.915 0.924 0.598 0.813 ± 0.08 0.878
RNN (+LM, S) 0.943 0.194 0.931 0.940 0.566 0.718 ± 0.15 0.893
RNN (+LM, L) 0.929 0.235 0.916 0.925 0.822 0.703 ± 0.14 0.914
RNN (+NS, S) 0.988 0.085 0.979 0.981 0.604 0.743 ± 0.12 0.915
RNN (+NS, L) 0.930 0.226 0.914 0.928 0.731 0.790 ± 0.12 0.915
RNN (+LM+NS, S) 0.978 0.094 0.974 0.968 0.604 0.675 ± 0.10 0.898
RNN (+LM+NS, L) 0.939 0.214 0.923 0.934 0.903 0.762 ± 0.12 0.914
LSTM (S) 0.929 0.220 0.925 0.925 0.595 0.745 ± 0.12 0.916
LSTM (L) 0.929 0.233 0.916 0.925 0.651 0.783 ± 0.09 0.915
LSTM (+LM, S) 0.989 0.081 0.979 0.969 0.685 0.702 ± 0.12 0.914
LSTM (+LM, L) 0.951 0.210 0.923 0.952 0.692 0.780 ± 0.09 0.915
LSTM (+NS, S) 0.988 0.083 0.981 0.976 0.648 0.709 ± 0.13 0.902
LSTM (+NS, L) 0.929 0.233 0.916 0.925 0.916 0.750 ± 0.14 0.916
LSTM (+LM+NS, S) 0.992 0.074 0.981 0.982 0.581 0.715 ± 0.12 0.866
LSTM (+LM+NS, L) 0.986 0.115 0.966 0.978 0.820 0.786 ± 0.11 0.916

Table 19: Full results on the Binary Multiplication language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.959 0.118 0.958 0.952 0.563 0.616 ± 0.12 0.889
Tf (L) 0.933 0.216 0.916 0.928 0.720 0.705 ± 0.09 0.821
Tf (+LM, S) 0.973 0.082 0.974 0.968 0.627 0.573 ± 0.03 0.627
Tf (+LM, L) 0.932 0.255 0.899 0.931 0.582 0.688 ± 0.10 0.807
Tf (+NS, S) 0.975 0.071 0.977 0.958 0.760 0.700 ± 0.11 0.922
Tf (+NS, L) 0.952 0.165 0.941 0.949 0.723 0.703 ± 0.11 0.923
Tf (+LM+NS, S) 0.983 0.054 0.979 0.970 0.617 0.642 ± 0.12 0.884
Tf (+LM+NS, L) 0.972 0.169 0.933 0.961 0.615 0.637 ± 0.07 0.787
RNN (S) 0.937 0.168 0.944 0.930 0.606 0.745 ± 0.13 0.919
RNN (L) 0.936 0.194 0.934 0.931 0.889 0.801 ± 0.07 0.893
RNN (+LM, S) 0.980 0.063 0.980 0.969 0.604 0.672 ± 0.13 0.897
RNN (+LM, L) 0.936 0.192 0.934 0.931 0.597 0.736 ± 0.12 0.919
RNN (+NS, S) 0.963 0.122 0.958 0.955 0.559 0.684 ± 0.14 0.919
RNN (+NS, L) 0.935 0.195 0.934 0.931 0.645 0.750 ± 0.14 0.919
RNN (+LM+NS, S) 0.982 0.060 0.978 0.973 0.610 0.714 ± 0.15 0.919
RNN (+LM+NS, L) 0.956 0.190 0.937 0.945 0.910 0.784 ± 0.10 0.916
LSTM (S) 0.946 0.145 0.951 0.939 0.616 0.734 ± 0.10 0.902
LSTM (L) 0.937 0.189 0.933 0.933 0.774 0.712 ± 0.06 0.792
LSTM (+LM, S) 0.995 0.019 0.994 0.983 0.610 0.664 ± 0.10 0.898
LSTM (+LM, L) 0.961 0.155 0.943 0.952 0.876 0.759 ± 0.12 0.897
LSTM (+NS, S) 0.992 0.046 0.987 0.980 0.652 0.779 ± 0.12 0.919
LSTM (+NS, L) 0.961 0.165 0.942 0.966 0.890 0.784 ± 0.11 0.915
LSTM (+LM+NS, S) 0.997 0.031 0.994 0.986 0.639 0.638 ± 0.07 0.756
LSTM (+LM+NS, L) 0.971 0.123 0.953 0.966 0.771 0.688 ± 0.10 0.915
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Table 20: Full results on the Compute Sqrt language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.956 0.130 0.954 0.948 0.718 0.673 ± 0.10 0.828
Tf (L) 0.937 0.254 0.898 0.926 0.629 0.705 ± 0.10 0.860
Tf (+LM, S) 0.971 0.100 0.964 0.960 0.629 0.623 ± 0.10 0.885
Tf (+LM, L) 0.911 0.264 0.887 0.906 0.629 0.648 ± 0.09 0.782
Tf (+NS, S) 0.973 0.101 0.967 0.967 0.578 0.631 ± 0.11 0.852
Tf (+NS, L) 0.953 0.205 0.919 0.947 0.645 0.639 ± 0.06 0.739
Tf (+LM+NS, S) 0.970 0.094 0.968 0.963 0.592 0.648 ± 0.11 0.856
Tf (+LM+NS, L) 0.960 0.177 0.932 0.952 0.811 0.695 ± 0.11 0.846
RNN (S) 0.892 0.280 0.897 0.884 0.887 0.784 ± 0.12 0.887
RNN (L) 0.892 0.306 0.878 0.884 0.773 0.699 ± 0.13 0.887
RNN (+LM, S) 0.976 0.110 0.965 0.975 0.647 0.681 ± 0.15 0.882
RNN (+LM, L) 0.911 0.281 0.893 0.898 0.806 0.776 ± 0.09 0.878
RNN (+NS, S) 0.982 0.099 0.976 0.982 0.636 0.720 ± 0.15 0.887
RNN (+NS, L) 0.894 0.301 0.874 0.884 0.709 0.767 ± 0.08 0.887
RNN (+LM+NS, S) 0.987 0.080 0.979 0.983 0.644 0.638 ± 0.10 0.887
RNN (+LM+NS, L) 0.917 0.283 0.888 0.910 0.816 0.715 ± 0.14 0.887
LSTM (S) 0.892 0.278 0.897 0.884 0.853 0.836 ± 0.07 0.887
LSTM (L) 0.892 0.307 0.878 0.883 0.887 0.799 ± 0.07 0.887
LSTM (+LM, S) 0.995 0.043 0.989 0.989 0.658 0.653 ± 0.15 0.887
LSTM (+LM, L) 0.985 0.123 0.959 0.982 0.610 0.697 ± 0.13 0.887
LSTM (+NS, S) 0.986 0.076 0.976 0.978 0.576 0.795 ± 0.10 0.887
LSTM (+NS, L) 0.915 0.293 0.869 0.914 0.729 0.830 ± 0.07 0.887
LSTM (+LM+NS, S) 0.995 0.036 0.991 0.994 0.659 0.614 ± 0.08 0.831
LSTM (+LM+NS, L) 0.984 0.140 0.944 0.981 0.613 0.679 ± 0.11 0.887

Table 21: Full results on the Bucket Sort language.

Model Train Val. CE ↓ Val. S. Test L. Test L. Test (Mean) L. Test (Max)

Tf (S) 0.974 0.107 0.973 0.963 0.569 0.629 ± 0.08 0.764
Tf (L) 0.821 0.417 0.806 0.824 0.670 0.727 ± 0.03 0.756
Tf (+LM, S) 0.986 0.029 0.989 0.977 0.556 0.590 ± 0.10 0.858
Tf (+LM, L) 0.988 0.094 0.973 0.975 0.837 0.706 ± 0.11 0.880
Tf (+NS, S) 0.976 0.077 0.978 0.977 0.891 0.616 ± 0.12 0.891
Tf (+NS, L) 0.945 0.200 0.920 0.936 0.878 0.709 ± 0.13 0.884
Tf (+LM+NS, S) 0.997 0.008 0.999 0.992 0.553 0.603 ± 0.10 0.874
Tf (+LM+NS, L) 0.960 0.168 0.947 0.948 0.579 0.572 ± 0.02 0.629
RNN (S) 0.967 0.132 0.966 0.953 0.911 0.766 ± 0.09 0.911
RNN (L) 0.945 0.181 0.942 0.929 0.757 0.769 ± 0.14 0.897
RNN (+LM, S) 0.990 0.063 0.984 0.977 0.575 0.647 ± 0.12 0.880
RNN (+LM, L) 0.960 0.128 0.965 0.953 0.630 0.706 ± 0.10 0.908
RNN (+NS, S) 0.965 0.138 0.964 0.957 0.924 0.778 ± 0.13 0.924
RNN (+NS, L) 0.962 0.126 0.966 0.954 0.957 0.771 ± 0.15 0.957
RNN (+LM+NS, S) 0.962 0.142 0.962 0.950 0.930 0.836 ± 0.09 0.951
RNN (+LM+NS, L) 0.960 0.129 0.965 0.953 0.613 0.690 ± 0.09 0.869
LSTM (S) 0.969 0.095 0.966 0.966 0.546 0.688 ± 0.13 0.967
LSTM (L) 0.971 0.109 0.970 0.956 0.813 0.700 ± 0.09 0.813
LSTM (+LM, S) 0.998 0.013 0.997 0.991 0.592 0.645 ± 0.10 0.774
LSTM (+LM, L) 0.999 0.003 1.000 0.998 0.605 0.621 ± 0.10 0.769
LSTM (+NS, S) 0.996 0.015 0.998 0.992 0.576 0.572 ± 0.04 0.664
LSTM (+NS, L) 0.979 0.087 0.980 0.968 0.592 0.588 ± 0.04 0.671
LSTM (+LM+NS, S) 0.992 0.039 0.991 0.984 0.569 0.554 ± 0.03 0.597
LSTM (+LM+NS, L) 0.989 0.075 0.982 0.981 0.594 0.640 ± 0.09 0.835
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Table 22: Results for different model sizes.

Tf RNN LSTM

Language 32k 64k 128k 32k 64k 128k 32k 64k 128k

Repeat 01 0.85 0.86 0.85 1.00 1.00 1.00 1.00 1.00 1.00
Parity 0.54 0.54 0.54 0.53 0.54 0.52 1.00 1.00 1.00
Cycle Navigation 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93
Modular Arithmetic 0.86 0.83 0.92 1.00 1.00 1.00 1.00 1.00 1.00
Dyck-(2, 3) 0.73 0.80 0.79 0.98 0.98 0.98 0.98 0.98 0.98
Majority 1.00 0.99 1.00 0.93 0.93 0.94 1.00 0.99 1.00
Stack Manipulation 0.82 0.87 0.87 0.93 0.93 0.93 0.84 0.89 0.92
Marked Reversal 0.75 0.76 0.79 0.95 0.95 0.94 0.91 0.86 0.96
Unmarked Reversal 0.63 0.63 0.63 0.76 0.76 0.76 0.76 0.76 0.78
Marked Copy 0.76 0.80 0.85 0.95 0.95 0.95 0.94 0.95 0.92
Missing Duplicate 0.83 0.86 0.77 0.95 0.94 0.95 0.95 0.92 0.95
Odds First 0.77 0.85 0.85 0.95 0.95 0.92 0.95 0.91 0.95
Binary Addition 0.79 0.78 0.83 0.92 0.88 0.88 0.92 0.92 0.92
Binary Multiplication 0.80 0.82 0.92 0.92 0.89 0.78 0.89 0.79 0.92
Compute Sqrt 0.82 0.86 0.80 0.89 0.89 0.89 0.89 0.89 0.89
Bucket Sort 0.76 0.76 0.87 0.92 0.90 0.91 0.80 0.81 0.93

H RESULTS WITH SMALLER AND LARGER MODELS

Is the reason that some models do not get perfect accuracy in §5 simply because they are not big
enough? In this section, we find that the answer is generally no. To test this, we show results
with larger and smaller models in Table 22. The experiments in §5 use models with approximately
64k parameters. Here, we train models with approximately 32k, 64k, and 128k parameters, using
the same rounding technique described in §4. We omit the languages Even Pairs and First, as all
architectures already get perfect accuracy on them in Table 2. We run experiments according to
the expressivity setup described in §4, but using only a recognition head, without auxiliary loss
terms. We report the best test accuracy of 10 runs. There are only two cases where a larger model
results in an improvement over Table 2 of more than 0.01, which we show in bold. We see a strict
positive correlation between accuracy and model size in only a few cases: transformer on Marked
Reversal, Marked Copy, and Binary Multiplication; and LSTM on Stack Manipulation and Bucket
Sort. Interestingly, we see a negative correlation in the case of RNN on Binary Multiplication.
Otherwise, we do not see clear trends, suggesting that the limitations are due to model architecture
rather than size.

I PERFORMANCE VS. INPUT LENGTH

We show recognition cross-entropy (lower is better) vs. input length for the models shown under
“Expressivity” in Table 2. At every length n on the x-axis that is a multiple of 10, we show the
average cross-entropy of the model on all strings in the long test set with lengths in the range
[n − 10, n + 10] (this smooths the curves for the sake of readability). The shaded regions indi-
cate one standard deviation. The vertical dashed lines indicate the maximum lengths in the training
and validation sets. The horizontal dashed lines mark log 2, which is the threshold for incorrect
predictions. In general, we find that cross-entropy usually does not increase significantly on longer
strings. Notable exceptions include Repeat 01, Parity, Modular Arithmetic, and Dyck-(2, 3) for the
transformer and Majority for the RNN. This is in contrast to Delétang et al. (2023), who found that
models often fail catastrophically on longer input strings in their string-to-string transduction setup.
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Figure 3: Recognition cross-entropy (lower is better) vs. input length for the models shown under
“Expressivity” in Table 2.
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J EDIT DISTANCE FROM LANGUAGES

In this section, we give a formal definition of string–language edit distance and provide an algorithm
for computing it for regular languages.

Definition 10. For any string w and language L, the edit distance D(w,L) is defined as

D(w,L) def
= min

u∈L
D(w, u), (20)

whereD(w, u) is the Levenshtein distance between w and u, or the minimal number of single-symbol
edits (insertions, deletions, and replacements) required to transform w into u.

Suppose L is a regular language over alphabet Σ recognized by DFA A. Then for any w ∈ Σ∗,
D(w,L) can be computed as follows:

1. Construct a nondeterministic weighted finite automaton (WFA) AD(w,·) over the tropical
semiring (R≥0 ∪ {∞},min,+,∞, 0) that assigns weight D(w, u) to every string u (Fig-
ure 4);

2. Lift A to the tropical semiring by assigning weight 0 to all transitions and accepting states,
resulting in a WDFA A·∈L;

3. Intersect A·∈L and AD(w,·) using the standard WFA intersection algorithm (Mohri, 2009),
resulting in an automaton AD(·,L) that encodes D(w, u) for every u ∈ L; and

4. Compute the shortest path in AD(·,L) using the Floyd–Warshall algorithm (Floyd, 1962;
Warshall, 1962).

The rest of this section describes these steps in more detail and argues their correctness.

J.1 WEIGHTED FINITE AUTOMATA

We start by defining WFAs, which are used in multiple steps. This is a more general, nondetermin-
istic version of Def. 4.

Definition 11. A weighted finite automaton (WFA) over semiring (K,⊕,⊗,0,1) is a tu-
ple A = (Q,Σ, δ, q0, ρ) such that (1) Q is a finite set of states, (2) Σ is an alphabet,
(3) δ : Q × (Σ ∪ {ε}) × Q → K is the transition function, and (4) q0 ∈ Q is the start state;8

and (5) ρ : Q → K is the accept weight function. If δ(q, a, r) = w, we say that A has a transition

from q to r that scans a with weight w, and we write q
a/w−−→ r ∈ δ.

This definition is nondeterministic in the sense that it permits multiple outgoing transitions on the
same symbol from the same state. We define paths and path weights in a similar way to §3.1.2.

Definition 12. A path π in WFA A is a sequence of states and transitions

π = r0
a1/w1−−−−→ r1 · · · rm−1

am/wm−−−−−→ rm (21)

such that

1. r0 = q0, and

2. for all i = 0, . . . ,m− 1, ri
ai+1/wi+1−−−−−−−→ ri+1 ∈ δ.

We say that π scans the string a1 · · · am, and that the path weight of π is

w(π)
def
=

(
m⊗
i=1

wi

)
⊗ ρ(rm). (22)

8Some definitions use an initial weight function λ : Q → K to indicate start states. For simplicity, we
assume one start state with a weight of 1.
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Note that in a nondeterministic WFA, multiple paths may scan the same string. We denote the set of
all paths of A as Π(A), and the set of paths that scan w as Π(A, w).
The weight that a WFA assigns to a string is the sum of the weights of all paths that scan that string.

Definition 13. The stringsum of string w ∈ Σ∗ under WFA A is

A(w) def
=

⊕
π∈Π(A,w)

w(π). (23)

We also make use of the sum of the weights of all paths in a WFA.

Definition 14. The allsum of WFA A is

Z(A) def
=

⊕
π∈Π(A)

w(π) (24a)

=
⊕
w∈Σ∗

A(w). (24b)

J.2 ALGORITHM DETAILS

First, we encode the input string w = w1w2 · · ·wn into a chain-like WFA AD(w,·) in the tropical
semiring, as shown in Figure 4.

q0 q1 · · · qn

w1/0
ε/1

a/1 (a ∈ Σ \ {w1})

w2/0
ε/1

a/1 (a ∈ Σ \ {w2})

wn/0
ε/1

a/1 (a ∈ Σ \ {wn})

a/1 (a ∈ Σ) a/1 (a ∈ Σ) a/1 (a ∈ Σ)

Figure 4: Diagram of AD(w,·). The double-circled state has accept weight 0; the others have accept
weight∞.

Given an input string u ∈ Σ∗, every path in AD(w,·) that scans u encodes a way of transforming
w into u. Every time a transition deviates from scanning w by inserting, replacing, or deleting a
symbol, it incurs a cost of 1. Taking the minimum weight of any path that scans u gives D(w, u).
Lemma 1. For all u ∈ Σ∗, AD(w,·)(u) = D(w, u).

Proof. For every wi in w,AD(w,·) either matches a symbol in u withAD(w,·) with cost 0, simulates
the deletion of wi with cost 1 so that it can continue scanning u some other way, or simulates the
replacement of wi with a symbol in u with cost 1. Before and after symbols in w, AD(w,·) can also
simulate the insertion of any number of symbols, each with cost 1. So, a path is in Π(AD(w,·), u)
iff it corresponds to a way of changing w into u, and its weight is the number of edits it performs to
turn w into u. The stringsum gives the minimum number of edits.

AD(w,·)(u) =
⊕

π∈Π(AD(w,·),u)

w(π) (25a)

= min
π∈Π(AD(w,·),u)

w(π) (25b)

= D(w, u) (25c)

Next, we lift the weights of A into the tropical semiring, resulting in a WDFA A·∈L. The weights
of all transitions and the accept weights of all accepting states in A are set to 0 in A·∈L. All other
weights are set to∞. So, A·∈L assigns weight 0 to all strings in L, and weight∞ to all others.
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Lemma 2. For all u ∈ Σ∗,

A·∈L(u) =

{
0 if u ∈ L

∞ otherwise.
(26)

Proof. By definition, A has a path that scans u iff u ∈ L. By construction, A·∈L has a path that
scans u with weight 0 iff A has a path that scans u. Therefore, if u ∈ L, the stringsum A·∈L(u) is
the minimum of one or more path weights of 0, so it is 0. Otherwise, the stringsum is a summation
over an empty set of path weights, which is defined to be∞ in the tropical semiring.

Next, we intersect AD(w,·) and A·∈L using the standard intersection algorithm for WFAs, resulting
in a WFA AD(·,L) that assigns weight D(w, u) to u if u ∈ L and∞ otherwise.
Lemma 3. For all u ∈ Σ∗,

AD(·,L)(u) =

{
D(w, u) if u ∈ L

∞ otherwise.
(27)

Proof. By definition of intersection, the stringsum of the intersected automaton is

AD(·,L)(u)
def
= AD(w,·)(u)⊗A·∈L(u). (28)

Using Lemmas 1 and 2 and Eq. (28), we have

AD(·,L)(u) =

{
D(w, u) + 0 if u ∈ L

D(w, u) +∞ otherwise
(29a)

=

{
D(w, u) if u ∈ L

∞ otherwise.
(29b)

Finally, we compute the allsum of AD(·,L), which gives us the minimum edit distance from w to
any string u ∈ L. Let AD(·,L) = (Q,Σ, δ, q0, ρ). To compute the allsum, we first use the Floyd–
Warshall all-pairs shortest path algorithm.9 to compute the shortest path weight from q0 to r, denoted
A[q0, r], for every r ∈ Q. We then compute the allsum as

Z(AD(·,L)) =
⊕
r∈Q

A[q0, r]⊗ ρ(r) (30a)

= min
r∈Q

A[q0, r] + ρ(r). (30b)

This gives us the edit distance D(w,L).
Theorem 1. Z(AD(·,L)) = D(w,L).

Proof. By definition, the allsum is

Z(AD(·,L))
def
=
⊕
u∈Σ∗

AD(·,L)(u). (31)

Using Lemma 3 and Def. 10, we have

Z(AD(·,L)) = min
u∈Σ∗

AD(·,L)(u) (32a)

= min
u∈L
D(w, u) (32b)

= D(w,L). (32c)

9This is a special case of Lehmann’s algorithm (Algorithm 4) The only difference is that we do not need to
compute the star operation in Algorithm 4, line 7, which is always 0 in the tropical semiring.
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