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ABSTRACT

We introduce ORC-MANL, a new algorithm to prune spurious edges from nearest
neighbor graphs using a criterion based on Ollivier-Ricci curvature and estimated
metric distortion. Our motivation comes from manifold learning: we show that
when the data generating the nearest-neighbor graph consists of noisy samples
from a low-dimensional manifold, edges that shortcut through the ambient space
have more negative Ollivier-Ricci curvature than edges that lie along the data man-
ifold. We demonstrate that our method outperforms alternative pruning methods
and that it significantly improves performance on many downstream geometric
data analysis tasks that use nearest neighbor graphs as input. Specifically, we
evaluate on manifold learning, persistent homology, dimension estimation, and
others. We also show that ORC-MANL can be used to improve clustering and
manifold learning of single-cell RNA sequencing data. Finally, we provide em-
pirical convergence experiments that support our theoretical findings.

1 INTRODUCTION

The first step for almost all geometric data analysis tasks is to build a nearest neighbor graph. This
reflects faith in the manifold hypothesis—the belief that the data actually lies on a low-dimensional
submanifold of the ambient RD. In this setting, the nearest neighbor graph recovers the intrinsic
geometry of the data manifold, using the observation that small ambient distances lie along the
manifold whereas larger ones may not.

Unfortunately, building nearest neighbor graphs from noisy data typically results in inaccurate rep-
resentation of the metric structure of the underlying manifold. In this paper, we study edges in
nearest neighbor graphs that shortcut through the ambient space and bridge distant neighborhoods
of the underlying manifold. Such “shortcut edges” distort inferred distances and negatively impact
downstream algorithms that operate on the graphs.

We show that Ollivier-Ricci curvature (ORC), a measure of discrete curvature on graphs (Ollivier,
2007), can be used to effectively identify shortcut edges when the data consists of noisy samples
from a low dimensional submanifold. We also show that graph distances can be used to support the
identification of shortcut edges, allowing us to avoid accidentally catching “good” edges. Guided
by these results, we describe an algorithm, Ollivier-Ricci Curvature-based Manifold Learning and
recovery (ORC-MANL), to detect and prune shortcut edges.

ORC-MANL marks edges with extremely negative ORC as candidate shortcut edges. The algorithm
then constructs a thresholded graph with the candidates removed. We then use the thresholded graph
distance between the endpoints of all candidate edges to check—if the distance is large, the edge
was likely shortcutting the manifold through the ambient space. If the distance is small, the edge is
added back to the graph. We find that despite its simplicity, ORC-MANL is incredibly effective and
provides tangible performance improvement for downstream geometric data analysis algorithms for
a variety of synthetic and real datasets. Our code for ORC-MANL and all experiments are available
on GitHub.†

*Correspondence: tls2160@columbia.edu, abigail.hickok@yale.edu, andrew.blumberg@columbia.edu
†Link to implementation: https://github.com/TristanSaidi/orcml
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1.1 CONTRIBUTIONS

We introduce a general-purpose method, ORC-MANL, that uses discrete graph curvature to detect
and prune unwanted connectivity in nearest-neighbor graphs. Our method is theoretically justified,
and in practice significantly improves the performance of downstream tasks like manifold learn-
ing, persistent homology, and estimation of important geometric quantities like intrinsic dimension
and curvature. Furthermore we find that ORC-MANL is effective on real world single-cell RNA
sequencing data: ORC-MANL pruning reveals clusters in PBMC data in accordance with ground
truth annotations and results in embeddings that better preserves communities of neuronal cells. Fi-
nally, we also include experiments to show that our theoretical convergence results are supported by
empirical experimentation.

1.2 RELATED WORK

Graph Pruning. Several graph pruning approaches have been proposed in the literature. Some
use density estimation as a heuristic for detecting unwanted edges and show results on noiseless
toy datasets (Xia et al., 2008; Chao et al., 2007). Zemel & Carreira-Perpiñán (2004) proposed an
approach that builds a minimum spanning tree of the original nearest neighbor graph; but this relies
on the assumption that shortcutting edges are longer than good edges, a phenomenon that does not
always hold. Another family of approaches attempt to adaptively tune the number-of-neighbors
parameter k of the nearest neighbor graph based on the local geometry of the data. Zhan et al.
(2009); Elhenawy et al. (2019) adopt similar approaches, looking at the linearity of neighborhoods
using PCA and pruning accordingly. These methods typically demonstrate a limited set of results
on noiseless data and provide little theoretical justification.

Ollivier-Ricci Curvature. Ollivier-Ricci curvature (ORC) was proposed as a measure of curvature
for finite metric spaces by Ollivier (2007), with follow-up results demonstrating theoretical and
empirical convergence to the underlying manifold Ricci curvature under mild assumptions (Ollivier,
2009; van der Hoorn et al., 2021). In the network geometry literature, ORC based approaches
have been effective for community detection, drawing connections to Ricci flow from Riemannian
geometry (Sia et al., 2019; Ni et al., 2019). Sia et al. (2019) prune edges with extremely negative
ORC and justify it using theory that argues that ORC detects communities. Our theoretical work
instead justifies the use of ORC for recovering correct manifold structure. A multitude of papers
have used ORC for clustering and modeling diffusion processes on graphs as well (Gosztolai &
Arnaudon, 2021; Tian et al., 2023). This work has led to applications for graph neural networks,
where ORC was used to prevent over-squashing and over-smoothing (Liu et al., 2023; Nguyen et al.,
2023), and improving encodings of local graph structure (Fesser & Weber, 2024).

2 BACKGROUND AND DEFINITIONS

2.1 DIFFERENTIAL AND RIEMANNIAN GEOMETRY

Manifolds. A manifold is a generalization of the notion of a surface—it is a topological space that
locally looks like Euclidean space. Concretely, a manifoldM is an m-dimensional space such that
for every point x ∈ M there is a neighborhood U ⊆ M such that U is homeomorphic to Rm. At
every point x ∈ M one can attach a m-dimensional vector space called the tangent space (denoted
TxM) that contains all directions in which a path inM can tangentially pass through x. In a similar
manner, the normal space at x (denoted NxM) is a vector space containing all directions normal
toM at x. We will work with Riemannian manifolds, which are smooth manifolds endowed with
a Riemannian metric. A Riemannian metric is an assignment of an inner product to each tangent
space that varies smoothly with respect to x ∈M. This metric allows one to make statements about
local similarity, angles, and distances. For a more detailed treatment of differential and Riemannian
geometry, we direct readers to Prasolov (2022) and Lee (2018).

Geodesics. In this paper we are concerned with submanifoldsM of RD whose Riemannian metrics
are induced by the ambient Euclidean metric. Recall that the length of a continuously differentiable
path γ : [a, b] → RD is L(γ) =

∫ a

b
∥γ′(t)∥2 dt. The geodesic distance between two points x and y

in a submanifoldM of RD is simply the minimum length over all continuously differentiable paths
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connecting x and y. In this paper we consider the distance metric dM(a, b) as the length of the
geodesic path throughM connecting a ∈M to b ∈M.

Tubular Neighborhoods. The τ -tubular neighborhood Tubτ (M) of a submanifoldM of RD is the
set {x ∈ RD | d(M, x) ≤ τ}, where d(M, x) is the Euclidean distance between x and the nearest
point x′ ∈ M. Intuitively, Tubτ (M) is a “fattened” submanifold of RD that envelopsM. We use
the tubular neighborhood as a model of the support of a noisy sampling distribution overM with a
bounded level of isotropic noise.

M

M

s0(M)

s0(M)

r0(M)

r0(M)

Figure 1: Visualization of the manifold
parameters r0(M) and s0(M).

Manifold Embedding Parameters. We will define
two manifold parameters that are central to the the-
oretical analysis that follows, adopted from Bernstein
et al. (2001). The minimum radius of curvature is
r0(M) = 1

maxγ,t ∥γ̈(t)∥2
where γ : R+ → RD is

a time-parameterized unit-speed geodesic in M. Intu-
itively, r0(M) indicates the extent to which manifold
geodesics curl in the ambient Euclidean space. The min-
imum branch separation s0(M) is the largest positive
number such that ∀x, y ∈ M, ∥x − y∥2 < s0(M) im-
plies dM(x, y) ≤ πr0(M). While in general people use

quantities like the reach and injectivity radius to describe manifold embeddings, these quantities are
intimately related to the ones described; we choose to stick to the described parameters for compat-
ibility with theorems invoked from prior work.

Proposition 1. SupposeM is a compact submanifold of RD without boundary and with a minimum
radius of curvature r0(M). Then TubτM has a minimum radius of curvature of r0(M)− τ .

2.2 NEAREST NEIGHBOR GRAPHS AND UNWANTED CONNECTIVITY

Geometric machine learning approaches attempt to capture the underlying structure of M from
noisy samples X , typically beginning with the construction of a nearest neighbor graph. These
graphs use connectivity rules of two flavors: ϵ-radius, or k-nearest neighbor (k-NN) (Bernstein et al.,
2001). The ϵ-radius connectivity scheme asserts that for any two vertices a and b, an edge exists
between them if ∥a − b∥2 ≤ ϵ. The k-NN rule on the other hand asserts that the edge exists only
if b is one of the k nearest neighbors of a, or vice versa. While the ϵ-radius rule is more amenable
to theoretical analysis, the k-NN rule is used more often in practice. Unless otherwise specified, an
edge (x, y) in a neighbor graph is assigned the weight ∥x− y∥2.

Definition 2.1. An edge (x, y) in a nearest neighbor graph of noisy samples from M is a
shortcut edge if

dM
(
projM x, projM y

)
> (π + 1)r0(M)

where projM(·) is the orthogonal projection onto M and r0(M) is the minimum radius of
curvature ofM.
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Figure 2: Visualization of a nearest
neighbor graph build from noisy sam-
ples from M. Desirable edges are
shown in green, while the shortcut edge
is shown in red.

One of the main corrupting phenomena in the construc-
tion of nearest neighbor graphs is the formation of short-
cut edges, edges that bridge distant neighborhoods of
the underlying manifold M. Figure 2 depicts a simple
2-dimensional example of a shortcut edge, while Defi-
nition 2.1 provides a mathematical description of such
edges. Note that in Section 3 we state the assumption
that τ < r0(M), which guarantees the uniqueness of the
projection map. Intuitively, a shortcut edge is one where a
large distance throughM is required to traverse between
the endpoints, relative to the Euclidean distance between
the endpoints of the edge itself. While the definition has
no explicit dependence on ∥x − y∥2, we make the as-
sumption in Section 3 that the connectivity threshold ϵ
(and thus ∥x− y∥2) is smaller than r0(M).
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2.3 OLLIVIER-RICCI CURVATURE

Ollivier-Ricci curvature (ORC) was proposed as a measure of curvature for discrete spaces (Ollivier,
2009) by leveraging the connection between optimal transport and Ricci curvature of Riemannian
manifolds. While there have been many subtle variations of ORC, we will describe a modification
to the most common one. Given an edge (x, y) in a weighted graph G with vertices V and edges E,
define the neighborhoods of x and y as N (x) := {v ∈ V | (x, v) ∈ E, v ̸= x} and N (y) := {v ∈
V | (y, v) ∈ E, v ̸= y}. Further define µx and µy as uniform probability measures over N (x) \ {y}
and N (y) \ {x}, respectively. The ORC of the edge (x, y), denoted κ(x, y), is defined as

κ(x, y) := 1− W (µx, µy)

dG(x, y)

where W (µx, µy) is the 1-Wasserstein distance between the measures µx and µy (regarded as mea-
sures on V ), with respect to the weighted shortest-path metric dG(· , ·). The weighted shortest-path
metric dG(x, y) simply represents the total weight of a weight-minimizing path from x to y through
G. The 1-Wasserstein distance is computed by solving the following optimal transport problem,

W (µx, µy) = inf
γ∈Π(µx,µy)

∑
(a,b)∈V×V

dG(a, b)γ(a, b)

where Π(µx, µy) is the set of all measures on V × V with marginals µx and µy . Intuitively, ORC
quantifies the local structure of G: negative curvature implies that the edge is a “bottleneck”, while
positive curvature indicates the edge is present in a highly connected community.

In our setting, the vertices of the graph G are points in RD, and edges connect points (x, y) such
that ∥x − y∥2 ≤ ϵ, where ϵ is a user-chosen connectivity threshold. A common choice is to weight
the edges by the Euclidean distance ∥x−y∥2, but we make a slight modification to this formulation.
In computing the ORC in the present paper we use unweighted edges; namely, all edges are snapped
to a weight of 1. This is a key aspect of our method, as it forces the ORC to reflect only the local
connectivity and makes it invariant to scale. This modification also restricts the ORC values to lie
between −2 and +1, whereas with weighted graphs, the values are unbounded below. For the rest
of the paper, any reference to Ollivier-Ricci curvature is a reference to the formulation we have just
described. In all cases other than computing ORC, an edge (x, y) is assigned the weight ∥x− y∥2,
as mentioned in Section 2.2.

Proposition 2. For any edge (x, y) in an unweighted graph, −2 ≤ κ(x, y) ≤ 1.

3 METHOD AND THEORETICAL RESULTS

In this section we will describe ORC-MANL, a novel algorithm for pruning nearest neighbor graphs
based on ORC and metric distortion. We will also describe the theoretical results that justify the
algorithm construction, the proofs of which are in Appendix A.4.

ORC-MANL (Algorithm 1) takes as input noisy samples X from some underlying manifold, an
accompanying nearest neighbor graph G = (V,E) of the data, and tolerances δ, λ ∈ [0, 1]. The
method constructs a candidate set C of edges that have curvature more negative than a threshold just
larger than −1. We note that the exact expression for this threshold, −1 + 4(1 − δ), arises from
Lemma A.1. The expression simply captures the notion that shortcut edges tend to have ORC less
than some constant value near −1, where δ = 1 results in a strict threshold of −1 and smaller δ
values introduce slack. Importantly, not every edge in the candidate set is necessarily a shortcut;
good edges can have extremely negative curvature as well. To combat this, the method proceeds by
constructing a thresholded graph G′ = (V,E′) where E′ = E \ C. The weighted graph distance
dG′(x, y) is checked for every edge (x, y) ∈ C. If this distance exceeds the threshold derived in
Theorem 3.3, we can be confident that (x, y) undesirably bridges distant neighborhoods of M (a
visualization for which is shown in Figure 13). The edge is therefore removed from G. If the
threshold is not exceeded, the edge is not removed. We would also like to emphasize that the
threshold arising from Theorem 3.3 is unaffected by feature scale, as it is equivalent to a bound on
dG′(x, y)/ϵ. Finally, for a time complexity analysis of the ORC-MANL algorithm we direct readers
to Appendix A.2.
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Algorithm 1 ORC-MANL

Require: G = (V,E) a nearest neighbor graph, λ, δ
1: C ← {}
2: for (x, y) in E do ▷ candidate selection
3: κ(x, y)← OllivierRicci(G, (x, y))
4: if κ(x, y) ≤ −1 + 4

(
1− δ

)
then ▷ Lemma A.1

5: C ← C ∪ {(x, y)}
6: E′ ← E \ C
7: G′ ← (V,E′)
8: for (x, y) in C do ▷ shortcut detection
9: dG′(x, y)← ShortestPath(G′, x, y)

10: if dG′(x, y) > π(π+1)(1−λ)

2
√
24λ

ϵ then ▷ Theorem 3.3
11: E ← E \ {(x, y)}
12: return (V,E)

We provide three theoretical results
that justify ORC-MANL. First, we
show that when the data generating
the nearest neighbor graph consists
of noisy samples from an underlying
manifold M, the ORC of shortcut-
ting edges tends to be very negative.
Second, we show that as one samples
more points, every vertex has an in-
creasing number of non-shortcutting
edges with very positive ORC. Last,
we derive a bound on the graph dis-
tance (in the ORC thresholded graph
G′) between any vertices connected
by a shortcut edge in G.

We consider the setting whereM is a
compact m-dimensional smooth sub-

manifold of RD without boundary. Let Tubτ (M) be the tubular neighborhood of M, and as-
sume X ⊂ Tubτ (M) consists of n independent draws from the probability density function
ρ : Tubτ (M)→ R+,

ρ(z) =


1

Z
e

−∥z−projM z∥22
2σ2 , ∥z − projM z∥2 ≤ τ

0 , o.w. ,
(1)

where Z is a normalizing constant such that
∫

Tubτ (M)
ρ(z)dV integrates to 1. We are given a con-

stant λ < 1, which controls the threshold we use when checking the weighted-graph distances of
candidate edges. For the rest of the paper, suppose that

1. (Support criteria): 2τ < ϵ, 3τ < s0(M), 3τ < r0(M)

2. (ϵ-radius criterion): ϵ < min
{√

(s0(M)− τ)2 − τ2, 2
π (r0(M)− τ)

√
24λ, r0(M)

}
,

where s0(M) is the minimum branch separation ofM and r0(M) is the minimum radius of curva-
ture ofM. Assumption 1 ensures that the orthogonal projection projM : TubτM→M is unique,
while 2 allows us to use Bernstein et al. (2001) to make statements about geodesic distances.

Our first theorem establishes that the ORC for shortcut edges converges to negative values in the
limit of vanishing noise σ. We note that so long as τ > 0 and σ > 0, shortcut edges occur with
nonzero probability. Observe that, in combination with Proposition 2, this result indicates that the
ORC of shortcut edges tends to concentrate in the bottom third of the possible range of values.

Theorem 3.1 (Ollivier-Ricci Curvature of Shortcut Edges). Suppose that Xi is a point cloud
sampled from ρ with parameters σi and τi and Gi is its nearest-neighbor graph. Also suppose
thatM satisfies the conditions above, and σi → 0+ and τi → 0+ as i→∞. Then as i→∞,
we have κ(x, y) ≤ −1 for all shortcut edges (x, y) in Gi with probability approaching 1.

To be confident that ORC can be effective at identifying potentially shortcutting edges, we would
also like to be sure that there exists a sufficient number of good (non-shortcut) edges with more
positive ORC. This motivates Theorem 3.2.

Theorem 3.2 (Ollivier-Ricci Curvature of Non-Shortcut Edges). Let k be a positive integer.
With high probability as the number of points n → ∞, every point has at least k neighbors
that it is connected to by non-shortcut edges with ORC +1.

Proofs of Theorem 3.1 and Theorem 3.2 can be found in Appendix A.4.1. These results allow us
to create a candidate set of shortcut edges by looking at the ORC of edges in G. We then expect
that the graph G′ = (V,E′), where E′ has all extremely negative-curvature edges removed, has no
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shortcut edges and a large number of good edges. It should therefore have a metric structure that is
more aligned with that of the underlying manifoldM. With that said, we also expect the candidate
set to contain some non-shortcut edges, which we do not want to remove from G. In the last part of
our algorithm, we filter our candidate set to identify edges that are most likely to be shortcuts. This
motivates our third theorem, which establishes that for vertices that were previously connected in G
by a shortcut edge, their weighted graph distance in G′ is large relative to ϵ.

Theorem 3.3 (Filtered Graph Distance). Suppose that Xi is a point cloud sampled from ρ with
parameters σi and τi and Gi = (Vi, Ei) is its nearest neighbor graph. Also suppose thatM
satisfies the conditions above and σi → 0+ and τi → 0+ as i → ∞. Define the subgraph
G′

i = (Vi, E
′
i) where

E′
i =

{
(xi, yi) ∈ Ei

∣∣∣κ(xi, yi) > −1
}
.

Then as i→∞ we have

dG′(x, y) > β
π(π + 1)(1− λ)

2
√
24λ

ϵ

for all shortcut edges in Gi with probability approaching 1, where β ∈ [0, 1] (eq. (34)) is a
random variable whose distribution is dependent onM and τi.

Remark 1. The random variable β is inversely related to the number and lengths of edges
that shortcut through TubτM but do not satisfy the definition of a shortcut edge in M. We
expect that β concentrates close to 1, and experimentally we find that β = 1 works well.

Theorem 3.3 arises from two results: (1) one can bound geodesic distances through TubτM with
geodesic distances of paths throughM with similar endpoints, and (2) under reasonable conditions
one can relate the graph distances through a nearest neighbor graph built from data sampled from
TubτM to the geodesic distance through TubτM.
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Figure 3: Empirical convergence re-
sults. The bottom row plots the percent
of nodes with at least k incident edges
that (∗) are non-shortcutting and have
positive ORC.

Figure 3 shows experimental support for Theorem 3.1 and
Theorem 3.2 on two synthetic manifolds averaged across
10 seeds. In accordance with Theorem 3.1 we find that as
the noise parameter σ falls, the ORC of shortcutting edges
falls commensurately. We see that it rapidly drops below
−1 and asymptotes to the most negative possible value,
−2. In accordance with Theorem 3.2 we find that as we
sample more points each vertex has an increasing num-
ber of non-shortcut incident edges with positive ORC. For
more empirical support of the theory we provide an illus-
trative example in Figure 25 in Appendix A.5.8. We also
discuss the behavior of ORC-MANL as a function of un-
derlying manifold curvature in Appendix A.5.7.

4 EXPERIMENTS

Building nearest neighbor graphs as a data pre-processing step is ubiquitous in geometric data anal-
ysis. Therefore our method is well suited for evaluation on a broad range of algorithms that operate
on nearest neighbor graphs.

Our experiments are divided into two sections. Firstly, we evaluate ORC-MANL on a variety of
synthetic manifolds for a broad array of benchmark geometric data analysis and machine learning
tasks. We also compare pruning accuracy to several benchmark methods presented previously in
the literature. We then show that ORC-MANL pruning reveals clusters aligned with ground truth
annotation for single-cell RNA sequencing (scRNAseq) data of peripheral blood mononuclear cells
(PBMCs). We also find that ORC-MANL pruning improves downstream manifold learning em-
beddings of scRNAseq data of anterolateral motor cortex (ALM) brain cells in mice. Furthermore,
we include experiments in Appendix A.5.3 that suggest that ORC-MANL is effective on MNIST
(Deng, 2012) and KMNIST (Clanuwat et al., 2018), and we add ablations for nearest neighbor graph
parameter k and ORC-MANL parameters δ, λ in Appendix A.5.5.
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4.1 RESULTS: SYNTHETIC DATA

For our synthetic manifolds, we have curated a list of 1 and 2-dimensional manifolds embedded in
R2 and R3, respectively, that exhibit varying intrinsic and extrinsic curvature. The 1-dimensional
manifolds include concentric circles, a mixture of Gaussians, twin moons, an S curve, the 1-
dimensional swiss roll, a Cassini oval (Cassini, 1693) and concentric parabolas. The 2-dimensional
manifolds include chained torii, concentric hyperboloids, an adjacent hyperboloid and paraboloid,
adjacent paraboloids and the 2-dimensional swiss roll. Note that we include additional experi-
ments indicating the improved performance of spectral clustering with ORC-MANL pruning in
Appendix A.5.4. We also provide more experimental details regarding sampling and nearest neigh-
bor graph construction in Appendix A.3.

4.1.1 PRUNING

Our first experiment quantifies the ability of ORC-MANL to prune (and therefore classify) edges
of nearest neighbor graphs. We report classification accuracy for 1-dimensional manifolds in Ta-
ble 1 and 2-dimensional manifolds in Table 4. In the tables, we also include performance for several
baseline graph pruning approaches. Algorithm descriptions for each baseline are provided in Ap-
pendix A.3.1. Accompanying visualizations for ORC-MANL pruning results are shown in Figure 4.

Table 1: Pruning performance of ORC-MANL vs. baselines. For each entry, the top and bottom
rows indicate the percentage of “good” edges and shortcut edges removed, respectively.

Concentric
Torii

Concentric
Hyperboloids

Hyperboloid
and Paraboloid Paraboloids Swiss Roll

ORC-MANL (ours) 0.0 ± 0.0
100.0 ± 0.0

0.0 ± 0.0
99.1 ± 2.6

0.0 ± 0.0
89.4 ± 21.3

0.0 ± 0.0
100.0 ± 0.0

0.0 ± 0.0
100.0 ± 0.0

ORC ONLY
15.7 ± 0.3
100.0 ± 0.0

13.1 ± 0.2
100.0 ± 0.0

18.1 ± 0.3
98.9 ± 3.3

18.0 ± 0.3
100.0 ± 0.0

14.8 ± 0.2
100.0 ± 0.0

BISECTION (Xia et al., 2008) 2.8 ± 0.0
8.8 ± 3.5

0.4 ± 0.1
20.0 ± 4.2

0.4 ± 0.1
61.3 ± 21.3

0.5 ± 0.0
10.3 ± 12.2

0.4 ± 0.1
32.8 ± 9.4

MST (Zemel & Carreira-Perpiñán, 2004; Chao et al., 2007) 29.2 ± 0.3
89.6 ± 3.7

2.3 ± 0.2
91.6 ± 1.3

20.4 ± 0.5
58.5 ± 10.8

24.3 ± 0.4
66.2 ± 17.2

1.8 ± 0.3
100.0 ± 0.0

DENSITY (Chao et al., 2006) 30.4 ± 1.6
16.8 ± 8.0

22.9 ± 0.9
1.0 ± 1.3

32.9 ± 1.1
0.6 ± 1.9

63.6 ± 1.3
8.9 ± 7.4

7.8 ± 0.7
29.5 ± 8.0

DISTANCE
22.0 ± 0.4
88.8 ± 5.6

9.2 ± 0.5
61.1 ± 8.7

18.9 ± 0.4
73.8 ± 18.2

34.7 ± 0.5
26.5 ± 13.7

2.3 ± 0.2
40.0 ± 9.8

We find that ORC-MANL vastly outperforms all baselines on a majority of the synthetic man-
ifolds. Our approach removes all shortcut edges in all but two examples, and removes no
shortcut edges across all examples. Unsurprisingly, we find that ORC ONLY exhibits identi-
cal performance on shortcut edge removal, but typically removes around 15% of good edges
as well. BISECTION performs poorly on all manifolds except the moons and the S curve,
likely stemming from the fact that shortcut edges for those examples travel longer distances
and pass through lower density regions than shortcut edges for other synthetic manifolds.

 

 

Figure 4: Visualization of nearest neighbor
graphs before and after pruning with ORC-
MANL. Shortcut edges are highlighted red.

This is also reflected in stronger performance by
DISTANCE on the moons and the S curve. MST
unsurprisingly performs well on examples where the
underlying manifoldM has a single connected com-
ponent (like the swiss roll and S curve) but con-
sistently struggles with most other examples. Fi-
nally, DENSITY and DISTANCE exhibit erratic per-
formance, at times being competitive with ORC-
MANL, and at times performing poorly. We attribute
this to the variability in the extent to which shortcut
edges (1) pass through low density regions, and (2)
have longer length relative to other graph edges. Fur-
thermore, these effects can be compounded by poor
kernel density estimates for the DENSITY baseline.

We would like to underscore the fact that algorithm
parameters for ORC-MANL are fixed at δ = 0.8
and λ = 0.01 across all manifolds and trials (and δ
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for ORC ONLY is similarly fixed at 0.8) in Table 1. The baseline methods MST, DENSITY and
DISTANCE however required manual threshold tuning for each manifold in the evaluation set listed.
Despite this additional labor induced by parameter tuning, we find that ORC-MANL outperforms
these other methods. All manifold and algorithm parameters are listed in Table 2 and Table 3.

4.1.2 MANIFOLD LEARNING

We turn to evaluate ORC-MANL on manifold learning, a family of algorithms concerned with find-
ing low dimensional coordinates on the data submanifold. Almost all manifold learning algorithms
begin by constructing a nearest neighbor graph, making ORC-MANL a perfect pre-processing step.

We compare embeddings of nearest neighbor graphs with and without ORC-MANL preprocessing
for data sampled from a noisy 2-dimensional swiss roll embedded in R3 with and without a hole.
We test on Isomap (Tenenbaum et al., 2000), Locally Linear Embeddings (LLE), (Belkin & Niyogi,
2003), UMAP (McInnes et al., 2018a) and t-SNE (Van der Maaten & Hinton, 2008) shown in Fig-
ure 5. We leave out Laplacian Eigenmaps (Belkin & Niyogi, 2003) as we find that it fails to preserve
both underlying dimensions of the noisy swiss roll, independent of the presence of shortcut edges.
To the best of our understanding, this likely arises from the Repeated Eigendirection Problem (REP)
associated with eigenfunction based methods (Dsilva et al., 2018). For UMAP and t-SNE we use
graph distances (induced by the pruned and unpruned graphs respectively) as algorithm inputs.

We observe that across both manifolds and all methods, ORC-MANL pruning typically improves the
embedding. For Isomap, this improvement is the most pronounced; without pruning, Isomap fails to
unroll either swiss roll. We attribute this to distorted geodesic distance estimates (which is the first
step of the Isomap algorithm) arising from shortcut edges. We also find significant improvement in
the quality of the embeddings for LLE. For both manifolds, LLE without ORC-MANL struggles to
preserve the primary dimension of the underlying manifold.

Figure 5: Embeddings of the noisy 3-dimensional swiss roll (left) and noisy 3-dimensional swiss
hole (right) produced by several popular manifold learning algorithms. The UMAP embeddings
shown were run on noisier samples than those for the other embedding algorithms.

We find that UMAP benefits from ORC-MANL pruning as well, though the difference with and
without pruning emerges only when the noise τ is extremely large. Finally, t-SNE embeddings for
both datasets appear to be better when coupled with ORC-MANL, as it prevents discontinuities that
arise in the unpruned embeddings. Unfortunately across trials we do not see consistent benefit from
pruning, though it is never detrimental. For completeness, embeddings for three different trials are
shown in Figure 20 in Appendix A.5.2.

4.1.3 PERSISTENT HOMOLOGY

Next, we evaluate our method on persistent homology. Persistent homology begins by constructing
a nested sequence Kr0 ⊆ Kr1 ⊆ . . .Krn . . . of simplicial complexes, also referred to as a filtered
complex. A common example is the Vietoris-Rips (VR) filtered complex. For data points X with
metric d, the VR simplicial complex Kr has a simplex for every subset of points with pairwise
distances ≤ r (Ghrist, 2014). For our experiments, we construct the VR filtered complex where the
metric is the weighted graph distance. One can summarize the result of persistent homology with a
persistence diagram, simply a multiset of points in R̄2

>. Each point (rbirth, rdeath) in the persistence
diagram records the filtration parameter at which a homology class is born and dies respectively.

We present results for persistent homology applied to nearest neighbor graphs with and without
ORC-MANL preprocessing in Figure 6. We show results on (1) the noisy concentric circles dataset,
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and (2) the noisy chained torii manifolds. For each manifold, we present the persistence diagram of
an oversampled, noiseless point cloud of the manifold as a proxy for ground truth. The persistence
diagrams are shown for qualitative evaluation, but we also include dissimilarity scores measured as
the Wasserstein distance to the noiseless persistence diagram for quantitative evaluation (the details
for which are provided in Appendix A.3.2).

Figure 6: Persistent homology applied to the concentric-circles (left) and the chained-torii (right).
The bottom row indicates the Wasserstein distance to the noiseless persistence diagram.

We observe that for both datasets, the persistence diagrams computed on ORC-MANL pruned near-
est neighbor graphs are qualitatively and quantitatively more similar to the noiseless persistence dia-
grams than their unpruned counterparts. We emphasize that for both synthetic manifolds, the pruned
diagrams correctly capture the number of essential classes (homology classes that persist forever),
while non-pruned diagrams do not. We observe infinite Wasserstein distances for H0 between the
unpruned and noiseless persistence diagrams, but only finite distances for the ORC-MANL pruned
diagrams. For other homology dimensions, we also see that ORC-MANL pruned diagrams consis-
tently exhibit smaller distances to the noiseless than non-pruned diagrams.

4.1.4 GEOMETRIC DESCRIPTORS

Figure 7: Scalar curvature and intrinsic dimension esti-
mation. The star indicates the ground truth.

Finally, we test the ability of ORC-
MANL to preserve geometric descrip-
tors of the underlying manifolds. We
estimate intrinsic dimension and scalar
curvature for the (1) swiss roll and (2)
adjacent spheres datasets. We compare
our estimates to the ground-truth values.
We use the maximum-likelihood estima-
tion approach to estimating intrinsic di-
mension from Levina & Bickel (2004),
and we use the algorithm from Hickok & Blumberg (2023) to estimate scalar curvature. The details
for both algorithms are detailed in Appendix A.3.3 and Appendix A.3.4, respectively.

We report intrinsic dimension and scalar curvature estimation results on the noisy swiss roll and
noisy adjacent spheres dataset in Figure 7. We find that ORC-MANL pruning provides tangible
improvement over non-pruned estimates, especially for scalar curvature. For intrinsic dimension
estimation we see improved point-wise accuracy in regions with a high number of shortcut edges
(for example, the area between the adjacent spheres); in regions with a smaller presence of shortcut
edges, we find that the unpruned graphs produce accurate results.

4.2 RESULTS: REAL DATA

We evaluate the efficacy of ORC-MANL on real-world data by using it to analyze cell-type anno-
tated scRNAseq data of (1) anterolateral motor cortex (ALM) brain cells in mice available from
the Allen Institute (Abdelaal et al., 2019), and (2) scRNAseq data of peripheral blood mononuclear
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cells (PBMC) available from 10XGenomics. In accordance with previous work, for both datasets we
extract the 2000 most variable genes, followed by PCA (Pearson, 1901) to obtain a 50-dimensional
representation of the original data.

Figure 8: Isomap (Tenenbaum et al., 2000) embedding of scRNAseq data from anterolateral motor
cortex (ALM) brain cells in mice with and without ORC-MANL pruning.

For the brain cells we use Isomap (Tenenbaum et al., 2000) to embed ORC-MANL pruned and
unpruned nearest neighbor graphs. Figure 8 shows the embeddings with base truth annotations.
We find that pruning with ORC-MANL qualitatively improves the Isomap embedding of the data,
as the distinction between neuronal cells (labeled “Inhibitory” and “Excitatory”) and non-neuronal
cells becomes significantly more pronounced after pruning. For completeness, we include UMAP
and t-SNE embeddings of this dataset in the appendix in Figure 23; we observe poor performance
as measured by neuronal community preservation both with and without pruning, suggesting issues
with the embedding algorithms themselves as opposed to pruning.

Figure 9: UMAP and spectral embeddings of PBMC scRNAseq data with and without ORC-MANL
preprocessing, with edges of the pruned and unpruned graphs visualized in grey. Gaussian noise was
added to the spectral embeddings with ORC-MANL pruning for visibility, as connected components
get mapped to a single point.

Now we turn to the PBMC dataset, where we show UMAP and spectral embeddings in Figure 9.
We find that ORC-MANL pruning leads to connected components that largely align with base truth
annotations; this is reflected in the spectral embedding, which maps each component to a unique lo-
cation in the embedding space. Furthermore, edges that formerly bridged seemingly distinct clusters
in the embeddings were removed, resulting in clearer cluster structure in the pruned graphs.

5 CONCLUSION

In this work we present ORC-MANL, a theoretically justified and empirically validated approach for
nearest neighbor graph pruning. We rigorously demonstrate that shortcut edges necessarily exhibit
particularly negative ORC for graphs sampled from manifolds with a bounded level of isotropic
noise. Our method also validates the removal of any edge by using a theoretically derived bound
on graph distances implied by the geometry of shortcut edges. We qualitatively and quantitatively
demonstrate that ORC-MANL is beneficial to a variety of downstream geometric data analysis tasks
on synthetic and real data. We also compare our method to baselines from the literature in its ability
to correctly prune shortcut edges and avoid non-shortcut edges.
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A APPENDIX

A.1 REPRODUCIBILITY STATEMENT

Theoretical Results: We detail global assumptions for all theoretical results in Section 3. We
also make a concerted effort to clarify all proof-specific assumptions in the Theorem, Lemma and
Proposition statements.

Experimental Results: To ensure the reproducibility of our experimental results we release the
source code for ORC-MANL and the scripts for reproducing all experiments.* Included in the
experiment scripts are the parameters used; for clarity we describe key parameter choices throughout
the body of the paper, and provide extra details in Appendix A.3.

A.2 ORC-MANL TIME COMPLEXITY

ORC-MANL consists of two sequential stages. In the first stage the ORC of each edge is evaluated.
According to Fesser & Weber (2024) such an operation has complexity O(|E|d3max), where dmax

indicates the highest node degree in the graph. Assuming k-NN connectivity (which is commonplace
in practice), we have dmax = O(k) and |E| = O(|V |k). This means the first stage of the algorithm
has complexity O(|V |k4). The second stage of the ORC-MANL algorithm requires one to find the
shortest path distance dG′(x, y) between the endpoints of all candidate edges (x, y) ∈ C in the ORC
thresholded graph G′. With a naive implementation of Dijkstra’s algorithm the time complexity is
O(|C||V |2), but efficient implementations admit a time complexity of O(|C||V | log |V |). Finally
since C ⊂ E and |E| = O(|V |k), the time complexity of the second stage of ORC-MANL scales
as O(k|V |2 log |V |).
The total time complexity of the ORC-MANL algorithm therefore scales as O(|V |k4) +
O(k|V |2 log |V |). Seeing as many geometric data analysis algorithms (e.g., PCA) require eigen-
decompositions that scale as O(|V |3), we consider the runtime of ORC-MANL to be reasonable.
For empirical evidence to support this claim, we provide experiments that compare the wall-clock
time of ORC-MANL and UMAP for the Swiss Roll in Figure 10. For this experiment, both algo-
rithms were run on a 16-core machine with 187 GB of RAM. We use the UMAP implementation
from McInnes et al. (2018b) and the ORC implementation from Ni et al. (2019), both of which use

*https://github.com/TristanSaidi/orcml

13

https://proceedings.neurips.cc/paper_files/paper/2004/file/dcda54e29207294d8e7e1b537338b1c0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2004/file/dcda54e29207294d8e7e1b537338b1c0-Paper.pdf
https://github.com/TristanSaidi/orcml


Figure 10: Wall clock time of the ORC-MANL algorithm and the UMAP algorithm for the noisy
Swiss Roll dataset of varying size.

multiprocessing. We see that in this range ORC-MANL runs substantially faster than UMAP and
appears to have slower asymptotic growth.

A.3 EXPERIMENTAL DETAILS

For all experiments in Section 4.1, datapoints are sampled according to ρ defined in eq. (1) for each
synthetic manifoldM. To achieve this, we sample uniformly from the underlying m-dimensional
manifoldM (unless otherwise specified) driven by the m-dimensional volume form defined by the
Euclidean metric. We then use rejection sampling to obtain isotropic Gaussian noise ξ ∼ N (0, I)
such that ∥ξ∥2 ≤ τ . For all experiments detailed in Section 4.1, we use k-NN connectivity; while
our theoretical analysis assumes ϵ-radius connectivity, ϵ-radius connectivity is more challenging to
tune in practice. Since k-NN graphs are more commonplace in the applied literature, we opt to
present results on k-NN graphs (unless otherwise specified).

A.3.1 PRUNING

Here we detail each of the pruning baselines that appear in Table 1.

1. ORC ONLY: This baseline returns a graph G′ where edges with curvature less than −1 +
4(1−δ) are removed, but no additional validation step is undertaken. Namely, Algorithm 1
is terminated at line 7 and the graph G′ is returned.

2. BISECTION: This method was proposed by Xia et al. (2008) to address topological instabil-
ity associated with the Isomap algorithm (Tenenbaum et al., 2000). For each edge (x, y),
it performs a local search around the midpoint l = (x + y)/2. Namely, it searches in a
bounding box

∏D
i=1[li− ϵ′, li+ ϵ′] for a neighboring point, where ϵ′ is the average distance

of x and y to their kbis nearest neighbors. If a point exists in the bounding box, the edge is
removed.

3. MST: This method was proposed by Zemel & Carreira-Perpiñán (2004) and simplified by
Chao et al. (2006). In essence, this leverages the insight that shortcutting edges empirically
exhibit longer edge length than their non-shortcutting counterparts (though neither paper
presented any theoretical justification for such claims). The method builds a Minimum-
Spanning-Tree (MST) T of the original graph G with Kruskal’s algorithm (Kruskal, 1956).
The edges in this MST are removed to obtain G′ = (V,E \ T ), from which one obtains
another MST T ′. Finally, T and T ′ are combined to get G′′. If for any edge (x, y) in G the
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graph shortest path distance in G′′ is larger than some manually set threshold dMST, then it
is removed.

4. DENSITY: While similar in theme to BISECTION, DENSITY uses explicit kernel density
estimation inspired by Chao et al. (2007). For this baseline, we estimate the density at the
midpoint of all edges, and remove edges that exhibit especially low density (based on some
manually tuned threshold ρmin).

5. DISTANCE: This baseline simply removes the longest edges based on some manually tuned
threshold ddist.

We note that for manifolds with a single connected component, we estimate edge labels (shortcut
versus non-shortcut) by checking whether the ratio of the manifold distance to the Euclidean distance
is large for a denser noiseless sample. For reproducibility we include noise parameters used for
manifold sampling in Table 2. We also include algorithm parameters for the baselines in Table 3. As
mentioned earlier in the body of the paper, all ORC-MANL experiments use δ = 0.8 and λ = 0.01.
Similarly, all ORC ONLY experiments use δ = 0.8 as well.

Table 2: Manifold noise parameters τ and σ for each manifold used in the pruning evaluation (Fig-
ure 4).

M τ σ
Concentric Circles 0.28 0.09
Mix. of Gaussians 0.45 0.18

Moons 0.19 0.20
S curve 0.52 0.28
Cassini 0.135 0.05

Torii 0.75 0.4
Hyperboloids 0.25 0.20

Hyp. and Parab. 0.48 0.40
Paraboloids 0.70 0.60
Swiss Roll 2.25 6.25

Table 3: Algorithm parameters for each baseline and each manifold used in the pruning evaluation
(Figure 4).

M kbis dMST ρmin ddist
Concentric Circles 10 0.5 0.125 0.15
Mix. of Gaussians 10 0.3 0.15 0.15

Moons 10 0.5 0.175 0.15
S curve 10 0.5 0.05 0.15
Cassini 10 0.5 0.20 0.09

Torii 10 1.5 0.0007 1.0
Hyperboloids 10 1.5 0.015 0.4

Hyp. and Parab. 10 0.75 0.015 0.4
Paraboloids 10 1.0 0.01 0.5
Swiss Roll 10 10 0.00005 3.0

A.3.2 PERSISTENCE DISTANCES

We compute distances between persistence diagrams using the approach presented in Lacombe et al.
(2018). The p-Wasserstein distance is defined as

dp(D1, D2) =

(
min

ζ∈Γ(D1,D2)

∑
(x,y)∈ζ

∥x− y∥pp +
∑

s∈D1∪D2\ζ

∥s− π∆(s)∥pp

) 1
p

where D1 and D2 are persistence diagrams represented as a set of points in R̄2
>, Γ(D1, D2) is the set

of all partial matchings between points in D1 and points in D2, and π∆(s) denotes the orthogonal
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projection of an unmatched point to the diagonal. We use The GUDHI Project (2020) to compute
persistence distances with p =∞.

A.3.3 INTRINSIC DIMENSION ESTIMATION

We use the maximum-likelihood based approach for estimating intrinsic dimension proposed in
Levina & Bickel (2004). The method assumes the data points are generated from a homogeneous
Poisson point process on a manifold. From there, they derive the maximum likelihood estimator for
the intrinsic dimension m, with

m̂k(x) =

[
1

k − 1

k−1∑
j=1

log
Tk(x)

Tj(x)

]−1

where Tj(x) represents the distance of x to its j-th nearest neighbor and k is a user-chosen parameter.
In our experiments, we report the mean-squared-error (MSE) between pointwise intrinsic dimension
estimates and the base truth value for the underlying manifold. While it has been pointed out that
the global intrinsic dimension estimate derived in Levina & Bickel (2004) is biased, the pointwise
estimators are, in fact, unbiased. For our experiments we extract nearest neighbors and nearest
neighbor distances using the graph metric. We also use k = 200 and n = 4000 (where n is the
number of points in the sample) for the experiments in Figure 7.

A.3.4 SCALAR CURVATURE ESTIMATION

Scalar curvature assigns a scalar quantity to each point of a Riemannian manifold. It is intimately
related to the notion of sectional curvature through the equation S(x) =

∑
i ̸=j Sec(ei, ej), where

Sec(·) is the sectional curvature and e1, . . . , ed form an orthonormal basis of the manifold’s tangent
space at x. Note that for surfaces (manifolds with intrinsic dimension 2) the scalar curvature is
simply twice the Gaussian curvature. We use the algorithm from Hickok & Blumberg (2023) to
estimate S(x). This method leverages the following result, which relates scalar curvature of an m
dimensional manifold M to the volume of geodesic balls relative to Euclidean geodesic balls. It
states,

Vol
(
Br(x)) ⊂M

)
Vol
(
Br(0)) ⊂ Rm

) = 1− S(x)

6(d+ 2)
r2 +O(r3)

for sufficiently small r. The method first builds a nearest neighbor graph and uses the induced graph
metric to estimate geodesic ball volumes at a range of scales. From there a point-wise estimate Ŝ of
scalar curvature can be produced via regression over the volume ratios over some range [0, rmax]. In
our experiments in Figure 7 we use n = 4000 points and rmax = 50 for the swiss roll and rmax = 5
for the adjacent spheres.

A.4 PROOFS

A.4.1 THEOREMS 3.1, 3.2 AND 3.3

In this first section we will detail the proofs of the theorem statements put forth in Section 3.
For clarity, recall the assumptions: we consider the setting whereM is a compact m-dimensional
smooth submanifold of RD without boundary. Let Tubτ (M) be the tubular neighborhood of M,
and assume X ⊂ Tubτ (M) consists of n independent draws from the probability density function
ρ : Tubτ (M)→ R+,

ρ(z) =


1

Z
e

−∥z−projM z∥22
2σ2 ∥z − projM z∥2 ≤ τ

0 o.w.

where Z is a normalizing constant such that
∫

Tubτ (M)
ρ(z)dV integrates to 1. We are given the

constant λ < 1. For the rest of the paper, suppose

1. (Support criteria): 2τ < ϵ, 3τ < s0(M), 3τ < r0(M)
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2. (ϵ-radius criterion): ϵ < min
{√

(s0(M)− τ)2 − τ2, 2
π (r0(M)− τ)

√
24λ, r0(M)

}
where s0(M) is the minimum branch separation ofM and r0(M) is the minimum radius of curva-
ture ofM. We can now begin to dissect the argument for Theorem 3.1.

Theorem 3.1 (Ollivier-Ricci Curvature of Shortcut Edges). Suppose that Xi is a point cloud
sampled from ρ with parameters σi and τi and Gi is its nearest-neighbor graph. Also suppose
thatM satisfies the conditions above, and σi → 0+ and τi → 0+ as i→∞. Then as i→∞,
we have κ(x, y) ≤ −1 for all shortcut edges (x, y) in Gi with probability approaching 1.

This theorem establishes that in the limit of vanishing noise, the ORC of shortcut edges is necessarily
upper bounded by −1. The theorem stitches together Lemmas A.3, A.4 and A.1. Here is how we
will approach it.

Simply put, one can show that all shortcut edges are necessarily close to a normal direction to the
manifold at both endpoints; if this was not the case, the edge would likely intersect the manifold
earlier and thus no longer bridge extremely distant neighborhoods. This concept is formalized and
proven in Lemma A.3.

Given that shortcut edges are close to normal, one can show that most of the measure of epsilon balls
around the endpoints concentrates far from the opposing endpoint (assuming the pdf ρ described
above). It follows that the neighborhoods of x and y will tend to concentrate far from each other.
An example visualization of this phenomenon is provided in Figure 11.

½
M

B²(x) B²(y)
x
y

Figure 11: Visualizations of the ϵ-balls at the endpoints of a shortcut edge (x, y).

This divergence between the neighborhoods of x and y leads to a large Wasserstein distance between
the neighborhoods, implying more negative ORC. This fact is formalized and shown in Lemma A.1.
With the high-level roadmap in place, we will proceed by proving Theorem 3.1.

Proof of Theorem 3.1. Consider a sequence of point clouds {Xi}∞i=1 with n points each, where each
point cloud was sampled from ρ (defined in eq. (1)) with parameters σi and τi. Also suppose σi → 0
and τi → 0 as i → ∞. Consider the i-th pointcloud in this sequence, and let xi and yi be any two
points connected by a shortcut edge (if they exist).

Since (xi, yi) is a shortcut edge, we can apply Lemma A.3 to find the vector vxi
∈ NprojM xi

M
such that the angle ϕxi

between vxi
and (yi − xi) is less than

Φ(τi) = arccos

(
(r0(M)− τi)(s0(M)− τi)− 1.27r0(M)τi

r0(M)
√
(s0(M)− τi)2 − τ2i

)
< π/2 (2)

and the angle θxi
between (xi−projM xi) and vxi

is less than π/2. In an identical manner, A.3 can
be applied to find analogous quantities vyi

, θyi
and ϕyi

. The fact that ϕxi
and ϕyi

are necessarily
bounded by 2 formalizes the notion that shortcut edges are necessarily oriented close to normal with
respect to the manifold at each endpoint.
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Now we would like to say something about the degree to which the neighborhoods of xi and yi are
likely to overlap. To do so, we define the sets Uxi

⊂ Bϵ(xi) and Uyi
⊂ Bϵ(yi) such that for all

a, b ∈ Uxi
× Uyi

, ∥a − b∥2 > ϵ. One particular instantiation of these sets is shown in Figure 12.
For the analysis that follows we will consider this instantiation, namely the case where the boundary
of Uxi

is defined by a hyperplane orthogonal to (yi − xi) (and Uyi
is defined analogously). In this

instance, the sets Uxi
and Uyi

are simply hyperspherical caps.

B²(x)

x y

²

Ux Uy

B²(y)

Figure 12: Visualization of the sets Ux and Uy for an edge (x, y).

Now lets also define pσi
(xi) := P[ a ∈ Uxi

| a ∈ Bϵ(xi)] and pσi
(yi) := P[ b ∈ Uyi

| b ∈ Bϵ(yi)].
We can use Lemma A.4 to say

lim
σi→0+

pσi
(xi) ≥

∫√ϵ2−∥xi−projM xi∥2
2

fxi
(ϕxi

)
Vol(Bm−1

rxi
(z)(0))dz

Vol(Bm
Rxi

(0))

and

lim
σi→0+

pσi(yi) ≥

∫√ϵ2−∥yi−projM yi∥2
2

fyi (ϕyi
)

Vol(Bm−1
ryi (z)

(0))dz

Vol(Bm
Ryi

(0))

where

fxi(ϕxi) = cot(ϕxi)

(
sec(ϕxi)

(
ϵ− ∥xi − yi∥2

2

)
− ∥xi − projM xi∥2 cos(θxi)

)
and

fyi
(ϕyi

) = cot(ϕyi
)

(
sec(ϕyi

)

(
ϵ− ∥xi − yi∥2

2

)
− ∥yi − projM yi∥2 cos(θyi

)

)
.

Note that Rxi =
√
ϵ2 − ∥xi − projM xi∥22 and

rxi
(z) =

{√
ϵ2 − ∥xi − projM xi∥22 − z2 |z| ≤

√
ϵ2 − ∥xi − projM xi∥22

0 otherwise

are defined in Lemma A.4, with analogous quantities defined for yi. Observe that the further the edge
(xi, yi) is from normal with respect to either endpoint (as measured by ϕxi

and ϕyi
), the smaller

pσi
(xi) and pσi

(yi) are respectively. This follows from the fact that fxi
and fyi

are increasing
functions of ϕxi

and ϕyi
respectively. This can be confirmed by a quick visual inspection of Figure

11 - the further from normal (x− y) is, the less probability density exists in Ux and Uy .

Now we will show that fxi
and fyi

are increasing in ϕxi
and ϕyi

when in the interval (0, π/2] (which
is always the case as shown in A.3). The derivative of cot(c)(a sec(c)−b) is (b−a cos(c))/ sin2(c).
Note that the derivative is positive on (0, π/2] when a ≤ b. From eq. (37) in Lemma A.3 we know
that

∥xi − yi∥2 ≥
√
(s0(M)− τi)

2 − ∥xi − projM xi∥22 sin2(θi)− ∥xi − projM xi∥2 cos(θi).
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The right-hand side is bounded from below by ϵ−∥xi−projM xi∥2 cos(θi) due to assumption 2 and
the fact that τi ≥ ∥xi − projM xi∥2. Thus b = ∥xi − projM xi∥2 cos(θi) > ϵ− ∥xi − yi∥2 = 2a,
rendering the derivative positive. Since Φ(τi) is larger than all possible ϕxi

and ϕyi
we can say

fxi
(Φ(τi)) ≥ fxi

(ϕxi
) and fyi

(Φ(τi)) ≥ fyi
(ϕyi

), allowing us to conclude that

lim
σi→0+

pσi
(xi) ≥

∫√ϵ2−∥xi−projM xi∥2
2

fxi
(Φ(τi))

Vol(Bm−1
rxi

(z)(0))dz

Vol(Bm
Rxi

(0))

where an analogous bound holds for limσi→0+ pσi(yi). Taking the limit as τi → 0+ yields

lim
τi→0+

lim
σi→0+

pσi(xi) (3)

≥ lim
τi→0+

∫√ϵ2−∥xi−projM xi∥2
2

fxi
(Φ(τi))

Vol(Bm−1
rxi

(z)(0))dz

Vol(Bm
Rxi

(0))
(4)

= lim
τi→0+

∫∞
−∞ Vol(Bm−1

rxi
(z)(0)) · 1

[
z ∈

[
fxi

(Φ(τi)),
√

ϵ2 − ∥xi − projM xi∥22
]]
dz

Vol(Bm
Rxi

(0))

(5)

=

∫√ϵ2−∥xi−projM xi∥2
2

fxi
(limτi→0+ Φ(τi))

Vol(Bm−1
rxi

(z)(0))dz

Vol(Bm
Rxi

(0))
. (6)

In the second line we can use the dominated convergence theorem to pull limτi→0+ into the limits of
the integral, since the integrand is bounded above by the integrable function Vol(Bm−1

ϵ (0)) · 1[z ∈
[−ϵ, ϵ]] and bounded below by 0 ∀ τi > 0. Now we can further evaluate

lim
τi→0+

Φ(τi) = Φ(0)

= arccos

(
r0(M)s0(M)

r0(M)s0(M)

)
= 0.

This implies limτi→0+ fxi
(Φ(τi)) = −∞ since fxi

→ −∞ as its argument approaches 0. Note
fxi
→ −∞ as its argument approaches 0 because as c→ 0+, a sec(c)− b cos(c) converges to a− b

(which we have established is strictly negative) and cot(c) converges to +∞. Now, since rxi
(z) in

the integrand of 6 is 0 for values less than −
√
ϵ2 − ∥xi − projM xi∥22, we can say that

lim
τi→0+

lim
σi→0+

pσi(xi) ≥

∫ √ϵ2−∥xi−projM xi∥2
2

−
√

ϵ2−∥xi−projM xi∥2
2

Vol(Bm−1
rxi

(z)(0))dz

Vol(Bm
Rxi

(0))
(7)

=
Vol(Bm

Rxi
(0))

Vol(Bm
Rxi

(0))
(8)

= 1. (9)

Note that the same argument can be used to prove the same equality on pσi
(yi) in the limit. Now

we would like to use these results to make a statement about the number of neighbors that end up
falling in either Uxi

or Uyi
for n i.i.d samples from ρ with parameters σi and τi (eq. (1)). Define the

sets Sxi
= {a | a ∈ N (xi) ∩ Uxi

} and Syi
= {b | b ∈ N (yi) ∩ Uyi

}. Also let Nxi
= |N (xi) \ yi|

and Nyi
= |N (yi) \ xi|. We can say,

P
[
|Sxi
| = Nxi

]
= pσi

(xi)
Nxi ≥ pσi

(xi)
n (10)

since Nxi
≤ n. Through application of 9 we can conclude

lim
i→∞

P
[
|Sxi | = Nxi

]
= 1. (11)
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With the same argument, we can say

P
[
|Syi | = Nyi

]
≥ pσi(yi)

n (12)

and thus,
lim
i→∞

P
[
|Syi
| = Nyi

]
= 1. (13)

Now we want to use 10 and 12 to bound P
[
|Sxi
| = Nxi

, |Syi
| = Nyi

]
. Define αxi

= 1[|Sxi
| =

Nxi
] and αyi

= 1[|Syi
| = Nyi

]. We can apply a union bound to say

P
[
αxi

= 1, αyi
= 1
]
≥ 1−

∑
αxi

̸=1∨αyi
̸=1

P
[
αxi

, αyi

]
≥ 1−

∑
αxi

̸=1∨αyi
̸=1

min
{
P[αxi

],P[αyi
]
}

= 1−min
{
P[αxi

= 1], 1− P[αyi
= 1]

}
−min

{
1− P[αxi

= 1], P[αyi
= 1]

}
−min

{
1− P[αxi

= 1], 1− P[αyi
= 1]

}
.

Taking the limit and applying 11 and 13 yields

lim
i→∞

P
[
αx = 1, αy = 1

]
= 1.

This result crystallizes the notion that, in the limit of vanishing noise, the neighborhoods of the
endpoints of shortcut edges tend to concentrate very far from each other. To restate formally, we
have shown that P[|Sxi | = Nxi , |Syi | = Nyi ] approaches 1 in the limit.

Now we will apply Lemma A.1 to control the ORC of the edge (xi, yi). The Lemma proves that
|Syi
| = δyi

Nyi
and |Sxi

| = δxi
Nxi

implies κ(xi, yi) ≤ −1 + 2(2 − (δxi
+ δyi

)). Combining
everything using δxi

= δyi
= 1,

P
[
κ(xi, yi) ≤ −1

]
≥ P

[
αxi

= 1, αyi
= 1
]

and taking the limit,
lim
i→∞

P
[
κ(xi, yi) ≤ −1

]
= 1. (14)

Since we have a finite number of edges and thus a finite number of shortcut edges, we can apply a
union bound to say that Equation (14) holds for all edges as i→∞.

Thus we have a result indicating the convergence of the ORC of shortcut edges to at most −1 in the
limit of vanishing noise. To be confident that ORC-MANL is truly effective, we would like to be
able to say that under some conditions the ORC of non-shortcut edges tends to be less negative, or
even positive. This motivates Theorem 3.2.

Theorem 3.2 (Ollivier-Ricci Curvature of Non-Shortcut Edges). Let k be a positive integer.
With high probability as the number of points n → ∞, every point has at least k neighbors
that it is connected to by non-shortcut edges with ORC +1.

This theorem states that, as the number of points increases, every point has at least k non-shortcut
incident edges with ORC arbitrarily close to +1 with high probability. We will outline a high-level
overview of the argument to prove this theorem before delving into the formal proof itself.

First, one should observe that the probability that any point has at least some finite number k of
neighbors (independent of n) within a ball of radius δ is increasing in n. An exact bound for this
probability results directly from Proposition 4. One can then construct a sequence ni → ∞ and
δi → 0 such that as i goes to infinity, each point has at least k neighbors within distance δi with high
probability.
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From here, we want to consider the behavior of the ORC of edges connecting points at some distance
δi as i tends to infinity (and thus as δi tends to 0). Proposition 5 and Lemma A.2 in combination
allow us to show that as the distance between two points tends to 0, the ORC of the edge connecting
them tends to +1 with high probability. From all of this it follows that as n tends to infinity, each
point has many arbitrarily close (and thus non-shortcutting) neighbors connected by an edge with
ORC +1 with probability approaching 1. This wraps up the proof sketch.

Proof of Theorem 3.2. First we will invoke Proposition 4 to say that for all x ∈ TubτM,

Pz∼ρ

[
∥z − x∥2 ≤ δ

]
≥

δDVol
(
BD

1 (0)
)

2Z
e−

τ2

2σ2

= CδD

This result indicates that for any point x in the tubular neighborhood, there is always a nonzero
probability that there exists a neighbor at distance at most δ, for δ > 0. Now choose sequences
{ni}∞i=1 and {δi}∞i=1 where ni = i and δi = (Ci)−1/(2D). Observe that ni → ∞, δi → 0 and
niCδDi →∞.

Now we would like to evaluate the probability of the existence of at least k neighbors within radius
δi for ni i.i.d. samples from ρ. We will use Nδi to denote the random variable representing number
of neighbors within δi to some point x given ni i.i.d. draws from ρ. Observe that Nδi is distributed
according to Bin(ni, CδDi ). Thus, we can apply a Chernoff bound to say, for 0 < γ < 1

P[Nδi ≤ (1− γ)niCδDi ] ≤ exp

(
−γ2niCδDi

2

)
and thus,

P[Nδi > (1− γ)niCδDi ] > 1− exp

(
−γ2niCδDi

2

)
(Tsun, 2020). Replacing γ with 1− k/(niCδDi ) we obtain

P[Nδi > k] > 1− exp

(
−niCδDi (1− k/(niCδDi ))2

2

)
(15)

and taking the limit as i→∞,
lim
i→∞

P[Nδi > k] = 1 (16)

since niCδDi →∞.

We have established that if the radius δi shrinks sufficiently slowly, the probability that any point has
more than k neighbors within this decreasing radius approaches 1 as ni tends to infinity. Now we
would like to use this result to make a statement about the ORC of edges connecting a point and its
neighbors within distance δi. To do so, consider a point x and distances {δi}∞i=1 such that δi → 0.
We can consider x as a static point in a sequence of nested point clouds, where each point cloud Xi

is a union of the previous point cloud Xi−1 and one more point sampled from ρ. Also for each i

consider the set of neighbors {yji | y
j
i ∈ Xi, y

j
i ̸= x}j such that ∥x− yji ∥2 ≤ δi; note that the earlier

results indicate that |{yji }j | > k with probability P[Nδi > k], as described by 15.

LetNx,yj
i
= |N (x) ∪N (yji ) \ {x, y

j
i }|, which denotes the set of all neighbors of x and yji (exclud-

ing themselves). Now define Sx,yj
i

to be the neighbors of x and yji that lay in Bϵ(x) ∩ Bϵ(y
j
i ).

Finally, let px,yj
i
= Pa∼ρ

[
a ∈ Bϵ(x)∩Bϵ(y

j
i )
∣∣ a ∈ Bϵ(x)∪Bϵ(y

j
i )
]
. Observe that |Sx,yj

i
| is a ran-

dom variable distributed according to Bin(Nx,yj
i
, px,yj

i
) when Nx,yj

i
is fixed. Also note that Nx,yj

i

itself is a random variable with a binomial distribution with ni = i trials. Observe that it exhibits
success probability p ≤ 2C ′′ϵD := C ′ϵD, which follows from a slight modification to the result of
Proposition 4. Thus, E[Nx,yj

i
] ≥ iC ′ϵD. Armed with this knowledge, define two more sequences

ki∗ =
√
i and γi = i−1/8. We will return to these definitions shortly. First, we will apply a Chernoff

bound to say

P
[
|Sx,yj

i
| ≤ (1− γi)Nx,yj

i
px,yj

i

∣∣∣Nx,yj
i
= k

]
≤ exp

(
−
γ2
i kpx,yj

i

2

)
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and thus,

P
[
|Sx,yj

i
| ≤ (1− γi)Nx,yj

i
px,yj

i

]
≤

i∑
k=0

exp

(
−
γ2
i kpx,yj

i

2

)
P
[
Nx,yj

i
= k

]
(17)

=
∑

k≤ ki∗

exp

(
−
γ2
i kpx,yj

i

2

)
︸ ︷︷ ︸

≤1

P
[
Nx,yj

i
= k

]

+
∑

k>ki∗

exp

(
−
γ2
i kpx,yj

i

2

)
︸ ︷︷ ︸

≤exp
(
−(γ2

i ki∗p
x,y

j
i
)/2
)P
[
Nx,yj

i
= k

]
︸ ︷︷ ︸

≤1

(18)

≤ P
[
Nx,yj

i
≤ ki∗

]
+ exp

(
−
γ2
i ki∗px,yj

i

2

)
. (19)

We can apply one more Chernoff bound to bound the first term, resulting in

P
[
|Sx,yj

i
| ≤ (1− γi)Nx,yj

i
px,yj

i

]
≤ exp

(
−
E[Nx,yj

i
](1− ki∗/E[Nx,yj

i
])2

2

)
+ exp

(
−
γ2
i ki∗px,yj

i

2

)
. (20)

We can apply Proposition 5 to say as i → ∞, px,yj
i
→ 1. Now since γi → 0, E[Nx,yj

i
] → ∞,

ki∗/E[Nx,yj
i
]→ 0 and γ2

i ki∗ →∞, we have

lim
i→∞

P
[
|Sx,yj

i
| < Nx,yj

i

]
= 0 (21)

and thus, since |Sx,yj
i
| ≤ Nx,yj

i

lim
i→∞

P
[
|Sx,yj

i
| = Nx,yj

i

]
= 1.

Now we can invoke Lemma A.2 and Proposition 2 to say that |Sx,yj
i
| = Nx,yj

i
implies κ(x, yji ) = 1.

Putting it all together, we see that

lim
i→∞

P
[
κ(x, yji ) = 1

]
= 1. (22)

Now let pji = P[κ(x, yji ) = 1]. Now we want to use this to bound the probability that, for a fixed i,
a subset of size k of all Nδi neighbors have ORC of 1. To do so, let’s denote αj

i = 1[κ(x, yji ) = 1].
Instead of considering all combinations of subsets of size k, we will just consider a single one to
create a lower bound. Namely, we will cherry pick the first k indices (unless Nδi < k). Now observe
that we can apply a union bound to obtain

P
[
κ(x, yji ) = 1 ∀ j ∈ [min{k,Nδi}]

]
≥ 1−

∑{
{αj

i}i
j=1

∣∣ ∑
j αj

i<min{k,Nδi
}
}P
[
α1
i , . . . , α

min{k,Nδi
}

i

]
(23)

where the second term on the right-hand side sums over all settings of {αj
i} such that there ex-

ists at least one αj
i taking on the value 0. Now we can use the fact that P[X1, . . . , Xn] ≤

min{P[X1], . . . ,P[Xn]} to say

P
[
κ(x, yji ) = 1∀ j ∈ [min{k,Nδi}]

]
≥

1−
∑{

{αj
i}i

j=1

∣∣ ∑
j αj

i<min{k,Nδi
}
} min

j∈[min{k,Nδi
}]
P
[
αj
i

]
. (24)
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Now we will take the limit as i→∞ resulting in

lim
i→∞

P
[
κ(x, yji ) = 1∀ j ∈ [min{k,Nδi}]

]
≥ 1− lim

i→∞

∑{
{αj

i}i
j=1

∣∣ ∑
j αj

i<min{k,Nδi
}
} min

j∈[min{k,Nδi
}]
P
[
αj
i

]
. (25)

Since limi→∞ P[Nδi > k] = 1 and since the summation is over a finite number of terms,

lim
i→∞

P
[
κ(x, yji ) = 1∀ j ∈ [k]

]
≥ 1−

∑{
{αj

i}i
j=1

∣∣ ∑
j αj

i<k
} lim

i→∞
min

j∈[min{k,Nδi
}]
P
[
αj
i

]
. (26)

Note P[αj
i = 1] = pji and P[αj

i = 0] = 1 − pji . Observe that in the limit as i goes to infinity, these
two expressions converge to 1 and 0 respectively due to eq. (22). Thus the limit can be pulled inside
of the min function. Since we know that for each element of the sum there necessarily exists an
αj
i = 0, one of the arguments of the min function must be 0. Thus,

lim
i→∞

P
[
κ(x, yji ) = 1∀ j ∈ [k]

]
= 1. (27)

Note that for sufficiently large i, x and yji cannot be shortcut edges as ∥x − yji ∥2 < s0(M) which,
in turn, implies dM(projM x, yji ) ≤ πr0(M). Finally, we can succinctly state the conclusion by
saying that if n grows sufficiently fast, every point has at least k non-shortcut neighbors such that
the ORC is 1 with high probability. This completes the proof.

Together, Theorems 3.1 and 3.2 establish that in the limit of vanishing noise and infinite points
shortcut edges can be detected with complete accuracy. In practice though, we may see too much
noise or too few samples to rely on ORC alone. Therefore it is of interest to us to add another
validation step. We do so by looking at shortest path graph distances in a modified version of the
original graph, one which has all especially negative curvature edges removed; we call this graph the
‘thresholded’ graph. Theorem 3.3 establishes that graph shortest paths between endpoints of what
were shortcut edges in the original graph necessarily have a large graph distance in the thresholded
graph. Figure 13 provides an intuitive visualization of this phenomenon.

°G0
°G

Figure 13: Visualization of graph shortest paths between the endpoints of a shortcut edge (x, y).
The path γG denotes the path through G (which is trivially a single hop), while γG′ denotes the path
through the ORC thresholded graph, G′.

Theorem 3.3 (Filtered Graph Distance). Suppose that Xi is a point cloud sampled from ρ with
parameters σi and τi and Gi = (Vi, Ei) is its nearest neighbor graph. Also suppose thatM
satisfies the conditions above and σi → 0+ and τi → 0+ as i → ∞. Define the subgraph
G′

i = (Vi, E
′
i) where

E′
i =

{
(xi, yi) ∈ Ei

∣∣∣κ(xi, yi) > −1
}
.
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Then as i→∞ we have

dG′(x, y) > β
π(π + 1)(1− λ)

2
√
24λ

ϵ

for all shortcut edges in Gi with probability approaching 1, where β ∈ [0, 1] (eq. (34)) is a
random variable whose distribution is dependent onM and τi.

The proof of the theorem adopts the following strategy. Geodesic distances through the manifold
M can be bounded as a function of geodesic distances through the tubular neighborhood TubτM
using Proposition 3. We can then pull from Bernstein et al. (2001), which relates graph geodesics
to manifold geodesics, to bound graph distances through G′ as a function of manifold distancesM.
The theorem can be concisely stated as showing that in the limit of vanishing noise, graph distances
in G′ between endpoints of (formerly) shortcut edges are necessarily very large.

Proof of Theorem 3.3. Again suppose {Xi}∞i=1 is a sequence of point clouds of size n sampled from
ρ defined in eq. (1) with parameters σi and τi with σi → 0+ and τi → 0+ as i→∞. Also suppose
Gi = (Vi, Ei) is the nearest neighbor graph built with parameter ϵ from the point cloudXi. Consider
the i-th pointcloud and nearest neighbor graph in this sequence, and let xi and yi be any two points
connected by a shortcut edge (if they exist). Since (xi, yi) is a shortcut edge in Gi we have,

dM
(
projM xi,projM yi

)
> (π + 1)r0(M).

From Proposition 3, we know this implies

dTub(xi, yi) ≥
r0(M)− τi
r0(M)

(π + 1)r0(M) (28)

= (r0(M)− τi)(π + 1). (29)

Now consider the ORC thresholded graph G′
i = (Vi, E

′
i), with edges

E′
i =

{
(v, v′) ∈ Ei

∣∣∣∣κ(v, v′) > −1}.
We can apply Theorem 3.1 to say that with high probability G′

i has no shortcut edges. With that
in mind, select a length minimizing path ai0, a

i
1, · · · , aip connecting xi to yi through the graph G′

i.
With high probability we have,

dM(projM aii,projM aii+1) ≤ (π + 1)r0(M).

It follows that dTub(a
i
i, a

i
i+1) ≤ (π + 1)r0(M) + 2τi, as M ⊂ TubτiM; if this wasn’t true, the

shortest path through the tubular neighborhood would instead take the path traversed byM through
projM aii,projM aii+1. Now we can say,

dTub(a
i
i, a

i
i+1) ≤ (π + 1)r0(M) + 2τi.

Consider the p′ of the p− 1 hops along this path where

dTub(a
i
i, a

i
i+1) ≤ π(r0(M)− τi).

Note that from Proposition 1 we know that the minimum radius of curvature of geodesics in the
tubular neighborhood is r0(M) − τi. Now we can invoke the first-order weakening of Lemma 3
from Bernstein et al. (2001) with r0 = r0(M)− τi to say

2

π
dTub(a

i
i, a

i
i+1) ≤ ∥aii − aii+1∥2

≤ 2

π
(r0(M)− τi)

√
24λ

where the second line follows from assumption 2. Solving for λ we get

λ ≥ 1

24

(
dTub(a

i
i, a

i
i+1)

r0(M)− τi

)2
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and therefore

1− λ ≤ 1− 1

24

(
dTub(a

i
i, a

i
i+1)

r0(M)− τi

)2

.

Finally we can apply the weakened form of the same Lemma from Bernstein et al. (2001) to say

(1− λ)dTub(a
i
i, a

i
i+1) ≤

(
1− 1

24

(
dTub(a

i
i, a

i
i+1)

r0(M)− τi

)2
)
dTub(a

i
i, a

i
i+1)

≤ ∥aii − aii+1∥2.
Now consider the other (p− 1)− p′ hops, where we know

dTub(a
i
i, a

i
i+1) > π(r0(M)− τi).

We can apply the definition of minimum branch separation to say that ∥aii−aii+1∥2 ≥ s0(TubτiM).
In general deriving an expression for the right-hand side in terms of r0(M) and s0(M) is impossible
without more information about the embedding ofM. Thus, we will proceed without breaking down
s0(TubτiM). We have,

∥aii − aii+1∥2 ≥ s0(TubτiM) (30)

≥ s0(TubτiM)

(π + 1)r0(M) + 2τi
dTubi(a

i
i, a

i
i+1). (31)

Now we can combine the bounds on ∥aii − aii+1∥2 to say

dG′
i
(xi, yi) > (1− λ)

∑
S

dTub(a
i
i, a

i
i+1) +

∑
L

s0(TubτiM)

(π + 1)r0(M) + 2τi
dTubi(a

i
i, a

i
i+1) (32)

> (1− λ)
∑
S

dTub(a
i
i, a

i
i+1) (33)

where S is the set of all hops with tubular distance at most π(r0(M) − τi), and L is the set of all
remaining hops. Defining

β =

∑
S dTub(a

i
i, a

i
i+1)

dTub(xi, yi)
(34)

allows us to say

dG′
i
(xi, yi) > β(1− λ)dTub(xi, yi)

≥ β(1− λ)(r0(M)− τi)(π + 1)

and seeing as we have stipulated that ϵ < 2
π (r0(M)− τ)

√
24λ in assumption 2, we can say

dG′
i
(xi, yi) > β

π(π + 1)(1− λ)

2
√
24da

ϵ (35)

with high probability.

A.4.2 LEMMATA

In this section, we will prove the lemmas used by Theorems 3.1, 3.2 and 3.3. Lemmas A.1 and A.2
simply bound (from above and below, respectively) the ORC of an edge based on the locations of
each endpoints neighbors. Lemma A.1 considers the scenario where some subset of the neighbor-
hoods of x and y are positioned in the sets Ux and Uy , respectively (where Ux and Uy are defined
according to Figure 12). The large distance between Ux and y (and vice versa) allows one to lower
bound the Wasserstein distance between µx and µy , and thus upper bound the ORC of (x, y).

Lemma A.1. Let (x, y) be an edge in a nearest neighbor graph built from potentially noisy
samples ofM, suppose Ux and Uy are defined as in 12. Define Sx = {a | a ∈ N (x) ∩ Ux}
and Sy = {b | b ∈ N (y) ∩ Uy}, and suppose that

δx =
|Sx|

|N (x) \ {y}|
, δy =

|Sy|
|N (y) \ {x}|

.
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Then,
κ(x, y) ≤ −1 + 2

(
2− (δx + δy)

)
.

Proof. We are interested in bounding the ORC of the edge (x, y) from above. Recall that we have
defined ORC to use the unweighted graph metric in Section 2.3. To bound the ORC we need to
bound the Wasserstein distance between µx and µy , where µx is a uniform measure on the set
N (x) \ {y} = {v ∈ V

∣∣ dG(x, v) ≤ ϵ, v ̸= y, v ̸= x} and µy is a uniform measure on the set
N (y) \ {x} = {v ∈ V

∣∣ dG(y, v) ≤ ϵ, v ̸= x, v ̸= y}.
Let’s define µ̂x and µ̂y as uniform probability measures over Sx and Sy respectively. We can bound
the Wasserstein distance between µx and µy as

W (µx, µy) ≥W (µ̂x, µ̂y)−W (µ̂x, µx)−W (µ̂y, µy).

Since ∥a− b∥2 > ϵ for all a ∈ Sx and for all b ∈ Sy , we know that dG(a, b) ≥ 2 for all a ∈ Sx and
for all b ∈ Sy . Thus, a lower bound on the first term follows,

W (µ̂x, µ̂y) ≥ 2.

Now we would like to bound W (µ̂x, µx) from above. There is 1/|N (x) \ {y}| mass on each
node a ∈ supp(µx), while there is 1/δx|N (x) \ {y}| mass on each a′ ∈ supp(µ̂x). We can
define a feasible transport plan that transports all excess mass on a′ ∈ supp(µ̂x) to the nodes
supp(µx) \ supp(µ̂x). Since the Wasserstein distance minimizes over all possible transport plans,
the Wasserstein cost for this transport plan will upper bound the true distance.

The excess mass on any a′ ∈ supp(µ̂x) is exactly
1

δx|N (x) \ {y}|
− 1

|N (x) \ {y}|

which means the total mass that needs to be transported is

δx|N (x) \ {y}|

(
1

δx|N (x) \ {y}|
− 1

|N (x) \ {y}|

)
= 1− δx

We also know that from any a′ ∈ supp(µ̂x) to any a ∈ supp(µx) there exists a length 2 path through
the node x. Therefore, dG(a, a′) ≤ 2. We can then conclude

W (µ̂x, µx) ≤ 2
(
1− δx

)
.

With the same argument, the following bound can also be derived,

W (µ̂y, µy) ≤ 2
(
1− δy

)
.

Putting it all together,
W (µx, µy) ≥ 2− 2

(
2− (δx + δy)

)
.

Solving for the ORC,

κ(x, y) ≤ 1−
2− 2

(
2− (δx + δy)

)
1

= −1 + 2
(
2− (δx + δy)

)
.

Now we can adopt a similar argument to tackle Lemma A.2. Now we are interested in lower bound-
ing the ORC based on the neighborhood structure. In this scenario, we replace the sets Ux and Uy

with a Bϵ(x) ∩ Bϵ(y). Each neighbor of an endpoint (x) that is positioned in this set is necessarily
a neighbor of the other (y). Therefore if many nodes are present in this set, then many of the neigh-
bors of x and y are shared. An upper bound on the Wasserstein distance between µx and µy follows,
which implies a lower bound on the ORC of the edge (x, y).
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Lemma A.2. Let (x, y) be an edge in a nearest neighbor graph built from potentially noisy
samples ofM, and define Sx,y = {a | a ∈ N (x) ∩ N (x)}. Suppose that

δx =
|Sx,y|

|N (x) \ {y}|
, δy =

|Sx,y|
|N (y) \ {x}|

.

Then,
κ(x, y) ≥ 1− 2

(
2− (δx + δy)

)
.

Proof. We will adopt a very similar argument as that of the proof for Lemma A.1. We are interested
in bounding the ORC of the edge (x, y) from below. Doing so involves bounding the Wasserstein
distance between µx and µy , where µx is a uniform measure on the set N (x) \ {y} = {v ∈
V
∣∣ dG(x, v) ≤ ϵ, v ̸= y, v ̸= x} and µy is a uniform measure on the set N (y) \ {x} = {v ∈

V
∣∣ dG(y, v) ≤ ϵ, v ̸= x, v ̸= y}. Again recall that we have defined ORC to use the unweighted

graph metric in Section 2.3.

Define µ̂x,y to be the uniform probability measure over Sx,y . We can bound the Wasserstein distance
between µx and µy as

W (µx, µy) ≤W (µx, µ̂x,y) +W (µ̂x,y, µy).

Now we would like to bound W (µx, µ̂x,y) from above. There is 1/|N (x) \ {y}| mass on each
node a ∈ supp(µx), while there is 1/δx|N (x) \ {y}| mass on each a′ ∈ supp(µ̂x,y). We can
define a feasible transport plan that transports all excess mass on a′ ∈ supp(µ̂x,y) to the nodes
supp(µx) \ supp(µ̂x,y). Since the Wasserstein distance minimizes over all possible transport plans,
the Wasserstein cost for this transport plan will upper bound W (µx, µ̂x,y).

The excess mass on any a′ ∈ supp(µ̂x) is exactly

1

δx|N (x) \ {y}|
− 1

|N (x) \ {y}|

which means the total mass that needs to be transported is

δx|N (x) \ {y}|

(
1

δx|N (x) \ {y}|
− 1

|N (x) \ {y}|

)
= 1− δx

We also know that from any a′ ∈ supp(µ̂x,y) to any a ∈ supp(µx) there exists a length 2 path
through the node x. Therefore, dG(a, b) ≤ 2. We can then conclude

W (µx, µ̂x,y) ≤ 2
(
1− δx

)
.

With the same argument, the following bound can also be derived,

W (µ̂x,y, µy) ≤ 2
(
1− δy

)
.

Putting it all together,
W (µx, µy) ≤ 2

(
2− (δx + δy)

)
.

Solving for the ORC,

κ(x, y) ≥ 1−
2
(
2− (δx + δy)

)
1

= 1− 2
(
2− (δx + δy)

)
.

Moving on, Lemma A.3 and Lemma A.4 constitute a majority of the theoretical work of this paper.
Together, they show that most of the measure in the ϵ-ball of a point x connected by a shortcut edge
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to y tends to concentrate far from y. For context, Theorem 3.1 uses this fact in conjunction with
Lemma A.1 to show that the ORC of shortcut edges is necessarily very negative.

To set the stage, Lemma A.3 establishes two things. First, and most importantly, it shows that a
shortcut edge is necessarily oriented close to a normal direction v to the manifold at its endpoints.
This concept is rather intuitive; if shortcut edges were closer to tangential directions instead, then
these edges would intersect with the manifold prematurely, no longer bridging distant neighborhoods
and contradicting their status as shortcuts. The second property the lemma establishes is the fact
that the residual of the projection (onto M) of an endpoint x of a shortcut edge must be within
π/2 radians of the aforementioned normal direction v. Put simply, this means that the endpoints
of a shortcut edge are necessarily displaced off the manifold in the direction of or orthogonal to the
normal direction that the edge itself spans. This simply arises from the assumptions about the size of
ϵ relative to the manifold embedding parameters r0(M) and s0(M). We show this second property
holds as it simplifies some of the downstream calculations.

Lemma A.3. If an edge (x, y) in a nearest neighbor graph built from potentially noisy samples
ofM is a shortcut edge then

1. there exists a unit vector v ∈ NprojM xM (the normal space ofM at projM x) such
that the angle ϕ between v and (y − x) is smaller than

arccos

(
(r0(M)− τ)(s0(M)− τ)− 1.27r0(M)τ

r0(M)
√
(s0(M)− τ)2 − τ2

)
< π/2. (36)

2. the angle θ between v and (x− projM x) is at most π/2.

Proof. Observe that the vector (y − x) can be written as αvT + βv, where vT is a unit vector
∈ TprojM xM, while v is a unit vector ∈ Nprojx MM. This vector v is in fact the unit vector in
Nprojx MM that minimizes the angle ϕ to (y − x). Motivated by this, Figure 14 visualizes the 3
dimensional subspace spanned by the vectors vT , v and (x− projM x). This visualization lays the
conceptual foundation that the rest of the proof rests on.

First, we will show (2) holds, as it is helpful in showing (1). To do so, we will show that the geometry
of shortcutting edges implies a bound on ∥x − y∥2 as a function of θ. We will then show that this
bound violates the assumptions on the size of ϵ for θ ≥ π/2.

Since (x, y) is a shortcut edge, dM(projM x, projM y) > (π + 1)r0(M) > πr0(M). By the
definition of minimum branch separation, we know then ∥projM x − projM y∥2 ≥ s0(M). Now
consider the triangle defined by the endpoints projM x, projM y and y. We can apply the triangle
inequality to say

∥ projM x− y∥2 ≥ ∥projM x− projM y∥2 − ∥ projM y − y∥2
≥ s0(M)− τ

since τ ≥ ∥projM y − y∥2. Now consider the triangle defined by the endpoints y, projM x and y′,
where y′ is the orthogonal projection of y onto the subspace spanned by v and (y − x) centered at
projM x (shown in Figure 14). Note that

∥y′ − projM x∥2 ≥
√
∥ projM x− y∥22 − ∥x− projM x∥22 sin

2(θ)

≥
√
(s0(M)− τ)2 − ∥x− projM x∥22 sin

2(θ).

Finally, consider the triangle defined by the endpoints projM x, y′ and x′, where x′ is the orthogonal
projection of x onto v. Observe that ∥x′ − projM x∥2 = ∥x− projM x∥2 cos(θ) and ∥x′ − y′∥2 =
∥x − y∥2. The second equivalence stems from the fact that the vectors v and vT were chosen
specifically so that they can be linearly combined to get (y − x); it follows that x′ − y′ is the same
as x− y. With that in mind, we can apply the triangle inequality again to say

∥x− y∥2 ≥
√
(s0(M)− τ)2 − ∥x− projM x∥22 sin

2(θ)− ∥x− projM x∥2 cos(θ). (37)
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Figure 14: A visualization of the plane spanned by the vectors (y− x) and v, and related quantities.

Property (2) follows from the prescribed upper bound, ∥x − y∥2 ≤
√
(s0(M)− τ)2 − τ2 from

assumption 2. Thus,√
(s0(M)− τ)2 − τ2 ≥

√
(s0(M)− τ)2 − ∥x− projM x∥22 sin

2(θ)− ∥x− projM x∥2 cos(θ).

Solving for θ,

(s0(M)− τ)2 − τ2 + 2∥x− projM x∥2 cos(θ)
√
(s0(M)− τ)2 − τ2 + ∥x− projM x∥22 cos2(θ)

≥ (s0(M)− τ)2 − ∥x− projM x∥22 sin2(θ)

(s0(M)− τ)2 − τ2 + 2∥x− projM x∥2 cos(θ)
√
(s0(M)− τ)2 − τ2

≥ (s0(M)− τ)2 − ∥x− projM x∥22.
Rearranging a little more,

2∥x− projM x∥2 cos(θ)
√
(s0(M)− τ)2 − τ2 ≥ τ2 − ∥x− projM x∥22

cos(θ) ≥ τ2 − ∥x− projM x∥22
2∥x− projM x∥2

√
(s0(M)− τ)2 − τ2

thus,

θ ≤ arccos

(
τ2 − ∥x− projM x∥22

2∥x− projM x∥2
√

(s0(M)− τ)2 − τ2

)
≤ arccos(0)

= π/2

Since ∥x− projM x∥2 ≤ τ . This concludes the proof of (2).

Now we will show (1). At a high level, we will show that if the angle ϕ is not smaller than the listed
threshold, y must have a small Euclidean distance to a small neighborhood around x; for points in
this neighborhood, the manifold distance to the projection of y is large. This leads to a contradiction
stemming from a violation of the minimum branch separation ofM.

We will first show that ϕ < π/2 with a simple instantiation of the argument above. We will then
proceed to refine the result to establish that ϕ is actually upper bounded by 36, a complicated function
of manifold parameters.

Regime 1: ϕ ∈ [π/2, π]. First we will show that for any ϕ in this range, we have a violation
of minimum branch separation due to proximity between y and projM x. First we will derive
∥ projM x − y′′∥2 (where y′′ is the projection of y onto the plane spanned by v and x − projM x,
shown in Figure 15). Consider the triangle with endpoints projM x, y′′ and the projection of y′′
onto the v, vT plane. We can use the triangle inequality to get
∥ projMx− y′′∥2

=

√(
∥x− projM x∥2 cos(θ) + ∥x− y∥2 cos(ϕ)

)2
+ ∥x− projM x∥22 sin

2(θ)

=
√
∥x− projM x∥22 + 2∥x− projM x∥2∥x− y∥2 cos(θ) cos(ϕ) + ∥x− y∥22 cos2(ϕ).
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Now we can solve for ∥ projM x− y∥2 by looking at the triangle with endpoints projM x, y and y′′

as follows,

∥projMx− y∥2

=

√
∥ projM x− y′′∥22 + ∥x− y∥22 sin

2(ϕ)

=
√
∥x− projM x∥22 + 2∥x− projM x∥2∥x− y∥2 cos(θ) cos(ϕ) + ∥x− y∥22.

Note that ∥ projM x− y∥2 is decreasing in ϕ for ϕ ∈ (0, π). Rearranging and solving for ϕ yields,

ϕ = arccos

(
∥ projM x− y∥22 − ∥x− projM x∥22 − ∥x− y∥22

2∥x− projM x∥2∥x− y∥2 cos(θ)

)
.

Now let

f(L) = arccos

(
L2 − ∥x− projM x∥22 − ∥x− y∥22
2∥x− projM x∥2∥x− y∥2 cos(θ)

)
.

We will evaluate f(L) for L = s0(M) − τ . We will then show shortly that if L is less than
s0(M) − τ , we have a contradiction. Since ∥projM x − y∥2 is decreasing in ϕ, we know that for
all ϕ > f(L), ∥projM x− y∥2 < s0(M)− τ . Evaluating f at s0(M)− τ ,

f(s0(M)− τ) = arccos

(
(s0(M)− τ)2 − ∥x− projM x∥22 − ∥x− y∥22

2∥x− projM x∥2∥x− y∥2 cos(θ)

)
.

Now let’s upper bound f(s0(M)− τ) as a means to simplify. Since arccos is decreasing on (−1, 1)

f(s0(M)− τ) = arccos

(
(s0(M)− τ)2 − ∥x− projM x∥22 − ∥x− y∥22

2∥x− projM x∥2∥x− y∥2 cos(θ)

)

< arccos

(
(s0(M)− τ)2 − τ2 −

(√
(s0(M)− τ)2 − τ2

)2
2∥x− projM x∥2∥x− y∥2 cos(θ)

)
Assumption 2

= arccos

(
(s0(M)− τ)2 − τ2 − (s0(M)− τ)2 + τ2

2∥x− projM x∥2∥x− y∥2 cos(θ)

)
= arccos(0)

= π/2.

Since f(s0(M) − τ) < π/2, we can say that for all ϕ ≥ π/2 > f(s0(M) − τ), ∥ projM x −
y∥2 < s0(M) − τ . Observe that, since (x, y) is a shortcut edge dM(projM x, projM y) > (π +
1)r0(M) > πr0(M). From the definition of minimum branch separation, we know that this implies
∥ projM x− projM y∥2 ≥ s0(M). Now let’s apply the triangle inequality,

∥ projM x− y∥2 ≥ ∥projM x− projM y∥2 − ∥ projM y − y∥2
≥ s0(M)− τ.

Thus, for ϕ ≥ π/2 we have a contradiction stemming from a violation of minimum branch separa-
tion. We therefore know that ϕ cannot exist in the interval [π/2, π].

Regime 2: ϕ ∈ [0, π/2). While the previous result gives us a bound on ϕ, we can sharpen it further.
Since we are dealing with manifolds without boundary, we can use the exponential map expprojM x

to send the tangent vector vT to a geodesic arc of M denoted γ. Again we will show that if ϕ is
sufficiently large, then the distance from y to γ violates the minimum branch separation in the same
manner as we saw in Regime 1.

Consider the particular scenario where γ curls away from y maximally. We will approximate γ
near projM x with its osculating circle C: a circle contained in the plane spanned by vT and (y −
projM x) with the smallest possible radius of curvature, r0(M). This particular instantiation is
shown in Figure 15. Note that C approximates a geodesic arc passing through projM x with initial
velocity vT and curls away from y maximally. Thus the distance between all possible geodesic arcs
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Figure 15: A visualization of the plane spanned by the vectors (y− x) and v, and related quantities.

passing through projM x with velocity vector vT is approximately bounded by the distance between
C and y.

Now we want to derive an expression for the distance between C and y; this distance will be denoted
d. We will start by deriving ∥ projM x−y′′∥2 (where y′′ is the projection of y onto the plane spanned
by v and x − projM x, shown in Figure 15). Consider the triangle defined by projM x, y′′ and the
projection of y′′ onto the v, vT plane and apply the Pythagorean theorem to say

∥ projMx− y′′∥2 (38)

=

√(
∥x− projM x∥2 cos(θ) + ∥x− y∥2 cos(ϕ)

)2
+ ∥x− projM x∥22 sin

2(θ) (39)

=
√
∥x− projM x∥22 + 2∥x− projM x∥2∥x− y∥2 cos(θ) cos(ϕ) + ∥x− y∥22 cos2(ϕ).

(40)

Now consider the triangle defined by the center of the osculating circle C, y′′ and y. We can solve
for d+ r0(M) as,

d+ r0(M) =

√(
∥ projM x− y′′∥2 + r0(M)

)2
+ ∥x− y∥22 sin

2(ϕ).

Squaring both sides and plugging in eq. (40) yields the following for the right hand side,(
∥ projM x− y′′∥2 + r0(M)

)2
+ ∥x− y∥22 sin2(ϕ) (41)

= ∥projM x− y′′∥22 + 2r0(M)∥ projM x− y′′∥2 + r0(M)2 + ∥x− y∥22 sin2(ϕ) (42)

= ∥x− projM x∥22 + 2∥x− projM x∥2∥x− y∥2 cos(θ) cos(ϕ) + ∥x− y∥22 cos2(ϕ)
+ 2r0(M)

·
√
∥x− projM x∥22 + 2∥x− projM x∥2∥x− y∥2 cos(θ) cos(ϕ) + ∥x− y∥22 cos2(ϕ)

+ r0(M)2 + ∥x− y∥22 cos2(ϕ)

(43)

= ∥x− projM x∥22 + 2∥x− projM x∥2∥x− y∥2 cos(θ) cos(ϕ) + ∥x− y∥22 + r0(M)2

+ 2r0(M)
√
∥x− projM x∥22 + 2∥x− projM x∥2∥x− y∥2 cos(θ) cos(ϕ) + ∥x− y∥22 cos2(ϕ).

(44)

Observe that
(
d+r0(M)

)2
is decreasing in ϕ on the interval ϕ ∈ (0, π/2) since cos(θ) ≥ 0, cos(ϕ)

is decreasing on (0, π) and cos2(ϕ) is decreasing on (0, π/2). To establish the contradiction we
want to find the ϕ′ ∈ (0, π/2) such that d = s0(M) − τ ; from that, we know that for any ϕ > ϕ′,
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d < s0(M)− τ . Rearranging 44 slightly yields(
d+ r0(M)

)2
− ∥x− y∥22 − r0(M)2︸ ︷︷ ︸

c1

= ∥x− projM x∥22︸ ︷︷ ︸
c2

+2∥x− projM x∥2∥x− y∥2 cos(θ)︸ ︷︷ ︸
c3

cos(ϕ)

+ 2r0(M)︸ ︷︷ ︸
c4

√
∥x− projM x∥22︸ ︷︷ ︸

c2

+2∥x− projM x∥2∥x− y∥2 cos(θ)︸ ︷︷ ︸
c3

cos(ϕ) + ∥x− y∥22︸ ︷︷ ︸
c5

cos2(ϕ).

Using these intermediate terms and defining z = cos(ϕ), we see

c1 = c2 + c3z + c4
√
c2 + c3z + c5z2.

Rearranging to get a quadratic polynomial gives (
(c1 − c2)− c3z

)2
= c24

(
c2 + c3z + c5z

2
)

(c1 − c2)
2 − 2c3(c1 − c2)z + c23z

2 = c24c2 + c24c3z + c24c5z
2

−
(
(c1 − c2)

2 − c24c2

)
+
(
2c3(c1 − c2) + c24c3

)
z −

(
c23 − c24c5

)
z2 = 0.

Applying the quadratic formula,

z =
−
(
2c3(c1 − c2) + c24c3

)
±
√(

2c3(c1 − c2) + c24c3

)2
+ 4
(
c24c5 − c23

)(
(c1 − c2)2 − c24c2

)
2
(
c24c5 − c23

)
(45)

Evaluating the denominator gives

2
(
c24c5 − c23

)
= 2
(
−4∥x− projM x∥22∥x− y∥22 cos2(θ) + 4r0(M)2∥x− y∥22

)
(46)

= 8
(
−∥x− projM x∥22∥x− y∥22 cos2(θ) + r0(M)2∥x− y∥22

)
(47)

= 8∥x− y∥22
(
r0(M)2 − ∥x− projM x∥22 cos2(θ)

)
. (48)

Evaluating the first term of the numerator,
2c3(c1 − c2)

= 4∥x− projM x∥2∥x− y∥2 cos(θ)

·
((

d+ r0(M)
)2 − ∥x− y∥22 − r0(M)2 − ∥x− projM x∥22

)
= 4∥x− projM x∥2∥x− y∥2 cos(θ)

(
d2 + 2dr0(M)− ∥x− y∥22 − ∥x− projM x∥22

)
,

evaluating the second term of the numerator,
c24c3 = 8r0(M)2∥x− projM x∥2∥x− y∥2 cos(θ)

and combining,

2c3(c1 − c2) + c24c3 = 4∥x− projM x∥2∥x− y∥2 cos(θ)
(
d2 + 2dr0(M)

− ∥x− y∥22 − ∥x− projM x∥22 + 2r0(M)2
)

(49)

Now we will evaluate terms inside of the square root in (45). Note that the first term is (49) squared,
while the second term includes two times (48). The remaining part of the second term is

(c1 − c2)
2 − c24c2 =

(
d2 + 2dr0(M)− ∥x− y∥22 − ∥x− projM x∥22

)2
− 4r0(M)2∥x− projM x∥22. (50)
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Combining everything inside the square root yields,

16∥x− projM x∥22∥x− y∥22 cos2(θ)

·
[(

d2 + 2dr0(M)− ∥x− y∥22 − ∥x− projM x∥22
)
+ 2r0(M)2

]2
−
[
16∥x− y∥22∥x− projM x∥2 cos2(θ)− 16∥x− y∥22r0(M)2

]
·
[(

d2 + 2dr0(M)− ∥x− y∥22 − ∥x− projM x∥22
)2
− 4r0(M)2∥x− projM x∥22

]
= 16∥x− projM x∥22∥x− y∥22 cos2(θ)

(
d2 + 2dr0(M)− ∥x− y∥22 − ∥x− projM x∥22

)2
+ 64∥x− projM x∥22∥x− y∥22 cos2(θ)r0(M)2

(
d2 + 2dr0(M)− ∥x− y∥22 − ∥x− projM x∥22

)
+ 64r0(M)4∥x− projM x∥22∥x− y∥22 cos2(θ)

− 16∥x− projM x∥22∥x− y∥22 cos2(θ)
(
d2 + 2dr0(M)− ∥x− y∥22 − ∥x− projM x∥22

)2
+ 64∥x− y∥22∥x− projM x∥42 cos2(θ)r0(M)2

+ 16∥x− y∥22r0(M)2
(
d2 + 2dr0(M)− ∥x− y∥22 − ∥x− projM x∥22

)2
− 64∥x− y∥22r0(M)4∥x− projM x∥22.

Continuing to simplify yields

16∥x− y∥22r0(M)2
[(

d2 + 2dr0(M)− ∥x− y∥22 − ∥x− projM x∥22
)2

+ 4∥x− projM x∥22 cos2(θ)
(
d2 + 2dr0(M)− ∥x− y∥22 − ∥x− projM x∥22

)
+ 4r0(M)2∥x− projM x∥22 cos2(θ)
− 4r0(M)2∥x− projM x∥22

+ 4∥x− projM x∥42 cos2(θ)
]
. (51)

Now we will complete the square in the large bracket of 51,(
d2 + 2dr0(M)− ∥x− y∥22 − ∥x− projM x∥22

)2
+ 4∥x− projM x∥22 cos2(θ)

(
d2 + 2dr0(M)− ∥x− y∥22 − ∥x− projM x∥22

)
+ 4 cos4(θ)∥x− projM x∥42 − 4 cos4(θ)∥x− projM x∥42
+ 4r0(M)2∥x− projM x∥22 cos2(θ)
− 4r0(M)2∥x− projM x∥22
+ 4∥x− projM x∥42 cos2(θ).

(52)

Now the first three terms and last four terms can be factored,((
d2 + 2dr0(M)− ∥x− y∥22 − ∥x− projM x∥22

)
+ 2 cos2(θ)∥x− projM x∥22

)2

− 4 cos4(θ)∥x− projM x∥42
+ 4r0(M)2∥x− projM x∥22 cos2(θ)
− 4r0(M)2∥x− projM x∥22
+ 4∥x− projM x∥42 cos2(θ).

(53)
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Further simplifying,((
d2 + 2dr0(M)− ∥x− y∥22 − ∥x− projM x∥22

)
+ 2 cos2(θ)∥x− projM x∥22

)2

− 4∥x− projM x∥22
·
(
∥x− projM x∥22 cos4(θ) + r0(M)2 sin2(θ)− ∥x− projM x∥22 cos2(θ)

) (54)

=

((
d2 + 2dr0(M)− ∥x− y∥22 − ∥x− projM x∥22

)
+ 2 cos2(θ)∥x− projM x∥22

)2

− 4∥x− projM x∥22
(
r0(M)2 sin2(θ)− ∥x− projM x∥22 cos2(θ) sin2(θ)

) (55)

=

((
d2 + 2dr0(M)− ∥x− y∥22 − ∥x− projM x∥22

)
+ 2 cos2(θ)∥x− projM x∥22

)2

︸ ︷︷ ︸
:= a2

− 4∥x− projM x∥22 sin2(θ)
(
r0(M)2 − ∥x− projM x∥22 cos2(θ)

)
︸ ︷︷ ︸

:= b2

(56)

where the two intermediate steps leverage the fact that 1− cos2(θ) = sin2(θ). The equation 45 has
two roots, and one of the two will result in a term on the right-hand side of 45 that is positive (since
the denominator is necessarily positive); we will consider this root. Recall that d is decreasing in ϕ
on the interval ϕ ∈ (0, π/2). We want to find a ϕ′ such that for all ϕ > ϕ′, d < s0(M) − τ . It
suffices then to find an upper bound for ϕ′, which implies finding a lower bound on cos(ϕ′).

Let’s denote 56 with B, and recall that it represents the expression in the large bracket of 51. Also
recall that 51 is a simplified version of the term in the radical of 45. We can express the square root
of 51 with 4∥x − y∥2r0(M)

√
B. Observe that

√
B can be written as

√
a2 − b2 where a, b > 0.

Since
√
a2 − b2 ≥ a− b for a ≥ b > 0, we can say

4∥x− y∥2r0(M)
√
B

≥ 4∥x− y∥2r0(M)

((
d2 + 2dr0(M)− ∥x− y∥22 − ∥x− projM x∥22

)
+ 2 cos2(θ)∥x− projM x∥22

− 2∥x− projM x∥2 sin(θ)
√
r0(M)2 − ∥x− projM x∥22 cos2(θ)

)
.

(57)

Note that the following steps will demonstrate a−b ≥ 0, justifying the previous step when evaluating
at d = s0(M)− τ . Note that

d2−∥x− y∥22 − ∥x− projM x∥22 = (s0(M)− τ)2 − ∥x− y∥22 − ∥x− projM x∥22 (58)

≥ (s0(M)− τ)2 − (
√
(s0(M)− τ)2 − τ2)2 − τ2 (59)

= 0. (60)

Thus,

a− b ≥ 2(s0(M)− τ)r0(M) + 2 cos2(θ)∥x− projM x∥22

− 2∥x− projM x∥2 sin(θ)
√
r0(M)2 − ∥x− projM x∥22 cos2(θ)

)
(61)

≥ 2(s0(M)− τ)r0(M)− 2τr0(M). (62)

Note that the last term is necessarily positive since we have stipulated that s0(M) > 3τ . In fact,
a ≥ 2b, a fact that we can use to sharpen the bound

√
a2 − b2 ≥ a− b. When a ≥ 2b,

√
a2 − b2 ≥
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a− 0.27b, which can be verified easily by plugging in and bounding. Thus,

4∥x− y∥2r0(M)
√
B

≥ 4∥x− y∥2r0(M)

((
d2 + 2dr0(M)− ∥x− y∥22 − ∥x− projM x∥22

)
+ 2 cos2(θ)∥x− projM x∥22

− 0.54∥x− projM x∥2 sin(θ)
√
r0(M)2 − ∥x− projM x∥22 cos2(θ)

)
.

(63)

Now we will evaluate a bound on one of the roots of 45 by combining 63, 49 and 48,

z ≥

(
r0(M)− ∥x− projM x∥2 cos(θ)

)(
d2 + 2dr0(M)− ∥x− y∥22 − ∥x− projM x∥22

)
2∥x− y∥2

(
r0(M)2 − ∥x− projM x∥22 cos2(θ)

)
+

−2r0(M)∥x− projM x∥2
2∥x− y∥2

(
r0(M)2 − ∥x− projM x∥22 cos2(θ)

)
·
(
r0(M) cos(θ)−∥x−projM x∥2 cos2(θ)+0.27 sin(θ)

√
r0(M)2 − ∥x− projM x∥22 cos2(θ)

)
.

(64)

Bounding the numerator of the second term from below (since the denominator is nonnegative),

−2r0(M)∥x− projM x∥2
(
r0(M) cos(θ)− ∥x− projM x∥2 cos2(θ)

+ 0.27 sin(θ)
√

r0(M)2 − ∥x− projM x∥22 cos2(θ)
)

≥ −2r0(M)τ
(
r0(M) + 0.27r0(M)

) (65)

= −2.54r0(M)2τ. (66)

Now we will bound the numerator of the first term from below. We can apply the lower bound from
60 with d evaluated at s0(M)− τ to get(

r0(M)− ∥x− projM x∥2 cos(θ)
)

(
(s0(M)− τ)2 + 2dr0(M)− ∥x− y∥22 − ∥x− projM x∥22

) (67)

≥ (r0(M)− τ)(2(s0(M)− τ)r0(M)) (68)
= 2(r0(M)− τ)(s0(M)− τ)r0(M). (69)

Putting it all together, we get

z ≥ 2(r0(M)− τ)(s0(M)− τ)r0(M)− 2.54r0(M)2τ

2∥x− y∥2
(
r0(M)2 − ∥x− projM x∥22 cos2(θ)

) (70)

=
(r0(M)− τ)(s0(M)− τ)r0(M)− 1.27r0(M)2τ

∥x− y∥2
(
r0(M)2 − ∥x− projM x∥22 cos2(θ)

) (71)

Now we will show that the numerator is necessarily larger than zero, allowing us to further bound z
by upper bounding the denominator. Note that the numerator is greater than zero if and only if

(r0(M)− τ)(s0(M)− τ)r0(M) > 1.27r0(M)2τ

⇐⇒ (r0(M)− τ)(s0(M)− τ)

r0(M)τ
> 1.27

Note that (r0(M)−τ)/r0(M) > 2/3 since r0(M) > 3τ , and (s0(M)−τ)/τ > 2 since s0(M) >
3τ . Thus, the left-hand side of the equation above is larger than 4/3 which is larger than 1.27,
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rendering the statement true and the numerator positive. Now we can continue to bound z by upper
bounding the denominator,

z ≥ (r0(M)− τ)(s0(M)− τ)r0(M)− 1.27r0(M)2τ

∥x− y∥2
(
r0(M)2 − ∥x− projM x∥22 cos2(θ)

) (72)

>
(r0(M)− τ)(s0(M)− τ)r0(M)− 1.27r0(M)2τ

r0(M)2
√

(s0(M)− τ)2 − τ2
(73)

=
(r0(M)− τ)(s0(M)− τ)− 1.27r0(M)τ

r0(M)
√

(s0(M)− τ)2 − τ2
. (74)

Finally, we can derive a bound on ϕ′ from 72 since z = arccos(ϕ′),

ϕ′ < arccos

(
(r0(M)− τ)(s0(M)− τ)r0(M)− 1.27r0(M)2τ

r0(M)2
√

(s0(M)− τ)2 − τ2

)
. (75)

Note that the fact that the numerator and denominator are positive implies the right-hand side of 75
is necessarily < π/2. For all ϕ > ϕ′ we have d < s0(M) − τ . Thus it must also be true that for
all ϕ larger than the right-hand side of 75, d < s0(M)− τ . however, it remains to show that this is
in fact a violation of branch separation. Since the nearest point to y on C might not be (and likely
is not) projM x, we need to show that the manifold distance between y and this point is large. For
ease of notation, let C(ty) be the nearest point to y on C.

First we need to bound the distance dM(projM x,C(ty)). Since C has radius of curvature r0(M),
dM(projM x,C(ty)) can be expressed as

dM(projM x,C(ty)) = r0(M) arctan

(
∥x− y∥2 sin(ϕ)

∥ projM x− y′′∥2 + r0(M)

)
. (76)

This follows from Figure 15, as we are approximating the geodesic arc γ with C. The distance along
C from projM x to C(ty) can be written as the angle swept out times the radius of curvature. Note
that arctan(x) is an increasing function of x, and arctan(x) ≤ x for x ≥ 0. Since ϕ ∈ [0, π/2) the
argument of arctan in 76 is necessarily non-negative, allowing us to bound it as follows

dM(projM x,C(ty)) = r0(M) arctan

(
∥x− y∥2 sin(ϕ)

∥ projM x− y′′∥2 + r0(M)

)
(77)

≤ r0(M) arctan

(
∥x− y∥2 sin(ϕ)

r0(M)

)
(78)

≤ r0(M) · ∥x− y∥2 sin(ϕ)
r0(M)

(79)

= ∥x− y∥2 sin(ϕ). (80)

Now we can apply assumptions on ϵ to bound 80 as a function of manifold embedding parameters.

dM(projM x,C(ty)) ≤ ∥x− y∥2 sin(ϕ) (81)
≤ ϵ (82)
< r0(M). (83)

Now we can apply the triangle inequality,

dM(C(ty),projM y) ≥ dM(projM x, projM y)− dM(C(ty),projM x) (84)
> (π + 1)r0(M)− r0(M) (85)
= πr0(M). (86)

As before, we will apply the definition of minimum branch separation, which states that if
dM(C(ty),projM y) is larger than πr0(M), then d = ∥C(ty) − projM y∥2 ≥ s0(M). Apply-
ing the triangle inequality one more time leads to the conclusion that ∥C(ty)− y∥2 ≥ s0(M)− τ .
However, we see that when ϕ does not satisfy 75, d < s0(M)− τ and we have a contradiction.
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Lemma A.3 formalizes and proves the fact that shortcut edges are necessarily oriented close to a
normal direction toM from the perspective of each endpoint. To leverage this result, we then need
to be able to say that this orientation implies a concentration of measure away from the midpoint of
all shortcuts. Figure 11 provides a visualization of this phenomenon, establishing intuition for why
this is true.

Concretely, Lemma A.4 derives the measure of the sets Ux and Bϵ(x) detailed in Figure 12 in the
limit of vanishing noise. The expressions for the measures of these sets are obtained by integrating
the probability density function ρ (detailed in eq. (1)) over each respective set. What results is an
expression that is a function of ϕ, the angle between the edge (x, y) and the closest normal direction
ofM at x.

Intuitively, the result matches what we would expect to see in the no noise (σ = 0) scenario. The m-
dimensional measure of Ux when the center of Bϵ(x) is displaced at a distance ∥x−projM x∥2 from
a m-dimensional manifoldM would simply be (in the locally flat case) proportional to the volume
of the intersection, which is a portion of a m dimensional ball of radius

√
ϵ2 − ∥x− projM x∥22.

The conditional probability of a point being in Ux given Bϵ(x) would therefore be the ratio of
the volume of this portion of a m dimensional ball to the full volume of the m dimensional ball.
Figure 16 provides a visualization for a 2-dimensional manifold embedded in R3.

v

Ux

¾! 0
B²(x)

M

y

x

Figure 16: A visualization of v ∈ NprojM x, Ux and the edge (x, y) for a 2-dimensional manifold
embedded in R3. Observe that the measure of Bϵ(x) \Ux approaches the volume of the intersection
of Bϵ(x) \ Ux and M as σ → 0. Similarly, the measure of Ux approaches the volume of the
intersection of Ux and M as σ → 0. Both of these regions are shown as the 2-dimensional dark
grey and matte blue shaded regions respectively.

Lemma A.4. Suppose (x, y) is an edge in a nearest neighbor graph built from data consisting
of samples from the probability density function defined by 1. Define v to be the vector in the
normal space of M at projM x such that the angle ϕ between v and (y − x) is minimized.
Also define

f(ϕ) = cot(ϕ)
(
sec(ϕ)

(ϵ− ∥x− y∥2
2

)
− dv

)
and,

R =
√
ϵ2 − ∥x− projM x∥22

and finally,

r(z) =

{√
ϵ2 − ∥x− projM x∥22 − z2 |z| ≤

√
ϵ2 − ∥x− projM x∥22

0 otherwise
. (87)

Then

lim
σ→0+

P[ a ∈ Ux | a ∈ Bϵ(x) ] ≥

∫√ϵ2−∥x−projM x∥2
2

f(ϕ)
Vol(Bm−1

r(z) (0))dz

Vol(Bm
R (0))

(88)
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where m is the dimension ofM.

Proof. Rewriting P[ a ∈ Ux | a ∈ Bϵ(x) ],

P[ a ∈ Ux | a ∈ Bϵ(x) ] =
P[ a ∈ Ux ]

P[ a ∈ Bϵ(x) ]
(89)

=
µ
(
Ux

)
µ
(
Bϵ(x)

) (90)

Since the probability density in Bϵ(x) is nonuniform, we need to integrate ρ over the regions we are
interested in. To do so, we will integrate along v ∈ NprojM xM and use a locally flat approximation
of M. Observe that (y − x) can be written as αvT + βv, where vT ∈ TprojM x, and v is the
vector in NprojM xM that forms the smallest angle ϕ with the vector (y − x). Also note that the
vector (x − projM x) is oriented normal toM at projM x as well. It can therefore be written as
dvv + dxvN , where v is the vector defined previously and vN is some other vector in the normal
space. It follows that dv = ∥x−projM x∥2 cos(θ) and dx = ∥x−projM x∥2 sin(θ), where θ is the
angular displacement between (x− projM x) and v. A visualization of these quantities and vectors
is provided in Figure 17.

y

x

dx

B²(x)

µ

Á

projMx

v

vN

vTdv

M
Figure 17: A visualization of quantities defined and used for Lemma A.4.

All coordinates mentioned from here onwards specify displacements from the point projM x. Note
that m orthogonal ambient directions are oriented tangent toM at projM x, while D−m directions
are oriented normal toM at projM x. Since the probability density is constant in tangential direc-
tions, we will begin by evaluating the measure of the subspace spanned by the normal directions
directly; thereafter we will integrate along the tangent directions.

Let u1, u2, um+3, . . . , uD denote coordinates in an orthonormal basis of NprojM xM, where u1

corresponds with direction v and u2 corresponds with direction vN . Now let z3, . . . , zm+2 denote
coordinates in the m tangential directions. We choose to define these coordinates with these indices
as it reflects the order in which we will integrate. This choice will become clear deeper into the
proof.

Observe that x’s only nonzero coordinates (as we have just defined them) are u1 and u2. Therefore
the probability density ρ is symmetric about ui = 0 for i ∈ {m+3, . . . , D}. This arises from the fact
that the u coordinates are the only coordinates in which the probability density varies - z coordinates
have no effect (due to our locally flat approximation). Therefore, we will begin by evaluating the
measure of the subspace of Bϵ(x) (centered at fixed coordinates u1, u2, z3, . . . , zm+2) spanned by
normal directions um+3, . . . , uD. The probability density at any point in this subspace is simply a
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function of u coordinates,

ρ(u1, u2, z3, . . . , zm+2, um+3, . . . , uD) =
1

Z
exp

(
−
u2
1 + u2

2 +
∑D

i=d+3 u
2
i

2σ2

)
=

1

Z
exp

(
−u2

1 + u2
2

2σ2

)
exp

(
−
∑D

i=d+3 u
2
i

2σ2

)
.

Observe that the point (u1, u2, z3, . . . , zm+2, 0, . . . , 0) is at the same distance from the boundary
of the tubular neighborhood in any direction spanned by ui for i ∈ {m + 3, . . . , D}. While
we do not yet have an exact expression for that distance, we can represent it as some function
of (u1, u2, z3, . . . , zm+2), denoted r(u1, u2, z3, . . . , zm+2) = r. Put another way, if we con-
sider the intersection of TubτM, Bϵ(x) and the subspace spanning um+3, . . . , uD centered at
(u1, u2, z3, . . . , zm+2, 0, . . . , 0), it looks like a D −m− 2 dimensional ball of radius r.

Thus, we can evaluate the measure of this subspace of Bϵ(x) centered at the point with coordinates
(u1, u2, z3, . . . , zm+2, 0, . . . , 0) spanned by normal directions um+3, . . . , uD as

1

Z
exp

(
−u2

1 + u2
2

2σ2

)∫
um+3:D ∈Br(0)

exp

(
−
∑D

i=d+3 u
2
i

2σ2

)
dV.

Now we will manipulate the term in the integral so that it becomes equivalent to the CDF of a χ2

distribution with D −m− 2 degrees of freedom,

1

Z
exp

(
−u2

1 + u2
2

2σ2

)∫
um+3:D ∈Br(0)

exp

(
−
∑D

i=d+3 u
2
i

2σ2

)
dV

=

(
2π
)D−m−2

2

Z
exp

(
−u2

1 + u2
2

2σ2

)∫
um+3:D ∈Br(0)

1(
2π
)D−m−2

2

exp

(
−
∑D

i=d+3 u
2
i

2σ2

)
dV

=
σD−m−2

(
2π
)D−m−2

2

Z︸ ︷︷ ︸
:=C

exp

(
−u2

1 + u2
2

2σ2

)

·
∫
wm+3:D ∈Br/σ(0)

1(
2π
)D−m−2
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exp

(
−
∑D

i=d+3 w
2
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)
dV

︸ ︷︷ ︸
Fχ2

(
r2

σ2

)
= C exp

(
−u2

1 + u2
2

2σ2

)
Fχ2

( r2
σ2

)
where the third to last line was obtained by applying the change of variables wi = ui/σ for i ∈
{m + 3, . . . , D}. Now we would like to integrate this expression over all remaining directions
z3, . . . , zm+2 and u1, u2. To obtain appropriate limits of integration, its helpful to explicitly write
out an expression for relevant parts of the sets Bϵ(x) and the local region of TubτM in terms of the
defined coordinates. The sets can be described as

Bϵ(x) =

{
(u1, u2, z3, . . . , zm+2, um+3, . . . , uD)

∣∣∣ (u1 − dv)
2 + (u2 − dx)

2

+

m+2∑
i=3

z2i +

D∑
i=d+3

u2
i ≤ ϵ2

}
(91)

and

S =

{
(u1, u2, z3, . . . , zm+2, um+3, . . . , uD)

∣∣∣ ∑
i∈{1,2,d+3,...,D}

u2
i ≤ τ2

}
respectively, where S describes the local region of the tubular neighborhood (whenM is approxi-
mated as flat). Naturally, we are interested in integrating over the intersection of these two regions.
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We will start with zm+2. Observe that the limits for zm+2 are necessarily symmetric - this fol-
lows from the fact that the point (u1, u2, z3, . . . , zm+1, 0, . . . , 0) is equidistant along zm+2 from the
boundary of Bϵ(x) in both the positive and negative directions. This distance is precisely√√√√ϵ2 − (u1 − dv)2 − (u2 − dx)2 −

m+1∑
i=3

z2i . (92)

We do not concern ourselves with the boundary of TubτM in the tangential directions because
we are employing a locally flat approximation. Now note that, for a point with coordinates
(u1, u2, z3, . . . , zm+1, zm+2, 0, . . . , 0) the distance to the boundary of Bϵ(x) in any direction
spanned by um+3, . . . , uD is a slight modification to 92√√√√ϵ2 − (u1 − dv)2 − (u2 − dx)2 −

m+2∑
i=3

z2i . (93)

Observe that this gives us part of our expression for r(u1, u2, z3, . . . , zm+2). In the normal di-
rections, however, we are also concerned with the boundary of TubτM, which is necessarily at a
distance √

τ2 − u2
1 − u2

2 (94)
in any direction spanned by um+3, . . . , uD. Thus, the limits of integration for zm+2 directions
must range from −1 times 92 to +1 times 92. The radius in the argument of Fχ2 must then be the
minimum of eq. (93) and eq. (94). Now integrating out zm+2 yields

µ
[
Bϵ(x) ∩ S

∣∣∣
(u1,u2,z3,...,zm+1)

]
= C exp
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−u2

1 + u2
2

2σ2

)∫ √ϵ2−(u1−dv)2−(u2−dx)2−
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i

−
√
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i

Fχ2

(
min{ϵ2 − (u1 − dv)

2 − (u2 − dx)
2 −

∑m+2
i=3 z2i , τ

2 − u2
1 − u2

2}
σ2

)
dzm+2 (95)

where Bϵ(x)∩S
∣∣∣
(u1,u2,z3,...,zm+1)

denotes the subset of Bϵ(x)∩S when we fix all listed coordinates

and allow the others to vary. Now we can apply the same argument to integrate out zm+1. A point
with coordinates (u1, u2, z3, . . . , zd, 0, 0, . . . , 0) is at distance√√√√ϵ2 − (u1 − dv)2 − (u2 − dx)2 −

m∑
i=3

z2i (96)

from the boundary of Bϵ(x) in the ± zm+1 directions. Thus,

µ
[
Bϵ(x) ∩ S

∣∣∣
(u1,u2,z3,...,zd)

]
=
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2
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i
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i

Fχ2

(
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2 −
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2}
σ2

)
dzm+2dzm+1. (97)

Repeating this process for all remaining zi’s yields

µ
[
Bϵ(x) ∩ S
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(u1,u2)

]
= C exp
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−u2

1 + u2
2

2σ2
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−
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· · ·
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dzm+2dzm+1 . . . dz3. (98)
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A point with coordinates (u1, 0, . . . , 0) is at distance√
ϵ2 − (u1 − dv)2 − dx (99)

from the boundary of Bϵ(x) in the −u2 direction, while it is at distance√
ϵ2 − (u1 − dv)2 + dx (100)

in the +u2 direction. This can be verified by inspecting Figure 17. Since u2 spans a normal direction,
we must also consider the boundary of TubτM. Namely, the point (u1, 0, . . . , 0) is at distance√

τ2 − u2
1 (101)

from the boundary of TubτM in the ±u2 direction. Therefore,
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[
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∣∣∣
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And finally since 2τ < ϵ we have,
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To obtain an expression for µ[Bϵ(x)] we need one more component. Visual inspection of Figure 11
reveals that some of the measure of Bϵ(x) can come from a region of the manifold that is at a far
intrinsic distance, but small Euclidean distance. This is a phenomenon we have not yet accounted
for. To do so, we will provide a large overestimate of the measure it contributes (which in the end,
will not affect the conclusion of the proof). Since it is hard to quantify the volume of this region
in the general case, we know its volume is necessarily bounded by Vol(Bϵ(x)). It follows that its
measure is upper bounded by the maximum probability density in the region times Vol(Bϵ(x)).

To find the maximum probability density in this region, we need to reason about the minimum
distance any point in this region can have to the manifold. Consider a point p in this region, and its
corresponding nearest point onM, projM p. Since we have stipulated r0(M) > ϵ, any manifold
geodesic path through projM x could not have left Bϵ(x) and re-entered it without travelling more
than πr0(M) distance. Our locally flat approximation ensures that our expression for µ[Bϵ(x)]
accounts for the volume traced out by all geodesic paths that pass through projM x before they
leave Bϵ(x); thus the only measure we have not accounted for is associated with areas ofM where
a geodesic path through projM x left Bϵ(x) and later returned.
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Since we know the manifold distance from projM x to projM p exceeds πr0(M), we know
∥ projM x − projM p∥2 ≥ s0(M) from the definition of minimum branch separation. Using the
triangle inequality and applying assumptions to bound ϵ and τ we can say

∥p− projM p∥2 ≥ ∥projM x− projM p∥2 − ∥x− projM x∥2 − ∥x− p∥2
> s0(M)− τ −

√
(s0(M)− τ)2 − τ2

:= δ

> 0.

Thus, the measure of this distant region of Bϵ(x) is necessarily bounded above by

Vol
(
Bϵ(x)

) 1

Z
exp
(
− δ2

2σ2

)
.

Thus, we can safely conclude that
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. (104)

Computing µ[Ux] involves changing the lower limit of integration for z3. In the u1, z3 plane the
boundary of Ux is simply a line with slope tan(ϕ); the u1 intercept can be obtained with simple
geometry, and is dv − sec(ϕ)( ϵ−∥x−y∥2

2 ). It follows that the expression for the boundary can be
rearranged as,

z3 = cot(ϕ)

(
u1 − dv + sec(ϕ)

(ϵ− ∥x− y∥2
2

))
.

To understand this step we encourage the reader to refer back to Figure 12 to recall the definition of
Ux. Moving forward, for the sake of simplicity we can also discard the second term in eq. (104) to
obtain a lower bound on µ[Ux]. Therefore,
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We are interested in evaluating the ratio of 105 and 104 in the limit of σ → 0+. Since 104 is the
measure of a finite volume subset of RD with a nonempty intersection with the support of ρ, for all
σ > 0 the quantity is nonzero. To make sure the limits converge to a nonzero value, we will multiply
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the top and bottom by 1
2πσ2C . As we will also show, the ensures that the limit of the denominator

converges to a nonzero value. Thus we can pull the limit into the fraction to say,

lim
σ→0+

1
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1
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=
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. (106)

The denominator can be bounded with
1

2πσ2C
µ
[
Bϵ(x)

]
≤∫ τ

−τ

∫ min
{√

τ2−u2
1,
√

ϵ2−(u1−dv)2+dx

}
max
{
−
√

τ2−u2
1,−
√

ϵ2−(u1−dv)2+dx

} 1

2πσ2
exp

(
−u2

1 + u2
2

2σ2

)[∫ √ϵ2−(u1−dv)2−(u2−dx)2

−
√

ϵ2−(u1−dv)2−(u2−dx)2

· · ·
∫ √ϵ2−(u1−dv)2−(u2−dx)2−

∑m
i=3 z2

i

−
√

ϵ2−(u1−dv)2−(u2−dx)2−
∑m

i=3 z2
i

∫ √ϵ2−(u1−dv)2−(u2−dx)2−
∑m+1

i=3 z2
i

−
√

ϵ2−(u1−dv)2−(u2−dx)2−
∑m+1

i=3 z2
i

Fχ2

(
min{ϵ2 − (u1 − dv)

2 − (u2 − dx)
2 −

∑m+2
i=3 z2i , τ

2 − u2
1 − u2

2}
σ2

)
dzm+2dzm+1 . . . dz3

]
du2du1 +

1

2πσ2
Vol
(
Bϵ(x)

) 1

CZ
exp
(
− δ2

2σ2

)
. (107)

Defining everything in the bracket as g(u1, u2) and taking the limit, we get
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The second term can be rewritten as,

lim
σ→0+

Vol
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exp
(
− δ2

2σ2

)
.

Since δ is a constant, one can use repeated applications of L’Hopital’s rule to show that this term
converges to 0 in the limit. Now we can focus on the first term of eq. (108),
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(109)

Define the limits of integration for u2 as Llow(u1) and Lup(u1) respectively. Now we will rewrite
the equation above, replacing the limits of integration with indicators
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Applying the change of variables w1 = u1/σ and w2 = u2/σ yields,
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σ→0+

1

2πσ2C
µ
[
Bϵ(x)

]
≤ lim

σ→0+

∫ ∞

−∞

∫ ∞

−∞

1

2π
exp

(
−w2

1 + w2
2

2

)

· 1

[
w2 ∈

[Llow(σw1)

σ
,
Lup(σw1)

σ

]
, w1 ∈ [−τ/σ, τ/σ]

]
g(σw1, σw2)dw2dw1. (111)
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Observe that g as defined is simply an integral of a function bounded by 1 over a region bounded by
Bϵ(x). Therefore, g must be no larger than Vol(Bϵ(x)). Clearly the function

1

2π
exp

(
−w2

1 + w2
2

2

)
Vol(Bϵ(x))

dominates the integrand of g; furthermore, this function is integrable as the double integral over w1

and w2 evaluates to Vol(Bϵ(x)). Therefore we can use it as our dominating function to invoke the
dominated convergence theorem, allowing us to pull the limit into the integral,
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(112)

Note that Llow(0) is necessarily negative, as
√

ϵ2 − d2v ≥
√
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√
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√
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Therefore, the indicator function in the integrand converges pointwise to 1. Writing out the second
term,
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We can pull all limits of integration into an indicator function, but for the sake of brevity we will
not write it out. Note that this step is simply taken to illustrate the fact that we can invoke the
dominated convergence theorem again. Observe then that for all σ > 0 such that the terms inside of
the radicals are nonnegative, we are integrating a Chi-squared CDF (which is bounded above by 1)
over Rm. However, the aforementioned indicator function is always bounded by an indicator over
the set Bm

ϵ (0). Thus, we can choose 1[z3:d+2 ∈ Bm
ϵ (0)] as our integrable dominating function,

allowing us to pull the limit into the integrals.

We can evaluate the indicator function in the limit, and pull the indicators back into the limits of
integration. Also observe that the integrand (the CDF of the Chi-squared distribution) converges to
1 as its argment converges to +∞. Thus,

lim
σ→0+

g(σw1, σw2) =

∫ √ϵ2−d2
v−d2

x

−
√

ϵ2−d2
v−d2

x

· · ·
∫ √ϵ2−d2

v−d2
x−

∑m
i=3 z2

i

−
√

ϵ2−d2
v−d2

x−
∑m

i=3 z2
i∫ √ϵ2−d2

v−d2
x−

∑m+1
i=3 z2

i

−
√

ϵ2−d2
v−d2

x−
∑m+1

i=3 z2
i

dzm+2dzm+1 . . . dz3

(114)

= Vol
(
Bm

R (0)
)

(115)
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where R =
√
ϵ2 − ∥x− projM x∥22 since d2v + d2x = ∥x − projM x∥22. Note Bm

R (0) denotes an
m-dimensional Euclidean ball of radius R. Plugging this into eq. (112),

lim
σ→0+

1

2πσ2C
µ
[
Bϵ(x)

]
≤
∫ ∞

−∞

∫ ∞

−∞

1

2π
exp

(
−w2

1 + w2
2

2

)
· Vol

(
Bm

r (0)
)
dw2dw1 (116)

= Vol
(
Bm

r (0)
)∫ ∞

−∞

∫ ∞

−∞

1

2π
exp

(
−w2

1 + w2
2

2

)
dw2dw1 (117)

= Vol
(
Bm

r (0)
)
. (118)

Now we want to evaluate 1
2πσ2Cµ[Ux] in the limit. Recall,

1

2πσ2C
µ
[
Ux

]
≥
∫ τ

−τ

∫ min
{√

τ2−u2
1,
√

ϵ2−(u1−dv)2+dx

}
max
{
−
√

τ2−u2
1,−
√

ϵ2−(u1−dv)2+dx

} 1

2πσ2
exp

(
−u2

1 + u2
2

2σ2

)
∫ √ϵ2−(u1−dv)2−(u2−dx)2

cot(ϕ)
(
u1−dv+sec(ϕ)

(
ϵ−∥x−y∥2

2

))
[
· · ·
∫ √ϵ2−(u1−dv)2−(u2−dx)2−

∑m
i=3 z2

i

−
√

ϵ2−(u1−dv)2−(u2−dx)2−
∑m

i=3 z2
i∫ √ϵ2−(u1−dv)2−(u2−dx)2−

∑m+1
i=3 z2

i

−
√

ϵ2−(u1−dv)2−(u2−dx)2−
∑m+1

i=3 z2
i

Fχ2

(
min{ϵ2 − (u1 − dv)

2 − (u2 − dx)
2 −

∑m+2
i=3 z2i , τ

2 − u2
1 − u2

2}
σ2

)
dzm+2dzm+1 . . .

]
dz3du2du1. (119)

Define everything in the bracket to be g′(u1, u2, z3). Rewriting we have,

1

2πσ2C
µ
[
Ux

]
≥
∫ τ

−τ

∫ min
{√

τ2−u2
1,
√

ϵ2−(u1−dv)2+dx

}
max
{
−
√

τ2−u2
1,−
√

ϵ2−(u1−dv)2+dx

} 1

2πσ2
exp

(
−u2

1 + u2
2

2σ2

)
∫ √ϵ2−(u1−dv)2−(u2−dx)2

cot(ϕ)
(
u1−dv+sec(ϕ)

(
ϵ−∥x−y∥2

2

)) g′(u1, u2, z3)dz3du2du1. (120)

Taking the limit on both sides,

lim
σ→0+

1

2πσ2C
µ
[
Ux

]
≥

lim
σ→0+

∫ τ

−τ

∫ min
{√

τ2−u2
1,
√

ϵ2−(u1−dv)2+dx

}
max
{
−
√

τ2−u2
1,−
√

ϵ2−(u1−dv)2+dx

} 1

2πσ2
exp

(
−u2

1 + u2
2

2σ2

)

·
∫ √ϵ2−(u1−dv)2−(u2−dx)2

cot(ϕ)
(
u1−dv+sec(ϕ)

(
ϵ−∥x−y∥2

2

)) g′(u1, u2, z3)dz3du2du1. (121)

We will use the same definitions for the limits of integration of u2 from 110, and further define

Llow,z3(u1, ϕ) = cot(ϕ)

(
u1 − dv + sec(ϕ)

(ϵ− ∥x− y∥2
2

))
and

Lup,z3(u1, u2) =
√
ϵ2 − (u1 − dv)2 − (u2 − dx)2.
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Converting the limits of integration to indicators,

lim
σ→0+

1

2πσ2C
µ
[
Ux

]
≥ lim

σ→0+

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

1

2πσ2
exp

(
−u2

1 + u2
2

2σ2

)
g′(u1, u2, z3)

1

[
z3 ∈

[
Llow,z3(u1, ϕ), Lup,z3(u1, u2)

]
,

u2 ∈
[
Llow(u1), Lup(u1)

]
, u1 ∈

[
−τ, τ

]]
dz3du2du1. (122)

Now let’s apply the same change of variables w1 = u1/σ and w2 = u2/σ to get

lim
σ→0+

1

2πσ2C
µ
[
Ux

]
≥ lim

σ→0+

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

1

2π
exp

(
−w2

1 + w2
2

2

)
g′(σw1, σw2, z3)

· 1

[
z3 ∈

[
Llow,z3(σw1, ϕ), Lup,z3(σw1, σw2)

]
,

w2 ∈
[
Llow(σw1)

σ
,
Lup(σw1)

σ

]
, w1 ∈

[
−τ/σ, τ/σ

]]
dz3dw2dw1. (123)

Through a similar argument from 112, we can choose the function

1

2π
exp

(
−w2

1 + w2
2

2

)
Vol(Bm−1

ϵ (0))

as our dominating function for the integrand. Now we can pull the limit inside the integrals,

lim
σ→0+

1

2πσ2C
µ
[
Ux

]
≥
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

1

2π
exp

(
−w2

1 + w2
2

2

)
lim

σ→0+
g′(σw1, σw2, z3)

lim
σ→0+

1

[
z3 ∈

[
Llow,z3(σw1, ϕ), Lup,z3(σw1, σw2)

]
,

w2 ∈
[
Llow(σw1)

σ
,
Lup(σw1)

σ

]
, w1 ∈

[
−τ/σ, τ/σ

]]
dz3dw2dw1. (124)

Observe that the indicator converges to

1

[
z3 ∈

[
cot(ϕ)

(
sec(ϕ)

(ϵ− ∥x− y∥2
2

)
− dv

)
,
√
ϵ2 − ∥x− projM x∥22

]]
.

Now we want to evaluate g′ in the limit,

lim
σ→0+

g′(σw1, σw2, z3) =

lim
σ→0+

∫ √ϵ2−(σw1−dv)2−(σw2−dx)2−z2
3

−
√

ϵ2−(σw1−dv)2−(σw2−dx)2−z2
3

· · ·
∫ √ϵ2−(σw1−dv)2−(σw2−dx)2−

∑m+1
i=3 z2

i

−
√

ϵ2−(σw1−dv)2−(σw2−dx)2−
∑m+1

i=3 z2
i

Fχ2

(
min{ϵ2 − (σw1 − dv)

2 − (σw2 − dx)
2 −

∑m+2
i=3 z2i , τ

2 − σw2
1 − σw2

2}
σ2

)
dzm+2 . . . dz4. (125)
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Again we can pull all limits of integration into an indicator function, but for the sake of brevity we
will not write it out. Note that this step is simply taken to illustrate the fact that we can invoke the
dominated convergence theorem again. Observe then that for all σ > 0 such that the terms inside of
the radicals are nonnegative, we are integrating a Chi-squared CDF (which is bounded above by 1)
over Rm−1. However, the aforementioned indicator function is always bounded by an indicator over
the set Bm−1

ϵ (0). Thus, we can choose 1[z3:d+2 ∈ Bm−1
ϵ (0)] as our dominating function, which is

clearly integrable. This allows us to apply the dominated convergence theorem to pull the limit into
the integral.

We can evaluate the indicator function in the limit, and pull the indicators back into the limits of
integration. Also observe that the integrand (the CDF of the Chi-squared distribution) converges to
1 as its argment converges to +∞. Thus,

lim
σ→0+

g′(σw1, σw2, z3) =

∫ √ϵ2−d2
v−d2

x−z2
3

−
√

ϵ2−d2
v−d2

x−z2
3

· · ·
∫ √ϵ2−d2

v−d2
x−

∑m+1
i=3 z2

i

−
√

ϵ2−d2
v−d2

x−
∑m+1

i=3 z2
i

dzm+2 . . . dz4 (126)

= Vol
(
Bm−1

r(z3)
(0)
)

(127)

where

r(z3) =

{√
ϵ2 − ∥x− projM x∥22 − z23 |z3| ≤

√
ϵ2 − ∥x− projM x∥22

0 otherwise
. (128)

Plugging into 124, we have

lim
σ→0+

1

2πσ2C
µ
[
Ux

]
≥
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

1

2π
exp

(
−w2

1 + w2
2

2

)
Vol
(
Bm−1

r(z3)
(0)
)

1

[
z3 ∈

[
cot(ϕ)

(
sec(ϕ)

(ϵ− ∥x− y∥2
2

)
− dv

)
,
√
ϵ2 − ∥x− projM x∥22

]]
dz3dw2dw1. (129)

Pulling the indicator back into the limits of integration and rearranging, we get

lim
σ→0+

1

2πσ2C
µ
[
Ux

]
≥
∫ ∞

−∞

∫ ∞

−∞

∫ √ϵ2−∥x−projM x∥2
2

cot(ϕ)

(
sec(ϕ)

(
ϵ−∥x−y∥2

2

)
−dv

)
1

2π
exp

(
−w2

1 + w2
2

2

)
Vol
(
Bm−1

r(z3)
(0)
)
dz3dw2dw1

(130)

=

∫ ∞

−∞

∫ ∞

−∞

1

2π
exp

(
−w2

1 + w2
2

2

)
dw2dw1︸ ︷︷ ︸

=1

·
∫ √ϵ2−∥x−projM x∥2

2

cot(ϕ)

(
sec(ϕ)

(
ϵ−∥x−y∥2

2

)
−dv

) Vol
(
Bm−1

r(z3)
(0)
)
dz3

(131)

=

∫ √ϵ2−∥x−projM x∥2
2

cot(ϕ)

(
sec(ϕ)

(
ϵ−∥x−y∥2

2

)
−dv

) Vol
(
Bm−1

r(z3)
(0)
)
dz3. (132)

Let

f(ϕ) = cot(ϕ)
(
sec(ϕ)

(ϵ− ∥x− y∥2
2

)
− dv

)
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and redefine z3 to z. Now we can combine 132 and 118 to obtain the bound on 106, and thus bound
90:

lim
σ→0+

P[ a ∈ Ux | a ∈ Bϵ(x) ] ≥

∫√ϵ2−∥x−projM x∥2
2

f(ϕ)
Vol(Bm−1

r(z) (0))dz

Vol(Bm
R (0))

. (133)

where R =
√
ϵ2 − ∥x− projM x∥22 and r(z) =

√
ϵ2 − ∥x− projM x∥22 − z2.

A.4.3 PROPOSITIONS

While the lemmata represent a majority of the theoretical results of this work, the theorems that
stitch them together require a few more propositions. We will start by showing that the minimum
radius of curvature of geodesic paths through the tubular neighborhood of a manifold M have a
minimum radius of curvature r0(M) − τ , where r0(M) is the minimum radius of curvature of
geodesics inM.

Proposition 1. Suppose M is a compact submanifold of RD without boundary and with a
minimum radius of curvature r0(M). Then TubτM has a minimum radius of curvature of
r0(M)− τ .

Proof. Note that the ambient curvature k of a path γ through RD can be written as k2 = k2g +

k2n, where kg denotes the geodesic curvature and kn denotes the normal curvature. Paths that are
geodesic in some submanifold M necessarily have 0 geodesic curvature with respect to M; thus
k = kn for such curves.

Now consider a length-parameterized geodesic path γTub : [a, b]→ TubτM. Since γTub is a geodesic
of TubτM, we know that k(t) = kn(t) for all t ∈ [a, b]. Now let’s consider two cases:

1. γTub(t) is at distance less than τ fromM. In this case, the γTub(t) does not intersect with
the boundary of TubτM; it follows that no directions normal to TubτM exist at this point,
and the normal acceleration kn(t) must be 0. Therefore, k(t) = 0. This formalizes an
intuitive concept - geodesics through TubτM are necessarily straight lines if they do not
lie on the boundary of TubτM.

2. γTub(t) is at distance exactly equal to τ fromM. In this case, there exists a single normal
direction to TubτM at γTub(t). It is simply the direction from γTub(t) to the nearest point on
M (up to sign). Therefore, the only situation in which γTub has nonzero curvature is when
it lies exactly on the boundary of TubτM; the curvature is simply the norm of γ̈Tub(t),
which is some vector necessarily normal to the boundary of TubτM at γTub(t).

It follows that bounding the radius of curvature of geodesics through TubτM can be accomplished
by considering geodesic paths restricted to the boundary of TubτM, as all other geodesics through
TubτM have no curvature (and thus infinite radius of curvature).

Now redefine γTub to be some geodesic segment that lies entirely on the surface of TubτM with
nonzero curvature; suppose this segment starts at γTub(t1) and ends at γTub(t2). Choose n interme-
diate and overlapping time intervals {Ii}ni=1, Ii = [a1i , a

2
i ] where a1i < a2i , a1i+1 < a2i < a2i+1

and a10 = t1, a2n = t2. Observe that
⋃n

i=1 Ii = [t1, t2], so the set of interval spans [t1, t2]. Note
that we choose for these intervals to be overlapping so we can avoid the case where curvature at the
endpoints of sub-intervals is unaccounted for.

Now we will analyze a single sub-segment of γTub defined by the image of Ij = [a1j , a
2
j ] under

the map γTub. We encourage the reader to refer to Figure 18 for the remainder of the proof. As
previously established, γ̈Tub(t) is necessarily parallel to the vector from projM γTub(t) to γTub(t).
Consider now the plane spanned by the vectors γ̈Tub(t) and γ̇Tub(t). Now consider the osculating
circle O approximation of γTub near γTub(t) for some t ∈ Ij . Since Ij can be made arbitrarily small,
O is an arbitrarily good approximation of γTub(t) for t ∈ Ij . Suppose O has some radius r.
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°Tub

Ä°Tubr0(M)

¿

_°Tub

projM(°Tub)

O
O0

Figure 18: A diagram depicting γTub, projM γTub, O and O′.

Finally, consider the path in M defined by the image of γTub(t) for t ∈ Ij under the map
projM γTub(t); colloquially this path is the projection of the subsegment of γTub onto M. Given
that the osculating plane contains the vector γ̈Tub(t) locally (for t ∈ Ij), and we have already es-
tablished that γ̈Tub(t) is parallel to the residual of the projection (projM γTub(t)− γTub(t)) then this
projected path must also lie in the plane spanned by the vectors γ̈Tub(t) and γ̇Tub(t) for t ∈ Ij . Since
we are considering the case where γTub(t) is at distance exactly equal to τ from M for all t, this
projected path is then approximated with its own osculating circle O′ lying in this plane with radius
r + τ , sharing the same center as O.

Since the projected path is approximated by O′, its acceleration vector in a neighborhood near t
must be parallel to γ̈Tub(t); this implies that it is entirely orthogonal toM, making the path geodesic
inM. Since it is geodesic inM, the radius of O′ for all segments of all possible geodesics γTub is
no smaller than r0(M). Solving for the minimum possible radius of O yields r0(M)− τ .

We will quickly show that there always exists a geodesic segment in the tubular neighborhood such
that O′ as defined above achieves this minimum radius r0(M). Pick some geodesic segment inM
called γM with a constant nonzero acceleration ∥γ̈M∥2 = 1/r0(M). Note that γM can be made
infinitesimally small such that the constant acceleration assumption is arbitrarily accurate. Also note
that γ̈M is necessarily oriented normal toM, as γM is a geodesic ofM. Define another segment
as follows,

γTub(t) = γM(t) + τ
γ̈M(t)

∥γ̈M(t)∥2
(134)

where the domain of γTub(t) is the domain of γM(t). Observe that this segment necessarily lies on
the boundary of the tubular neighborhood as it was displaced exactly τ from M in the direction
γ̈M(t), which lies normal toM. Also observe that we can approximate γM(t) with its osculating
circle O′ arbitrarily well, where O′ has a radius r0(M). Since γ̈M(t) and γM(t) lie in the osculating
plane, γM(t) must as well (as we have defined it to be a linear combination of these two vectors).
In fact, γTub(t) is approximated arbitrarily well by O, its osculating circle centered at the center of
O′. This very much mirrors the scenario that we posed earlier in the proof, visualized in Figure 18.

Since O and O′ lie in the same plane centered about the same point, γ̈M(t) and γ̈Tub(t) must be par-
allel. Since γ̈M(t) lies normal toM, γ̈Tub(t) must as well. By construction of γTub(t), γ̈M(t) must
be parallel to the residual of the projection of γTub(t) ontoM; this follows from the uniqueness of
projM stemming from the assumptions that τ < r0(M) and 2τ < s0(M) (detailed in assumptions
2 and 1). This residual is the unique direction normal to the tubular neighborhood at γTub(t), and
we have just established that γ̈M(t) (and thus γ̈Tub(t)) is parallel to it. It follows that γTub(t) is a
geodesic segment of TubτM, as its acceleration vector lies completely normal to TubτM. Its radius
of curvature, r0(M)− τ , can be deduced from the difference in radii of O and O′.

We can conclude that r, the radius of curvature of any geodesic path in the tubular neighborhood,
always achieves a minimum at r = r0(M)− τ .
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Now we will move on to showing that the ORC (as we have defined it in Section 2.3) of any edge in
an unweighted graph is necessarily restricted to the finite interval [−2, 1].

Proposition 2. For any edge (x, y) in an unweighted graph, −2 ≤ κ(x, y) ≤ 1.

Proof. Observe that, under the current construction, the unweighted graph distance between a node
a ∈ N (x) and b ∈ N (y) is bounded above and below,

0 ≤ dG(a, b) ≤ 3.

This implies the same bound on the Wasserstein distance between the measures µx and µy . This is
clear when we rewrite the 1-Wasserstein distance as follows,

W (µx, µy) = inf
γ∈Π(µx,µy)

Ea,b∼γ [dG(a, b)]

where Π(µx, µy) denotes the set of all measures on V × V with marginals µx and µy . Thus,

0 ≤W (µx, µy) ≤ 3 ,

and because κ(x, y) = 1−W (µx, µy)/1, we have

−2 ≤ κ(x, y) ≤ 1.

Now we will prove a bound on geodesic distances through the tubular neighborhood as a function
of manifold geodesic distances. This proposition is used in Theorem 3.3 to bound graph distances
of shortcut edges in ORC thresholded graphs.

Proposition 3. Let dTub(x, y) be the geodesic distance induced by the Euclidean metric from
x ∈ Tubτ (M) to y ∈ Tubτ (M). Then,

dTub(x, y)

dM
(
projM x,projM y

) ≥ r0(M)− τ

r0(M)
.

Proof. Let γTub be the geodesic path through TubτM from x to y. Select P points {pi}Pi=1 (a
method for which will be described soon) along γTub and join the projection of successive points pi,
pi+1 ontoM by a segment γi,i+1

proj with curvature r0(M). Let’s denote the segment of γTub between
pi, pi+1 as γi,i+1

Tub . Also suppose P is large enough such that the geodesic segment through M
connecting the projections of pi and pi+1 can be arbitrarily well approximated by its osculating circle
Oi,i+1. Observe that sinceM is smooth and we have required τ < s0(M)/2 and τ < r0(M) in
assumptions 1, we have a unique projection. It follows that projM(x) ∀x ∈ TubτM is continuous.
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projM(pi)

pi
µ

°
i;i+1
min

pi+1

projM(pi+1)

r0(M)¡ ¿

Figure 19: A diagram depicting pi, pi+1 and various related quantities.
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Note that

dTub(x, y) = L(γTub) =

P−1∑
i=1

L(γi,i+1
Tub )

and

dM(projM x, projM y) ≤
P−1∑
i=1

dM(projM pi,projM pi+1) ≤
P−1∑
i=1

L(γi,i+1
proj ).

The second inequality in the second statement requires explanation; observe that, since projM(·) is
continuous one can choose a T such that for all ∆t < T

∥ projM γTub(t+∆t)− projM γTub(t)∥2 < s0(M)

for all t ∈ dom(γTub). This gives us a principled way of choosing {pi}Pi=1, where pi = γTub(ti),
ti =

∑i−1
j=1(∆t)j . From the definition of minimum branch separation, we know that ∥ projM pi+1−

projM pi∥2 < s0(M) =⇒ dM(projM pi,projM pi+1) ≤ πr0(M). Now we will apply Lemma
3 from Bernstein et al. (2001) to say

dM(projM pi,projM pi+1) ≤ 2r0(M) arcsin

(
∥ projM pi+1 − projM pi∥2

2r0(M)

)
(135)

= L(γi,i+1
proj ). (136)

The second equality follows from the way we have defined L(γi,i+1
proj ): an arc with a constant radius

of curvature r0(M) from projM pi to projM pi+1. Application of some trigonometry yields the arc
length.

Now consider a single segment defined by pi and pi+1. Since we assume γi,i+1
proj has curvature

r0(M), it is approximated exactly by its osculating circle with radius r0(M). Let γi,i+1
min be the

straight-line path between the points at distance r0(M)− τ from the center of this osculating circle
in the directions of projM pi and projM pi+1 respectively. A diagram is shown in Figure 19 for
clarity.

Observe that the length li,i+1
min = L(γi,i+1

min ) must be no larger than the length of any straight-line path
connecting any a ∈ TubτM and b ∈ TubτM such that they project to projM pi and projM pi+1

respectively. In understanding this, it helps to note that the set of points a could lie in is a D −m
(where m is the dimension ofM) dimensional space created by intersecting the tubular neighbor-
hood with the hyperplane that contains pi and the center of the osculating circle Oi,i+1 (defined
earlier in the proof) and spans all manifold normal directions at pi. The set of points b could lie in
has a similar form; just replace pi with pi+1. The only directions from pi and pi+1 (restricted to the
described subspaces) that bring the points closer is the direction towards the center of the osculating
circle Oi,i+1. Starting at pi and pi+1 and travelling in these respective directions until you hit the
boundary of the tubular neighborhood will minimize the distance. This minimum distance bounds
L(γi,i+1

Tub ), and we can compute it as follows,

L(γi,i+1
Tub ) ≥ ∥a− b∥2 (137)

=
r − τ

r
∥ projM pi − projM pi+1∥2 (138)

where r is the radius of Oi,i+1. Since (x− a)/x is increasing for positive x and a, we have

L(γi,i+1
Tub ) ≥ r0(M)− τ

r0(M)
∥projM pi − projM pi+1∥2 (139)

= li,i+1
min . (140)

since r ≤ r0(M). Thus, we know that L(γi,i+1
Tub ) ≥ li,i+1

min . Also note that li,i+1
min can be written as a

function of L(γi,i+1
proj ) as follows: compute θ, the angle swept out by γi,i+1

proj , θ = L(γi,i+1
proj )/r0(M).

Then observe that li,i+1
min = 2(r0(M) − τ) sin(θ/2) = 2(r0(M) − τ) sin(L(γi,i+1

proj )/2r0(M)).
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Finally, note that sin(x) ≈ x for small x which is a reasonable approximation for large P . Note that
P can be made arbitrarily large as segments can be divided in half without shattering the requirement
that ∥ projM pi+1 − projM pi∥2 < s0(M). Thus, li,i+1

min ≈ 2(r0(M) − τ)L(γi,i+1
proj )/2r0(M) =

r0(M)−τ
r0(M) L(γi,i+1

proj ). Putting it all together,

dTub(x, y) =

P−1∑
i=1

L(γi,i+1
Tub )

≥
P−1∑
i=1

li,i+1
min

≈ r0(M)− τ

r0(M)

P−1∑
i=1

L(γi,i+1
proj )

≥ r0(M)− τ

r0(M)

P−1∑
i=1

dM(projM pi,projM pi+1)

≥ r0(M)− τ

r0(M)
dM(projM x, projM y).

Now we will bound the measure of an arbitrary D-dimensional ball centered at a point in the tubular
neighborhood, a result which will be used in Theorem 3.2.

Proposition 4. Suppose ρ is the probability density function defined in 1 for a manifold M
embedded in RD. Then for r0(M)≫ δ

Pz∼ρ

[
∥z − x∥2 ≤ δ

]
≥

δDVol
(
B1(0)

)
2Z

· e−
τ2

2σ2 . (141)

Proof. We can rewrite the left-hand side of 141 as

Pz∼ρ

[
∥z − x∥2 ≤ δ

]
= µ

[{
z
∣∣ ∥z − x∥2 ≤ δ

}]
≥ 1

2
Vol
(
Bδ(0)

)
· min
∥z−x∥2≤δ, z∈TubτM

ρ(z)

=
1

2
δDVol

(
B1(0)

)
· min
∥z−x∥2≤δ, z∈TubτM

ρ(z)

The second line follows from the fact that a δ-ball centered exactly on the surface of the tubular
neighborhood TubτM is approximately cut it half; while curvature ofM may slightly reduce this
volume, considering r0(M)≫ δ makes this a reasonable approximation. Now it remains to bound
the minimum probability density. We can do this by simply choosing the minimum value ρ takes on
in the tubular neighborhood,

min
z∈TubτM

ρ(z) =
1

Z
e−

τ2

2σ2 (142)

Combining everything,

Pz∼ρ

[
∥z − x∥2 ≤ δ

]
≥

δDVol
(
B1(0)

)
2Z

· e−
τ2

2σ2 . (143)

Finally, we will show that the probability that the neighborhoods of two points overlap com-
pletly approaches 1 as the points converge to each other. This proposition is also used in Theo-
rem 3.2.
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Proposition 5. Suppose {xi}∞i=1 and {yi}∞i=1 are sequences of points in a series of point
clouds sampled i.i.d. according to the probability density function ρ defined by 1. Also suppose
that limi→∞ ∥xi − yi∥2 = 0. Then

lim
i→∞

Pa∼ρ

[
a ∈ Bϵ(xi) ∩Bϵ(yi)

∣∣∣ a ∈ Bϵ(xi) ∪Bϵ(yi)
]
= 1.

Proof. Our proof will use a similar argument to that of Lemma A.4. First we will rearrange to put
the term of interest in a friendlier form,

Pa∼ρ

[
a ∈ Bϵ(x) ∩Bϵ(y)

∣∣∣ a ∈ Bϵ(x) ∪Bϵ(y)
]

(144)

=
µ
(
Bϵ(x) ∩Bϵ(y)

)
µ
(
Bϵ(x) ∪Bϵ(y)

) (145)

=
µ
(
Bϵ(x) ∩Bϵ(y)

)
µ
(
Bϵ(x)

)
+ µ

(
Bϵ(y)

)
− µ

(
Bϵ(x) ∩Bϵ(y)

) . (146)

Computing each of these terms involves integrating ρ (defined by 1) over the set of interest. We
define Sx = Bϵ(x), Sy = Bϵ(y) and Sx,y = Bϵ(x) ∩Bϵ(y). Evaluating the measures, we have

µ
(
Bϵ(x)

)
=

∫
z∈Sx

ρ(z)dV (147)

=

∫
RD

ρ(z) · χSx
(z)dV (148)

and

µ
(
Bϵ(y)

)
=

∫
z∈Sy

ρ(z)dV (149)

=

∫
RD

ρ(z) · χSy
(z)dV (150)

where χA(z) is an indicator function, defined as

χA(z) =

{
1 if z ∈ A

0 if z /∈ A
.

The measure of the intersection of the two epsilon balls can also be described with

µ
(
Bϵ(x) ∩Bϵ(y)

)
=

∫
z∈Sx,y

ρ(z)dV (151)

=

∫
RD

ρ(z) · χSx,y (z)dV. (152)

Now suppose we have two sequences, {xi}∞i=1 and {yi}∞i=1 where limi→∞ xi = x, limi→∞ yi = y,
and limi→∞ ∥xi − yi∥2 = 0. Now define Sx,i = Bϵ(xi), Sy,i = Bϵ(yi) and Si = Bϵ(xi)∩Bϵ(yi).

We will show that limi→∞ χSx,i
(z) = limi→∞ χSy,i

(z) pointwise, from which it will follow
that χSi will converge to the same function pointwise. Define χ(z) := limi→∞ χSy,i(z). Now
we’ll show that limi→∞ χSx,i

(z) = χ(z). This involves showing that for all a ∈ RD we have
limi→∞ χSx,i

(a) = χ(a). Consider two cases:

• χ(a) = 1. Since xi → x and ∥xi − yi∥2 → 0, we have xi → y. Since χ(a) = 1, we
know that for sufficiently large i, ∥a − yi∥2 ≤ ϵ, so it follows that ∥a − y∥2 ≤ ϵ. Since
xi → y, it must be true that ∥a − xi∥2 ≤ ϵ for sufficiently large i. Thus for sufficiently
large i, χSx,i(a) = χ(a) = 1.
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• χ(a) = 0. This implies ∥a − yi∥2 > ϵ for sufficiently large i. Since ∥xi − yi∥2 → 0 we
must also have that ∥a−xi∥2 > ϵ for sufficiently large i as well. Thus for sufficiently large
i we have χSx,i

(a) = χ(a) = 0.

Therefore limi→∞ χSx,i(z) = limi→∞ χSy,i(z) = χ(z). It then follows that the indicator function
on intersection of the two epsilon balls (denoted Sxi,yi ) must also converge pointwise to χ(z).
Namely, limi→∞ χSxi,yi

(z) = χ(z).

Now we want to use these results to evaluate 146 in the limit. As we will show, the denominator
converges to a nonzero value, and thus the limit can be taken into the numerator and denominator as
follows,

lim
i→∞

Pa∼ρ

[
a ∈ Bϵ(xi) ∩Bϵ(yi)

∣∣∣ a ∈ Bϵ(xi) ∪Bϵ(yi)
]

(153)

= lim
i→∞

µ
(
Bϵ(xi) ∩Bϵ(yi)

)
µ
(
Bϵ(xi)

)
+ µ

(
Bϵ(yi)

)
− µ

(
Bϵ(xi) ∩Bϵ(yi)

)
(154)

=
lim
i→∞

µ
(
Bϵ(xi) ∩Bϵ(yi)

)
lim
i→∞

(
µ
(
Bϵ(xi)

)
+ µ

(
Bϵ(yi)

)
− µ

(
Bϵ(xi) ∩Bϵ(yi)

)) .

(155)

Let’s consider the numerator first. Rewriting using 152, we have

lim
i→∞

µ
(
Bϵ(xi) ∩Bϵ(yi)

)
= lim

i→∞

∫
RD

ρ(z) · χSxi,yi
(z)dV.

Observe that |ρ(z)χSxi,yi
(z)| ≤ ρ(z) for all i; ρ(z) is integrable as it represents a probability density

function over RD. Thus, we can invoke the dominated convergence theorem to pull the limit inside
of the integral to obtain,

lim
i→∞

µ
(
Bϵ(xi) ∩Bϵ(yi)

)
=

∫
RD

lim
i→∞

ρ(z) · χSxi,yi
(z)dV

=

∫
RD

ρ(z) · χ(z)dV.

Now let’s evaluate µ(Bϵ(xi)) in the limit. We can invoke the dominated convergence theorem again
for both to pull the limit inside of the integral as before,

lim
i→∞

µ
(
Bϵ(xi)

)
= lim

i→∞

∫
RD

ρ(z) · χSxi
(z)dV

=

∫
RD

lim
i→∞

ρ(z) · χSxi
(z)dV

=

∫
RD

ρ(z) · χ(z)dV.
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And finally the same steps can be taken to find that limi→∞ µ
(
Bϵ(yi)

)
=
∫
RD ρ(z) · χ(z)dV .

Stitching it all together, we have

lim
i→∞

Pa∼ρ

[
a ∈ Bϵ(xi) ∩Bϵ(yi)

∣∣∣ a ∈ Bϵ(xi) ∪Bϵ(yi)
]

=
lim
i→∞

µ
(
Bϵ(xi) ∩Bϵ(yi)

)
lim
i→∞

(
µ
(
Bϵ(xi)

)
+ µ

(
Bϵ(yi)

)
− µ

(
Bϵ(xi) ∩Bϵ(yi)

))

=

∫
RD

ρ(z) · χ(z)dV∫
RD

ρ(z) · χ(z)dV +

∫
RD

ρ(z) · χ(z)dV −
∫
RD

ρ(z) · χ(z)dV

=

∫
RD

ρ(z) · χ(z)dV∫
RD

ρ(z) · χ(z)dV

= 1.
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A.5 ADDITIONAL EXPERIMENTS

A.5.1 PRUNING

Table 4: Pruning performance of our method vs. baselines described in Appendix A.3.1. For each
entry, the top row indicates the percentage of “good” edges removed, while the bottom row indicates
the percentage of shortcut edges removed.

Concentric
Circles

Mixture of
Gaussians Moons S Cassini

ORC-MANL (ours) 0.0 ± 0.0
100.0 ± 0.0

0.0 ± 0.0
100.0 ± 0.0

0.0 ± 0.0
100.0 ± 0.0

0.0 ± 0.0
100.0 ± 0.0

0.0 ± 0.0
100.0 ± 0.0

ORC ONLY
12.6 ± 0.2
100.0 ± 0.0

13.7 ± 0.2
100.0 ± 0.0

12.3 ± 0.2
100.0 ± 0.0

13.4 ± 0.2
100.0 ± 0.0

10.9 ± 0.1
100.0 ± 0.0

BISECTION (Xia et al., 2008) 2.6 ± 0.2
45.8 ± 21.5

2.0 ± 0.1
45.3 ± 18.5

1.7 ± 0.1
100.0 ± 0.0

1.9 ± 0.1
82.0 ± 33.7

2.5 ± 0.1
40.0 ± 38.1

MST (Zemel & Carreira-Perpiñán, 2004; Chao et al., 2007) 0.3 ± 0.2
59.6 ± 8.8

1.3 ± 0.2
9.9 ± 11.2

0.3 ± 0.1
4.0 ± 12.0

2.8 ± 0.4
100.0 ± 0.0

0.0 ± 0.1
70.0 ± 45.8

DENSITY (Chao et al., 2006) 2.1 ± 0.4
81.9 ± 16.7

0.3 ± 0.0
100.0 ± 0.0

5.7 ± 0.3
88.9 ± 23.4

3.1 ± 0.3
100.0 ± 0.0

2.1 ± 0.1
0.0 ± 0.0

DISTANCE
0.8 ± 0.1

80.3 ± 12.0
2.8 ± 0.1

100.0 ± 0.0
0.1 ± 0.1
98.6 ± 4.3

8.8 ± 0.2
100.0 ± 0.0

1.3 ± 0.1
0.0 ± 0.0

A.5.2 MANIFOLD LEARNING: T-SNE EMBEDDINGS

Here we show additional runs of t-SNE (Van der Maaten & Hinton, 2008) on noisy samples from the
swiss roll and the swiss hole. These experiments supplement those that are presented in Figure 5.
We find that t-SNE embeddings are inconsistent between runs for this particular task, so to ensure
full transparency we show results on three different samples in Figure 20.

Figure 20: Embeddings produced by t-SNE (Van der Maaten & Hinton, 2008) on three different sets
of noisy samples from the swiss roll (left) and swiss hole (right).

A.5.3 REAL DATA: MNIST AND KMNIST

Figure 21: UMAP embeddings of 10,000 MNIST (left) and KMNIST (right) datapoints using near-
est neighbor graphs with and without ORC-MANL preprocessing. Ground truth classes are anno-
tated and edges of the pruned and unpruned graphs are visualized in grey.
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In this section we include experiments that demonstrate the efficacy of ORC-MANL on canonical
datasets in the machine learning literature. Specifically, we evaluate on nearest neighbor graphs built
from the MNIST (Deng, 2012) and KMNIST datasets (Clanuwat et al., 2018), with results visual-
ized in Figure 21 (where UMAP is used to visualize pruned and unpruned graphs). Unsurprisingly
we find that ORC-MANL pruning removes a significant number of inter-class edges while also pre-
serving intra-class structure. Specifically, we find that ORC-MANL removes 14.92% of inter-class
edges and 7.90% of intra-class edges for the MNIST dataset, while it removes 14.70% of inter-class
edges and 5.39% of intra-class edges for KMNIST. We emphasize, however, that edges that connect
data points in different classes may not necessarily be shortcut edges. Similarly, edges that connect
points in the same classes can satisfy the definition of shortcut edges. Thus interpretation of inter
versus intra-class edge removal results should be approached with caution.

A.5.4 CLUSTERING

Figure 22: Spectral clustering applied to several synthetic manifolds, with adjusted Rand index
(ARI) shown. Nearest neighbor graphs in the top row were pruned by ORC-MANL, while the
nearest neighbor graphs on the bottom row were not.

We further evaluate ORC-MANL pruned graphs on spectral clustering, a canonical algorithm for
finding communities of arbitrary shape (Bach & Jordan, 2003). The algorithm embeds the data
using the eigenvectors of the graph Laplacian, and proceeds by running the k-means algorithm on
the embedding (Hartigan & Wong, 1979). On this task we expect ORC-MANL to help very much:
if the underlying manifold exhibits several connected components, ORC-MANL pruning should
reveal them, resulting in an easy task for spectral clustering. Unsurprisingly, we find that holds
true, as ORC-MANL improves spectral clustering as measured by the adjusted Rand index (ARI)
(Hubert & Arabie, 1985). A higher ARI indicates a better alignment with base truth clustering, with
the best possible score being 1. We test on noisy manifolds exhibiting two underlying connected
components, where visualization of the results is shown in Figure 22. We find that ORC-MANL
ensures perfect ARI across examples, while the unpruned graphs result in a trivial clustering that
is not representative of the underlying structure of the data. We do not include t-SNE or UMAP
embeddings as they require finite pairwise distances, which does not hold in the case where pruning
(correctly) results in more than one connected component.

A.5.5 PARAMETER ABLATIONS

To analyze the sensitivity of the ORC-MANL algorithm to key parameters, we include the results of
pruning experiments with varying parameter settings. Specifically, we analyze the nearest-neighbor
graph parameter k, the ORC threshold parameter δ, and the thresholded graph distance parameter λ.
The pruning results on four synthetic noisy manifolds with 4000 points across 10 seeds are visualized
in Table 5. The top row of each entry depicts the mean and standard deviation of the percentage of
good edges removed, while the bottom row of each entry depicts the mean and standard deviation of
the percentage of shortcutting edges removed. Parameters are set to k = 20, δ = 0.8, and λ = 0.01
unless the said parameter is being varied.
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Table 5: Ablation experiments for parameters k, δ and λ respectively.

k = 10 k = 15 k = 20 k = 25 k = 30

Concentric Circles 0.4 ± 0.1
100.0 ± 0.0

0.0 ± 0.0
100.0 ± 0.0

0.0 ± 0.0
100.0 ± 0.0

0.0 ± 0.0
100.0 ± 0.0

0.0 ± 0.0
100.0 ± 0.0

Mixture of Gaussians 0.7 ± 0.2
100.0 ± 0.0

2.0e-3 ± 4.5e−3
100.0 ± 0.0

0.0 ± 0.0
100.0 ± 0.0

0.0 ± 0.0
100.0 ± 0.0

0.0 ± 0.0
100.0 ± 0.0

Chained Torii 0.7 ± 0.3
97.9 ± 6.4

2.3e-3 ± 7.0e−3
100.0 ± 0.0

0.0 ± 0.0
100.0 ± 0.0

0.0 ± 0.0
91.6 ± 20.0

0.0 ± 0.0
100.0 ± 0.0

Concentric Hyperboloids 0.5 ± 0.2
100.0 ± 0.0

2.9e-4 ± 8.6e−4
100.0 ± 0.0

0.0 ± 0.0
100.0 ± 0.0

0.0 ± 0.0
97.6 ± 7.2

0.0 ± 0.0
100.0 ± 0.0

δ = 0.70 δ = 0.75 δ = 0.80 δ = 0.85 δ = 0.90

Concentric Circles 0.1 ± 0.1
96.2 ± 1.1

0.0 ± 0.0
100.0 ± 0.0

0.0 ± 0.0
100.0 ± 0.0

0.0 ± 0.0
100.0 ± 0.0

0.0 ± 0.0
84.6 ± 31.3

Mixture of Gaussians 0.3 ± 0.3
100.0 ± 0.0

0.0 ± 0.0
100.0 ± 0.0

0.0 ± 0.0
100.0 ± 0.0

0.0 ± 0.0
100.0 ± 0.0

0.0 ± 0.0
100.0 ± 0.0

Chained Torii 0.4 ± 0.2
96.0 ± 5.0

0.0 ± 0.0
100.0 ± 0.0

0.0 ± 0.0
100.0 ± 0.0

0.0 ± 0.0
100.0 ± 0.0

0.0 ± 0.0
97.6 ± 7.2

Concentric Hyperboloids 0.4 ± 0.2
94.5 ± 5.3

1.3e-3 ± 3.9e−3
100.0 ± 0.0

0.0 ± 0.0
100.0 ± 0.0

0.0 ± 0.0
100.0 ± 0.0

0.0 ± 0.0
91.2 ± 13.8

λ = 1e−3 λ = 1e−2 λ = 0.1 λ = 0.2 λ = 0.5

Concentric Circles 0.0 ± 0.0
100.0 ± 0.0

0.0 ± 0.0
100.0 ± 0.0

2.7e−2 ± 2.3e−2
100.0 ± 0.0

0.3 ± 5.0e−2
100.0 ± 0.0

12.7 ± 0.1
100.0 ± 100.0

Mixture of Gaussians 0.0 ± 0.0
100.0 ± 0.0

0.0 ± 0.0
100.0 ± 0.0

4.6e−2 ± 1.9e−2
100.0 ± 0.0

0.5 ± 4.3e−2
100.0 ± 0.0

13.8 ± 0.2
100.0 ± 0.0

Chained Torii 0.0 ± 0.0
89.2 ± 29.8

0.0 ± 0.0
100.0 ± 0.0

0.1 ± 4.4e−2
100.0 ± 0.0

12.9 ± 0.2
100.0 ± 0.0

15.7 ± 0.2
97.4 ± 7.7

Concentric Hyperboloids 0.0 ± 0.0
98.8 ± 3.0

0.0 ± 0.0
98.5 ± 3.0

8.8e−2 ± 5.2e−2
100.0 ± 0.0

1.0 ± 0.1
100.0 ± 0.0

13.0 ± 0.2
99.8 ± 0.5

A.5.6 SCRNASEQ REAL DATA: UMAP AND TSNE

Figure 23: UMAP (McInnes et al., 2018a) and t-SNE (Van der Maaten & Hinton, 2008) embeddings
of scRNAseq data from 10000 Anterolateral Motor Cortex (ALM) brain cells in mice with base truth
cell-type annotation with and without ORC-MANL pruning. Data available from Abdelaal et al.
(2019) and the Allen Brain Institute.

Here we include UMAP (McInnes et al., 2018a) and t-SNE (Van der Maaten & Hinton, 2008)
embeddings the of scRNAseq data of brain cells in mice that was analyzed in Section 4.2.
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Figure 23 shows embeddings of scRNAseq data from 10000 Anterolateral Motor Cortex (ALM)
brain cells in mice. Unlike the embeddings produced by Isomap (Tenenbaum et al., 2000) shown
in Figure 8, we find that UMAP and t-SNE do poorly with and without ORC-MANL pruning as
measured by the extent to which neuronal (consisting of labels “Inhibitory” and “Excitatory”) and
non-neuronal cell communities are preserved.

A.5.7 MANIFOLD CURVATURE

Ollivier-Ricci Curvature

Figure 24: Empirical distribution of ORC for 2000 points sampled each from the Bolza surface,
the flat torus and the unit 2-sphere using k-NN connectivity (left) and ϵ-radius connectivity (right).
The Bolza surface has scalar curvature −2, the flat torus has scalar curvature 0 while the sphere
has scalar curvature +2. Note that for 2-dimensional surfaces such as these, the scalar curvature is
simply twice the Gaussian curvature.

Theoretical and empirical results from van der Hoorn et al. (2021) indicate that under noiseless and
uniform sampling, a specific instantiation of ORC converges to the Ricci curvature of the underlying
manifold from which the data was sampled (up to a constant of proportionality). This result could
be a point of concern for ORC-MANL, as it would suggest variable performance as a function of
manifold curvature. To quell any concern, in Figure 24 we plot the distribution of ORC values
(computed with the formulation described in Section 2.3) for nearest neighbor graphs where points
were sampled noiselessly from three different manifolds of varying curvature: the Bolza surface
(scalar curvature −2), the flat torus (scalar curvature 0) and the unit sphere (scalar curvature +2).
Note that for surfaces such as these, the scalar curvature is simply twice the Ricci curvature.

In this experiment, we find minimal variation in the distribution of ORC values for the three man-
ifolds. While this does not suggest invariance to curvature in general, we consider this to be an
indication that for the regimes we expect to encounter in practice, underlying manifold curvature
should not be a significant cause for concern.

A.5.8 EMPIRICAL CONVERGENCE: THE SWISS ROLL

Figure 25 plots the ORC versus thresholded graph distance for all edges in a nearest neighbor graph
built from noisy samples from the swiss roll. The figure also plots the thresholds indicated from the
theoretical results detailed in Section 3. In this example, we see that all shortcut edges have ORC
below −1 + 4(1− δ), though some non-shortcut edges fall under this threshold too. But the figure
also illustrates that all shortcut edges exceed the thresholded graph distance, while no non-shortcut
edges do.

59



Non-Shortcut Shortcut

O
lli

vi
er

-R
ic

ci
 C

ur
va

tu
re

Thresholded graph distance, 

Figure 25: Plot of ORC versus thresholded graph distance dG′ for all edges in an unpruned nearest
neighbor graph of the noisy 3D swiss roll. Dotted lines indicate theory-derived thresholds on ORC
and thresholded-graph distance respectively. Note that we use δ = 0.8, λ = 0.01 and ϵ = 3.
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