
A Appendix

A.1 Illustrative MDPs

Several proofs in A.2 rely on constructing special MDPs to serve as examples or counterexamples.
We reserve this section to describe these MDPs for later reference.

A.1.1 Ring and false-ring MDPs

We consider a simple n-state, 1 action “ring” MDP (Figure 6) denoted mn
◦ = (r, p) where:

r(si) = g(i) ∀i ∈ [n], p(si+1|si) = 1 ∀i ∈ [n− 1] and p(s1|sn) = 1 (19)

where g : i 7→ R is some function that defines the reward from transitioning away from state i. Since
|A| = 1 we omit actions from the reward and transition dynamics.

For each ring MDP and function g we additionally construct a corresponding “false-ring” MDP
(Figure 6) with the same state and actions spaces as mn

◦ but with states that only self-transition and
with rewards designed to mimic the discounted n-step returns on Ring MDPs. We represent these as
m̃n
◦ = (r̃, p̃) where

r̃(si) =
rn(si)∑n−1
t=0 γ

t
, p̃(si|si) = 1 (20)

and rn(si) denotes the discounted n-step return starting from si in mn
◦ . Note that the discounted

n-step return of an n-state false-ring MDP is the same as that of an n-state ring MDP.

We now provide some basic results about pairs of ring and false-ring MDPs that we will use
periodically in our proofs.
Lemma 1. For any n ∈ Z+ ∪ {∞} if we treat the ring MDP mn

◦ as the environment and assume
m̃n
◦ ∈M it follows that

m̃n
◦ ∈Mn(�,V). (21)

when n <∞ and
m̃n
◦ ∈M∞(�) (22)

when n =∞.

Proof. First we note that, since ring and false-ring MDPs only have one action, we can write � = {π}
where π takes this action at all states. We first consider the case when n <∞, noting that that both
MDPs are deterministic and that for any state s, performing n transitions will always return to s.
We now consider an application of n-step Bellman operator of the false-ring model to an arbitrary
function v ∈ V:

T̃ nπ v(s) = r̃(s)(

n−1∑
t=0

γt) + γnv(s)

= rn(s)(

n−1∑
t=0

γt)−1(

n−1∑
t=0

γt) + γnv(s)

= rn(s) + γnv(s)

= T nπ v(s)

(23)

implying that m̃n
◦ ∈ Mn(�,V) as needed. We now consider the case when n =∞: here, we note

that for any state s ∈ S:

r̃(s) =
r∞(s)∑∞
t=0 γ

t
= (1− γ)vπ(s). (24)

we can then write:

ṽπ(s) =

∞∑
t=0

γtr̃(s) = (1− γ)−1(1− γ)vπ(s) = vπ(s) (25)

since m̃∞◦ only self-transitions at each state. This shows that m̃∞◦ ∈M∞(Π) as needed.
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(a) (b)

Figure 6: Ring and false-ring environments with reward structure defined by g : Z+ 7→ R. States
are numbered circles and outgoing arrows indicate possible transitions from each state. Arrows are
labeled by the reward attained from performing their transition.

Lemma 2. Fix any k,K ∈ Z+ ∪ {∞} with k < K and let f : S 7→ R be any constant function. Let
m = mK

◦ and m̃ = m̃K
◦ . For any γ ∈ (0, 1) it follows that

T kπ f(s1) 6= T̃ kπ f(s1) (26)

where mK
◦ and m̃K

◦ are K-state ring and false-ring MDPs with g(i) = 1{i ∈ [1, k]}.

Proof. We begin by examining the k-step Bellman operator and Bellman fixed-point under the ring
mK
◦ :

T kπ f(s1) = rk(s1) + γkf(s1) = rK(s1) + γkf(s1) (27)

where the second equality follows from the fact that g ensures that no reward is received after the first
k steps from s1.

Next we examine the corresponding k-step Bellman operator under the false-ring m̃K
◦ :

T̃ kπ f(s1) = r̃k(s1) + γkf(s1) = rK(s1)(

K−1∑
t=0

γt)−1
k−1∑
t=0

γt + γkf(s1) (28)

where the second equality follows from the construction of K-step false-ring MDPs to match the
K-step returns of their corresponding ring MDP.

Taken together Eqs. (27-28) imply that in order for T kπ f(s1) = T̃ kπ f(s1) it must be the case that∑K−1
t=0 γt =

∑k−1
t=0 γ

t which can only happen when γ = 0. Note that these properties hold when
K =∞. This completes the proof.

A.2 Proofs

In this section we provide proofs of the results in the main text.

Proposition 1. Let V be a set of functions such that if v ∈ V then Tπv ∈ V for all π ∈ Π. Then, for
k,K ∈ Z+ such that k divides K, it follows that:

(i) For anyM⊆ M and any Π ⊆ �, we have thatMk(Π,V) ⊆MK(Π,V).

(ii) If Π is non-empty and V contains at least one constant function, then there exist environments
such that Mk(Π,V) ⊂ MK(Π,V).

Proof. Consider some m ∈Mk(Π,V). For any π ∈ Π and v ∈ V we know that T̃ kπ v = T kπ v. Since
k divides K we know that K = zk where z ∈ Z+. Hence

T Kπ v = Tπ · · · Tπ︸ ︷︷ ︸
K times

v = T kπ · · · T kπ︸ ︷︷ ︸
z times

v
(29)
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Finally since V is closed under Bellman updates we can write T̃ kπ v = T kπ v ∈ V , which allows us
iteratively equate k-step environment and model operators on the right-hand side of Eq. (29) to obtain:

T kπ · · · T kπ︸ ︷︷ ︸
z times

v = T̃ kπ · · · T̃ kπ︸ ︷︷ ︸
z times

v = T̃ Kπ v. (30)

This suffices to show that m ∈MK(Π,V) which meansMk(Π,V) ⊆MK(Π,V).

We now assume that V contains at least one constant function and Π is non-empty and produce an
instance of an environment and model class where the relation is strict. Let the environment be a
K-state ring environment (see A.1.1): mK

◦ with g(i) = 1{i ∈ [1, k]} and letM = M. Next we
introduce a model given by the corresponding false-ring MDP (see A.1.1) m̃K

◦ . From Lemma 1 we
have that m̃K

◦ ∈MK(Π,V).

Since there is at least one constant function f ∈ V we know that T kπ f(s1) 6= T̃ kπ f(s1) from Lemma 2.
This is sufficient to show that m̃K

◦ /∈ Mk(Π,V) and thus we have proven that there are instances
whereMk(Π,V) ⊂MK(Π,V).

Proposition 2. For any Π ⊆ � and any k ∈ Z+ it follows that

M∞(Π) =
⋂
π∈Π

Mk({π}, {vπ}), (6)

Proof. We first note M∞(Π) =
⋂
π∈ΠM∞({π}) and consider any m ∈ M∞({π}) for some

π ∈ Π. From the definition of PVE we know ṽπ = vπ and thus can say:

ṽπ = vπ

=⇒ T̃ kπ ṽπ = T̃ kπ vπ
=⇒ ṽπ = T̃ kπ vπ
=⇒ vπ = T̃ kπ vπ
=⇒ T kπ vπ = T̃ kπ vπ

(31)

which suggests that m ∈Mk({π}, {vπ}) and thusM∞({π}) ⊆Mk({π}, {vπ}).

We now consider any element m ∈Mk({π}, {vπ}), and note that from the definition of order-k VE
we know that T̃ kπ vπ = T kπ vπ , thus we can say:

T̃ kπ vπ = T kπ vπ
=⇒ T̃ kπ vπ = vπ

=⇒ T̃ 2k
π vπ = T̃ kπ vπ

=⇒ T̃ 2k
π vπ = vπ

(32)

where we can repeat the process described in these implications ad-infinitum to obtain ṽπ =
limn→∞ T̃ nkπ vπ = vπ . Hence m ∈M∞({π}) and thusMk({π}, {vπ}).

Taken together this shows thatM∞({π}) =Mk({π}, {vπ}) for any k and π thus:

M∞(Π) =
⋂
π∈Π

M∞({π}) =
⋂
π∈Π

Mk({π}, {vπ}) (33)

for any k ∈ Z+.

Corollary 2. Let Π ⊆ � and let V be as in Proposition 1 for k ∈ Z+ then we have thatMk(Π,V) ⊆
M∞(Π). Moreover, if Π is non-empty and V contains at least one constant function, then there exist
environments such that Mk(Π,V) ⊂ M∞(Π)

Proof. Consider some m ∈ Mk(Π,V). From the generalization of Property 1 we know that
m ∈ Mzk(Π,V) for any z ∈ Z+ since k divides zk. Thus we know that T̃ zkπ v = T zkπ v for any
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choice of π ∈ Π, v ∈ V and z ∈ Z+. Accordingly the expressions are equal in the limit as z →∞.
Combining this with the fact that both T̃π and Tπ are contraction mappings, we obtain:

ṽπ = lim
z→∞

T̃ zkπ v = lim
z→∞

T zkπ v = vπ (34)

which implies m ∈M∞(Π) and thusMk(Π,V) ⊆M∞(Π), as needed.

Moreover, so long that Π is nonempty and V contains some constant function f , we can construct
a pair of∞-state ring / false-ring MDPs: m∞◦ and m̃∞◦ with g(i) = 1{i ∈ [1, k]} (see A.1.1). By
assuming that m∞◦ is the environment, Lemma 1 tells us that m̃∞◦ ∈ M∞(Π) and we know from
Lemma 2 that T kπ f(s1) 6= T̃ kπ f(s1) hence m̃∞◦ /∈Mk(Π).

Proposition 3. Let Π ⊆ �. If the environment state can be factored as S = X × Y where |Y| > 1
and vπ(s) = vπ((x, y)) = vπ(x) for all π ∈ Π, then M1(Π,V) ⊂ M∞(Π).

Proof. Assume thatM = M. Denote the environment reward and transition dynamics as (r, p). For
any value y0 ∈ Y we consider a model my0 :

rmy0 ((x, y), a) = r((x, y), a)

pmy0 ((x′, y′)|(x, y), a) = 1{y′ = y0}p(x′|(x, y), a).
(35)

We now examine the Bellman fixed-point induced by environment for any policy π ∈ Π:

vπ((x, y)) =

∫
A
π(a|(x, y))r((x, y), a) + γ

∫
X

∫
Y
p((x′, y′)|(x, y), a)vπ((x′, y′))dx′dy′da

=

∫
A
π(a|(x, y))r((x, y), a) + γ

∫
X

∫
Y
p(x′|(x, y), a)p(y′|x′, (x, y), a)vπ(x′)dx′dy′da

=

∫
A
π(a|(x, y))r((x, y), a) + γ

∫
X
p(x′|(x, y), a)vπ(x′)dx′da.

(36)

We can compare this to the Bellman operator induced by our model for the same policy:

T̃πv((x, y)) =

∫
A
π(a|(x, y))r((x, y), a) + γ

∫
X

∫
Y
1{y′ = y0}p(x′|(x, y), a)v((x, y))dx′dy′da

=

∫
A
π(a|(x, y))r((x, y), a) + γ

∫
X
p(x′|(x, y), a)v((x′, y0))dxda

(37)

Notice that vπ is a fixed point of this operator, hence ṽπ = vπ and and thus my0 ∈M∞(Π) (since
our particular choice of π ∈ Π was arbitrary). Moreover, we can construct different models for each
y0 ∈ Y , we know that

MY = {my : y ∈ Y} ⊆M∞(�). (38)

Moreover, suppose my0 ∈M1(Π,V). This implies that for all v ∈ V

T̃πv((x, y)) = Tπv((x, y))

=⇒
∫
A

∫
X

∫
Y
π(a|(x, y))pmy0 ((x′, y′)|(x, y), a)v((x′, y′))dx′dy′da

=

∫
A

∫
X

∫
Y
π(a|(x, y))p((x′, y′)|(x, y), a)v((x′, y′))dx′dy′da

=⇒
∫
A

∫
X
π(a|(x, y))p(x′|(x, y), a)v((x′, y0))dx′

=

∫
A

∫
X

∫
Y
π(a|(x, y))p((x′, y′)|(x, y), a)v((x′, y′))dx′dy′

(39)

we now choose v((x, y)) = 1{y 6= y0} which reduces the above equations to:

=⇒ 0 =

∫
A

∫
X

∫
Y6=y0

π(a|(x, y))p((x′, y′)|(x, y), a) = P(y′ 6= y0|x, y, π)

=⇒ P(y′ = y0|x, y, π) = 1

(40)
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where P denotes the conditional probability of an event.

Now consider the class of models defined by Eq. (38). SupposeMY ∈M1(Π,V), by Eq. (40) this
would mean that P(y′ = y0|x, y, π) = 1 for all y0 ∈ Y . This is impossible unless |Y| = 1 hence
there must exist my0 /∈M1(Π,V) and thusM1(Π,V) ⊂M∞(Π,V).

Corollary 1. Let �det be the set of all deterministic policies. An optimal policy for any m̃ ∈
M∞(�det) is also optimal in the environment.

Proof. Denote a deterministic optimal policy with respect to the environment as π∗. Let m̃ ∈
M∞(�det) and π̃∗ be a deterministic optimal policy with respect m̃.

Suppose π̃∗ were not optimal in the environment. This implies that vπ∗(s) ≥ vπ̃∗(s)∀s ∈ S with
strict inequality for at least one state. However, since π∗ and π̃∗ are deterministic we have:

ṽπ∗(s) = vπ∗(s) > vπ̃∗(s) = ṽπ̃∗(s) (41)

for some s ∈ S. This contradicts π̃∗ being optimal in the model.

Proposition 5. There exist environments and model classes for whichM∞(�) ⊂M∞(�det).

Proof. Since the environment and model only differ when action R is taken from state 2, we only
need to consider deterministic policies that make this choice. Note that if action R is taken from state
2, the values in both the model and environment at states 2 and 3 are necessarily 0 and the value of
each in state 1 is either (1− γ)−1 or 0 depending on the action taken from state 1. This suffices to
show that the environment and model have the same values for all deterministic policies.

However, one can see that the model and environment differ for stochastic policies. Take, for instance,
a policy for which π(a|s) = 0.5 for all a ∈ A, s ∈ S. The induced Markov reward processes from
applying this policy to the environment and model, which share the same reward structure, have
different transition dynamics at state 2. It can be easily verified that this results in different values for
the environment and model.

Proposition 6. For any π ∈ �, v ∈ V and k, n ∈ Z+, we have that

‖vπ − T̃ kπ vπ‖∞ ≤ (γk + γn) ‖vπ − v‖∞︸ ︷︷ ︸
εv

+ ‖T nπ v − T̃ kπ v‖∞︸ ︷︷ ︸
εve

. (10)

Proof. We begin by considering the left-hand side

‖vπ − T̃ kπ vπ‖∞ = ‖vπ − T̃ kπ v + T̃ kπ v − T̃ kπ vπ‖∞
≤ ‖vπ − T̃ kπ v‖∞ + ‖T̃ kπ v − T̃ kπ vπ‖∞
= ‖vπ − T nπ v + T nπ v − T̃ kπ v‖∞ + ‖T̃ kπ v − T̃ kπ vπ‖∞
≤ ‖vπ − T nπ v‖∞ + ‖T nπ v − T̃ kπ v‖∞ + ‖T̃ kπ v − T̃ kπ vπ‖∞
≤ γn‖vπ − v‖∞ + ‖T nπ v − T̃ kπ v‖∞ + γk‖vπ − v‖∞
= (γk + γn)‖vπ − v‖∞ + ‖T nπ v − T̃ kπ v‖∞

(42)

as needed.

Proposition 7. For any π ∈ �, v ∈ V and k, n ∈ Z+, assuming ‖vπ − v‖∞ < g · ‖vπ − v‖dπ for
some g ≥ 0, we have that:

‖vπ − T̃πvπ‖dπ ≤ (g · γk + γn)‖vπ − v‖dπ + ‖T nπ v − T̃ kπ v‖dπ (43)
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Proof.
‖vπ − T̃ kπ vπ‖dπ = ‖vπ − T̃ kπ v + T̃ kπ v − T̃ kπ vπ‖dπ

≤ ‖vπ − T̃ kπ v‖dπ + ‖T̃ kπ v − T̃ kπ vπ‖dπ
= ‖vπ − T nπ v + T nπ v − T̃ kπ v‖dπ + ‖T̃ kπ v − T̃ kπ vπ‖dπ
≤ ‖vπ − T nπ v‖dπ + ‖T nπ v − T̃ kπ v‖dπ + ‖T̃ kπ v − T̃ kπ vπ‖dπ
≤ ‖vπ − T nπ v‖dπ + ‖T nπ v − T̃ kπ v‖dπ + ‖T̃ kπ v − T̃ kπ vπ‖∞
≤ γn‖vπ − v‖dπ + ‖T nπ v − T̃ kπ v‖dπ + γk‖vπ − v‖∞
≤ γn‖vπ − v‖dπ + ‖T nπ v − T̃ kπ v‖dπ + g · γk‖vπ − v‖dπ
= (g · γk + γn)‖vπ − v‖dπ + ‖T nπ v − T̃ kπ v‖dπ

(44)

A.3 Experimental details - illustrative experiments

A.3.1 Code

Code to reproduce our illustrative experiments can be found at https://github.com/
chrisgrimm/proper_value_equivalence.

A.3.2 Computational resources

Illustrative experiments were performed on three machines each with 4 NVIDIA GeForce GTX 1080
Ti graphics cards.

A.3.3 Environment

Figure 7: Visualization of the
Four Rooms environment.

All illustrative experiments depicted in Figures 3 and 4 were carried
out in a stochastic version of the Four Rooms environment (depicted
in Figure 7) where |S| = 104 and A consists of four actions corre-
sponding to an intended movement in each of the cardinal directions.
When an agent takes an action, it will move in the intended direction
80% of the time and otherwise move in a random direction. If the
agent moves into a wall it will remain in place. When the agent
transitions into the upper-right square it receives a reward of 1, all
other transitions yield 0 reward.

A.3.4 Model representation and initialization

Models are represented tabularly by matrices R̃ ∈ R|S|×|A| and P̃ a ∈ R|S|×|S| for a ∈ A where
R̃s,a = r̃(s, a) and P̃ as,s′ = p̃(s′|s, a). We generally constrain a matrix to be row-stochastic by
parameterizing it with an unconstrained matrix of the same shape and applying a softmax with
temperature 1 to each of its rows. In experiments with model capacity constraints we additionally
impose that each P̃ a has a rank of at most k by representing P̃ a = DaKa where Da ∈ R|S|×k,
Ka ∈ Rk×|S| and both Da and Ka are constrained to be row-stochastic (note that the product of row-
stochastic matrices is itself row-stochastic). In this setting the parameters of the capacity-constrained
transition dynamics are the unconstrained matrices parameterizing Da and Ka.

Models are initialized by randomly sampling the entries of R̃ according to U(−1, 1) and the entries
of the matrices parameterizing the transition dynamics according to U(−5, 5), where U(l, u) denotes
a uniform distribution over the interval (l, u).

In all illustrative experiments we train our models using the Adam optimizer with default hyperpa-
rameters (β1 = 0.99, β2 = 0.999, ε =1e-8).

A.3.5 Model space experiments

In Figure 3 we illustrate the properties of spaces of models trained to be in Mk(�,V) for k ∈
{1, 30, 40, 50, 60} and in M∞(�). To train each of these models we construct a set of policies
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and functions D = {(πi, vi)}100,000
i=1 . Each generated policy πi is, with equal probability, either a

uniformly sampled deterministic policy or a stochastic policy for which at each state s, πi(a|s) =
fa/

∑
a∈A fa where fa ∼ U(0, 1) for each a ∈ A. Each vi is sampled such that vi(s) ∼ U(−1, 1)

for each s ∈ S. We then sample minibatches B ∼ D with |B| = 50 at each iteration and update
models to minimize

1

|B|
∑

(π,v)∈B

(T̃ kπ v − T kπ v)2 and
1

|B|
∑

(π,v)∈B

(T̃πvπ − vπ)2 (45)

for order-k VE and PVE models respectively.

Each model is updated in this manner for 500, 000 iterations with a learning rate of 1e-3 and a
snapshot of the model is stored every 1000 iterations—creating a timeline of the model’s progress
through training. For each model class, this experiment is repeated with 120 randomly initialized
models. To generate the points on the scatter plots depicted in Figure 3, we iterate through the
snapshots of these 120 models. At snapshot t (training iteration 1000× t) we collect the snapshots of
all the models and convert each model into a 1D vector representation by concatenating the entries
from its reward and transition dynamics matrices. We then apply principle component analysis to
these vectors, isolating the first two principle components, which we treat as (x, y) coordinates in
the scatter plots. For the top row in Figure 3 we color these points according to progress through
training: (t/500). On the bottom row, we compute the optimal policy with respect to each point’s
corresponding model: π̃∗ and color the point according to (

∑
s vπ̃∗(s))/(

∑
s vπ∗(s)).

We produce the plot of model class diameters in Figure 3 by taking the scatter-plot points correspond-
ing to the final snapshot (t = 500) of models for each k, randomly grouping them into 4 sets of 30
points and computing the diameters of each set. We then use these 4 diameters to produce error bars.

A.3.6 Individual model visualization

To generate the visualization of the dynamics of individual models displayed in Figure 4b, we
randomly select a single PVE model trained in our model space experiments. We then collect 5000
length 30 trajectories starting from the bottom left state. The paths of these trajectories are then
overlaid on top of a visualization of the environment and colored according to time along the trajectory
(t/30). This procedure is repeated using the environment in Figure 4a.

A.3.7 Model capacity experiment

We compare the effect of capacity constraints on learning models inM∞(�) andM∞(�det) respec-
tively by restricting the rank of the learned model’s transition dynamics (as in A.3.4). We restrict the
ranks of model transition dynamics to be at most k for k ∈ {20, 30, 40, 50, 60, 70, 80, 90, 100, 104}.
To train each model we collect a set of 1000 policies by beginning with a random policy and repeat-
edly running the policy iteration algorithm in the environment, starting with a randomly initialized
policy and stopping when the optimal policy is reached. The sequence of improved policies resulting
from this process is stored. Whenever the algorithm terminates, a new random policy is generated
and the process is repeated until 1000 policies have been stored. To increase the number of distinct
policies generated by this process, at each step of policy iteration, we select, uniformly at random,
10% of states and update the policy at only these states. We then further boost the breadth of our
collected policies and specialize them to � and �det by adding stochastic or deterministic “noise.”

Precisely, when training a model to be inM∞(�) we iterate over each of the 1000 policies generated
by our policy iteration procedure and generate an additional 100 policies. Each additional policy is
generated by selecting, uniformly at random, 10% of the original policy’s states and replacing the its
distribution at these states with a uniform distribution over actions.

When training a model to be inM∞(�det) the same procedure is repeated but the original policy’s
distributions, at the selected states, are replaced by randomly generated deterministic distributions.

In either case, this produces 100, 000 policies which are evaluated in the environment. Together this
forms a set of policies and corresponding value functions: D = {(πi, vi)}100,000

i=1 which can be used
construct mini-batch PVE losses as described in (45). Models are trained according to these losses
for 1, 000, 000 iterations with a learning rate of 5e-4. The errorbars around the environment value of
the models’ optimal policies at the end of training are reported across 10 seeds.
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A.4 MuZero experiment

Atari. We follow the Atari configuration used in Schrittwieser et al. [29], summarised in Table 1.

Table 1: Atari hyperparameters.

PARAMETER VALUE

Start no-ops [0, 30]
Terminate on life loss Yes
Action set Valid actions
Max episode length 30 minutes (108,000 frames)
Observation size 96× 96
Preprocessing Grayscale
Action repetitions 4
Max-pool over last N action repeat frames 4
Total environment frames, including skipped frames 500M

MuZero implementation. Our MuZero implementation largely follows the description given by
Schrittwieser et al. [29], but uses a Sebulba distributed architecture as described in Hessel et al. [19],
and TD(λ) rather than n-step value targets. The hyperparameters are given in Table 2. Our network
architecture is the same as used in MuZero [29].

The base MuZero loss is given by

Lbase
t = Eπ

K∑
k=0

[
`r(rtarget

t+k , r̂
k
t ) + `v(vtarget

t+k , v̂
k
t ) + `π(πtarget

t+k , π̂
k
t )
]
. (46)

The reward loss `r simply regresses the model-predicted rewards to the rewards seen in the environ-
ment. To compute the value and policy losses, MuZero performs a Monte-Carlo tree search using the
learned model. The policy targets are proportional to the MCTS visitation counts at the root node.
The value targets are computed using the MCTS value prediction ṽ and the sequences of rewards.
MuZero uses an n-step bootstrap return estimate vtarget

t+k =
∑n
j=1 γ

j−1rt+k+j + γnṽt+k+n. We use
the a TD(λ) return estimate instead.

For our additional loss corresponding to past policies, we periodically store the parameters for the
value function and policy (i.e. the network heads that take the model-predicted latent state as input).
Then, we compute the same value loss `v for each past value function. To account for the fact that the
reward sequence was drawn from the current policy π rather than the stored policies, we use V-trace
to compute a return estimate for the past policies.

The additional hyperparameters for the buffer of past value heads were tuned on MsPacman, over
a buffer size in {64, 128, 256} and an update interval in {10, 50, 100, 500}. Our experiments took
roughly 35k TPU-v3 device-hours for both tuning and the full evaluation.

Full results. We report the final scores per game in Table 3. The mean scores are across the final
200 episodes in each of three seeds. We also report the standard error of the mean across seeds only.
Performing a Wilcoxon signed rank test comparing per-game scores, we find that the version with the
additional Past Policies loss has a better final performance with p = 0.044.
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Table 2: Hyperparameters for our MuZero experiment.

HYPERPARAMETER VALUE

Batch size 96 sequences
Sequence length 30 frames
Sequence overlap 10 frames
Model unroll length K 5
Optimiser Adam
Initial learning rate 1× 10−4

Final learning rate (linear schedule) 0
Discount 0.997
Target network update rate 0.1
Value loss weight 0.25
Reward loss weight 1.0
Policy loss weight 1.0
MCTS number of simulations 25
λ for TD(λ) 0.8
MCTS Dirichlet prior fraction 0.3
MCTS Dirichlet prior α 0.25
Search parameters update rate 0.1
Value, reward number of bins 601
Nonlinear value transform sgn(z)(

√
|z|+ 1− 1) + 0.01z

Value buffer size 128
Value buffer update interval 50
Value buffer loss weight 0.25
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Environment MuZero (our impl.) MuZero + Past Policies

alien 38,698 ± 2,809 52,821 ± 1,918
amidar 6,631 ± 568 4,239 ± 1,550
assault 35,876 ± 550 35,013 ± 738
asterix 674,573 ± 88,318 549,421 ± 9,280
asteroids 214,034 ± 4,719 235,543 ± 14,605
atlantis 835,445 ± 92,290 845,409 ± 60,318
bank_heist 837 ± 265 552 ± 234
battle_zone 39,471 ± 12,658 72,183 ± 11,385
beam_rider 120,675 ± 16,588 130,129 ± 14,014
berzerk 22,449 ± 3,780 35,249 ± 3,179
bowling 59 ± 0 47 ± 7
boxing 99 ± 0 99 ± 0
breakout 504 ± 165 770 ± 12
centipede 400,268 ± 32,821 534,432 ± 38,912
chopper_command 524,655 ± 154,540 660,503 ± 27,000
crazy_climber 189,621 ± 7,313 217,204 ± 12,764
defender 322,472 ± 105,043 483,394 ± 11,589
demon_attack 131,963 ± 3,819 112,140 ± 17,739
double_dunk 3 ± 4 -1 ± 1
enduro 0 ± 0 132 ± 86
fishing_derby -97 ± 0 -52 ± 29
freeway 0 ± 0 0 ± 0
frostbite 3,439 ± 1,401 8,049 ± 526
gopher 121,984 ± 338 120,551 ± 923
gravitar 2,807 ± 123 3,927 ± 54
hero 7,877 ± 960 9,871 ± 523
ice_hockey -6 ± 4 -11 ± 3
jamesbond 23,475 ± 1,586 13,668 ± 4,480
kangaroo 9,659 ± 2,389 10,465 ± 2,835
krull 11,259 ± 173 11,295 ± 108
kung_fu_master 55,242 ± 4,267 83,705 ± 6,565
montezuma_revenge 0 ± 0 0 ± 0
ms_pacman 40,263 ± 387 43,700 ± 1,042
name_this_game 76,604 ± 7,107 94,974 ± 9,942
phoenix 67,119 ± 9,747 49,919 ± 10,573
pitfall -2 ± 1 -24 ± 7
pong -7 ± 9 -6 ± 9
private_eye 193 ± 101 -6 ± 228
qbert 64,732 ± 8,619 70,593 ± 16,955
riverraid 27,688 ± 1,001 28,026 ± 1,823
road_runner 151,639 ± 90,186 571,829 ± 106,184
robotank 53 ± 2 25 ± 8
seaquest 27,530 ± 10,632 141,725 ± 48,000
skiing -27,968 ± 1,346 -30,062 ± 248
solaris 1,544 ± 140 1,501 ± 193
space_invaders 3,962 ± 102 5,367 ± 953
star_gunner 663,896 ± 80,698 547,226 ± 126,538
surround 7 ± 0 6 ± 1
tennis -23 ± 0 0 ± 0
time_pilot 267,331 ± 15,256 228,282 ± 10,844
tutankham 134 ± 10 150 ± 8
up_n_down 434,746 ± 3,905 432,240 ± 4,221
venture 0 ± 0 0 ± 0
video_pinball 376,660 ± 37,647 378,897 ± 26,486
wizard_of_wor 79,425 ± 1,458 54,093 ± 6,294
yars_revenge 317,803 ± 62,785 423,271 ± 54,094
zaxxon 15,752 ± 231 15,790 ± 196

Table 3: Final Atari scores for our deep RL experiments. We report the mean of the final 200 episodes
over all three seeds, and the standard error of the mean across seeds.
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