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ABSTRACT

Synthetic datasets generated by structural causal models (SCMs) are commonly
used for benchmarking causal structure learning algorithms. However, the vari-
ances and pairwise correlations in SCM data tend to increase along the causal
ordering. Several popular algorithms exploit these artifacts, possibly leading to
conclusions that do not generalize to real-world settings. Existing metrics like Var-
sortability and R2-sortability quantify these patterns, but they do not provide tools
to remedy them. To address this, we propose internally-standardized structural
causal models (iSCMs), a modification of SCMs that introduces a standardization
operation at each variable during the generative process. By construction, iISCMs
are not Var-sortable. We also find empirical evidence that they are mostly not
R2-sortable for commonly-used graph families. Moreover, contrary to the post-hoc
standardization of data generated by standard SCMs, we prove that linear iSCMs
are less identifiable from prior knowledge on the weights and do not collapse to
deterministic relationships in large systems, which may make iSCMs a useful
model in causal inference beyond the benchmarking problem studied here. Our
code is publicly available at: https://github.com/werkaaa/iscm.

1 INTRODUCTION

Predicting the effects of interventions and policy decisions requires reasoning about causality. Con-
sequently, scientific fields ranging from biology and earth sciences to economics and statistics are
interested in modeling causal structure (Pearl, 2009; Maathuis et al., 2010; Imbens and Rubin, 2015;
Runge et al., 2019). A wide array of causal discovery algorithms has been proposed with the goal
of inferring causal structure from data (e.g., Squires and Uhler, 2022; Vowels et al., 2022). How-
ever, benchmarking these algorithms is challenging, since real-world datasets with an agreed-upon,
ground-truth causal structure are rare (e.g., Sachs et al., 2005; see Mooij et al., 2020). The community
predominantly relies on synthetic data for evaluating structure learning algorithms, where obser-
vations are generated according to a predetermined causal structure and system mechanisms. The
inferred causal structures can then be directly compared to the ground truth. To generate synthetic
data, it is common practice to sample from structural causal models with additive noise (SCMs)
(Reisach et al., 2021). Unless stated otherwise, this work considers SCMs in which the variance scale
of the additive noise is the same for all variables, a typical simplification made in benchmarking.

Under common benchmarking practices, synthetic datasets generated by SCMs contain patterns that
are directly exploitable to make structure discovery easier. We will refer to such patterns as artifacts.
In SCMs, the pairwise correlations between variables tend to increase along the causal ordering,
since variance builds up downstream and, as a result, the proportion of the variance driven by the
additive noise vanishes (Figure 1a). Reisach et al. (2024) characterize this phenomenon through an
increase of the coefficients of determination (R?) of the variables regressed on all others. Crucially,
this artifact occurs both in the raw data and when shifting and scaling (standardizing) the variables to
have zero mean and unit variance. One of the implications is that downstream causal dependencies in
SCMs become effectively deterministic, especially in large-scale systems. As Reisach et al. (2024)
demonstrate, simple causal discovery baselines can perform competitively on benchmarks of this
kind by directly exploiting this phenomenon. This makes SCMs alone in their general definition
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Figure 1: Standardizing SCMs two ways. Generative process for a chain graph of (a) standard
SCMs, with data x standardized post-hoc, and (b) SCMs with standardization performed during the
generative process (ISCMs). Dashed arrows indicate z-standardization. Solid arrows indicate linear
functions with weights from Unif1[0.5, 2.0] and additive noise from N (0, 1). We report absolute
correlations |p| of two consecutive observed variables, (a) xj and 1’5 11, 0r(b) Z; and 241, averaged
over 100,000 models. In standard SCMs (a), correlations tend to increase along the causal ordering.

possibly insufficient for benchmarking. Ultimately, evaluating on synthetic data with these patterns
could lead to conclusions that do not generalize as expected to real-world scenarios.

In this work, we propose a simple modification of SCMs that stabilizes the data-generating process
and thereby removes exploitable covariance artifacts. Our models, denoted internally-standardized
SCMs (iSCMs), introduce a standardization operation at each variable during the generative process
(Figure 1b). In Section 4, we provide a theoretical motivation for this idea by studying linear iSCMs.
We prove that, contrary to SCMs, the causal dependencies of iSCMs under mild assumptions never
collapse to deterministic mechanisms as the graph size becomes large. Moreover, we formalize the
correlation artifact commonly observed in benchmarks by proving that linear SCM structures in a
Markov equivalence class (MEC) are partially identifiable for certain graph classes, given weak prior
knowledge on the weight distribution of the ground-truth SCM. Most importantly, we show that
this is not the case for the corresponding iISCMs. In Section 5, we empirically demonstrate that the
baselines proposed in Reisach et al. (2021; 2024) are unable to exploit covariance artifacts in iISCMs,
while practical classes of causal discovery algorithms are still able to learn causal structures in both
linear and nonlinear systems. Our findings reveal that SCM artifacts affect structure learning both
positively and negatively, making iSCMs a practical tool, alongside SCMs, for disentangling the
drivers of causal discovery performance of different algorithms in practice.

2 BACKGROUND AND RELATED WORK

We begin by introducing structural causal models and the problem of causal structure learning, before
discussing how synthetic data is often generated for evaluating structure learning algorithms. We
then review existing works that study identifiability and patterns frequently present in synthetic data.

Structural causal models A structural causal model (SCM) (Peters et al., 2017) of d variables
x = {x1,...,xq} consists of a collection of structural assignments, each given by

T := fi(Xpa(i)s €i) » (SCM)

where X, C X \ {z;} are called the parents of x;. Here, f; are arbitrary functions, and &; are
independent random variables that model exogenous noise (or unexplained variation). Together, they
entail a joint probability distribution p(x) over the variables x. It is common to consider SCMs with
additive noise, e.g., with linear functions f;, as given by

fi(Xpa(i), €i) = W;rxpa(i) +&i, (D

where w; ; € R denotes the weight from j € pa(¢) to ¢. The structural assignments in (SCM) induce
a causal graph G = (V, £) over the variables x;, which is assumed to be acyclic. Specifically, the
directed acyclic graph (DAG) G has vertices v; € V for every z; € x and a directed edge (i, j) € €
if x; € Xpa(j). We will explicitly distinguish this DAG G and its vertices V from the variables x. The
skeleton of G denotes G with all edges undirected. If the skeleton of G is acyclic, we call G a forest.

Structure learning and benchmarking Given a set of i.i.d. observations from the probability
distribution p(x) induced by an unknown SCM, causal structure learning aims to infer the causal
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graph G underlying the SCM. In this work, we focus on structure learning from observational data
and only consider SCMs with no latent confounders. Because it is difficult to obtain the true G for
many real-world datasets, it is common to evaluate structure learning algorithms on synthetic data
where G is known. A ubiquitous approach is to sample a DAG G, then SCM functions defined over G,
and finally a dataset from this SCM, with the goal of later recovering G from the data. It is common
to consider €; with mean 0 and fixed variance (often 1), and for linear systems, to sample each w; ;
uniformly and i.i.d. with support bounded away from 0 (Shimizu et al., 2011; Peters and Biithlmann,
2014; Zheng et al., 2018; Yu et al., 2019; Lachapelle et al., 2020; Zheng et al., 2020; Ng et al., 2020;
Reisach et al., 2021; Lorch et al., 2022; Reisach et al., 2024). There exist alternative benchmarking
strategies with domain-specific simulators (Schaffter et al., 2011; Dibaeinia and Sinha, 2020).

Data standardization and artifacts of SCMs Previous work shows that generating data as de-
scribed above can lead to strong artifacts. Reisach et al. (2021) observe that the variance of variables
tends to increase along the topological ordering of G. This leads to the Var-SORTNREGRESS baseline,
which sorts variables based on their empirical variance and then performs sparse regression to infer
G. Seng et al. (2024) show that structure learning algorithms minimizing an MSE-based loss (e.g.,
Zheng et al., 2018) can identify G under similar conditions. Therefore, Reisach et al. (2021) propose
using standardization (Figure 1a) to remove this variance artifact from benchmarks. Specifically, they
first sample all x; according to a standard SCM and then post-hoc transform the variables as

s = i — Blai] (Standardized SCM)

Var[z,]

such that our observations correspond to samples from p(x®). Standardization, however, only removes
the variance artifact. Even in standardized SCMs, the fraction of a variable’s variance that is explained
by all others, measured by the coefficient of determination R?, tends to increase along the topological
ordering (Reisach et al., 2024). R>-SORTNREGRESS exploits this correlation artifact analogously
to Var-SORTNREGRESS. Existing heuristics aiming to avoid the variance accumulation adjust the
sampling process of f;, but they ultimately limit the causal dependencies that can be modeled, e.g.,
to certain levels of correlations among the observed x (Mooij et al., 2020) or a constant proportion of
variance explained by the parents x,,(;) (Squires et al., 2022) and fail to induce data free from both
artifacts (Appendix D.1). To our knowledge, there are currently no general methods for generating
SCM data without strong correlation artifacts or significant limitations on the functions f; and noise ;.

Identifiability Given a class of SCMs, there may be several SCMs with different causal graphs G
that entail the same distribution p(x) (Peters et al., 2017). Thus, even with infinite observations from
p(x), we may be unable to identify the causal graph G that generated the observations. However,
some identifiability results are known depending on the class of functions and noise distributions of
the SCMs considered. For example, among all linear SCMs (1) with Gaussian noise ¢; ~ N'(0, 07),
the graph G can only be uniquely identified up to its MEC (Verma and Pearl, 2013). However, if
the noise is Gaussian with equal variances O'iz = o2 (Peters and Biihlmann, 2014) or the noise is
non-Gaussian (Shimizu et al., 2006), G can be uniquely identified given p(x).

In this work, we present, to our knowledge, the first (partial) identifiability result for standardized
SCMs in the linear Gaussian case. Since standardization affects the implied noise scales, existing
linear Gaussian identification results, which rely on o7 = o2, no longer hold when observing p(x*).
Other identifiability results, e.g., based on non-Gaussian noise, do continue to hold for standardized
SCMs (e.g., Shimizu et al., 2006). Our result concerns a setting with prior knowledge on the
magnitudes of w in Equation (1), an assumption underlying common benchmarking practices. Under
this setup, we show a stark difference in the identifiability of standardized SCMs and the iSCMs we
propose, which provides a novel explanation for what we empirically observe in benchmarks.

3 SCMS WITH INTERNAL STANDARDIZATION

3.1 DEFINITION

We propose internally-standardized SCMs (iSCMs) as a modification to the standard data-generating
process of SCMs. AniSCM (S, P.) consists of d pairs of assignments, where foreachi € {1,...,d},
~ ~ i — Elz; .
Ti = fi(Xpagi),€:) and  Z; := zi — Bl (iSCM)
Var[z;]
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@ Algorithm 1 Sampling from an iISCM
Input: DAG G, noise distribution P,
, @ ”’@ functions {f1, ..., fa}
7 < topological ordering of G
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Figure 2: Causal mechanisms in iSCMs. The Var[zr,]
function f; modeling x; depends on the standard- return [51, . jd] > € R?

ized X, (;). Dashing indicates z-standardization.

with parents X,,(;) € X \ {Z;} of Z; in the underlying DAG. In the above, f; are general functions,
and the exogenous noise variables € = [e1, ..., £4] ~ Pe are jointly independent, as for SCMs. The
variables x; are latent, and the variables z; are observed. Figure 2 illustrates the generative process.
Algorithm 1 summarizes how to sample from (iISCM). If computing the population expectations
and variances of z; is intractable, the empirical statistics obtained from n samples can be used for
standardization at each loop iteration of Algorithm 1.

Motivation By construction, iISCMs model observed variables with zero mean and unit marginal
variance. Contrary to standard SCMs, iISCMs avoid the accumulation of variance downstream in the
causal ordering that can occur in standard SCMs (see Figure 1) through the standardization operation.
Because each variable x; only depends on the standardized variables X,,,(;), the relative scales of
the noise distribution P,, and the causal mechanisms f; are the same everywhere in the system
and do not change, for example, downstream in the causal ordering. The causal mechansims of
iSCMs are thus scale-free, in that the local interaction of mechanism f; and noise &; occurs at a scale
independent of the position of x; in the global ordering. This property makes iSCMs particularly
useful for benchmarking, where random ground-truth models are commonly generated from a fixed
distribution over functions f; and noise €;. Contrary to existing heuristics (Section 2), iSCMs model
arbitrarily strong or weak causal dependencies and levels of cause-explained variance.

Interventions Analogous to standard SCMs, interventions in iISCMs can be defined as modifications
of the structural assignments f; in iISCM) (Figure 2), while keeping the standardization operation
based on the observational distribution. When the population statistics for standardization are
intractable, we first sample observational data to obtain empirical statistics. Since we do not study
interventions in this work, we defer a further discussion of interventions in iSCMs to Appendix B.

Units When modeling a physical system, the functional mechanisms in standard SCMs have to
account for the difference in units between the variables for the model to be unit-covariant (see Villar
et al., 2023). A side-effect of internal standardization is that variables of iISCMs become unit-less, so
iSCMs obey the passive symmetry of unit covariance by construction. Therefore, iISCMs naturally
model both unit-less quantities and variables measured in different units, which can make them useful
beyond benchmarking. Learned iSCMs would be invariant to the units chosen by the experimenter,
similar to the physical world being independent of the mathematical models chosen to describe it.

3.2 IMPLIED SCMs

It is natural to investigate whether SCMs can generate the same observations as standardized SCMs or
iSCMs, given the same causal graph G and exogenous variables €. In other words, can standardized
SCMs and iSCMs be written as SCMs? For both models, the answer is yes. Specifically, we can
express the generative process of x® in (Standardized SCM) and x in (iSCM) as

25 = gf (Xaiy) + 05 and Fi = §i(Xpa(i)) + Oici 2)

respectively, by moving the standardization operations into the causal mechanisms of the observables
but leaving the DAG G and the variables € unchanged. Appendix A describes how to construct
these implied causal mechanisms g{ and g; and implied noise scales 87 and ;. We refer to the
above SCM form of a standardized SCM or an iSCM with additive noise as their implied (SCM)
model. Correspondingly, the implied SCMs have zero mean and unit variance. The notion of implied
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SCMs is powerful, because it enables us to analyze standardized SCMs and iSCMs as SCMs, and it
sheds light on the performance of structure learning algorithms that assume unstandardized SCMs to
underlie the generative process of the data (e.g., Shimizu et al., 2011; Zheng et al., 2018; Yu et al.,
2019; Lachapelle et al., 2020; Zheng et al., 2020).

To provide a first characterization of standardized SCMs and iSCMs, our theoretical analyses focus
on systems where f; are linear functions with additive, zero-mean noise as given by Equation (1). As
a stepping stone for this analysis, we use an analytical expression for the covariance of linear SCMs,
whose variables have unit variance by construction, without any form of standardization:

Lemma 1 (Covariance in linear SCMs with unit marginal variances). Let x be modeled by a linear
SCM defined by (1) with DAG G that satisfies Var|x;] = 1. Then, the covariance Cov|z;, ;] is
the sum of products of the weights along all unblocked paths between the nodes of x; and z; in G.
Specifically, for any i,j € {1, ...,d} such that i # j, it holds that

Cov(z;, z;] = Z H Wi,m 3)

Pj—i€Pjoi (IL,m)Epjsi

where Pj,; are all unblocked paths from x; to x; in G, and (I, m) € pj;«; indicates that the directed
edge (1, m) is part of the path p; ;.

This lemma, also called the trek rule, is originally due to Wright (1934). We give a proof in Appendix
C.2. Since the implied SCMs of linear standardized SCMs and iSCMs are linear SCMs, the setting of
Lemma 1 applies precisely to the SCM forms of both models. Thus, Lemma 1 enables us to study
the covariances in standardized SCMs and iISCMs, and as we show next, derive conditions for the
(non)identifiability of their DAGs G from the observational distribution.

4 ANALYSIS

In this section, we give two theoretical results that support the suitability of iISCMs over standard
SCMs for causal discovery benchmarking. First, we prove the general case of Figure 1. Contrary
to standardized SCMs, iISCMs do not degenerate towards deterministic implied SCM mechanisms
in deep graphs. Moreover, we prove that the DAGs of linear iSCMs cannot be identified beyond
their MEC, assuming the DAG is a forest, even if the support of w is known. Crucially, we also show
that this is not generally true for standardized SCMs. This suggests that algorithms can less easily
game benchmarks based on linear iSCMs when knowing the data-generating process. For all results,
we consider linear SCMs (1) with zero-mean additive noise and equal noise variances. All results
are at the population level, so assume we know p(x®) or p(X). Proofs are given in Appendix C.

4.1 BEHAVIOR WITH INCREASING GRAPH DEPTH

Standardized SCMs tend towards increasing correlations between adjacent nodes down the topological
ordering. This correlation artifact makes standardized SCMs problematic for benchmarking, because
it may not be a property we expect to underlie real data. Reisach et al. (2024) show, under some
assumptions on w, that the dependencies in standardized SCMs become deterministic with increasing
graph depth. This implies that any exogenous variation €; vanishes lower down in the system. Unless
prior domain knowledge leads us to assume this holds in applications of interest, it may not be
desirable to implicitly bias structure learning benchmarks towards such systems. For example, if the
causal ordering represents time (Pamfil et al., 2020), the mechanisms of standardized SCMs are unable
to model or characterize time-invariant or stable processes. Moreover, if we expect causal mechanisms
to be independent (Scholkopf, 2022), the qualitative behavior of a causal mechanism should not
provide information about its position in the topological ordering relative to other mechanisms, as
it would in SCMs. Reisach et al. (2024) show that baselines like R>-SORTNREGRESS can perform
competitively on benchmarks by exploiting this artifact (Section 2).

iSCMs do not tend towards determinism with increasing graph depth (Figure 1b). In standardized
SCMs, the correlations increase downstream, because the marginal variances of the underlying SCM
increase with node depth, while the variance scale is fixed (Reisach et al., 2021). Thus, for large ¢,
the variance scale of z;_; becomes large relative to the scale of €;, and the correlation of z; and z;_;
tends towards 1. Since =7 and x_, are just standardized versions of these variables, they maintain
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the same correlation. iISCMs avoid this by standardizing internally, which scales the variance of any
parents in a mechanism f; to 1, modulating the relative variance of &; and x,(;). In the following, we
formalize this result for general graphs by bounding the fraction of cause explained variance (CEV).
The fraction of CEV for z; is the proportion of Var[z;] explained by its causal parents and given by

Var|z; — E[z;[Xpa)]] @
Var|x;] '
The following results shows that we can bound the fraction of CEV for any variable in a linear iSCM:

Theorem 2 (Bound on CEV; in linear iSCMSs). Let x be modeled by a linear iSCM (1) with DAG G
and additive noise of equal variances Var|e;] = 0. Suppose any node in G has at most m parents
and w = Max; je(1,....ay|wi j|. Then, foranyi € {1,...,d}, the fraction of CEV for T; is bounded as

0.2

m2w? + o2

CEVf[l‘i] =1-

CEVi[z;] <1

Since the fraction of CEV is bounded, iISCMs are guaranteed not to collapse to determinism in large
systems, alleviating several of the concerns with (standardized) SCMs discussed above.

4.2 IDENTIFIABILITY

Figure 1a illustrates that the pairwise correlations in SCMs 8

over chain graphs depend on the position in the topological (i) @ﬁ,@_,@
ordering. This can allow algorithms like R2-SORTNREGRESS

to infer the graph. By contrast, Figure 1b shows that iSCMs o 3

do no exhibit this pattern, with correlations between variables (ii) @4@_,@
not increasing the identifiability of any part of the system.

In the following, we formalize this phenomenon for forests, a A

that is, all DAGs with acyclic skeletons (Section 2). Specif- (iii) @4—@4—@
ically, we prove two results concerning the identifiability

of the DAG G from the observational distribution, for stan-  (a) DAGs with edge weights o and 3
dardized SCMs and iSCMs. This makes our finding the first
identifiability result for standardized SCMs. While not ev-
ery DAG is a forest, DAGs have forests as subgraphs and

resemble forests as sparsity increases, thus providing us with ~-0.71 WE 0.8
intuition for generally sparse systems (e.g., Alon and Spencer, , )
2016, Chapter 11). - 063 0.9 1.)0

. . 1
Our first result leverages the observation that, for standardized . o
SCMs, many DAGs in an MEC are infeasible given p(x®) (b) Cov. matrix of linear iSCMs

when their edge directions are not consistent with the direc-

tion of increasing absolute covariance. To illustrate this idea, Figure 3: iSCMs with the same
suppose our goal is to distinguish between the DAGs in the covariapce matrix. (a) DAGS}“ an
MEC G = {(i), (ii), (iii) } in Figure 3a. We overload notation =~ MEC with the same edge weights.
and denote the weights of the edges « and (3 regardless of (b) Covgnance matrix for all linear
orientation. For standardized SCMs, we can apply Lemma 1 iSCMs in (a) when v = 1, § = 2.
to the implied SCM of graph (i) to obtain the covariances

2
1
Covlet,af) = o= and  Covfe,af] = By sttty

See Appendix C.4.1. Together, both expressions imply that standardized SCMs with DAG (i) satisfy

|Covlzf, z3)| < |Covlzs,z3)] = 57 < B (5)

If | 3| > 1, then the right-hand side of Equation (5) is always true. In this case, the absolute covariance
increases from x; to x3 in all standardized SCMs with DAG (i). By symmetry, the covariance in
SCMs with DAG (iii) increases from x3 to 1 when |a| > 1. Therefore, if both weights are greater
than 1, the absolute covariance increases downstream in all SCMs of (i) and (iii). This implies that,
among (i) and (iii), only the DAG whose edges align with the covariance ordering in p(x®) can
induce p(x®). Irrespectively, the DAG (ii) remains plausible. We can extend the intuition of this
3-variable example to identify almost all edges in any forest MEC:
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Theorem 3 (Partial identifiability of standardized linear SCMs with forest DAGs). Let x° be modeled
by a standardized linear SCM (1) with forest DAG G, additive noise of equal variances Var|e;] = o2,
and |w; ;| > 1 for all i € pa(j). Then, given p(x®) and the partially directed graph G representing
the MEC of G, we can identify all but at most one edge of the true DAG G in each undirected connected

component of the MEC G.

Our proof of Theorem 3 considers each undirected component separately from the rest of the MEC G.
Hence, the identifiability result extends to undirected tree components of arbitrary, non-forest MECs
as well. Theorem 3 shows that, when using standardized SCM data for benchmarking, algorithms can
use pairwise correlations to orient additional edges correctly. The weights assumption of Theorem 3
is relevant to causal discovery benchmarking, because weights are often sampled i.i.d. from intervals
bounded away from 0 (Section 2). Hence, empirical evaluations may render standardized linear
SCMs identifiable only through the design of their weights distribution. In the following, we show
that, under similar conditions, iISCMs are more difficult to identify from their MEC. In the 3-variable
example above, we can show that the observational distribution of iISCMs is the same for all DAGs
(i), (ii), and (iii) when the weights « and § are shared over the corresponding edges in the MEC
(Figure 3b; see Appendix C.4.1). This result generalizes to forests:

Theorem 4 (Nonidentifiability of linear Gaussian iSCMs with forest DAGs). Let X be modeled
by a linear iSCM (1) with forest DAG G and additive Gaussian noise of equal variances Var|[e;].
Then, for every DAG G’ in the MEC of G, there exists a linear iSCM with DAG G’ that has the same
observational distribution as X, the same noise variances, and the same weights on the corresponding
edges in the MEC.

Our proof consists of showing that the covariance matrices of these systems are equal. For linear
Gaussian iISCMs, this then implies that their observational distributions are identical. Theorem 4 thus
shows that additional knowledge of the weight distribution in a benchmark does not allow identifying
any additional edges beyond the MEC. By contrast, Theorem 3 shows that, for standardized SCMs,
lower-bounding the weight magnitudes is sufficient for identifying most of the graph from its MEC.
Without standardization, G is fully identified from its observational distribution under even weaker
assumptions (Peters and Biithlmann, 2014). Importantly, Theorem 4 does not generalize to arbitrary
graphs beyond forests. Appendix C.4.2 provides a counterexample involving a 3-node skeleton. As
we study in the next section, this implies that causal structure can still be learned from nontrivial
iSCMs. However, DAGs in benchmarks are often sparse, so we expect the implications of our
identifiability results to capture relevant parts of empirical phenomena in benchmarking settings.

5 EXPERIMENTAL RESULTS

Our analyses suggest that iISCMs address shortcomings of naive standardization, in particular, when
sampling each f; and €; from the same distribution, as common in benchmarking. In this section, we
now also provide empirical evidence that iISCMs do not contain the covariance artifacts of SCMs. This
makes iISCMs a useful tool for disentangling, alongside SCMs, which data patterns drive causal dis-
covery in practice. To show this, we benchmark the SORTNREGRESS baselines and a suite of popular
structure learning algorithms to gain insights into how their performance varies when benchmarked
on standardized SCMs and iSCMs. Appendix E provides complete details of the experimental setup.

5.1 RZ2-SORTABILITY

Reisach et al. (2024) introduce the R2-sortability metric to evaluate the correlation artifact underlying
a dataset. R2-sortability measures (rescaled to [0, 1]) the association between the variables’ causal
ordering and the R? coefficients obtained from regressing each variable onto all others (Appendix
D.2). An R2-sortability close to 0.5 suggests that the R? coefficients from regression contain no
information about the causal ordering. Conversely, an R2-sortability of 0 or 1 implies that the
causal ordering can be completely identified from this information. The metric gives rise to the
R2-SORTNREGRESS baseline described in Section 2. Reisach et al. (2024) show that R2-sortability
in SCMs is driven by an interplay of graph connectivity and the weight distribution of f;.

Figure 4 summarizes the R?-sortability statistics for linear SCM and iSCM data. We write ER(d, k)
and SF(d, k) to denote Erdds-Rényi and scale-free graphs of size d and (expected) degree k, respec-
tively (see Appendix E.2 for details). We find that iISCMs generate datasets that are not R2-sortable
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Figure 4: R2-sortability for different graph sizes. Linear standardized SCMs and iSCMs with
g; ~ N (0, 1) and weights drawn from uniform distributions with supports given above each plot. For
every model, we evaluate 100 systems and n =1000 samples each. Lines and shaded regions denote
mean and standard deviation. Datasets that satisfy R2-sortability = 0.5 (dashed) are not R2-sortable.

(R2-sortability = 0.5) and thus artifact-free while sampling over common graph structures (e.g.,
Zheng et al., 2018; Yu et al., 2019; Reisach et al., 2021). Conversely, standardized SCMs generate
datasets that are strongly R2-sortable (|R2-sortability — 0.5| >> 0). Since R2-sortability can be ex-
ploited for causal discovery, iSCM data serves as a test for evaluating whether algorithms utilize any
data properties beyond the association between R? and the causal ordering in SCMs. Our results do not
exclude the possibility of iISCM configurations that still produce R2-sortable datasets. However, we
show empirically that, for commonly-used G, Pe, and w, iSCM datasets are not R2-sortable with high
probability. Appendix D.1 reports the sortability metrics of the existing heuristics in Section 2, show-
ing that neither mitigate both Var- and R2-sortability. Appendix F provides results for denser graphs.

5.2 STRUCTURE LEARNING

Under the same weight and noise distributions, standardized SCMs and iSCMs have different implied
SCMs and generate qualitatively different datasets. Here, we study how this affects causal structure
learning in practice. For this, we evaluate Var- and R2-SORTNREGRESS (SR) (Reisach et al., 2021;
2024) as well as an SR variant that uses a random ordering (Random SR). In addition, we evaluate
representative algorithms from several approaches to learning structure from (co)variance information.
NOTEARS by Zheng et al. (2018) leverages continuous optimization to minimize an MSE loss, which
is affected by noise scaling (Loh and Bithlmann, 2014; Seng et al., 2024). GOLEM (Ng et al., 2020),
similar to NOTEARS, formulates causal discovery as a continuous optimization problem. Its EV and
NV versions assume equal and potentially unequal noise scales, respectively. CAM (Biihlmann et al.,
2014) searches over causal orderings and performs sparse nonlinear regression to find the parents,
while also estimating the noise scales. PC (Spirtes and Glymour, 1991) and GES (Chickering, 2002)
are approaches based on statistical independence testing and greedy search, respectively. Finally,
AVICI by Lorch et al. (2022) predicts graphs using a model pretrained on simulated data and is thus
optimized to exploit any artifacts that improve predictive accuracy. To investigate its susceptibility to
artifacts, we evaluate the public model checkpoints trained on standardized SCMs.

Figure 5 summarizes the results for linear and nonlinear systems with Gaussian noise (see Figure
18, Appendix F for non-Gaussian systems). The nonlinear mechanisms f; are samples from a
Gaussian process with squared exponential kernel. As expected, Var-SORTNREGRESS performs
best when SCMs are not standardized. Likewise, R2-SORTNREGRESS performs better on SCMs
and standardized SCMs, as iSCMs have R2-sortability close to 0.5 (Section 5.1). AVICI shows the
same trend, suggesting it may indeed be exploiting the correlation artifacts present in its training
distribution. Like Reisach et al. (2021), we find that NOTEARS performs best on unstandardized data.
However, and more interestingly, NOTEARS also performs better on iSCMs than on standardized
SCMs, especially in linear and larger systems. As we investigate later on, this gap may be explained
by the fact that the implied models of standardized SCMs violate the assumptions of NOTEARS more
strongly than iSCMs. Overall, we find GOLEM-EV shows the same patterns as NOTEARS, severely
underperforming on standardized SCMs and slightly improving the predictive accuracy on iSCMs.
CAM and GOLEM-NV, which do not assume equal noise scales, perform equally well or better on
standardized data, respectively, and generally better on iSCMs. The poor performance of GOLEM-NV
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Figure 5: Structure learning performance on SCM and iSCM data. F1 scores for recovering the
edges of the true graph. Box plots show median and interquartile range (IQR). Whiskers extend to the
largest value inside 1.5xIQR from the boxes. Left (right) column shows results for linear (nonlinear)
causal mechanisms with additive noise ¢; ~ N(0,1) and w; ; ~ Unif 4o 5 2 o) (Appendix E). For
every model, we evaluate 20 systems each using n =1000 data points.

on unstandardized SCMs was also observed by Reisach et al.
(2021). In addition, for approaches based on discrete search,

NOTEARS
(SCMs with impl. noise scales)

we find that, in particular on large systems, the PC and GES 1.0
algorithms perform better on iSCMs. Overall, performance 0.8
differences tend to be more pronounced for linear systems, 06
where the downstream variance accumulation in SCMs is =
unbounded. Appendix F reports the results for the structural 04
Hamming distance (SHD) and different weight ranges. 02
0.0
Properties of the implied SCMs When standardizing SCM
data, the implied SCM corresponds to the SCM that could 101
have generated the observations. Therefore, algorithms as- 0.81
suming that unstandardized SCMs generated the data will be g 051
susceptible to any assumption violations of the implied SCM, o
such as assumptions about the exogenous noise. Figure 6 (bot- 021
tom) shows the distribution of inverse implied noise scales 0.0
1/62 for the variables of the implied models (see Equation 2). 08 108 108 108

1/6?

I Original SCM
[ Tmpl. noise scales of std. SCM
I Tmpl. noise scales of iISCM

Since Var(e;] = 1 in our experiments, these inverse squared
noise scales are equal to the inverse variances of the full ad-
ditive noise terms. We find that standardized SCMs induce
inverse noise scales that are orders of magnitude greater than
those of iISCMs. This distribution is essentially the footprint
of the determinism in the depth limit discussed in Section
4.1. This observation also provides empirical support for our
earlier explanation for the improved performance of the PC
algorithm on iSCM data. The modes at 1/6? = 1 and at
1/62 > 1 in the iSCM plot correspond to root and non-root
nodes, respectively.

Figure 6: Implied Noise. Bottom
panel shows the distribution over in-
verse implied noise scales in the im-
plied SCMs for ER(100, 2) graphs
(kernel density estimate). Lines and
shading denote mean and standard
deviation. Top panel shows the per-
formance of NOTEARS on systems
with these noise scale statistics but
the same Var-sortability as SCMs
(see Appendix E.2 and E.5).

Figure 6 (top) shows the performance of NOTEARS when
isolating the noise properties of the implied models from the
fact that standardized SCMs and iSCMs are not Var-sortable.
For this, we construct SCMs that have the marginal variances
(and Var-sortability, here 0.99 on average) of unstandardized
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SCMs but the noise variances of the implied models by correcting their weights (see Appendix E.5).
NOTEARS performs better in such systems, suggesting that (i) the noise statistics may indeed explain
the performance difference on iSCM data, and (ii) Var-sortability may not be the only reason why
NOTEARS performs significantly worse on standardized data (Reisach et al., 2021). Conversely,
when the weight ranges of (standardized) SCMs are smaller, the phenomenon of exploding marginal
variances is less pronounced (Figure 19 in Appendix F.3). In this case, we indeed find that NOTEARS
performs similarly on standardized SCMs and iSCMs (Figure 15, left, in Appendix F.1).

This sheds light on previous benchmarking results, where MSE-based algorithms perform below
expectations despite perhaps not intending to evaluate the algorithms under model mismatch (e.g.,
Reisach et al., 2021; Kaiser and Sipos, 2021). For the MSE loss, Loh and Biithlmann (2014) and Seng
et al. (2024) show that smaller ratios of noise variances increase the magnitude of weights required
for the true DAG to be the unique minimizer. The MSE loss ultimately does not account for the
inverse variance factor in the Gaussian noise likelihood. Overall, the statistics of the implied models
of standardized SCMs are empirically further from SCMs with equal noise variances than their iSCM
counterparts.

6 CONCLUSIONS

We describe the iISCM, a one-line modification of the SCM that modulates the scale of interaction
between the causal mechanism f; and noise ¢; at each variable x;. Through several theoretical and
experimental results, we study its properties in relation to standard SCMs and its ramifications for
benchmarking causal discovery algorithms. To conclude, we highlight the following key takeaways:

Standardizing during the generative process removes sortability artifacts. When the functions
fi and the noise ¢; are, for example, sampled i.i.d. for each variable x;, SCMs exhibit artifacts that
are not removed when shifting and scaling the generated data. Our results in Section 5 show that
iSCM s are effective at removing Var- and R2-sortability. This makes iSCMs a useful complement to
structure learning benchmarks with SCMs, enabling a specific evaluation of the ability of algorithms
to transfer to real-world settings that do not exhibit R? artifacts. Despite the removed sortability
artifacts, causal discovery algorithms are able to infer nontrivial structure from iSCM data (Figure 5).

Standardizing post-hoc can lead to partial identifiability and degenerate implied SCMs. Scal-
ing the units of SCM data is not innocuous. Theorem 3 shows that mild knowledge on the distribution
of f; can identify edges in standardized SCMs that are typically not identifiable from observational
data. To our knowledge, our result is the first concerning the identifiability of G from the standardized
observational distribution of linear SCMs. This may make benchmarks, where similar assumptions
on f; often hold, trivial under standardized SCMs. Moreover, Figure 6 shows that standard SCMs
can collapse to modeling near-zero exogenous noise. Theorems 2 and 4 demonstrate that neither
property appears in the analogous iSCMs. Ultimately, (non)identifiability may be either a feature or
bug, depending on whether assumptions are verifiable in practice or a priori known during evaluation.

iSCMs are stable and scale-free, making them useful models beyond benchmarking. Beyond
data generation, the stable generative process of iSCMs might also provide insights for modeling,
e.g., large, temporal (Kilian, 2013; Pamfil et al., 2020) or physical systems. In iSCMs, the scale of
a causal mechanism f; and its unexplained variation ¢; are both unit-less and independent from its
position in the causal ordering (Section 3). If we think of each structural assignment as a physical
mechanism, energy conservation must be respected, since a mechanism can only output as much
energy as it receives from its inputs (including unexplained noise). Standardization may thus not be
completely unrealistic, since it naturally bounds the output scale of every mechanism.

Since each iSCM implies a standard SCM, iSCMs can also be viewed as a reparameterization of
SCMs that facilitates modeling and learning the functions f; on the same scale, e.g., under a shared
prior or level of regularization. Conceptually, iSCMs are related to batch normalization (Ioffe and
Szegedy, 2015), a technique used to stabilize the optimization of neural networks, which compose
sequences of functions like SCMs, by adding internal standardization. Overall, these properties may
make the iISCM a useful structural equation model beyond the benchmarking problem studied here.

10
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REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide code, configuration files, and the commands used to obtain
all the experimental results in this manuscript as supplementary material. They are also available
at: https://github.com/werkaaa/iscm. In Appendix E , we describe the experimental setup, including
the computational resources and wall time used to produce the results. Finally, we provide detailed
proofs of our theoretical results in Appendix C.
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A IMPLIED MODELS

In this section, we describe how to express the assignments of the observed variables of standardized
SCMs and iSCMs with a general additive noise mechanism

fi(x,&:) = fi(x) + &, (6)

in the form of (SCM), while sharing the same causal graph G and exogenous noise variables €. We
obtain the SCM form by moving the standardization steps into the causal mechanisms by linearly
rescaling f; and ¢;, such that each observed variable is only a function of observed variables and the
noise ¢;. Throughout this work, the implied (SCM) model denotes the specific construction given in
the following two subsections. For this, we assume that we can express the first two moments of the
system in closed form. Similar to the main text, we overload notation for both standardized SCMs

and iISCMs and write
wi = E[z;] and s; := +/ Var[z;] .

We also derive analytic expressions for the weights of the implied models of linear iISCMs defined by
Equation (1), which we later use in our proofs.

A.1 IMPLIED MODEL OF A STANDARDIZED SCM

Let x° be modeled by (Standardized SCM) with causal mechanisms defined by Equation (6). We
recall that x® are the observations obtained after standardizing x. Thus, we can rearrange x{ as

Ti = S5 + g
and substitute every unstandardized variable x; by a function of its standardized parents x;a(i) as
s Ti — i fi(xpa(i)) +ei — Wi fz (x;a(i) © Spa(i) + y’pa(i)) — i 1

T; = = = + —E&;,
Sq Si Si Si

where © denotes elementwise multiplication, and pi,,(;) and sp,,(;) are the vectors of the parent
means and standard deviations before standardization. Thus, the assignments of x*° in a standardized
SCM can be written as the SCM given by

z; = g; (Xpaqi)) + 07,
with implied noise scales 67 := 1/s; and implied causal mechanisms
fi(xga(i) © Spa(i) T Hpa(i)) = Hi
= Si
Ji— i

- if 7 is a root variable.
Si

if 7 is a non-root variable, and

P (x

S

i)a(i))

A.2 IMPLIED MODEL OF AN ISCM

Let X be modeled by (iSCM) with causal mechanisms defined by Equation (6). In an iSCM, X are
the observed variables and x are the latent variables. We can express every observation z; in terms of
its observed parents X, (;) as

G, = BT fiRpagi) +ei = pi_ fiRpagi)) — i N lei'
Si Si Si Si

Thus, the assignments of X in a iISCM can be written as the SCM given by
T = §i(Xpa(i)) + fici

with implied noise scales 51 := 1/s; and implied causal mechanisms

fi(ipa(i)) - i

fi— uf i

- if 7 is a root variable.
Sq

o if 7 is a non-root variable, and
9i(Xpa(i)) =
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A.3 WEIGHTS OF THE IMPLIED MODEL OF A LINEAR ISCM

Here, we derive the analytical form for the mechanisms of the implied model of a linear iSCM with
zero-centered, additive noise €;. This iSCM is given by
TZ ~ i
T = W, Xpa(i) + Ei and Tj = —F/—,
i i “pa(i) 4 i Var[a;i]

where ¢; satisfies E[e;] = 0 and Var[e;] = o2. We can write the above as

~ Wl Rpa() F € Djepa(i) Wiili +Ei Z

Wy 4 ~ 1
Ty = = Ij -+ Ei.
/ Var[z;] / Var[z;] iepati) +/ Var[z;] / Var[z;]

It follows that the implied SCM of a linear iSCM is also linear, with weights and noise variances
given by

2
~Gii and 2= )
Var|[xz;] Var[z;]

In the above, we can write the variance of x; explicitly as

Var[z;] = Var [ Z w; il —|—82} = Var { Z wj,ifj} + o}

j€pa(i) j€pa(i)

W s
~ g,
Wj,i =

=)

Z Z Cov[wk,iik, wj’ifj] + O'Z-2 8)

kepa(i) jepa(i)

Z Z wg;wj,; Cov[Ty, T;] + 0? ,

kepa(i) jepa(i)

[®)

where (1) follows from Bienaymé’s identity and (2) from covariance being bilinear. Substituting the
variance into the expressions for the weights and noise variances, we obtain

~ Wi
Wy = = —, 9
\/EkEpa(i) ZjEpa(i) Wk,iWj,i COV[J?k, xj] + 0;
2
57 7 (10)

D kepali) jepa(s) Whitsi Cov[Ty, T;] + a7

Finally, by construction, the variables X of an iISCM have unit marginal variances. Thus, when the
parents of Z; are pairwise independent, Equation (10) simplifies to

_ wj,i
2 2
\/Zjepa(n Wy T 0;

This independence condition always holds when the DAG G is a forest.

Wy,i

(1)

Efficient computation We can efficiently compute the implied model weights using a bottom-up
dynamic programming approach. This allows sampling data directly from the exact implied model
of an iISCM without resorting to empirical standardization statistics. Algorithm 2 describes the
procedure. We iteratively compute the weights and noise variances of the implied model following
Equations (9) and (10). At each iteration, we update the covariance matrix according to Lemma 1.
The algorithm processes the nodes in topological order, mirroring the proof by induction of Lemma 1.
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Algorithm 2 Computing the Implied Model Parameters of Linear iSCMs

Input: DAG G, weight matrix [W]; ; := w ;, noise variances o € R4

W < 0gxd

Y1y

7 < topological ordering of G

fori =1toddo
w < W. 5, > Edge weights ingoing to m;
Var[z,,]  w'Sw + o2 > Equation (8)

Wm —w/y/Varles,] > Equation (9)
G2, < o2,/ Varlzy,] > Equation (10)
for j = 1toido .

z:71'],‘11'71 — (Enj,:)TVV:,m

Eﬂ‘i,ﬂ']‘ <_ Eﬂ‘j,ﬂi

return implied weights 1V, implied noise variances &2

B INTERVENTIONS IN ISCMS

For an iSCM (S, P.), we can formalize interventions as changes to its causal mechanisms f;,
analogous to the common definition for SCMs (Peters et al., 2017). Specifically, let u; := E[x;]
and s; := \/Var[z;] be the mean and standard deviation of the latent variable x;. We define an
intervention as replacing one (or several) of the assignments to the latent variables as

i = hi(Xpa(i) €i),
for some function h;. Importantly, the statistics y; and s; used for the standardization operation

~ Tq — Mg
xX; =
Si

remain unchanged. Thus, if we intervene on mechanisms of iISCMs, the variables X may no longer
have zero mean and unit variance, and the perturbations of x; propagate downstream through the
causal mechanisms. We note that, under the above definition, intervening on an iSCM through a new
mechanism h; is equivalent to intervening on the implied SCM of an iSCM with the mechanism

hi(x,€) = 7]”()(’;) M

Appendix A.2 provides details on the implied models of iSCMs.

C PROOFS

C.1 DEFINITIONS

We define the key concepts used throughout our analysis. A path p;..; between v; and v; is a set
of directed edges that allows reaching v; from v; (and vice versa), not taking into account edge
directionality, and that joins unique vertices. We call a node a collider in a path if the node has two
ingoing directed edges in the path. We say that a path between v; and v; is unblocked if and only if
there is no node vy, that is a collider in the path (see Figure 10a). Finally, we use the term undirected
connected component to refer to any maximal subgraph of G in which any two nodes are connected
by a path containing only undirected edges (Wienobst et al., 2023).

C.2 EXPLICIT COVARIANCE IN LINEAR SCMS WITH UNIT MARGINAL VARIANCES
Lemma 1 (Covariance in linear SCMs with unit marginal variances). Let x be modeled by a linear

SCM defined by (1) with DAG G that satisfies Var[x;] = 1. Then, the covariance Cov[x;, x;] is
the sum of products of the weights along all unblocked paths between the nodes of x; and x; in G.
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Figure 7: Lemma 1 inductive step. If v; is before v; in the topological ordering, then all unblocked
paths from v; to v; must contain a parent of v; as the second to last node. To see this, suppose an
unblocked path from v; to v; would instead contain a child of v; as the last node. Then, there either
exists a collider on the path to v;, contradicting that the path is unblocked, or all edges in the path
point away from v;, implying that v; is a descendant of v; and contradicting the topological ordering.
Dotted lines represent unblocked paths (which may have common nodes). Solid lines represent edges.
v; may or may not be a parent of v;, which we illustrate with a blue arrow.

Specifically, for any i,j € {1, ...,d} such that i # j, it holds that

Cov|z;, x;] = Z H Wi m 3)

Pj=i€Pjwi (L,m)€pjmi

where Pj.; are all unblocked paths from x; to x; in G, and (I,m) € Djwi indicates that the directed
edge (1, m) is part of the path p;j;.

Proof. We will give a proof by induction on the number of vertices d = |V| in the DAG G. Without
loss of generality, we assume that the indices of the nodes are ordered according to some fixed
topological ordering 7, so m(j) < 7(4) if j < 4. By the unit marginal variance assumption,

Cov|x;, z;] = Var[z;] = 1. (12)

From now on and without loss of generality, we consider two arbitrary indices j < ¢. The covariance
between x; and z; is symmetric.

Base case (d = 2) If v; is not an ancestor of v; in graph G, they both must be root nodes, because
the edge v; < v; is the only possible edge when 7(j) < m(¢). Since x; and x; are root nodes, they
are independent and Cov|[x;, ;] = 0. Since a path of one edge cannot contain a collider, there are no
unblocked paths between v; and v;, so the RHS of Equation (3) is also 0.

Conversely, if v; is an ancestor of v; in graph G, v; is the only parent and ancestor of v;. This implies
that

Cov|z;, x| = Coviw; iz, + €, ;]
= wj,; Covla;, ]
= Wj,

where the last equality follows from Equation (12). This is exactly Equation (3) for a two-node graph.

Induction step (d > 2) Let us assume that Equation (3) holds for all graphs of size d — 1, and let
G have d nodes. We will apply the inductive hypothesis to the subgraph of the first d — 1 nodes in G
and show that the full DAG G including the d-th vertex still satisfies Equation (3). First, we note that,
since the d-th vertex is last in the topological ordering, it has no outgoing edges. Because the node
has no outgoing edges, it is not visited on any unblocked paths between v; and v; for 4, j < d, as vq
must be a collider in any path. Second, adding the node v, to a subsystem containing 1, ..., Zq4—1
results in no change to the joint distribution of x;, ;. Therefore, it has no effect on the covariance
between x;, ;. Hence, both sides of Equation (3) are unchanged by the presence of a node v, for all
1,7 < d and the equation still holds for all ¢, j < d.

We want to show that Equation (3) also holds for ¢ = d and any j < . For this, we first construct all
unblocked paths from v; to v;. First, we note that any unblocked path must go through the parents
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k € pa(i), because j < ¢ in the topological ordering (see Figure 7). Moreover, for any k € pa(i),
appending £ — 4 to an unblocked path p;., between v; and vy, creates a new unblocked path
between v; and v;. Hence, for ¢ = d and any j < 1, it holds that

Covlz;, z;] = Cov]| Z Wi Tk + €4, T5)
kepa(i)
= Z wg,; Covizy, z;]
kepa(i)

@wjﬁiCov[xj,xj]—i— Z wg,; Cov[zy, x;]

kepa(i)\j
Swiat Y w2 I wim
kepa(i)\j Pjok€EPjor (ILm)Epj ok
=wiit ) > we ]I wim
kepa(i)\j \Pior€Pjok (I,m)EPj ok
= Z 1k = jlw;; + 1[k # j] Z Wi i H Wi,m
kepal(i) Djesk€EPjek (I,m)€Epj ok

()

> 1w

Piei€Pjoi (L,m)Ep;j i

For step (1), consider two cases. If j ¢ pa(i), then w;; = 0 and the equality trivially holds. If
J € pa(i), then it holds by pulling the term for j out of the sum in the previous line. In (2), we apply
the inductive hypothesis to express the covariances in terms of a sum of products of weights. In (3),
we rearrange terms to pull the w; ; term into the sum over parents. In (4), we use the fact that the set
of unblocked paths from v; to v; corresponds to all paths from v; to any parent of v;, which is vy,
here, with an extra edge k — 7 appended, and a possible single-edge path directly connecting v; with
v; (if j € pal(i)).

This completes the induction step and the proof. O

C.3 BOUND ON THE FRACTION OF CEV

Theorem 2 (Bound on CEV; in linear iSCMSs). Let x be modeled by a linear iSCM (1) with DAG G
and additive noise of equal variances Var|e;] = 0. Suppose any node in G has at most m parents
and w = max; je(1,....ay|wi j|. Then, foranyi € {1,...,d}, the fraction of CEV for T; is bounded as

0.2

Proof. We begin by bounding the variance of the latent variables x; in iSCMs. Starting from Equation
(8), we can bound the covariances with a product of unit variances as

Var[:vi] = Z Z Wi, ;Wi COV[ij, ik] + o2

kepa(i) jepa(i)

%) Z Z wk,iwj,i+02

kepa(i) jEpa(i)

(3 )

Jj€pa(i)

2,2

< mfw +027
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where (1) uses Cov|[z;, 2] < 1 since Var[z;] = 1 and Var[z;] = 1, and (2) applies the Cauchy-
Schwartz inequality. Since we obtain x; from x; just by shifting and scaling the latter, we observe
that CEV¢[z;] = CEV¢[xz;]. Using the upper bound on the variance of z; and the definition of the
fraction of cause-explained variance in Equation (4)), we get

B Var[z; — E[z;|Xpa)]] Var(z; — w Xpa(s)]
71— 1=1— =1-
CEV¢[z;] = CEV¢[z] Var[z] Var[z;]
1 Varle;] _ o’ _ 072
= Var[xi] - Var[xi] — m2w2 + 0.2 .

C.4 IDENTIFIABILITY

In this section, we prove Theorems 3 and 4. We begin by deriving the covariances for the 3-node
example in Section 4.2 and then give the general proofs for forests. The proofs of both theorems
share the same underlying argument. We first derive the SCM forms of the original models, i.e.,
standardized SCMs in Theorem 3 and iSCMs in Theorem 4. By showing that the standardized SCMs
and iISCMs are SCMs with the same causal graphs G and observational distributions p(x), we can
leverage Lemma 1 to obtain the covariances between the observed variables in both model classes.
Ultimately, these covariances allow us to derive (non)identifiability conditions for the DAGs G in an
MEC underlying the original models.

Theorems 3 and 4 assume that the exogenous noise is sampled from a zero-centered distribution with
equal variance across variables. Since the results are based on the analysis of covariances, they also
hold with the assumption that IE[e;] # 0, but the zero-mean assumption simplifies notation. To derive
the results for iSCMs, we additionally assume that the noise is Gaussian (see Theorem 4) . When
referring to an undirected edge between nodes v;, v;, for example, in an MEC, we still denote the
edge with (v;, v;), but the ordering of the nodes is arbitrary.

C.4.1 3-NODE CASE

We begin by studying the 3-node example of Figure 3 in Section 4.2. Let «v;, 5, 7i, A\i € R be linear
function weights, and consider the following three causal graphs G belonging to the same MEC,
along with their corresponding SCMs and iSCMs.

G SCM iISCM
Toi=oix1+e2  (13) To:=mT1+ex  (14)
x3 = P17 + €3 T3 = M\ + €3

@ C @ T1 1= QoTo + €1 1= V%1 + €1
To = €2 (15) To = €9 (16)
T3 := oy + €3 T3 := AoZo + €3
@ Ty = Q3To + €1 x1 = y3T2 + €1
‘ < > ' < ) Ty = fyzz +e2  (17) Ty = A3T3 +e2  (18)
xr3 = €3 xr3 = ¢&3

In the following subsections, we derive the covariance matrices of each of the three systems, respec-
tively. This leads us to the equivalence presented in Equation (5) for standardized SCMs. Moreover,
we show that, for iSCMs, all three systems induce exactly the same observational distribution if and
only if Ay = Ao = A3 and y; = 72 = y3. These are the 3-node special cases of Theorems 3 and 4.
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STANDARDIZED SCM

To obtain the covariances between the observed variables in the standardized SCMs of Equations
(13), (15), and (17), we first show that the assignments to the observed variables in standardized
SCMs can be written in the form of linear SCMs over the same causal graph, which allows us to use
Lemma 1. In all three systems, every vertex has at most one parent. When the node v; is the only

parent of v;, under our assumptions on the noise, we have z; = |/ Var|x ]]x so the assignment of
x; can be written in the form of an SCM over x® as
i Cwjamy+e; | Wi/ Varlzglel + g Var[z } st

S .= = = = 19
i V/Var[z;]  +/Var[z;] Var|z;] el Var[z it \/Var [z] -9

To use Equation (19), we first need to compute the marginal variances of the unstandardized observa-
tions x;. For the standardized SCMs, these marginal variances are, respectively:

for Equation (13): for Equation (15): for Equation (17):

Var[z1] = o? Var[z1] = (a3 + 1)o? Var[z1] = (a3(83 + 1) + 1)o?
Var[zo] = (af +1)o” Varzo] = o Var[zz] = (63 + 1)o?

Var[zs] = (B7(af +1) +1)0®  Var[zs] = (85 + 1)0® Var[zs] = o2

Given Equation (19) and the marginal variances, we know the weights of all three implied SCMs
explicitly. Since all implied SCMs are linear, have unit marginal variances, and share the same causal
graph, we can apply Lemma 1 and obtain the covariances of the observational distributions in the
original models:

for Equation (13): for Equation (15): for Equation (17):
Cov(zf,z5] = —=L Cov(z], z5] = —=2 Cov(z],z3] = « 2
1,42 m 1,42 \/@ 1,42 3 a%(ﬁ§+1)+l
s 48— a1B1 s p81— 2B s 48— a3
Cov|z?, z3] e Covlzi, z3] T3 5D Cov|z?, z3] [oZ(B2 1111
Cov(z5,z3] = b1 ol Cov[zs, 25] = —2 Cov[zs, 23] = —A2
2)43 Brf(&%leH’l 2,43 \/BST 2)43 \/ﬁ‘%ﬁ

In the standardized SCM (13), the causal graph is v; — vy — v3. Hence, the edge directions of the
DAG G are consistent with the direction of increasing absolute covariance if and only if

a+1

|Cov[af, 23] < |[Cov([z3, z3]| B ESES

1
a%Jrl

a1+1
a2+1 < Bl et

of(BF(af +1) +1) < Bi(af + 1) (20)

M"‘M‘*‘Oﬁ <M+251041+»31

af < Bi(ai +1)

2+1<61

IHIHIIII

In the above equivalences, we always multiply or divide by quantities greater than 0, so the direction
of the inequality does not change, and transformations are equivalent. For the standardized SCM (17)
with causal graph v; < ve < vs, we get an analogous condition for the edges to be aligned with the
order of increasing absolute covariance when following the same algebraic manipulations:

83

|Cov|xs, z5]| < |Cov[z3,z]]| <= BT < ag.
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We make use of both of these conditions in Section 4. Since z/(z + 1) < 1 for any z > 0, the
right-hand sides of both conditions are true if all weights are greater than 1. In this case, the absolute
covariance increases downstream in all SCMs of Equations (13) and (17). Hence, among these two
systems, only the DAG G whose edges aligns with the covariance ordering in the observed p(x®) can
induce p(x®), and we can conclude that the other DAG is not the true causal graph.

ISCM

To derive the observational distributions of the iISCMs in Equations (14), (16), and (18), we proceed
in the same way as we did for standardized SCMs. We first show that the iSCM is an SCM with a
specific set of mechanisms and then apply Lemma 1 to obtain the covariances between the observed
variables. To see this, we write the assignment of x; as

~ x; wj’l‘if} + & Wy i . E;

£ = - — 7+ 1)

\/Var[z;] \/Var[z;] \/Var[z;] ’ Var[z;]

As before, using Equation (21) requires first computing the marginal variances of the latent variables
z;. For the iISCMs defined by Equations (14), (16), and (18), they are given by

for Equation (14): for Equation (16): for Equation (18):
Var[z1] = o? Var[z1] = 73 + o Var[z1] = 73 + o>
Var[zs] =47 + 0 Var[z] = o2 Var[zz] = A} + o2
Var[zs] = A} + o2 Var[zs] = A3 + o Var[zs] = o2

Given Equation (21) and the marginal variances, we obtain an explicit form for the weights of all three
implied SCMs. Since the implied SCMs are linear, have unit marginal variances, and share the same
causal graph, we can apply Lemma 1 and obtain the covariances of the observational distributions in
the original models. It turns out that the observational distribution of all three ground-truth systems
(1, T2, Z3) in Equations (14), (16), and (18) is a multivariate Gaussian with the same covariance
matrix, with the diagonal elements equal to 1 and the off-diagonal elements given by

COV[%l,%Q} = \/%
~ o~ ViAi
Cov|[zy, 73] = > > (22)
VX +02) (7] +0?)
Ai
COV[fIVQ, fg} = -

VA? 4 o2

Since the observational distribution of all three SCMs is a zero-centered multivariate Gaussian, the
distributions are equal if and only if their their covariance matrices are identical. The covariances
are equal if and only if Ay = Ao = A3 and 71 = 72 = 3, because the function f(z) = z/v/2% + o2
appearing in Cov[Z1, Z2] and Cov[Zs, T3] of Equation (22) is injective for any o > 0, which means
that distinct weights z are mapped to distinct covariances. Therefore, the three node linear iSCMs
in the above MEC share the same observational distribution if and only if they also share the same
weights for each edge, regardless of edge orientation.

This implies that the three DAGs G in the MEC of Equations (14), (16), and (18) are not identifiable
from p(x): given p(X) induced by an iISCM with DAG in this 3-node MEC, the two other DAGs with
the same linear function weights induce the same distribution p(X).

C.4.2 FORESTS

In this section, we generalize the above partial identifiability result for standardized SCMs to arbitrary
forest DAGs (Theorem 3). After that, we similarly generalize the nonidentifiability of iSCMs to
forests (Theorem 4). Our results concern the identification edge directions in an MEC represented by
its partially directed graph G = (V, &), where £ contains both directed and undirected edges.
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(a) Subsystem 1 (b) Subsystem 2 (c) Subsystem 3

Figure 8: Proof subcases of Lemma 5. Three possible subgraphs in a chain without a collider.

STANDARDIZED SCM

Before proving the main theorem, we extend the 3-node example to chains of arbitrary length. We
show that all but at most one edge in the MEC can be correctly oriented from observational data
using the assumption on the support of the weights. Analogous to the three node case, we then use
this to prove a similar result for forest graphs.

Lemma 5 (Orientation of edges in undirected chains of standardized SCMs). Let x° be modeled by a
standardized linear SCM (1) with chain DAG G = (V, £) , where Var[e;] = o2 for non-root nodes
and |w; j| > 1 for all i € pa(j). Additionally, suppose G contains no colliders. Then, given p(x°)
and the partially directed graph G representing the MEC of G, we can identify all but at most one
edge (v;,v;) of the true DAG G in each undirected connected component of the MEC G. The possible
undirected edge has the smallest absolute covariance of all variables connected by edges in the MEC,
satisfying |Cov(z?, z5]| < |Cov(z}, x}]| for all (k,1) € €\ (i, ).

Proof. Throughout the proof, we label the nodes v; € V such that v;_; and v;; are its neighbors
fori € {2,...,d — 1}. We start with the analysis of three arbitrary, consecutive vertices in a chain
graph. The three possible subgraphs are depicted in Figure 8. We can always find p € R such that the
variance of the latent root of this directed subgraph is p?o2. This relaxed assumption on specifically
the root node allows for the root of the subgraph to have potential parents outside the subgraph, or to
be the root of the whole chain, when later using this lemma to prove the main theorem.

We will follow similar derivations as in Section C.4.1. Specifically, we first write the observed
variables of the standardized SCM in SCM form, and then invoke Lemma 1 to obtain the covariances
of the observed variables. To use Equation (19), we again need to compute the marginal variances of
the variables before standardization. For the subsystems in Figures 8a and 8b, these are, respectively:

for Figure 8a: for Figure 8b:
Varfe,] = p?o? Varfe:] = (w? 1 p* + 1)0?
Var[zit1] = (w},;41p° + 1)0° Var[z;1] = p?c?

Var[zito] = (Wii1,i42(wii1p” +1) + 1) Var[zie] = (wiy i40p” + 1)0°

By substituting the expressions for the marginal variances into Equation (19), we obtain the weights of
the implied models of the standardized SCM. Using Lemma 1, we obtain the covariances between the

observed variables z§_,, z7,z;, ;. By construction, the marginal variances of the observed variables

are equal to 1. We treat each subsystem separately:

Subsystem 1 (Figure 8a) Given the marginal variances and Lemma 1, the covariances are

Ws i+1P
\/ w? i p? +1

S S
Cov(z,q, zio] = wi+1,i+2\/

Covizj,zi ] =

w?; o p? +1
wi2+1,i+2(wi2,i+1p2 +1)+1
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Following the same algebraic manipulations as in Equation (20), substituting oy := w; ;4-1p and
B1 := Wj41,i+2 in the derivation, we obtain

2 2
Wi 1P

|COV[I’§,I’§+1]| < |COV[I;§+1,‘T?+2” < m

<Wli g (23)

The left-hand side of the right-hand inequality in Equation (23) is upper-bounded by 1, similar to
the 3-node case. Therefore, if we assume that |w; 11 ;42| > 1, it must hold that |Cov[z}, 7, ]| <
|Covl[x;, |, x7,,]| for any choice of p.

Subsystem 2 (Figure 8b) Given the marginal variances and Lemma 1, the covariances are

Wi+1,iP

\/wi2+1,7,'p2 +1

Wi+1,i+2P

\/ wz'2+1,i+2p2 +1

The ordering of the covariances in this case depends on the specific choice of the weights.

Covlef, 23,4] =

Cov[xf+1, $f+2] =

Subsystem 3 (Figure 8c) Following steps analogous to the symmetric subsystem 1, we conclude
that, if |w; 11 ;| > 1, it must hold that |Cov[z§, 7, ]| > |Cov[zf, ,,zf,,]| for any p.

Given the above, we can now study the relationship between the underlying DAG G and the absolute
covariance magnitudes under the assumption that |w; ;41| > 1. We will use the fact that, if the chain
does not contain a collider, then there can be at most one node contained in edges pointing in opposite
directions.

First, we treat the case where there exists a vertex v; such that [Cov([z;_,, z]| = |Cov[z], zf, ]|,
that is, where some neighboring covariances are equal. If this occurs in a 3-node subsystem, only
subsystem 2 can describe the true graph. To be consistent with the assumption that there are no
colliders in the graph (see Lemma 5), all other edges must be oriented in a direction away from v;,
which completely identifies the graph G in the MEC.

In the second case, |Cov[z$_,, z%]| # [Cov[z$, x%, ]| holds for all nodes v; that have two neighbors
in the path. Let xf, z7,, be the unique pair of consecutive variables in the chain that minimizes
|Cov[zf, 27, 1]|. We can show that this pair is the unique minimizer using a proof by contradiction.
Suppose there exist two pairs =7, x7,, and 5, 25, such that |Coy[acf, zi ]| = |Cov[zs, 25 ,4]| is
the minimum covariance. Without loss of generality, let j + 1 < 4. Then, the triple z_,, z}, 7,
is consistent with only subsystems 2 or 3 based on their relative covariances, which implies that
we must have v;_; < v;. Using the fact that we have no colliders, we can then orient all edges
Vg—1 < vg for 1 < k < 4. Thus, we can find a subsystem containing v;, v;1, vj+2, which has been
already oriented as subsystem 3, meaning |Cov(z}, z] ]| > |Cov[z], 2], ], a contradiction.

Given x§, x7 | is the unique pair of consecutive variables that minimizes |Cov|[xz7, 27, ]|, we now
show that we can orient all edges except (v;, v;11). We will do this in two parts. First, we show that
one can orient all edges (v, v;41) with j < ¢, and then we show that we can do the same for all
edges (vj,vj4+1) with j > 4. If ¢ > 1, consider the subsystem v; 1, v;, v;41. Since |Cov|[z]_4, z7]| >
|Cov[z, 27, ]|, only subsystems 2 and 3 are possible for this subgraph. We can therefore orient
vi—1 + v;. Similarly, if © < d — 1, by a symmetric argument on v;, v;t1, V;+2, We can orient
Vi+1 — V2. Since the graph cannot contain colliders, all other edges must be oriented as v; < vj41
for j < 4, and v; — v;y4q for j > i. In other words, all edges except (v;,v;+1) point away from
the two vertices v;, v;+1, and one of the two variables must be the root of the chain. Therefore, if
|Cov[z$_y, 23] # |Cov[z], x5, ]| holds for all vertices v; that have two neighbors, then there exists
a unique covariance minimizing pair 7, 7, |, and all edges except (v;, v;41) are oriented.

The two cases above are exhaustive, and in the worst case at most one edge (v;,v;j41) is left
unoriented in the chain. This edge always corresponds to the minimizer of |Cov([z?, 2% ]| This
completes the proof.
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Remark From the proof of Lemma 5, it follows that if we are able to orient all the edges in the
chain, then the root of the chain is the node joining the two edges with minimum absolute covariance.
When we orient all but one edge (v;, v;+1), the root node of the chain is either v; or vj.

We can extend Lemma 5 to forest graphs. For this, we will make use of the first Meek rule (Meek,
1995). The first Meek rule concerns an MEC G, containing the undirected edges (v;, v;), (v;, vg) but
not the edge (v;, v). It states that, if one can orient v; — v;, we must have v; — vy.

Theorem 3 (Partial identifiability of standardized linear SCMs with forest DAGs). Let x® be modeled
by a standardized linear SCM (1) with forest DAG G, additive noise of equal variances Var|e;] = o2,
and |w; ;| > 1 for all i € pa(j). Then, given p(x®) and the partially directed graph G representing
the MEC of G, we can identify all but at most one edge of the true DAG G in each undirected connected

component of the MEC G.

Proof. The undirected parts of an MEC G are disjoint undirected connected components. Orienting
the edges in all these undirected connected components without introducing a v-structure produces
a valid DAG G in G (Andersson et al., 1997). Each undirected connected components represents a
Markov equivalence class of its own (Andersson et al., 1997). Thus, to prove the theorem, we consider
these undirected connected components independently with respect to the rest of the graph and show
how to orient the edges in each undirected connected component.! In the following argument, we
therefore consider G to be a single undirected connected component, with no directed edges by
definition, and show that we can orient all but one edge in G. This argument then extends to all
undirected connected components of the original MEC G, implying the statement made in Theorem 3.

If G is an undirected connected component with no directed edges, we only have to consider SCMs
with a ground truth DAG G that are members of this MEC G to distinguish among possible edge
orientations in G. In the case of undirected trees, the ground-truth DAG G must be a tree with no
colliders and the same skeleton as G, since any other DAGs would belong to a different MEC.

We give a proof by strong induction on the number of vertices |V| in the MEC G. The base case of
the induction argument is an MEC with |V| = 2 nodes. This case holds trivially, since this MEC can
contain at most one undirected edge. For the inductive step, we consider an undirected tree MEC G
with |V| = d and assume that we can orient all but one edge of undirected tree MECs with |V| < d.

Our argument will proceed by considering the longest chain of the undirected tree G. We will use
Lemma 5 to orient all but at most one edge in this chain and then apply the first Meek rule to possibly
orient additional edges in G outside the chain. After orienting these edges, we show that we reduced
the original problem of orienting all but one edge in G with || = d to orienting all but one edge in a
single undirected connected component that has strictly fewer than d nodes. This allows us to apply
the inductive hypothesis and complete the proof (see Figure 9).

Consider a longest undirected chain Go = (V¢, £¢) that is a subgraph of the undirected tree G. Let
G refer to the directed subgraph of the DAG G induced by considering only the vertices V. We
label the & vertices in V¢ as vy, ..., vy, with undirected edges (v;, v;41) € € foralli € {1,...,k—1}.
The nodes vy, vy, can have no undirected neighbours in G outside the chain, because otherwise we
could construct a longer chain in G.

The only vertex in V¢ that can have a parent in the DAG G outside the chain G¢, that is, in V\V¢, is
the unique root of G¢. To see this, we first note that all nodes v; have at most one parent in G, because
any v; with |pa(v;))| > 1 in G would be a collider, but G contains no colliders. Since non-root nodes
in G¢ have an in-chain parent, they cannot have a parent outside of V. Therefore, besides the root
node of G¢ via its potential outside parent, G is a completely disconnected subgraph from the rest
of G. This implies that we may treat G as a separate standardized SCM with undirected chain MEC,
in which the potential parent of the root of G¢ is modeled as part of the exogenous noise of the root.
This allows us to apply Lemma 5 to the variables of the subgraph G¢.

'Orienting edges of an undirected connected component that touch a directed edge in G never introduces
an additional v-structure. If a directed edge pointed into the undirected connected component, the undirected
edge downstream would have had to already be directed in G by the first Meek rule. Hence, all directed
edges bordering the undirected connected component must be oriented away from it, and none of the possible
undirected edge orientations creates a new collider at the border node. This implies that all undirected connected
components in G are upstream of the colliders and directed subgraphs of G.
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Figure 9: Inductive step of the proof of Theorem 3. Ground-truth DAG G underlying an undirected
connected component G in some given MEC. The nodes Vo = {v1, ..., vy} are a longest chain in G.
Using Lemma 5, we can orient all edges in G except possibly (v;, v;4+1) (blue). Edges like (v;—1,u)
are oriented by the first Meek rule. After Lemma 5, we are left with either the single undirected tree
of v; (left shaded tree) or the single undirected tree consisting of (v;, v;4+1) (blue) and both undirected
trees of v; and v;11 (both shaded trees). Either v; or v; 1 must be the root of G¢. In this specific
example, v; is the root of G¢ and is therefore the only node that can have a parent outside G¢. Any
node in G can have directed, outgoing edges to children in a (possibly non-forest) MEC the undirected
connected component G may be a subgraph of.

By applying Lemma 5 to G, we can orient all but at most one undirected edge in G. We split the
resulting analysis into the two cases of Lemma 5 leaving either O or 1 undirected edge. In the first
case, we can orient all edges in G- with Lemma 5. In this case, we know that the root of G is the
node v; (see Remark of Lemma 5). By the first Meek rule, we can recursively orient all additional
edges in G outside of Ge away from v;, except for the subtrees of G connected to v; itself (Figure
9). This leaves at most a single connected undirected subtree containing v; and strictly less than d
vertices.

In the second case, we orient all but one edge (v;, v;4+1) in Go by applying Lemma 5. In this case,
we know that the root of G¢ is either the node v; or v; 41 (see Remark of Lemma 5). Similar to
the first case, we can recursively use the first Meek rule to orient all additional edges in G pointing
away from v; and v;41, except for the subtrees of G connected to v; and v;; itself. Since v; and
v;41 are connected by an undirected edge, we are left with a single connected subtree containing the
undirected edge (v;, v;41) that is strictly smaller than before.

In both cases, we orient at least one undirected edge of G, because the longest undirected chain
in G with |V| > 2 has at least length 2. We always obtain at most a single undirected connected
tree component with strictly less than d vertices, allowing us to apply the inductive hypothesis and
complete the proof.

O

ISCM

Theorem 4 (Nonidentifiability of linear Gaussian iSCMs with forest DAGs). Let X be modeled
by a linear iSCM (1) with forest DAG G and additive Gaussian noise of equal variances Var|[e;].
Then, for every DAG G’ in the MEC of G, there exists a linear iSCM with DAG G’ that has the same
observational distribution as X, the same noise variances, and the same weights on the corresponding
edges in the MEC.
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(b) Second subcase (More than one parent in G’) (c) Second subcase (A single parent in G')

Figure 10: Proof subcases of Theorem 4. (a) Path with a collider. In other words, a path blocked
by an empty set. In the case of forests, this configuration implies that v; and v; are d-separated. (b)
Unblocked path connecting v; and v; with one of the path nodes having a parent both in the path and
outside the path. The weight wy, ;, influences the weight w; j, in the implied model of the iSCM. If this
structure is present in a forest, it has to be present in other graphs in the same MEC. (c) Unblocked
path connecting v; and v; with the only parent of v}, being part of the considered path. The weight
wy,, depends only on wy i, irrespective of the edge direction.

Proof. Because we consider linear iISCMs with Gaussian noise, the implied model is a linear SCM
with additive Gaussian noise (see Appendix A.2). Hence, the observational distribution is a multi-
variate Gaussian with mean zero. In iISCMs, the marginal variance of an observed variable is always
1. Hence, we prove the statement if we show that for all z;, Z; in the iSCM with graph G, and the

corresponding 77, z’; in the iISCM with graph G' = (V, &’), Cov(z;, 7;] = Cov|a, 7).

Let :E; and :f; be the random variables associated with the nodes v; and v; from G’, respectively. We
consider two cases. First, if there is no path between v; and v; in the skeleton of G ’ then there is no
path between v; and v; in the skeleton of G and hence Cov[z;, 7] = Cov[z}, 7] = 0. In the second
case, there is a path between v; and v; in the skeleton of G !, so there also exists a path in the skeleton
of G, as both graphs have the same skeleton. Due to the acyclicity of the skeleton in forests, this path
is the only one connecting v; and v; in both G and g'.

We further break this second case into two subcases. In the first subcase, this path contains a collider
in G as shown in Figure 10a. Because the skeleton cannot have undirected cycles under the forest
assumption, this collider forms a v-structure. G’ € G implies that the same v-structure must be
present in G. Hence, v; and v; are d-separated in both G and G ’. By the global Markov condition,
this implies that 7} and 7’; are independent, and that ; and 7; are independent. This implies that
both Covl[z;, ] = Cov[z;, 7;] = 0.

In the second subcase, there exists an unblocked path between v; and v; in both G and G'. Here, we
denote the weight matrix associated with both iSCMs by W := [w; ;], with W being symmetric, so
that w; ; = w, ; is the linear weight of the edge (i, j) regardless of its orientation in the graph.

We now derive the analogous weights W, W’ in the implied SCMs for G, G’ respectively. Ultimately,
we will demonstrate that the implied SCMs have the same weights. Specifically, we will show that
Wk, = ﬁ;c’ ;- Given this, Lemma I implies that both iSCMs have the same covariance matrix over the
observed variables.

Without loss of generality, since the node labelling is arbitrary, let v have at least as many incoming
edges as v; in G'. We divide the analysis into two cases: vy having only 1 parent in G’, and vy having
more than 1 parent. The node v must have at least one parent, since at least one of vy, v; have an
incoming edge in G’, and we chose vy, to have at least as many incoming edges as v;.

More than one parent in G’ We know that any collider in G’ will appear as part of a v-structure in
G due to the forest assumption, and therefore will also be a collider in G. Therefore, if vy, has more
than one parent in G’ (see Figure 10b), all pairs of edges incoming to vy, will form v-structures, so v
must have exactly the same set of parents in G.
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Figure 11: Illustrating Theorem 4 for trees in the same MEC. Covariance matrix of observed
iSCM variables for two example forests belonging to the same MEC with the same weights assigned
to the edges of the skeleton.

Moreover, any two parents of vy, are d-separated in G and G’ by the forest assumption, since the
blocked path going through vy, is the only path connecting them. By the global Markov condition,
the parents are pairwise independent. Hence, we can use Equation (11) to compute wy, ;, {E;% ;- Since
the parent sets are the same between the two graphs, and W is shared between the two iSCMs, the
weight associated with the edge (I, k) in both graphs in the implied models is given by

wy k

\/Zu»’:‘pa(k) wz,k + o?

(24)

~ ~/
Wik = Wy =

A single parentin G’ Let (I, k) be the only incoming edge to vy in G’, as depicted in Figure 10c.
Then, the edge connecting v; and vy, in G is either the only incoming edge to vy, or the only incoming
edge to v;. To see this, suppose that it was not the only incoming edge to vy, or v; in G. This would
make vy, or v; a collider that would be common to both graphs, implying that v or v; would have at
least two parents in G’. We operate under the assumption that vy, has at least as many parents as v;, so
it would imply that vy, has more than one parent, contradicting the assumption we made for case we
consider in this paragraph. Irrespective of the direction, the weight associated with the edge (I, k) in
the skeleton of both graphs in the implied model is, similar to Equation (21), given by

Wi,k

,/wlz,k + o2

Equations (24) and (25) show that, for the SCM form of each iSCM, the edges connecting the
same nodes irrespective of their direction in G’ and G have the same weights. By Lemma 1, the
covariance between any z; and Z; can be expressed as a product of the weights in the implied SCM

corresponding to the edges on the path between v;, v;. Hence, Cov(z;, 7;] = Cov|z}, 7}]. O

Wy gy = T} = (25)

Figure 11 shows an example for Theorem 4 for two trees from the same MEC.

Remark In Figure 12, we empirically demonstrate that Theorem 4 no longer holds if we drop the
forest assumption. For data generated from an iSCM and two graphs from the same G with the same
weights assigned to the skeleton edges, we observe that the estimated covariances differ. The two
systems entail different observational distributions.

D BACKGROUND ON RELATED WORK

D.1 HEURISTICS FOR MITIGATING VARIANCE ACCUMULATION

Here, we review existing heuristics for avoiding the exploding variance in structure learning bench-
marking with linear SCMs as defined in Equation (1). We also describe how these heuristics limit the
causal dependencies that can be modeled in terms of the correlations among the SCM variables or
their cause-explained variance, both of which do not occur in linear iSCMs. Finally, in Figure 13 we
show that the heuristics fail to induce data that is both not Var-sortable and not R?-sortable.
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Figure 12: Non-forest counterexample for Theorem 4. Covariance matrix of observed iSCM
variables for two non-forests belonging to the same MEC with the same weights assigned to the edges
of the skeleton.
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Scaling weights by the inverse weight norm Mooijj et al. (2020, Section 5.2) sample the edge
weights in linear SCMs as w; ; ~ Unif 1 [0.5,1.5]. To achieve a comparable variance of each variable
x,; in the SCM, they propose re-scaling the sampled weights prior to the data-generating process as

— Wiy .
2
\/1 + ZiEpa(j) Wy j
If all parents of x; are i.i.d. Gaussian with variance 1, this adjustment ensures that the variance of z;
is similar for all z-;. However, this approximation does not take into account the covariances of the
parents. Moreover, since Var|e;] is unchanged, the scaling limits the strength of the causal effect

that parents can have on x;. For example, when x1 = ¢; and x2 = wx; + &2 with Var[ej] =1as
for Mooij et al. (2020), the adjusted weight is w’ = w/v/1 + w? < 1. Thus, for any w # 0, we have

Wy, 5

/! !/
|Corr[xy, z2]| = [Covler, wes + e = [l < LI 0.707.
VVarfe;] Varfw'e; + 2] Vw2 +1 V2

This is the maximum correlation between neighbouring variables that any SCM can model under the
proposed re-scaling when Var|e;] = 1, since additional parents decrease the parent-child correlations.
By contrast, iSCMs can model any level of correlation by sampling arbitrary values of w; ;, while
guaranteeing unit-variance observations x;. Intuitively, iSCMs achieve this by standardizing x; after
the exogenous noise ¢; is added to the endogenous contributions of the parents x,,(;), while weight
scaling is done before ¢; is added to x;.

Scaling weights by the incoming variance Squires et al. (2022, Section 5.1) sample the weights
of linear SCMs as w; ; ~ Unif [0.25, 1.0]. Given the initial edge weights, they propose adjusting
the weights during the generative process by first estimating the total variance 62 that the parents of
x; contribute to z; from samples drawn under an initial level of additive noise with Var[e;] = 1 and
then re-scaling the weights as

Wi j <

When using additive noise with Var[e;] = 0.5 to generate the actual samples, this scaling results in
Var[z;] = 1 with a constant fraction of cause-explained variance CEV¢[xz;] = 0.5. In benchmarks,
however, we may be interested in evaluating SCMs with arbitrary levels of cause-explained variance.
iSCMs allow this by construction. Contrary to Squires et al. (2022), iSCMs scale the variables
x; rather than the weights w; ; while leaving the exogenous noise €; unchanged, which enables
modeling arbitrarily small or large levels of unexplained variation.

D.2 SORTABILITY METRICS

In this section, we describe the definition of a sortability metric as introduced by Reisach et al. (2024),
which we use in Section 5. For a function 7, 7-sortability assigns a scalar in [0, 1] to the variables x
and graph G (with weight matrix Wg) as

d : i
Yot Zps_,teW;; incr(7(x, s), 7(x, 1)) . 11 %fa <b
< where incr(a,b) = ¢ 5 ifa=0b
>ic1 Zps_newg 1 0 ifa>b
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Figure 13: Sortabilities for data generated according to heuristics that aim to remove artifacts.
Weight ranges were assumed as in the original papers: w; ; ~ + Unif|q 5 1 5] for Mooij et al. (2020),
w; j ~ £ Unif{g.25,1.9) for Squires et al. (2022). For every model, we evaluate 100 systems each
using n =1000 samples. Lines and shaded regions denote mean and standard deviation respectively.

and WZ is the ¢-th power of the adjacency matrix Wy and ps_,; € W{ if and only if at least one
dlrected path from v, to v; of length ¢ exists in G. If 7(x,t) = Var ;vj we obtain Var-sortability
from Reisach et al. (2021). If

Var[z; — Elz|xq1,.. a1\ g1 ]]

T(x,t) = R*[z¢] = 1 — Var[z] ,

we obtain R2-sortability. Estimating R?[z;] requires performing regression of x; onto X{1,...d}\{t}-

D.3 STRUCTURE LEARNING ALGORITHMS

To complement the interpretation of the results in Section 5, we provide some background on the
structure learning methods we evaluate.

NOTEARS (Zheng et al., 2018) NOTEARS uses continuous optimization to minimize the regularized
mean-squared error (MSE) between the the variables modeled by a linear SCM and the observations,
while enforcing a differentiable acyclicity constraint. The objective function of NOTEARS is given
by F(W) = ||X — XW||%/2n + A||[W]||1, where || - || and || - ||; are a Frobenius and ¢; norm
respectively. When the objective is minimized, weights below a fixed threshold are set to zero.

AvicI (Lorch et al., 2022) AVICI is an amortized variational inference method that approximates
the posterior distribution over causal structures given a dataset through a pretrained inference model.
The variational approximation of AVICI uses a fully-factored product of Bernoulli distributions for
every possible graph edge. The inference model is a neural network that predict the variational
parameters of the Bernoulli distributions by minimizing the expected forward KL divergence between
the true posterior and the approximation. To train the inference model, AVICI can be optimized on
any training distribution of (synthetic) dataset-graph pairs. Lorch et al. (2022) publish the pretrained
parameters of inference models trained on standardized SCMs with linear and nonlinear mechanisms,
which we evaluate in this work.

SortnRegress methods (Reisach et al., 2021; 2024) The SORTNREGRESS methods order the
vertices by a chosen statistic and sparsely regress every node on all of its predecessors in the obtained
order. They use Lasso regression with the Bayesian Information Criterion to learn the regression
function for a given variable. Var-SORTNREGRESS uses estimated marginal variances as the sorting
criterion. R2-SORTNREGRESS uses R? coefficient of determination estimated after performing a
regression of every variable onto all remaining variables. RAND-SORTNREGRESS orders the vertices
randomly.
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E EXPERIMENTAL SETUP

E.1 DATA

Causal mechanisms We consider systems with additive noise, where
fi(x,&:) = hi(x) + €i,

for a chosen function h;. The LINEAR systems used in this experiments have causal mechanisms as
defined in Equation (1). To model nonlinear systems, we use smooth nonlinear functional mechanisms
as used by Lorch et al. (2022). Specifically, the function h; that models the relationship between z;
and its parents is sampled from a Gaussian Process

where k is a squared exponential kernel k;(x,x’) = ¢ exp (—||x — x'||3/2{?) with output and
length scales ¢; and [; respectively. We can approximately express the function sample h; analytically
using random Fourier features (Rahimi and Recht, 2007) by sampling

M
hi(x) = cin/ & Za(i) cos (—“’(;z'x + (5(i))
j=1
where oY) ~ N(0,1), w® ~ N(0,T), and 6 ~ Unif [0, 27]. In this work, we use M = 100.

Generating a random model Following prior work (Section 2), we sample random systems in
any simulation performed in this work by first drawing a graph G from the specified random graph
distribution. Given the graph G, we sample function parameters of the structural mechanisms over G.
For linear systems, we sample w; ; ~ Unif [a, b], where a, b are fixed, i.i.d. for every graph edge.
Similarly, for nonlinear systems, for every graph vertex, we draw the length scales I; ~ Unif]ay, b;]
and output scales ¢; ~ Unif[ag, b2] with predefined ay, by, az, ba.

Sampling data from a model Given a graph G, noise distribution P., and a set of functions
{f1,..-fa}, we sample n datapoints from an SCM by traversing G in a topological ordering. For every
vertex v;, we draw a noise sample ¢; ~ P . The sample for z; is then deterministically computed
by f; from the exogenous &; and the parents of ;. To sample from a Standardized SCM, we draw a
dataset from an SCM and standardize it. To sample from an iISCM, we use Algorithm 1.

E.2 EXPERIMENT CONFIGURATIONS

Sortability For Figures 4a, 16a, and 17a we generate ErdGs-Rényi graphs ER(d, k) (ErdGs and
Rényi, 1959), with d denoting the graph size and k the expected node degree. For Figures 4b, 16b,
and 17b we generate undirected scale-free graphs SF(d, k) (Barabdsi and Albert, 1999), where d is
the graph size and k the number of outgoing edges generated for each vertex. Then, we orient the
edges in the graph according to a random topological ordering. We do not sample directed scale-free
graphs initially to avoid high sortability by in-degree, which may confound the results.

For all four figures, we generate LINEAR systems with weights sampled from three possible distribu-
tions w; ; ~ Unify [0.3,1.8], w; j ~ Unif4 [0.5,2.0] or w; ; ~ Unif [1.3,3.0] and noise sampled
from g; ~ N(0, 1). For every model configuration, we sample 100 systems and n =1000 data points
each. To create Figures 4 and 16 we sampled graphs of sizes {20, 60, 100, 140, 180, 220}. To obtain
Figure 17, we sampled graphs with k € {4, 8,12,16,20}.

Structure Learning (Section 5.2) For Figures 5 and 14, we sample LINEAR systems with weights
w; ; ~ Unify [0.5,2.0]. Following Lorch et al. (2022), NONLINEAR mechanisms have length
scales [; ~ Unif[7.0, 10.0] and output scales ¢; ~ Unif[10.0, 20.0]. Both mechanisms are defined
in Appendix E.1. For Figures 15a and 15b, we generate LINEAR systems with weights w; ; ~
Unify [0.3,0.8] and w; ; ~ Unify [1.3,3.0]. For all four figures, we sample random ER(20, 2) and
ER(100, 2) graphs with noise €; ~ A/(0, 1). For every model configuration, we sample 20 systems
and n = 1000 data points each.
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Noise Transfer For Figure 6 (top), we sample SCMs, standardized SCMs, and iSCMs with exactly
the same underlying graph and weights sampled from w; ; ~ Unify [0.5,2.0]. The noise variables
are drawn from ¢; ~ N (0,1). Then, for every triple of SCM, standardized SCM, and iSCM that
shares a graph and weights, we create two more SCMs with the same marginal variances as the SCM,
but with the noise variances of the implied models of the standardized SCM and iSCM, respectively.
Appendix E.5 provides a motivation and detailed explanation of this procedure. Figure 6 (top) shows
the performance of NOTEARS on the original SCMs and the two SCMs with transferred noise.

For Figure 6 (bottom), we sample multiple instances of standardized SCMs, and iSCMs with weights
drawn from w; ; ~ Unif4 [0.5,2.0] and noise from ¢; ~ N(0,1). For every model instance, we
approximate the density of the inverse of their implied noise variances using kernel density estimation.
The figure shows the mean and standard deviation of the p.d.f. values over 100 systems. For both
figures, we use ER(100, 2) graphs.

E.3 METHODS

NOTEARS (Zheng et al., 2018) To run NOTEARS, we use the original implementation provided by
the authors of Zheng et al. (2018) (Apache-2.0 license). Before benchmarking NOTEARS, we run a
hyperparameter search to calibrate the weight penalty (\) and threshold on held-out instances of each
data generation method. The hyperparameters can be found in Appendix E.4.

AvICI (Lorch et al., 2022) To evaluate AVICI, we use the code and model checkpoints provided
by the authors of the method (MIT license). Specifically, we use the model trained on linear data to
benchmark the method on LINEAR systems and the model trained on nonlinear data to benchmark on
NONLINEAR systems. We score an edge as predicted if the probability prediction by AVICI is greater
than 0.5. Since the parameters are pretrained, the method has otherwise no tuneable hyperparameters.

Sortabilities and SORTNREGRESS methods (Reisach et al., 2021; 2024) To compute the sortabil-
ity metrics and run the SORTNREGRESS baselines, we use the CausalDisco library (BSD-3-Clause
license) created by the authors of the method. The algorithms require no tuneable hyperparameters.

GOLEM (Ng et al., 2020) For GOLEM-EV, we tune A; (sparsity penalty coefficient), Ao (acyclicity
penalty coefficient) and the threshold for zeroing weights. For GOLEM-NV, we tune the same
hyperparameters as for GOLEM-EV. We do not initialize the model with the solution returned by
GOLEM-EV, as done in the original paper, since we want to evaluate a method that does not assume
equal noise variances at any point. Not initializing with the GOLEM-EV weights is consistent with
the benchmarking approach of Reisach et al. (2021). We use the implementation of the original work
(Ng et al., 2020).

PC Algorithm For linear data, we use a Gaussian conditional independence test. For nonlinear data,
we use the Hilbert-Schmidt Independence Criterion (HSIC) gamma test. We treat the test significance
level as a hyperparameter that we tune. We use the implementation by the Causal Discovery Toolbox
(Kalainathan et al., 2020).

GES GES uses the linear Gaussian BIC score function and does not require hyperparameter tuning.
We use the implementation by the Causal Discovery Toolbox (Kalainathan et al., 2020).

CAM CAM estimates a causal ordering using maximum likelihood and then performs sparse
nonlinear regression using splines on the possible parents in this ordering. We use the implementation
from the dodiscover library (MIT license) and include the preliminary neighbor search option
to make the algorithm scale to large graphs. We tune the cutoff value « for variable selection with
hypothesis testing over regression coefficients, and the number and order of splines to use for the
feature function.

LINGAM LINGAM uses independent component analysis, an algorithm for source separation,
to find a causal ordering, which is identifiable in linear systems if the additive noise in an SCM is
non-Gaussian. We use the implementation from the cdt (Causal Discovery Toolbox) library (MIT
license).
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E.4 HYPERPARAMETER SELECTION

For all algorithms that require hyperparameter tuning, we perform the search on separate, held-out
systems that follow the same configurations as the ones we present in our final experimental results.
We run the algorithms 20 times per configuration and choose the median F'1 score as the criterion for
selecting the best hyperparameters.

To run NOTEARS, we need to specify the regularisation strength A\ and a weight threshold 7 for
thresholding the final weights for graph structure prediction. To select these hyperparameters, we
run a parameter search with A € {0.0,0.05,0.1,0.15,0.2,0.25,0.3} and three possible values of
the weight threshold {0.1,0.2,0.3}. Table 1 presents all final hyperparameter configurations for
NOTEARS. For some hyperparameter configurations, 1 in 20 runs experienced numerical issues caused
by the acyclicity constraint. However, this never occurs for the selected, optimal hyperparameters,
neither when performing the hyperparameter search nor when running the reported experiments.

To run the PC algorithm, one needs to choose a test significance level «v. During the hyperparamter
search we consider a € {0.01,0.001,0.0001}. Table 4 presents all final hyperparameter configura-
tions for the PC algorithm.

To run GOLEM-EV and GOLEM-NV we need to tune sparsity penalty coefficient \;, acyclicity
penalty coefficient Ay and the weight threshold 1. We consider \; € {0.02,0.002,0.0002}, Ay €
{2.0,5.0,8.0} and p € {0.1,0.2,0.3}. Tables 2 and 3 present the best configurations.

To run CAM we need to tune the cutoff value o € {0.05,0.10,0.15} for variable selection with
hypothesis testing over regression coefficients and the number and order of splines to use for the
feature function for which we consider sets {5, 10} and {2, 3} respectively. Table 5 presents the best
configurations.

E.5 TRANSFERRING NOISE VARIANCES WHILE KEEPING Var-SORTABILITY UNCHANGED

Reisach et al. (2021) show that post-hoc standardization of SCM data strongly impairs the performance
of NOTEARS. When comparing the performance of NOTEARS between data sampled from iSCMs
and standardized SCMs, there are at least two factors that can affect the performance of NOTEARS,
low Var-sortability and the violation of the equal noise variance assumption. Our experiments in
Figure 6 of Section 5 aim at isolating the effect of the latter. Specifically, we investigate whether
NOTEARS performs better on Var-sortable datasets that have the noise scale patterns implied when
assuming SCMs generated the data—when in fact the data was sampled from iSCMs or standardized
SCMs. To achieve this, we ensure that the Var-sortability metrics of the data sampled from the
models is the same, here close to 1.

Given two linear SCMs S® and S® with the same underlying graph G, our goal is to construct a
system S with the same marginal variances as S (condition 1) and the same noise variances as
S® (condition 2). For this task to be well-defined, we assume that the noise variances of the root
variables in S¢ and S° are the same. The first step in constructing S* is to copy the noise variances
from S°, so that for every i € {1,...,d}.

where ! has variance oft. By construction, the condition of S* sharing the noise variances with S°
and the marginal variances with S® is fulfilled for the root variables. For all the remaining variables,
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Table 1: NOTEARS hyperparameters for all experiments. Final settings for the regularization
strength A and the weight threshold 7 after hyperparameter tuning on the respective models and
data-generating processes together with the F1 (median) validation scores achieved by NOTEARS.

(a) ER(20, 2) DAGs, LINEAR mechanisms

Weight Distribution Model A n F1 (median)
Unif4 [0.3,0.8 SCM 0.05 0.20 0.97
Unif4 [0.3,0.8 Standardized SCM  0.15 0.10 0.59
Unif4 [0.3,0.8 iSCM 0.15 0.10 0.57
Unify [0.5,2.0 SCM 0.00 0.30 0.98
Unif4 [0.5,2.0 Standardized SCM  0.15 0.20 0.30
Unif4 [0.5,2.0 iSCM 0.15 0.10 0.50
Unif4 [1.3,3.0 SCM 0.05 0.30 0.98
Unif4 [1.3,3.0 Standardized SCM  0.25 0.10 0.24
Unify [1.3,3.0 iSCM 0.20 0.10 0.40

(b) ER(100, 2) DAGs, LINEAR mechanisms

Weight Distribution  Model A n F1 (median)
Unify [0.3,0.8 SCM 0.10 0.10 0.99
Unify [0.3,0.8 Standardized SCM  0.10 0.10 0.83
Unify [0.3,0.8 iISCM 0.10 0.10 0.84
Unify [0.5,2.0 SCM 0.05 0.30 0.94
Unify [0.5,2.0 Standardized SCM  0.15 0.10 0.47
Unify [0.5,2.0 iSCM 0.15 0.10 0.76
Unify [1.3,3.0 SCM 0.10 0.30 0.82
Unify [1.3,3.0 Standardized SCM  0.20 0.10 0.30
Unify [1.3,3.0 iSCM 0.15 0.10 0.70

(c) ER(20, 2) DAGs, NONLINEAR mechanisms

Model A n F1 (median)
SCM 0.15 0.30 0.58
Standardized SCM  0.15 0.10 0.33
iSCM 0.15 0.20 0.42

(d) ER(100, 2) DAGs, NONLINEAR mechanisms

Model A n F1 (median)
SCM 0.30 0.30 0.50
Standardized SCM  0.15 0.10 0.43
iSCM 0.15 0.10 0.61

(e) Noise transfer experiment: ER(100, 2) DAGs, LINEAR mechanisms w;; ~ Unif+ [0.5, 2.0]

Model A n  F1 (median)
Original 0.05 0.30 0.96
Noise from standardized SCM  0.10 0.30 0.72
Noise from iSCM 0.05 0.30 0.82
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Table 2: GOLEM-EV hyperparameters for all experiments. Final settings for the sparsity penalty
coefficient A1, acyclicity penalty coefficient A5 and the weight threshold 7 after hyperparameter tuning
on the respective models and data-generating processes together with the F1 (median) validation
scores achieved by GOLEM-EV.

(a) ER(20, 2) DAGs, LINEAR mechanisms

Weight Distribution  Model A1 A2 n  FI1 (median)
Unify [0.5,2.0 SCM 0.002 5.00 0.30 1.00
Unify [0.5,2.0 Standardized SCM  0.020 8.00 0.10 0.15
Unify [0.5,2.0 iSCM 0.020 2.00 0.10 0.36
Unify [1.3,3.0] SCM 0.002 5.00 0.30 1.00
Unify [1.3,3.0 Standardized SCM  0.020 8.00 0.10 0.12
Unify [1.3,3.0 iSCM 0.020 5.00 0.10 0.34
Unify [0.3,0.8 SCM 0.020 2.00 0.10 1.00
Unify [0.3,0.8 Standardized SCM  0.020 5.00 0.10 0.33
Unify [0.3,0.8 iSCM 0.020 5.00 0.10 0.36

(b) ER(100, 2) DAGs, LINEAR mechanisms

Weight Distribution Model A1 Ao n  F1 (median)
Unif4 [0.5,2.0 SCM 0.020 2.00 0.20 1.00
Unify [0.5,2.0 Standardized SCM  0.020 8.00 0.10 0.13
Unif4 [0.5,2.0 iSCM 0.020 5.00 0.10 0.24
Unify [1.3,3.0 SCM 0.020 8.00 0.30 0.90
Unif4 [1.3,3.0 Standardized SCM  0.020 5.00 0.10 0.08
Unif4 [1.3,3.0 iSCM 0.020 5.00 0.10 0.19
Unify [0.3,0.8 SCM 0.020 2.00 0.20 1.00
Unif4 [0.3,0.8 Standardized SCM  0.020 5.00 0.10 0.30
Unif [0.3,0.8 iISCM 0.020 2.00 0.10 0.40

(c) ER(20, 2) DAGs, NONLINEAR mechanisms

Model A1 Ao n  F1 (median)
SCM 0.020 8.00 0.30 0.39
Standardized SCM  0.002 8.00 0.10 0.20
iSCM 0.020 2.00 0.10 0.25

(d) ER(100, 2) DAGs, NONLINEAR mechanisms

Model A1 Ao n  F1 (median)
SCM 0.020 8.00 0.10 0.27
Standardized SCM  0.020 8.00 0.10 0.14
iSCM 0.020 5.00 0.10 0.14
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Table 3: GOLEM-NV hyperparameters for all experiments. Final settings for the sparsity penalty
coefficient A1, acyclicity penalty coefficient A5 and the weight threshold 7 after hyperparameter tuning
on the respective models and data-generating processes together with the F1 (median) validation
scores achieved by GOLEM-NV.

(a) ER(20, 2) DAGs, LINEAR mechanisms

Weight Distribution  Model A1 A2 7 FI (median)
Unify [0.5,2.0 SCM 0.0002 2.00 0.20 0.16
Unify [0.5,2.0 Standardized SCM  0.0200 2.00 0.10 0.38
Unify [0.5,2.0 iSCM 0.0200 2.00 0.20 0.45
Unify [1.3,3.0] SCM 0.0002 2.00 0.10 0.20
Unify [1.3,3.0 Standardized SCM  0.0002 5.00 0.10 0.37
Unify [1.3,3.0 iSCM 0.0200 2.00 0.20 0.37
Unif4 [0.3,0.8 SCM 0.0020 5.00 0.20 0.13
Unify [0.3,0.8 Standardized SCM  0.0200 2.00 0.20 0.55
Unify [0.3,0.8 iSCM 0.0200 2.00 0.10 0.58

(b) ER(100, 2) DAGs, LINEAR mechanisms

Weight Distribution Model A1 Ao n  F1 (median)
Unif4 [0.5,2.0 SCM 0.002 5.00 0.20 0.10
Unify [0.5,2.0 Standardized SCM  0.020 2.00 0.10 0.32
Unif4 [0.5,2.0 iSCM 0.020 2.00 0.10 0.51
Unify [1.3,3.0 SCM 0.002 2.00 0.10 0.21
Unif4 [1.3,3.0 Standardized SCM  0.002 5.00 0.10 0.18
Unif4 [1.3,3.0 iSCM 0.020 2.00 0.10 0.46
Unify [0.3,0.8 SCM 0.020 2.00 0.10 0.18
Unif4 [0.3,0.8 Standardized SCM  0.020 2.00 0.20 0.65
Unif [0.3,0.8 iISCM 0.020 2.00 0.10 0.67

(c) ER(20, 2) DAGs, NONLINEAR mechanisms

Model A1 Ao n  F1 (median)
SCM 0.002 8.00 0.20 0.07
Standardized SCM  0.020 2.00 0.20 0.30
iSCM 0.020 2.00 0.10 0.41

(d) ER(100, 2) DAGs, NONLINEAR mechanisms

Model A1 Ao n  F1 (median)
SCM 0.002 5.00 0.20 0.07
Standardized SCM  0.020 2.00 0.10 0.24
iSCM 0.020 2.00 0.10 0.36
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Table 4: PC hyperparameters for all experiments. Final settings for the significance level « after
hyperparameter tuning on the respective models and data-generating processes together with the F1
(median) validation scores achieved by PC.

(a) ER(20,2) DAGs, LINEAR mechanisms

Weight Distribution Model « F1 (median)
Unif4 [0.3,0.8 SCM 0.01 0.71
Unify [0.3,0.8 Standardized SCM  0.01 0.70
Unif4 [0.3,0.8 iSCM 0.01 0.72
Unif4 [0.5,2.0 SCM 0.01 0.47
Unify [0.5,2.0 Standardized SCM  0.01 0.46
Unif4 [0.5,2.0 iSCM 0.01 0.58
Unify [1.3,3.0] SCM 0.01 0.35
Unif [1.3,3.0 Standardized SCM  0.01 0.38
Unif4 [1.3,3.0 iSCM 0.01 0.48

(b) ER(100, 2) DAGs, LINEAR mechanisms

Weight Distribution  Model « F1 (median)
Unif4 [0.3,0.8 SCM 0.01 0.82
Unif4 [0.3,0.8 Standardized SCM  0.01 0.85
Unif4 [0.3,0.8 iSCM 0.01 0.86
Unify [0.5,2.0 SCM 0.01 0.62
Unif4 [0.5,2.0 Standardized SCM  0.01 0.57
Unif4 [0.5,2.0 iSCM 0.01 0.79
Unify [1.3,3.0 SCM 0.01 0.42
Unif4 [1.3,3.0 Standardized SCM  0.01 0.43
Unify [1.3,3.0 iSCM 0.01 0.71

(c) ER(20, 2) DAGs, NONLINEAR mechanisms

Model « F1 (median)
SCM 0.01 0.53
Standardized SCM  0.01 0.54
iISCM 0.01 0.65

(d) ER(100, 2) DAGs, NONLINEAR mechanisms

Model « F1 (median)
SCM 0.01 0.53
Standardized SCM  0.01 0.63
iSCM 0.01 0.68
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Table 5: CAM hyperparameters for all experiments. Final settings for the cutoff value « for
variable selection with hypothesis testing over regression coefficients, the number and order of splines
to use for the feature function, together with the F1 (median) validation scores achieved by CAM.

(a) ER(20,2) DAGs, LINEAR mechanisms

Weight Distribution Model « Number of Splines ~ Spline Order F1 (median)
Unify [0.3,0.8 SCM 0.05 5 3 0.49
Unif4 [0.3,0.8 Stand. SCM  0.05 5 2 0.46
Unify [0.3,0.8 iSCM 0.05 5 3 0.57
Unify [0.5,2.0 SCM 0.10 10 3 0.31
Unify [0.5,2.0 Stand. SCM  0.10 10 2 0.23
Unify [0.5,2.0 iSCM 0.10 5 2 0.53
Unif [1.3,3.0] SCM 0.05 10 2 0.24
Unify [1.3,3.0 Stand. SCM  0.05 10 3 0.27
Unify [1.3,3.0 iSCM 0.05 5 2 0.42

(b) ER(100, 2) DAGs, LINEAR mechanisms

Weight Distribution  Model «  Number of Splines  Spline Order F1 (median)
Unif4 [0.3,0.8 SCM 0.05 10 3 0.54
Unify [0.3,0.8 Stand. SCM  0.05 10 2 0.57
Unif, [0.3,0.8 iSCM 0.05 5 3 0.61
Unify [0.5,2.0 SCM 0.05 10 2 0.39
Unify [0.5,2.0 Stand. SCM  0.05 5 2 0.39
Unify [0.5,2.0 iSCM 0.05 5 3 0.62
Unify [1.3,3.0 SCM 0.05 5 3 0.27
Unify [1.3,3.0 Stand. SCM  0.05 10 3 0.26
Unify [1.3,3.0 iSCM 0.05 5 3 0.61

(c) ER(20, 2) DAGs, NONLINEAR mechanisms

Model o  Number of Splines ~ Spline Order F1 (median)
SCM 0.05 10 2 0.50
Standardized SCM  0.05 5 2 0.52
iSCM 0.05 5 2 0.57

(d) ER(100, 2) DAGs, NONLINEAR mechanisms

Model o  Number of Splines ~ Spline Order F1 (median)
SCM 0.05 10 3 0.50
Standardized SCM  0.05 10 2 0.51
iSCM 0.05 10 3 0.57
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which satisfies condition 1. Since the systems S* and S® have the same marginal variances, they
have the same Var-sortability. In the noise transfer experiment of Figure 6, we transfer the noise
variances from the implied models of iSCMs and standardized SCMs. To obtain the noise variances
in the implied models, we divide the original noise variances (equal to 1) by the estimated marginal
variances of the corresponding variable before standardization, which we estimate from n = 1000
datapoints. For iSCM, this corresponds to an empirical statistics of Equation (7).

E.6 COMPUTE RESOURCES

Our experiments were run on an internal cluster. All experiments in this work were computed using
CPUs with 3GB of memory per CPU, with an exception of the AVICI runs on graphs with 100
vertices, which used 12GB per CPU. The data generation takes less than a few minutes on a single
CPU, with the exception of the sortability results (Section 5.1). For the sortability results, it takes
around 30 minutes to generate the datasets for a single graph specification across all weight supports
and graph sizes. This is due to a bigger number of configurations and repetitions than in the other
experiments. For a single graph specification and across all weight supports and graph sizes, it takes
around 6 hours to compute the sortability statistics on a single CPU. All benchmarked methods take
no longer than a few minutes per small graph (d = 20) and no longer than half an hour per big graph
(d = 100). The SORTNREGRESS baselines run in less than 1min per graph.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 STRUCTURE LEARNING

Figure 14 summarizes the structural Hamming distance (SHD) between the predicted and true graphs
for the same datasets and algorithms as in Figure 5.

In Figures 15a and 15b, we present the F1 scores and SHD attained by the structure learning
algorithms on data of LINEAR iSCMs, SCMs, and standardized SCMs, across different weight
distribution supports and graph sizes. We find that the difference in performance of NOTEARS on
data sampled from iSCM and standardized SCMs is larger for larger weight magnitudes and for
bigger graphs. For smaller weights, the difference in the mean F1 score of NOTEARS between the
two standardization approaches is smaller, which is in line with our proposed explanation about the
shifts of the implied noise variance distribution in Section 5.2.

In Figure 15a, we also find that when weight magnitudes are below 1, R2-SORTNREGRESS performs
similarly for both standardized SCMs and iSCMs. We also observe this for AviCl. Meanwhile,
for larger weights with support extending above 1, these algorithms achieve significantly higher F1
scores on standardized SCMs. This suggests that our condition of |w; ;| > 1 for all edges (v;, v;) in
the statement of Theorem 3, concerning the identifiability of linear standardized SCMs, may have a
more fundamental practical significance, rather than being merely an artifact of the analysis.

In Figure 18, we report results for when the additive noise in the ground-truth SCMs is non-Gaussian.
In this setting, the causal graphs of SCMs are identifiable from observational data (see Section 2).
Here, we also benchmark LINGAM (Shimizu et al., 2006), which is designed for this setting. While
LINGAM performs very well as expected, it performs significantly worse on standardized SCMs,
possibly because independent component analysis suffers in practice under the very low noise scales
implied by post-hoc standardization. This would be in line with our discussion in Section 5.2.
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Figure 14: SHD to the true causal graph for LINEAR and NONLINEAR mechanisms. Box plots
show median and interquartile range (IQR). Whiskers extend to the largest value inside 1.5xIQR
from the boxes. Left (right) column shows results for linear (nonlinear) causal mechanisms with
additive noise ; ~ N(0,1). LINEAR mechanisms have weights w; ; ~ Unif [0.5, 2.0].

F.2 R2-SORTABILITY

Figure 16 reports the R2-sortability statistics across varying graph sizes and weight distributions but
for the denser graphs ER(d, 4) and SF(d, 4). We again observe R2-sortability very close to 0.5 for
datasets sampled from iSCM and high degrees of R2-sortability for data drawn from standardized
SCMs. Moreover, in Figure 17, we show the R2-sortability for varying expected node degrees in the
graph. Data sampled from iSCMs remains close to not R2-sortable for denser graphs drawn from the
graph families considered here. We omit standard SCMs from the plots as the datasets of SCMs and
their standardized versions have the same R2-sortability, since the R? coefficient is scale invariant.

F.3 IMPLIED NOISE SCALES

Figure 19 shows the inverse implied noise scales of standardized SCMs and iSCMs for linear models
with smaller weights magnitudes than in Figure 6 of the main text. In this setting with smaller weights,
the distributions of the implied noise scales of standardized SCMs and iISCMs show significantly
greater overlap than in Figure 6. Since the weights are smaller, the effect of the exploding marginal
variances and thus collapsing implied noise scales is weaker in the SCMs.

In Figure 15 (left), we evaluate the algorithms considered in Section 5 on these systems with smaller
weights. We see that, in this setting, NOTEARS performs very similarly on standardized SCMs and
iSCMs, with NOTEARS slightly outperforming on iSCMs for bigger graphs, since we do not remove
the growing variance problem completely even for weights of small magnitude. This is inline with
our reasoning in Section 5.2.

F.4 COVARIANCE MATRICES FOR FIGURE 1

Figure 20 visualizes the full mean absolute covariance (correlation) matrices of the systems presented
in Figure 1. The matrix shows that the pattern of increasing mean absolute covariance in standardized
SCMs is not only a feature of neighboring nodes, but it also occurs for vertex pairs further apart,
though less strongly. This is not the case for iISCMs, where any two pairs of equally spaced vertices
have equal covariances in expectation over the weight sampling distribution.
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Figure 15: Structure learning results for different LINEAR weight ranges. Results for LINEAR
causal mechanisms with additive noise £; ~ A/(0, 1) and weights sampled uniformly from support
indicated above each column. Box plots show median and interquartile range (IQR). Whiskers extend
to the largest value inside 1.5xIQR from the boxes. For every model, we sample 20 systems and
n =1000 data points each.
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Figure 16: R2-sortability for different graph sizes. Linear standardized SCMs and iSCMs with
g; ~ N (0, 1) and weights drawn from uniform distributions with supports given above each plot. For
every model, we sample 100 systems and n =1000 data points each. Lines and shaded regions denote
mean and standard deviation of R2-sortability across runs. Datasets that satisfy R2-sortability = 0.5

(dashed) are not R2-sortable.
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Figure 17: R2-sortability for different (expected) node degrees. Linear standardized SCMs and
iSCMs with ; ~ A/(0, 1) and weights drawn from uniform distributions with supports given above
each plot. For every model, we evaluate 100 systems and n =1000 samples each. Lines and shaded
regions denote mean and standard deviation. Datasets that satisfy R2-sortability = 0.5 (dashed) are

not R2-sortable.
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Figure 18: Structure learning results for non-Gaussian noise distributions. Causal mechanisms
have additive noise ; ~ Unif [—\/?:, \/5], which induces Var|e;] = 1, and LINEAR mechanisms
with weights w; ; ~ Unify [0.5, 2.0]. Graphs are sampled from ER(20, 2). To obtain the results, we
use the same hyperparameters as the ones we used to obtain the top-left panel of Figure 5. Box plots
show median and interquartile range (IQR). Whiskers extend to the largest value inside 1.5xIQR

from the boxes.
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Figure 19: Distribution over inverse implied noise scales in the implied SCMs for ER(100, 2)
graphs with smaller weights w; ; ~ & Unif|g 3 ¢ g), estimated with kernel density estimation. Lines
and shading denote mean and standard deviation respectively.
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Figure 20: Mean absolute covariance matrices for models in Figure 1. Linear standardized
SCMs (left) and iSCMs (right) with 10-variable chain DAGs from z; to x;o and weights w; ; ~
Unif4 [0.5,2.0] and additive noise from N/ (0, 1). Mean covariances are estimated from n = 100,000
datapoints and averaged over 100,000 models. Since both models have unit marginal variances,
covariance equals correlation.
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