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ABSTRACT

Generative models have been successfully applied in diverse domains, from natural
language processing to image synthesis. However, despite this success, a key chal-
lenge that remains is the ability to control the semantic content of the scene being
generated. We argue that adequate control of the generation process requires a data
representation that allows users to access and efficiently manipulate the semantic
factors shaping the data distribution. This work advocates for the adoption of suc-
cinct, informative, and interpretable representations, quantified using information-
theoretic principles. Through extensive experiments, we demonstrate the efficacy
of our proposed framework both qualitatively and quantitatively. Our work con-
tributes to the ongoing quest to enhance both controllability and interpretability in
the generation process. Code available at github.com/ArmandCom/InCoDe.

1 INTRODUCTION

Figure 1: InCoDe Controllable Image Gen-
eration and Editing: a user can provide a
sample image (a) and request to generate
new images that are semantically “similar”
to the given one (b). In addition, the user can
also encode their preferences in the generated
images by specifying certain attributes like
color of bedsheets (c).

The ability to control the output of a generative model
is essential for practical applications in various domains,
ranging from natural language processing to image synthe-
sis. For example, consider a scenario in which users may
be interested in using an online application to decorate
their bedroom. This application could generate images
that are semantically similar to an “inspiration” picture
given by users, as depicted in Fig.1(a, b), while allowing
them to specify which aspects they want to preserve or
change (Fig. 1(c)). Alternatively, if the user does not pro-
vide an image, the application could ask them a series of
questions about their preferences and generate a set of im-
age suggestions based on their answers, as seen in Fig. 2(d).
To speed up this process and maximize user satisfaction,
the app should prioritize asking the most relevant ques-
tions upfront, reducing the number of interactions while
ensuring the user’s preferences are accurately captured.

Designing such an application requires an image represen-
tation that effectively captures the elements and properties
most semantically significant to the user for the specific
task (e.g., bedroom decoration). The representation should
be interpretable and easily modifiable based on the user’s
input. In addition, it should allow for measuring relevance
and similarity within its domain. Using such a representa-
tion, the application could offer personalized suggestions

and allow precise adjustments to the generated images, ultimately improving the user experience.
∗Work done prior to joining Amazon.
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Figure 2: Text-to-image models fail when composing multiple concepts. Comparison with text-to-image
baselines. For a given subset of attributes: (a) Samples from Stable Diffusion v1-4 (≈ ×0.95 params w.r.t.
InCoDe). (b) Samples from Stable Diffusion XL (≈ ×10 params). (c) Samples from Dall-e 3 (≈ ×15 params)
(d) Samples from InCoDe (trained on top of Stable Diffusion v1-4). Red superscripts in attributes indicate the
models that fail to capture them in the presented samples.

Inspired by the above scenario, our goal is to develop generative models that can be controlled
through interaction with high-level concepts. Arguably, plain textual scene descriptions provide an
intuitive interface for controlling image generation.

However, controlling image generation through text is extremely difficult, because the semantic
content of an image can be represented through diverse text captions, each providing a distinct
perspective. Take, once again, a photograph of a bedroom as an example. The scene could be
described in terms of the objects it contains, the furniture style, the discernible colors, or the
relationships among objects, since there is no canonical semantic representation.

Moreover, despite recent advances in text-conditioned image generation (Betker et al., 2023; Podell
et al., 2023), constraining the generated image to a rich textual description that simultaneously en-
compasses numerous semantic concepts remains a challenge, as illustrated in Fig. 2(a,b,c). Although
this issue has been partially addressed by subsequent work (Feng et al., 2023), image generation still
struggles with composition in the presence of negations and large conjunctions (Tbl. 2).

To address these difficulties, we propose to represent the semantic content of images by sets of
predefined, user-oriented and task-specific questions and their answers. This allows for interpretable
representations1 that can be easily modified by the user, while specializing a generative model to the
sub-distribution of their interest based on the task (e.g. bedroom furniture distribution). Although this
approach may limit the generality of the model, it prioritizes combining multiple concepts accurately.

Given an image and a set of questions to choose from, we propose to build interpretable representations
by greedily selecting queries in order of information gain using an algorithm called Information
Pursuit (Geman & Jedynak, 1996; Jahangiri et al., 2017; Chattopadhyay et al., 2022). Specifically,
every subsequent question is selected such that its answer has maximum mutual information (among
the remaining questions in the set) with the image content conditioned on the history of question-
answer pairs observed so far. Consequently, we specialize our generative model to synthesize images
conditioned on these question-answer based representations.

Our framework allows the user to efficiently and intuitively interact with the system and control
generations by changing the answer to selected queries from the generated image’s representation.
Moreover, organizing the queries in order of information gain allows for a natural information-
theoretic definition of “semantic similarity”, where two images are said to be k-similar if they agree
on the first k most-informative question-answers.

Paper contributions. In this work, (i) We propose InCoDe, an information theoretic framework
based on Information Pursuit (IP) for representing data in terms of concepts and using this repre-
sentation to control image generation; (ii) We introduce a novel adaptation method for conditioning
text-to-image pre-trained diffusion models on query-answer sets. (iii) We collected two new datasets
along with sets of binary queries and answers about their content. (iv) We quantitatively and qualita-
tively validate the effectiveness of InCoDe, showcasing its superiority over the selected baselines

1Since they are based on human intelligible questions and their answers.
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Figure 3: Overview: pipeline of InCoDe. It consists of three main modules: an Encoder that maps a history of
query-answer pairs S = {(qi, qi(X))}ki=1 to the next asked query q, which is answered by providing q and the
reference image X to an off-the-shelf VQA module. A Decoder that maps query-based representations to the
complete query-answer set, and a diffusion-based Generator that predicts the added noise ϵt to the corrupted
image Xt, after t forward diffusion steps and conditioned on the representations.

across a diverse set of scenarios, and provide additional results in the Appendix for query-types from
a different domain.

2 METHODS

In this section, we first formalize our choice for semantic data representation and introduce InCoDe,
a new image generation framework, which can be controlled via compressed interpretable represen-
tations. Then, we describe architecture designs to implement the proposed framework and discuss
training strategies. Finally, we explain how to use InCoDe to generate and edit images.

2.1 INCODE FRAMEWORK

We propose InCoDe, which uses interpretable compressed representations to provide control over
image generation and semantic editing. An overview of InCoDe’s training pipeline is depicted in
Figure 3. It consists of three main modules: an Encoder, which produces query-based representations
by selecting elements from a given query set and a reference image to answer the selected queries; a
Decoder, which maps these representations back to the complete query set with the corresponding
answers for the reference image; and a Generator, which uses reverse diffusion (i.e., gradual de-
noising) to turn the representations into images. Next, we formally define the concept of a query set
and outline the information-theoretic procedure used to organize its elements.

Notation. Let X be a set of images, Q be a set of user-defined task-specific queries, and A be the set
of all possible answers. A query q ∈ Q is a function mapping a point in X ∈ X to a point in a ∈ A,
i.e. q : X → A. In the sequel, using a slight abuse of notation, we will denote a query-answer pair
(q, a) for X simply as q(X). Finally, we denote by Q(X) the set of all query-answer pairs for X ,
Q(X) = {q(X) | q ∈ Q}.

Semantic Representation. We describe an image X with a sequence of query-answers, D(X) =
q1:L(X) = [q1(X), . . . , qL(X)], qi(X) ∈ Q(X), L = |D| ≤ |Q|, where the queries are sorted in
decreasing order of the information gain that they provide about all other query answers in Q(X).

Given an observation X = xobs, D(xobs) can be generated using the Information Pursuit (IP)
algorithm (see Sec. A.2 for details), modified so that at each step it selects the most informative query
towards recovering the complete set Q(xobs) from the answers in D(xobs):

q1 = IP(∅) = argmax
q∈Q

I(q(X);Q(X));

qk+1 = IP(q1:k(xobs)) = argmax
q∈Q

I(q(X);Q(X) | q1:k(xobs)).
(1)

where I(·; ·) is mutual information and q1:k(x
obs) denotes the history of query-answers obtained so

far. The algorithm terminates once L queries have been asked, where L is a hyperparameter that
controls the compactness of the representation.

Following Chattopadhyay et al. (2023), we use Variational IP (VIP) to efficiently implement IP.
The main idea is to learn a function, called Querier, directly from data such that given any set of
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query-answer pairs it outputs the most informative next query, without the need to explicitly compute
mutual information (which is challenging in high-dimensions). To do this, VIP employs a Querier g,
working as an Encoder, and a QuerySet Answerer, working as a Decoder, as formally described next.

Encoder. Let P(Q(X)) denote the power set2 of Q(X). A Querier function g : P(Q(X)) → Q
greedily selects elements from Q that yield the most succinct representation of X for predicting
Q(X). More specifically, given an observation X = xobs, the Querier takes as input a history of
arbitrary length k of queries and answers, S = q1:k(x

obs) = {q1(xobs), . . . , qk(x
obs)} ⊆ Q(xobs), and

outputs the query qk+1 ∈ Q that is the most informative about the complete set Q(X) (equation 1).
To do this, we will seek a query q∗ whose answer minimizes the KL divergence between the posterior
p(Q(X) | X) and the conditional query set distribution p(Q(X) | q∗(X), S), where conditioning on
S should be read as conditioning on the event {x′ ∈ X | q1:k(x′) = q1:k(x

obs)}.

Decoder. Since the above posterior depends on the data distribution and it is unknown, we will use a
QuerySet Answerer f : P(Q(X)) → PQ(X ), which maps a set of query-answers to a distribution
over Q(X ) and learns the posterior together with the Querier g. For this purpose, we adapt the VIP
objective from Chattopadhyay et al. (2023) to recover the set Q(X). More specifically, let DKL
be the Kullback–Leibler divergence between two probability functions, and let S be a history of
randomly chosen query-answer pairs. We find the querier g and the queryset answerer f by solving
the problem:

min
f,g

EX,SDKL[p(Q(X) | X) ∥ p̂(Q(X) | q(X), S)]

where q := g(S) ∈ Q, p̂(Q(X) | q(X), S) := f(q(X) ∪ S).
(2)

In order, given the observed data point X = xobs and an observed history S = q1:k(x
obs), the Querier

g selects a query q ∈ Q, evaluates it on xobs (Visual Question-Answering [VQA] module in Figure3),
and feeds the extended set q1:k+1(x

obs) = q(xobs) ∪ q1:k(x
obs) to the QuerySet Answerer, which

outputs the distribution of answers to all the queries in Q given the partially observed set q1:k+1(x
obs).

Chattopadhyay et al. (2023) prove that the optimal (f, g) obtained by VIP selects queries that
maximize mutual information with respect to a target variable. In our appendix, we reformulate that
proof with Q(X) as our variable of interest. In practice, since optimization over all possible functions
f and g is challenging, we parametrize them as neural networks: fθ and gϕ, respectively.

Generator. The role of the third module in InCoDe is to generate image X̂ , conditioned on a
representation D using a conditional generative model or Generator. Given a representation D, the
Generator produces samples X̂ ∼ p(X | D). If the Querier was used to encode D from a data point
X , then, an optimal system would generate X̂ such that the agreement between Q(X) and Q(X̂) is
maximized. Notably, at inference-time, D can also be hand-crafted by the user by providing their
desired answers to the queries sequentially asked by the Querier, as illustrated in Figs. 1c and 2d.

Given the recent success in conditional generation, we propose to leverage Diffusion models for our
generative module. In particular, we utilize the Denoising Diffusion Probabilistic Method (DDPM)
(Ho et al., 2020), conditioned on sets of query-answers S. Next, we describe the optimization
procedure for training the Generator.

In generative modeling, we seek to maximize the marginal likelihood of the data Ex0∼p(X0) [p̂θ(X0)]
under our parametric model. This objective is often intractable. Instead, it is common to define and
optimize the variational lower bound (VLB) of that quantity. In DDPM, a simplified noise-matching
objective is used, which is derived from the VLB (see Sec. A.2) and simplified as:

min
θ

EX0,t[DKL(p(Xt−1 | Xt, X0) || p̂θ(Xt−1 | Xt)] ≈ min
θ

EX0,t

[
∥ϵt − ϵθ(Xt, t)∥2

]
(3)

with t ∼ Uniform(1, T ), X0 = X is the clean input data, and Xt is the noisy data after t forward
diffusion steps. Here, p̂θ(·) is the DDPM’s posterior, ϵθ the parameterized noise estimator and ϵt
is the Gaussian noise added to X0 at time t during the forward diffusion process. Please see the
Appendix for the intermediate steps. As in Sec. A.2, we refer to the noisy version of X0 along the
diffusion process as Xt, with t being the diffusion time and therefore the noise scale.

Here, we wish to sample from a distribution conditioned on elements of P(Q(X)), such as histories
S (the sets of query-answer pairs observed during IP) or representations D. We incorporate these

2A power set of a set Q is the set of all subsets of Q, including the empty set and Q itself.
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conditions into our objective by using the conditional distribution while preserving the objective
function (Ho et al., 2020):
min
θ

Et,X,SDKL[p(Xt−1 |Xt, X0) || p̂θ(Xt−1 |Xt, S)] ≈ min
θ

Et,X,S
[
∥ϵt − ϵθ(Xt, t, S)∥2

]
(4)

Using query-answer pairs as conditioning variables has not been explored before. Even a modestly-
sized query set Q can lead to a combinatorial explosion in the possible values S can take. This makes
optimizing equation 4 challenging. Next, in Section 2.2 we provide architectural and training details
to address this challenge.

2.2 ARCHITECTURE DESIGN, TRAINING, AND SAMPLING

As noted above, the three main modules of InCoDe, the Querier, QuerySet Answerer and Generator,
are parameterized as neural-networks. In this section, we discuss our design choices for the scenario
where Q consists of binary queries about the presence/absence of semantic attributes in image X .

Training the Querier and Query-Answerer. We parameterize both the Querier and the QuerySet
Answerer as fully-connected networks, which are trained jointly using the objective function in
equation 2. Note that this objective requires computing an expectation over all possible histories of
query-answer pairs.

Since optimizing for all query-answer pair combinations is intractable, the networks must extrap-
olate from limited examples. Following Chattopadhyay et al. (2023), we employ different query
sampling strategies during training. At the initial stages of training, we use a Random Strategy
where we randomly sample a history of length M , with M ∼ Uniform(0, |Q| − 1). Later, as the
queried selections become more reliable, we refine them by employing a Biased Strategy, where
we sample a history of size M sequentially using the Querier’s outputs. To answer queries at
training time, we either use the dataset ground-truth (if available) or an off-the-shelf VQA model.3
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Figure 4: Adapting pre-trained diffusion models to
query-based conditions. Proposed scheme to fine-tune
text-to-image diffusion models with LoRA Hu et al.
(2022). We introduce a small neural network (embedder
plus a MLP with zero-init for the last layer) that maps
queries into null-text token features. Then, we use a
mask to train the model with a subset of queries.

Conditioning the Generator with Queries.
Current text-to-image models struggle to accu-
rately generate images constrained by multiple
concepts (as shown in Fig. 2). Therefore, we
avoid relying on natural language for this task.
In our context, a Generator that can effectively
combine multiple concepts within a limited se-
mantic space is preferable to one that attempts
to generalize to all possible text prompts.

Hence, we adapt the conditioning procedure of
our diffusion-based generator to a given query
set Q. Given a query history S, we encode it into
a set of feature vectors. Then, we employ cross-
attention layers between these feature vectors
and the image features at multiple hierarchies of
the diffusion model backbone (UNet), as usually
done by text-to-image diffusion models (Zhang

et al., 2023; Rombach et al., 2022).

Since our query-based conditioning setting is not typical in the literature, we lack access to large
pre-trained diffusion models that can be readily applied to our use case. Consequently, inspired
by previous work (Zhang et al., 2023; Shi et al., 2024), we propose a novel fine-tuning approach,
illustrated in Fig. 4. As shown in the figure, our method uses a module with two main blocks: (i)
A LoRA Hu et al. (2022) system with rank 32 set as a fine-tuning framework for the frozen large
diffusion model, and (ii) A query embedder network, consisting of a feature embedding and an
MLP with a zero-initialized final projection. During training, we embed each query-answer pair
q(X) ∈ Q(X) individually, into the dimensionality of a single text token using the embedder network.
Then, the embedded query-answer pair is masked according to whether or not the query-answer is

3Note that a VQA model is used to obtain answers to a query given an input image, while the QuerySet
Answerer predicts the answers to all queries given the answers to a subset of queries from Q.
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present in S, summed to a null-text token4 and fed to the UNet. Note that at the beginning of training,
the UNet only sees null-text tokens and performs unconditional denoising. As the training advances,
the network learns to adapt to the given subset of data while utilizing the conditional information
in S, which is sampled uniformly at random. By fine-tuning an existing pre-trained text-to-image
diffusion model, such as Stable Diffusion Rombach et al. (2022), our method can take advantage of
the vast domain knowledge encoded in these models.

Beyond Attribute-Based Queries. InCoDe is not restricted to binary queries. Our framework
supports queries gathering different types of information about a datapoint, including non-binary
answers that may even be continuous or spatially-aware queries. For example, in the Appendix we
provide experiments conducted with location-based queries, where a query qi,j requests the pixel
values of an RGB image patch around the location (i, j) in X . Location-based queries are different
from attribute-based ones in two key aspects. Firstly, in this case, we can have Q(X) = X , that is,
asking all the queries in Q is the same as observing the image X . Secondly, since these questions are
directly associated with image coordinates, they implicitly carry spatial structural information. These
differences lead to a different architecture design. In this case, it is convenient to parameterize a set
S of location-based queries and their answers as an image, where only the patches corresponding
to answered questions are visible. Thus, for location-based queries we use a Querier consisting of
convolutional blocks. A detailed explanation and results can be found in the Appendix (Sec. A.1.1).

Image Generation. The procedure for image generation is straightforward. The input to the
Generator is a representation of length L, either generated from a reference image (Fig. 1b), which
can be modified by the user (Fig. 1c), or entirely handcrafted by the user by answering questions
from the set Q selected by the Querier (Fig. 2d). The Querier, starting from an empty history
S = ∅, selects sequentially the most informative query q from the query set Q, along with an answer
produced by a VQA model, or the user. Next, q(X) is appended to S and the process is repeated
L times until a representation D is obtained. Finally, image samples are generated by using the
Generator, conditioned on the representation D through a classifier-free sampling strategy (Ho &
Salimans, 2021).

3 EXPERIMENTS

In this section we empirically evaluate the performance of InCoDe and provide analysis of its
capabilities. In particular, we study (i) its effectiveness in capturing the semantic content of an
image by evaluating the Querier’s ability to select queries that maximize information gain, as
well as the faithfulness of the generated image to the provided representations; and (ii) its editing
and compositional capabilities by evaluating its ability to modify or generate an image consistent
with a desired set of attributes. Please refer to the Appendix for additional results, including
location-based queries and qualitative analyses that highlight the features and limitations of InCoDe.

Table 1: Representations of the image size and query-set for different datasets.

Dataset (Image size) Query Set Q Size |Q|

CLEVR Colors (3× 64× 64) Indicator of presence of N or more objects of a particular color 45

CelebA (3× 64× 64) Facial Attributes 40

LSUN Bedroom (3× 512× 512) Room descriptor attributes 58

LSUN Churches (3× 512× 512) Church and surroundings descriptor attributes 44

Datasets. We selected four datasets with increasing complexity, starting from simple cases with
predictable outcomes based on human intuition and progressing towards more challenging ones.
Following are the datasets considered:

CLEVR Colors: A synthetic dataset (introduced in Johnson et al. (2016)), where objects with different
attributes are placed randomly in a uniform background. For this set, we created an attribute-based
query set with questions of the form: "Are there n or more objects of color Y ?". This is asked
for eight colors (including any color) and n ∈ [1, 5] for a total of 45 queries. The only considered
attribute for our purposes is the object’s color, hence its name.

4a special token that represents “no text”.
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Figure 5: InCoDe offers users intuitive tools to adjust the semantic elements of generated images. InCoDe
describes an image in the query-answer space and generates a new, semantically aligned image. By changing the
answer to specific queries, we can modify semantic attributes of the new images.

CelebA: A dataset with celebrity face images and 40 facial attributes provided with the images.

LSUN Bedroom and LSUN Churches: Datasets with 58 queries about the room layout and 44 queries
about the elements around and belonging to each church, respectively. Both datasets were developed
using off-the-shelf models, with a large language model (LLM) assisting in the creation of the query
sets and a visual question answering (VQA) model (BLIP, Li et al. (2022)) generating the answers.
These datasets are a key contribution of this work, filling a gap where no existing datasets meet the
specific requirements of our task, and have been made publicly available.

The types and number of queries used for each of these datasets are listed in Table 1. More details
can be found in the Appendix.

Metrics. We evaluate the effectiveness of the information acquisition strategy by predicting answers
to the complete set of queries Q(X), using the representations D gathered by each strategy. The
set Q(X) is predicted with an attribute Classifier, trained to classify Q(X) from random histories S.
Accuracy and F1 score are computed with a testset with 2k samples in all cases, comparing predicted
answers with the ground truth for each acquired query.

To evaluate compositional generation, we compute alignment to the query-answer set by running
BLIP to answer queries from Q on the generated images. We report accuracy and F1 score with
respect to the ground-truth conditional signal, for the 10 queries with highest entropy.

Baselines. We compare our method with the following query-selection strategies.

• Random sampling baseline, where queries are sampled uniformly without replacement.
• Decision tree with information gain by impurity criterion (DT-IC), where we choose the query

with largest entropy (computed from the dataset), given the previous history of query-answer pairs.
This baseline is the gold standard, as it seeks to maximize the entropy of the selected query given
a history, which is our ultimate objective given I(q(X);Q(X)|s) = H(q(X) | s) − H(q(X) |
Q(X), s) = H(q(X) | s). However, since the entropy is estimated using empirical probabilities,
DT-IC suffers from data fragmentation and long computation times for large data corpora.

• Top K with impurity criterion (TopK-IC), where we select the top-k queries based on their
answer’s entropy in the training set.

Finally, for compositional generation experiments we compare against (i) Stable Diffusion V1-4
baseline text-to-image model; and (ii) Structured Diffusion Feng et al. (2023), a method to improve
multi-concept conditioning in text-to-image models, specifically more accurate attribute binding and
better image compositions. All methods are conditioned by text, and thus we provide the attribute
list as concatenated representations (e.g. “Photo of a bedroom that does not have white walls, has a
window, ...”). Note that given the restricted length of text tokens accepted by the baselines (77 tokens)
this experiment is performed with only 10 attributes from the query-set, selected by descending order
of entropy in the dataset. All generative models (including ours) in our experiments have SD V1-4
as the base model for fair comparison. Note that our fine-tuning method can be plugged into other
text-to-image diffusion models. More details are given in the Appendix.

3.1 QUALITATIVE EXPERIMENTAL RESULTS

Semantic Auto-Encoding and Concept Manipulation. Figs. 1 and 2 illustrate qualitative results for
the LSUN Bedroom dataset. In these examples, Figure 1(b) shows four images generated using the
complete description with L = 58 query-answer pairs, while Figure 1(c) shows examples generated
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1. Are there 4 or more objects? --> no 
2. Are there 1 or more gray objects? --> yes 
3. Are there 1 or more cyan objects? --> no 
4. Are there 1 or more red objects? --> no 
5. Are there 1 or more green objects? --> yes 
6. Are there 1 or more brown objects? --> no 
7. Are there 1 or more purple objects? --> no 
8. Are there 1 or more blue objects? --> no 
9. Are there 1 or more yellow objects? --> no 
10. Are there 3 or more objects? --> no 
… (All needed information)

X

X̂

Random Strategy

Learned Querier

X̂

L = |D | 5 10 20 30 44 Querier output:
Generated Samples with

Figure 6: Representation of InCoDe’s performance in CLEVR Colors dataset. We illustrate one example of
generated samples by utilizing our model’s Querier and the random baseline. InCoDe generates a sequence of
sensible queries and the Generator successfully generates an image that is semantically equivalent (as defined
by our query set) to the reference image after only asking few queries.

Figure 7: InCoDe behaves correctly in corner cases. Left: In case of generating concepts underrepresented
in the training set, images still can capture them. Right: For apparently contradictory answers to queries, the
Generator tries to accomplish both at the same time resulting in creative solutions.

by (left) changing one, and (right) two attributes. In Fig. 2, our method successfully generates
samples based solely on a sequence of query-answers, while other methods fail.

Similarly, Fig. 5 presents an example for LSUN Churches, where InCoDe regenerates a reference
image by first representing it in Q(X), and then adjusts the answers to specific attributes.

In all cases, InCoDe results preserve quality while showcasing correct behavior. To appreciate
similarity between generated and reference images, refer to the list of attributes for Bedroom and
Churches found in Dataset details (Sec. A.3). More qualitative results can also be found in Sec. A.1.

Querier trajectory. In Fig. 6, we see a simple yet illustrative example of a trajectory generated by
InCoDe, as well as one generated by a random baseline, with the corresponding generated images.
The CLEVR Colors dataset is useful since it is easy for a human to see whether the output of the
querier is correct or not. For instance, in the depicted case, the Querier begins by asking a question
about the number of objects and obtains an answer 4. Next, it proceeds to ask about the colors one by
one and it finds that there are 1 or more objects of gray color and green color. Therefore, there is a
minimum of 2 objects. Subsequently, at iteration 10, InCoDe asks if there are 3 or more objects, and
receives a negative response thereby completely capturing the semantics of the reference image as
defined by our query set, which is only concerned with the number of objects in the image and their
color. As the result, the Generator manages to synthesis an image that matches our reference image
in semantic content (again as defined by our query set).

Corner Cases. Figure 7 illustrates the behavior of InCoDe when generating images from concepts
that are underrepresented in the training set, demonstrating that these concepts are successfully
captured through the proposed fine-tuning process. Additionally, the figure presents an example
where InCoDe is faced with seemingly contradictory answers to different queries and synthesis a
creative but implausible solution.

3.2 QUANTITATIVE EXPERIMENTAL RESULTS

Effectiveness of the Information acquisition strategy. The results for these experiments are
illustrated in Figure 8, where we plot Accuracy and F1-score against description length, where higher
values indicate better performance. Both DT-IC and TopK-IC compute the entropy and select the
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Ours DT-IC TopK-IC Random

LSUN Bedroom

Clevr Colors CelebA

LSUN Churches

Figure 8: Performance evaluation of InCoDe using attribute-based queries. We report the Test Accuracy
and F1 score of an attribute classifier on the predicted representations. InCoDe outperforms the baselines in all
cases, with increasing gains as the datasets become more complex. DT-IC shows similar performance initially,
but it suffers from data fragmentation, as well as long computation time.

query that maximizes it. The key difference is that DT-IC takes into consideration each query-answer
and fragments the data accordingly. Eventually, the method runs out of data points in the training set
over which computing the entropy and thus it stops selecting queries (visible by the flattening of the
curve). In other words, it suffers from data fragmentation. TopK-IC does not have this issue, but it is
suboptimal as it does not account for history.

This experiment shows InCoDe consistently selects queries that yield a better information acquisition
strategy than the baselines, especially for more complex scenarios such as the LSUN datasets. In
contrast, the CLEVR dataset is simple and contains a high degree of redundancy in Q(X). The latter
favors entropy-based methods while explaining the poor performance shown by the random strategy.

Table 2: Our method generates images
that respect the attributes more often than
baselines do. Quantitative evaluation in
terms of Accuracy and F1-score for the top
10 queries, according to their entropy com-
puted from their respective trainset.

LSUN Bedroom LSUN Churches
Acc. F1 Acc. F1

SD V1 0.61 0.62 0.57 0.55
SD XL 0.58 0.64 0.59 0.61
Stru. D 0.52 0.54 0.51 0.50
InCoDe 0.85 0.84 0.75 0.72

Composable generation. The Accuracy and F1 Score
in Tbl. 2 for the LSUN datasets show the capacity of
InCoDe to combine multiple concepts into the same gen-
erated sample. Note that the chosen metrics introduce a
new source of error as BLIP can produce bad predictions.

We can observe that InCoDe performs significantly better
than Stable Diffusion (SD V1), which is the base method
upon which InCoDe is built. It also outperforms SD XL,
which is a bigger, enhanced version of SD V1. Struc-
tured Diffusion (Feng et al. (2023)) is also based on SD;
however, the modifications they propose negatively im-
pact performance when dealing with the conjunction of
numerous concepts.

4 RELATED WORK

Interpretability in Machine Learning. A large number of papers are devoted to post-hoc inter-
pretability. Recent research focuses on developing more principled frameworks where interpretability
is part of the model’s design ((Wu et al., 2021; Bohle et al., 2021; Alvarez Melis & Jaakkola, 2018)).
Another line of work learns latent semantic concepts or prototypes from data ((Sarkar et al., 2022;
Nauta et al., 2021; Donnelly et al., 2022; Li et al., 2018; Yeh et al., 2020)) and produces predictions
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by leveraging those concepts. Nevertheless, these learned concepts are not always interpretable to the
end user. Instead, (Chattopadhyay et al., 2022) introduced IP (with subsequent work in Gadgil et al.
(2024)), which produces predictions explained by interpretable query-chains, allowing the user to
define intermediate representations in the form of a query-set. This guarantees by construction that
the resulting query-chain explanations will be interpretable.

Conditioning, Control and Interpretability In Diffusion Models. Diffusion models have been
used for conditional generation with great success. While early conditioning diffusion models studied
class-conditional generation (Dhariwal & Nichol (2021); Ho & Salimans (2021)), recent focus has
shifted to text-to-image generation, with high-quality results (Rombach et al. (2022); Saharia et al.
(2022); Ramesh et al. (2022); Nichol et al. (2021)). Consequently, many works on controllability rely
on the direct intervention of embedded text representations (Kawar et al. (2023); Ramesh et al. (2022);
Avrahami et al. (2022); Kim et al. (2022); Feng et al. (2023)). In this case, image manipulation still
relies on the ability of text-to-image models to compose multiple concepts, which often fail (Fig.
2, Tbl. 2). Alternative methods, such as those in Mokady et al. (2022); Hertz et al. (2023); Epstein
et al. (2023), leverage the analysis and manipulation of cross-attention maps between text tokens
and U-Net features for control. Regardless of the text-based method, when control does not directly
involve text prompts, interpretability and subsequent manipulation typically rely on post-hoc analysis
of the network’s features.

Beyond text-based conditioning, several efforts have focused on using alternative control signals
to guide the generative process. Works such as Zhang et al. (2023); Zheng et al. (2023); Du et al.
(2023); Meng et al. (2022); Li et al. (2023); Yang et al. (2023); Huang et al. (2023) are representative
examples of approaches for controlling image generation by means of spatially grounded inputs.
These signals include contours, bounding boxes, masked images, depth maps, and sketches, often
integrated with textual inputs. Interpretability relies on the user’s ability to understand these control
signals, which is not guaranteed. Control of the generated outputs has also been engineered directly
on U-net features Kwon et al. (2023), or on abstract latent codes Preechakul et al. (2022), both
requiring post hoc interpretation.

Our work presents a principled framework reminiscent of model inversion Ramesh et al. (2022); Gal
et al. (2023); Mokady et al. (2022); Kwon et al. (2023) or semantic compression Preechakul et al.
(2022); Koh et al. (2020); Kodirov et al. (2017). However, while these works find representations of
the semantic content of a data point, they are often not interpretable by design, and when they are
Koh et al. (2020); Kodirov et al. (2017), they are not compressed (they have no measure of relevance)
or principled. We propose a general method that greedily selects elements from an interpretable-
by-design query-answer set that are most informative, and generates new data conditioned on these
representations while allowing for targeted semantic modifications.

5 CONCLUSION

This work introduces Interpretable Compressed Descriptions for Image Generation (InCoDe), a
novel framework that leverages Information Pursuit (IP) to effectively represent data and guide image
generation based on user preferences. InCoDe generates images consistent with a succinct and
meaningful representation D, given by a sequence of user-defined questions and answers, which are
chosen sequentially to maximize mutual information between D and the complete Query-Answer set
Q(X). In this way, InCoDe prioritizes the most relevant queries and provides an intuitive, interactive
interface for generating customized images, while addressing challenges of current generative models
by building upon them. Through validation across multiple scenarios, InCoDe demonstrates superior
performance over existing methods, offering an efficient solution for domain-specific applications
such as bedroom decoration. This work paves the way for more personalized and interpretable-by-
design generative models, enhancing both user experience and practical utility.

The proposed framework requires having a query set. This can be perceived as both a strength and
a limitation. It is a strength, since the designer is free to select the set of semantic concepts that
are important for the intended generation task. Yet, building this set can be tedious. Modern large
language models can alleviate this task. We have used this approach to create the queries for the
LSUN Bedroom and Churches datasets. However, human supervision and prompting is still necessary.
This raises the research question of designing a framework that allows users to define the semantic
domain of a query set without the need for direct supervision of the query set itself.
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6 ETHICS STATEMENT

The development of generation methods such as InCoDe offers significant benefits, such as enhanced
personalization and domain-specific applications, but also presents risks. Without proper safeguards,
generative models can be misused in harmful ways, such as spreading disinformation or creating
offensive content. As they become more accessible, it is important to balance their innovative potential
with ethical considerations, ensuring that the technology is used responsibly and transparently.

In particular, one major issue is the potential for bias. If the query set used by InCoDe is not diverse
or representative, it may result in the reinforcement of stereotypes or exclusion of certain groups.
Thus, adequate oversight ensuring that the query set is ethically designed is key to mitigating this risk
and avoid harmful or misleading content.
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A APPENDIX

In this appendix, we will provide additional information to complement the main paper. We structure
it as follows: After a brief summary of the notation, in Section A.1 we provide and analyse additional
results for all datasets. In particular, in Section A.1.1, we discuss results on a different type of queries
that are location-centered. In A.1.2, we present results that compliment those in the main body of the
paper. Next, in SectionA.2 we summarize background material on Information Pursuit and Diffusion
Denoising Models. In Section A.3 we provide additional details for each of our experiments; Section
A.4 is used to proof Proposition 2.1 of the location-based experiments described in Sec. A.1 of this
appendix and a justification of the training objective. Finally, in Section A.5, we discuss the broader
and ethical impact of our work.

Notation We summarize the notation for the main concepts used along this appendix.

• p(X0): Real data distribution
• p̂(X0): Our model of the data distribution.
• X0: Data-point sampled from a real data distribution.
• t: Time step in our forward diffusion process. It represents the noise level. I.e. we add small

amount of Gaussian noise to the sample in T steps. This produces a set of noisy samples
(X1, . . . XT )

• Xt: Noisy sample at noise level t.
• p(Xt | Xt−1): Forward diffusion process distribution.
• p(Xt−1 | Xt, X0, s): Reverse diffusion process true posterior distribution.
• p̂(Xt−1 | Xt, s): Our model of the reverse diffusion process posterior distribution. p̂ is also

used as the denoising mapping function. The subscript θ is used to indicate the optimizable
parameters of the model.

• βt: Variance schedule.
• c: Arbitrary condition
• {q, q(X0)}: Query and Queryset Answer respectively.
• S: Query-Answer history random variable. With s as a Query-Answer history realization.
• ϵt: Gaussian noise term added to the clean sample X0 in order to obtain Xt.
• ϵθ(Xt, t, c): Estimated noise at step t. Output of one forward pass in our diffusion model

(with parameters θ). The network is conditioned to the current noisy image Xt, the current
noise level t, and potentially another condition c, that should steer our generative model
towards p(X0|c).
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A.1 MORE RESULTS

In this section we analyse additional results from the remaining datasets, including those with
location-based query sets.

A.1.1 LOCATION-BASED EXPERIMENTS

As noted in the main body, InCoDe is not restricted to textual queries. A query can gather different
types of information about a datapoint, such as location-based queries, where a query qi,j requests an
RGB image patch around the location (i, j) in X . In this case, we can have Q(X) = X by allowing
to ask enough queries to retrieve every image pixel. Since these questions carry spatial structural
information, we can parameterize a set S as an image where only the patches corresponding to
answered questions are visible and we use a Querier consisting of a set of convolutional blocks.

In the case of Q(X) = X , where the answers to queries are portions of the image itself, the denoising
objective of DDPM can be used to optimize our Querier, avoiding the need for a QuerySet Answerer,
jointly training the Querier and Generator in an end-to-end fashion.

Equation (4) can be rewritten as:

min
g,f

Et,X0,SDKL[p(Xt−1 | Xt, X0) || p̂θ(Xt−1 | Xt, q(X0), S)]

where q = g(S) ∈ Q, p̂θ(Xt−1 | Xt, q(X0), S) = f(q(X) ∪ S)
(A1)

We formalize the above procedure as follows:
Proposition A.1. Let (f∗, g∗) be an optimal solution to (A1). We define the optimization problem as:

max
p̂∈PX ,q∈Q

I(q(X0);X1 | s)− Et,X0,sDKL[p(Xt−1 | Xt, q(X0), s) || p̂(Xt−1 | Xt, q(X0), s)].

(A2)
Then, there exists an optimal solution (p̂∗s, q

∗
s ) to the above objective for any realization S = s such

that p(S = s) > 0 such that q∗s = g∗(s) and p̂∗s = f∗(Xt, {q∗s , q∗s (X0)} ∪ s).

The proof of proposition A.1 can be found in A.4, and it draws inspiration from Chattopadhyay
et al. (2022). Note that for an optimal solution (p̂∗s, q

∗
s ), the KL divergence term would be 0, and the

Querier would choose the query that maximizes the mutual information term between the first latent
variable X1 of the diffusion process and any given subset S = s of Q(X). While the objective is to
maximize I(q(X);X | s), this quantity is undefined for a continuous X . A common strategy to make
mutual information well defined is to add a small Gaussian noise to X0 Saxe et al. (2018). Hence, we
seek to maximize I(q(X0);X1 | s) instead. In section 2.2 we provide a practical methodology to
solving the presented optimization problems, by means of neural-network architectures.

Datasets. We selected datasets with increasing complexity to assess a range of scenarios, starting
from simple cases with predictable outcomes based on human intuition and progressing towards more
challenging scenarios. We include results for MNIST (LeCun et al., 1998): A database of images of
hand-written digits; CLEVR Johnson et al. (2016): A synthetic dataset, where objects with different
attributes are placed randomly in a uniform background. For CLEVR, we create an attribute set that
answers the following query-set format: "Are there n or more objects of color Y ?". This is asked for
eight colors (including any color) and n ∈ [1, 5] for a total of 45 queries; CelebA: A dataset with
celebrity face images and 40 facial attributes; and LSUN Bedroom Attributes, a large dataset with
bedroom images and their descriptions as a set of 58 binary attributes consisting on answers provided
by BLIP Li et al. (2022) to human-crafted queries. The latter is a contribution of this work, given
the lack of existing datasets that meet our task’s requirements, and it will be released for public use.
More details can be found in the Appendix. The types of queries used for each of these datasets are
listed in Table 3.

Metrics. We assess performance using different metrics, depending on the type of queries utilized.
For location-based queries, aiming to impute missing values in an image, we employ MSE and LPIPS
Zhang et al. (2018) (measuring perceptual similarity through VGG network features), computed
between the ground-truth and 200 generated samples, one per test example, for description lengths
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Table 3: Descriptions of the image size and location-based query-set for different datasets.

Dataset (Image size) Query Set Q Size |Q|

MNIST (LeCun et al., 1998) (1× 32× 32), pixel intensities in 3× 3 stride 1 900

CelebA Face (3× 64× 64) pixel intensities in 8× 8 patches with stride 4 225

Clevr Johnson et al. (2016) (3× 64× 64), pixel intensities in 8× 8 patches with stride 4 225

of |D| = {0, 1, 2, 5, 10, 20, 40, 60} (for CLEVR and CelebA) and |D| = {0, 2, 5, 10, 20} (MNIST).
The Generator used for evaluation was trained on random histories S for fairness across baselines.

For experiments using attribute-based queries, we predict answers to the full set of queries Q(X)
with a QuerySet Answerer, trained to classify Q(X) from random histories S. Accuracy and F1
score are computed with a testset with 2k samples in all cases, comparing predicted answers with the
ground truth.

Baselines For location-based query sets, where answers are not binary and impurity computation
is intractable, we employ two hand-crafted patterns that emulate human intuition, as introduced in
Rangrej et al. (2022): (iv) Spiral, where patches are selected in spiral starting from the center of the
image, and (v) Cross, with patches selected with a cross pattern. Baselines are described in higher
detail in the Appendix.

Figure 9: Performance evaluation of InCoDe using
location-based queries. We measure the reconstruction
error and perceptual similarity (LPIPS). InCoDe out-
performs the baselines in both datasets.

Quantiative results: In Fig. 9, For these ex-
periments we report reconstruction metrics in
Figure 9, where smaller values indicate bet-
ter performance. The horizontal axes indicate
the number of asked queries. InCoDe clearly
outperforms the baselines in both MNIST and
CLEVR datasets, where there is abundant re-
dundancy to be exploited. For instance, both
datasets have uniform backgrounds. As the main
content is located in the center of the image,
spiral and cross baselines have relatively good
performance in the initial steps. However, explo-
ration is needed to disambiguate the remaining
appearance and thus the random baseline gets
better as more queries are asked. In the case of
CelebA, we observe that the random baseline
slightly surpasses InCoDe for fewer than 20
queries. We attribute this behavior to two main
factors. First, this baseline selects queries with
the same random strategy that was used to pre-
train the Generator. Second, CelebA samples
contain useful information in most of the image,
and thus a highly exploratory method can be
especially effective.

Qualitative results: We can see in the side
(a) of Fig. 10 a sequence of patch queries se-
lected by our Querier for a sample of Clevr. The
images in this dataset consist of a uniform back-
ground with a set of objects of different sizes
located around the center. We can see how the
Querier initially selects a patch in the center of

the image and then explores around it as more objects are glimpsed. It is interesting to see that for
L = 5, the Querier has seen the 3 objects. However, the generator creates a 4th object, which is does
not exist. This example illustrates the potential of the Generator to create diverse samples, while
respecting the semantic content of description D, and the overall data distribution. In the right side
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(b) of the figure, we the same illustration for a CelebA example. Here, the Querier selects patches in
the main features of the face, the clothes and the contour of the head, which defines the shape and
provides information about both the subject and the background.

Figure 10: InCoDe selects meaningful patches according to the data distribution Illustrated in the left side
(a) we see a sequence of patch queries selected by our Querier with their associated generated samples (same
color border). The Querier initially selects a patch in the center of the image and then explores around it as more
objects are glimpsed. In the right side (b) of the figure, we show an example for a CelebA. Here, the Querier
selects patches in the main features of the face, the clothes and the contour of the head.

Figure 11: InCoDe selects the most informative im-
age patches towards reconstructing a reference. Sam-
ples generated using descriptions with location-based
queries of length 0, 2, 5, 10 and 20, with the MNIST
dataset. The Querier selects highly informative patches
according to the previous history, quickly predicts the
digit’s identity, and refines its appearance.

Fig.11 illustrates InCoDe’s performance when
using location-based queries. The querier se-
lects patches that contain most information
about the digit. The identity of the digit is
quickly captured after |D| = 5 patches, and
further steps refine the appearance to match the
reference image.

A.1.2 ATTRIBUTE-BASED EXPERIMENTS

The following results illustrate qualitatively the
behavior of our model, including corner cases.

LSUN Bedrom more generated samples: In
Fig. 17, we display two examples of a given
set of attributes (query-answer pairs) and their
corresponding image examples in the dataset. For visualization purposes we choose combinations of
attributes that have exactly 4 corresponding examples in the dataset. Note that in most cases samples
have a unique combination of attributes. We observe how the generated samples by our dataset are
semantically similar, while appearance at the pixel level varies widely.

Fig. 12 showcases how generated samples of LSUN Bedroom dataset using attribute-based queries
align to the reference as the number of selected queries increases. After 30 queries, the generated
sample resembles image the reference just as much as when asking all queries in the query set.

LSUN Bedrom more editing results: We provide additional editing results in Fig. 16. We can
see how modifying one attribute does not change the overall structure of the generated sample, while
it does add or subtract that particular attribute from the image.

Trajectories: In Fig. 13 we present a trajectory generated by our Querier, along with the
corresponding InCoDe outputs at description lengths of 5, 10, and 15. The results demonstrate
alignment with the majority of answers while producing images of high quality.

Contradictory Answers: in Fig. 15, we illustrate one particular case. How does the model
interpret the condition in case two queries have contradictory answers. This should rarely happen
when answers represent a real datapoint. However, a user could input contradictory answers, or
the VQA model could have a defective output. If contradiction occurs, one or the other attribute is
disregarded. This is made obvious in the figure, for queries “Is a window present in the image? No”
and “Are plants visible from the window? Yes”.
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Figure 12: InCoDe generates samples according to a semantic description given at different levels of detail.
This figure illustrates how the descriptions chosen by our model generate samples that increasingly mirror the
reference (top-left).

Figure 13: InCoDe Example of a trajectory created by our Querier. The corresponding images generated
with different description lengths respect most attributes.

Underrepresented attributes: Fig. 14 illustrates the behavior of InCoDe when individually
asked about queries with an underrepresented answer in the dataset. We observe that our approach
can still capture them. However, this experiment also brings to light the limitations of our pipeline.
First, we observe that the presence of a Hunting trophy is rare and disregarded by our model. If we
look deeper, we conclude that the BLIP model used to answer the queries hallucinates this particular
attribute, and thus the model cannot properly capture it. We also observes that the image quality
suffers when only one or two queries are visible to the generative model.

CelebA with Facial attributes: We illustrate in Fig. 18 the performance of InCoDe for the
CelebA dataset. Similarly to the previous example, we display the list of queries selected by our
trained Querier. In this case, it is harder to judge the correctness of the sequence intuitively. However,
the first three questions likely have very high entropy in the dataset. Moreover, we see that the
generated images using our strategy resemble the reference at a faster pace than when using a random
selection strategy.
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Figure 14: Attributes in the dataset may be respected even when unfrequent in the dataset, however in
some cases they are disregarded. We illustrate this behavior with the following examples: (a) Generated
images with active attributes indicating the presence of "red courtains are present in the room", (b) "Image is a
collage" and (c) "hunting trophy is present in the room". All of them with rare presence in the training set. We
observe that in some cases the attribute may be respected, with the presence of failure cases. For instance, in (c)
Hunting trophys are not seen in the scene. We argue that this can also be an effect of (d), where the BLIP model
used to answer the queries may sometimes hallucinate attributes and give wrong responses, as seen by retrieving
examples for "hunting trophy". We also observe that the quality of the generated images suffers slightly
when the Generator is conditioned on one or two attributes only, with the rest masked out.. Human figures
also have bad quality but this is a common problem with the version of Stable-Diffusion that we are using as
base model.

Figure 15: Contradictory attributes lead to valid images, but either one attribute or the other are disre-
garded. In this particular case, we see how we indicate that no window should be visible, while plants should
appear through a window. The result often shows plants in an environment without windows, but obviously the
conjunction of both attributes is not exactly present, as it is impossible. Note that none of the training examples
(assuming VQA method being flawless) should not have such combination present.
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Figure 16: Examples of targeted modifications. (left) We show two samples generated from the same set of
query-answers. (middle) We edit the answer of "Is there a nightstand light in the table?" to "No". (right) We edit
the answer of "Can you see plants from the window?" to "Yes".

Figure 17: Our method generates high-quality samples, substantially different from the training examples.
We show all examples in our training and testing set for a particular set of attribute responses. We then use
these attributes to generate samples and we conclude that they are semantically similar while varying widely in
appearance. We include one failure case (right figure, bottom-left).
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Learned 
Querier

1. Male --> yes    

2. Smiling --> yes 

3. Young --> yes 

4. No_Beard --> no        

5. Black_Hair --> no

6. Mouth_Slightly_Open --> yes

7. Wearing_Hat --> no

8. Wearing_Necktie --> no

9. Bushy_Eyebrows --> no

10. Brown_Hair --> no

11. Attractive --> yes                                                     

12. Eyeglasses --> no                                                   

13. Blurry --> no            

14. Wavy_Hair --> no            

15. Bangs --> no       

16. High_Cheekbones --> yes                                               

17. Heavy_Makeup --> no                                            

18. Arched_Eyebrows --> no                                                

19. Straight_Hair --> yes        

20. Narrow_Eyes --> no 

21. Bags_Under_Eyes --> yes    

22. Rosy_Cheeks --> no                                                                                                                              

23. Big_Nose --> no                                                                                                                                

24. Chubby --> no                                                        

25. Wearing_Earrings --> no                                           

26. 5_o_Clock_Shadow --> no                                                                                                                        

27. Receding_Hairline --> no                                                                                                                         

28. Blond_Hair --> no                                                   

29. Oval_Face --> no                                                                                                                                

30. Goatee --> no                                                                                                                                   

31. Big_Lips --> no                                                                                                                               

32. Pointy_Nose --> yes       

33. Sideburns --> no            

34. Pale_Skin --> no

35. Wearing_Lipstick --> no      

36. Wearing_Necklace --> no  

37. Double_Chin --> no                                                                                                                              

38. Mustache --> no                                                                                                                                 

39. Gray_Hair --> no                                                    

40. Bald --> no 

Random  
Strategy

Selected 
Queries:

5

10

20

30

All

GT X

L

Samples

X̂

Figure 18: InCoDe selects meaningful queries to reconstruct an image in terms of the query set. On the
right, we see a list of queries selected by our trained Querier. The first three questions likely have very high
entropy in the dataset. The generated images (center) using our strategy converge faster towards the reference
appearance (left) than the random selection strategy.
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A.2 BACKGROUND

A.2.1 INFORMATION PURSUIT AND ITS VARIATIONAL CHARACTERIZATION

Information Pursuit (IP) was proposed as a framework for explainable prediction by choosing
explainable queries Chattopadhyay et al. (2022). Its main idea is to make a prediction of a target
variable Y from input data X ∈ X , by sequentially asking and answering queries about X .

In practice, only a small number of question-answer pairs might be enough to make a prediction.
Thus, IP aims to construct the shortest sequence of questions that is most informative to predict Y , by
selecting the next query to maximize the mutual information with X , building on the information
gained from previous queries. Given a set of possible queries Q, and an observation X = xobs, the IP
algorithm is as follows:

q1 = IP(∅) = argmax
q∈Q

I(q(X);Y );

qk+1 = IP(q1:k(xobs)

= argmax
q∈Q

I(q(X);Y | q1:k(xobs)).

(A3)

where q(x), with a slight abuse of notation, denotes that the answer to query q for the data X = x is
q(x), and qk+1 ∈ Q refers to the new query selected by IP at step k + 1, based on the query history
(denoted as q1:k(xobs)), and I denotes mutual information.

IP can be carried out by learning the distribution p(Q(X), Y ) from the data by using generative
models and MCMC sampling to estimate the mutual information terms Chattopadhyay et al. (2022).
However, MCMC sampling is computationally expensive. To overcome this challenge, Chattopadhyay
et al. (2023) proposed a variational characterization of IP, noting that generative models are only a
means to an end. Thus, they introduced a function called querier, mapping the observed histories,
q1:k(x

obs), to the most informative next query qk+1 ∈ Q. They showed that this most informative
query is exactly the query q∗ whose answer will minimize the KL divergence between the conditional
label distribution p(Y | X) and the posterior p(Y | q∗(X), q1:k(x

obs)).

Based on this insight, an optimization problem is designed to perform IP as follows. Let
Q(x) = {q(x) | q ∈ Q} be the query-answer set containing all inquiries about the data x and
their corresponding answers. Let K(x) = P(Q(x)), be the power set5 of Q(x) with all possible query
histories. Define K̄ := ∪x∈XK(x); let a classifier f : K̄ → PY be a function mapping arbitrary
query-answer sequences to a distribution over Y and the querier g : K̄ → Q be a function mapping
arbitrary query-answer sequences to a query q ∈ Q. Then, the variational objective for IP is given by
the optimization problem:

min
θ,ϕ

EX,S [DKL (p(Y | X) ∥ p′θ(Y | q(X), S))]

subject to q = gϕ(S) ∈ Q

P̂ (Y | q(X), S) = f(q(X) ∪ S),

(A4)

where DKL indicates the Kullback–Leibler divergence between two probability functions and S is a
random set of query-answer pairs taking values in K̄, and conditioning on q(X) should be read as
conditioning on {x ∈ X | q(x) = q(X)}. Given S = s and X = xobs, the querier gϕ(·) chooses a
query q ∈ Q, evaluates it on xobs and passes q(xobs) to the classifier. Then, the classifier makes a
prediction based on s appended with this additional query-answer q(xobs). This is implemented by
parameterizing the querier and classifier by neural networks, with parameters θ and ϕ, respectively,
and a random set of query-answer pairs S. For futher details refer to Chattopadhyay et al. (2023).

A.2.2 DIFFUSION DENOISING MODELS

Here, we provide a detailed overview of the formulation of Gaussian diffusion models from Ho et al.
(2020).

There are two main stages in diffusion-based generative modeling. The first stage is the forward
diffusion process. It gradually adds a small amount of Gaussian noise to a clean sample from the

5A power set of a set Q is the set of all subsets of Q, including the empty set and Q itself.
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source distribution X0 ∼ p(X) to create a sequence of noisy samples X0, . . . , Xt, . . . XT . The
amount of added Gaussian noise is defined by a variance schedule noted by βt:

p(Xt|Xt−1) := N (Xt;
√
1− βtXt−1, βtI) (A5)

As seen the transition probability is parametrized as a Gaussian distribution. The Gaussian Markov
proces has good properties. We can easily obtain a noisy sample at an arbitrary step t of the diffusion
process given a clean sample X0. Instead of repeatedly applying p until the desired t, we simply need
to accumulate the noise scales given our schedule:

p(Xt|X0) = N (Xt;
√
ᾱtX0, (1− ᾱt)I) (A6)

=
√
ᾱtX0 + ϵ

√
1− ᾱt, ϵ ∼ N (0, I) (A7)

with αt := 1− βt and ᾱt :=

t∏
s=0

αs (A8)

with 1− ᾱt indicating the noise variance at an arbitrary step t.

This is followed by the reverse diffusion process, which starts with a sample from isotropic Gaussian
noise, XT , and incrementally removes noise towards generating a true sample from the source
distribution, thus reversing the forward process. We are thus interested in approximating the true
posterior of the reverse diffusion process. By means of the Bayes theorem, we find that the true
posterior conditioned on X0 is also Gaussian with mean µ̃t(Xt, X0) and variance β̃t:

µ̃t(Xt, X0) :=

√
ᾱt−1βt
1− ᾱt

X0 +

√
αt(1− ᾱt−1)

1− ᾱt
Xt (A9)

β̃t :=
1− ᾱt−1

1− ᾱt
βt (A10)

p(Xt−1|Xt, X0) = N (Xt−1; µ̃(Xt, X0), β̃tI) (A11)

However, we wish to approximate the posterior p(Xt−1|Xt), without access to the sample X0. This
term cannot be computed exactly but it is assumed to have a Gaussian form when the step-size βt is
sufficiently small. We approximate the posterior with a model p̂θ(Xt−1|Xt) parametrized by a neural
network with parameters θ. In particular, the model estimates the mean µθ and a diagonal covariance
matrix Σθ of a Gaussian distribution:

p̂θ(Xt−1|Xt) := N (Xt−1;µθ(Xt, t),Σθ(Xt, t)) (A12)

In order to learn the true distribution p(X0), we can optimize the following variational lower-bound
Lvlb for p̂θ(X0), instead of directly approximating p(X0):

− log p̂θ(X0) ≤ − log p̂θ(X0) +DKL(p(X1:T |X0)∥p̂θ(X1:T |X0)) (A13)

= − log p̂θ(X0) + EX1:T∼p(X1:T |X0)

[
log

p(X1:T |X0)

p̂θ(X0:T )/p̂θ(X0)

]
(A14)

= − log p̂θ(X0) + Ep
[
log

p(X1:T |X0)

p̂θ(X0:T )
+ log p̂θ(X0)

]
(A15)

= Ep
[
log

p(X1:T |X0)

p̂θ(X0:T )

]
(A16)

Let LVLB = Ep(X0:T )

[
log

p(X1:T |X0)

p̂θ(X0:T )

]
≥ −Ep(X0) log p̂θ(X0) (A17)
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Lvlb can be decomposed into three main terms:

LVLB = Ep(X0:T )

[
log

p(X1:T |X0)

p̂θ(X0:T )

]
(A18)

= Ep
[
log

∏T
t=1 p(Xt|Xt−1)

p̂θ(XT )
∏T
t=1 p̂θ(Xt−1|Xt)

]
(A19)

= Ep
[
− log p̂θ(XT ) +

T∑
t=1

log
p(Xt|Xt−1)

p̂θ(Xt−1|Xt)

]
(A20)

= Ep
[
− log p̂θ(XT ) +

T∑
t=2

log
p(Xt|Xt−1)

p̂θ(Xt−1|Xt)
+ log

p(X1|X0)

p̂θ(X0|X1)

]
(A21)

= Ep
[
− log p̂θ(XT ) +

T∑
t=2

log
(p(Xt−1|Xt, X0)

p̂θ(Xt−1|Xt)
· p(Xt|X0)

p(Xt−1|X0)

)
+ log

p(X1|X0)

p̂θ(X0|X1)

]
(A22)

= Ep
[
− log p̂θ(XT ) +

T∑
t=2

log
p(Xt−1|Xt, X0)

p̂θ(Xt−1|Xt)
+

T∑
t=2

log
p(Xt|X0)

p(Xt−1|X0)
+ log

p(X1|X0)

p̂θ(X0|X1)

]
(A23)

= Ep
[
− log p̂θ(XT ) +

T∑
t=2

log
p(Xt−1|Xt, X0)

p̂θ(Xt−1|Xt)
+ log

p(XT |X0)

p(X1|X0)
+ log

p(X1|X0)

p̂θ(X0|X1)

]
(A24)

= Ep
[
log

p(XT |X0)

p̂θ(XT )
+

T∑
t=2

log
p(Xt−1|Xt, X0)

p̂θ(Xt−1|Xt)
− log p̂θ(X0|X1)

]
(A25)

= Ep[DKL(p(XT |X0) ∥ p̂θ(XT ))︸ ︷︷ ︸
LT

+

T∑
t=2

DKL(p(Xt−1|Xt, X0) ∥ p̂θ(Xt−1|Xt))︸ ︷︷ ︸
Lt−1

− log p̂θ(X0|X1)︸ ︷︷ ︸
L0

] (A26)

From this point on, it suffices with optimizing the intermediate term Lt−1 for all values of t. Note
that we have an analytical expression for p(Xt−1 | Xt, X0) which has a Gaussian form. Given that
our model p̂θ(Xt−1 | Xt) also parametrizes a Gaussian, we can exploit the closed-form solution
for the KL divergence between Gaussian distributions, and leverage a simple change of variables
(described in Ho et al. (2020)) in order to optimize a simpler expression:

Lsimple = := Et∼[1,T ],X0∼p(X0),ϵt)[||ϵt − ϵθ(Xt, t)||2] (A27)

Here ϵt is the added noise at time t, and we train a model ϵθ(Xt, t) to predict ϵt from Equation A7.

Lsimple does not provide any learning signal for Σθ(Xt, t). This happens because instead of learning
Σθ(Xt, t), it is fixed to a constant βtI as proposed by Ho et al. (2020).

µθ(Xt, t) can be derived from ϵθ(Xt, t) as follows:

µθ(Xt, t) =
1

√
αt

(
Xt −

1− αt√
1− ᾱt

ϵθ(Xt, t)

)
(A28)

This sustitution is used both to derive Equation A27 and to sample. The sampling algorithm can be
found in Ho et al. (2020). It is not the only possible sampler that has been proposed, but we use it for
our method.
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A.3 EXPERIMENTAL DETAILS

In this section we describe the details for different aspects of the experiments: the overall set-
ting and architecture, the datasets, details for LAION-400M, the sampling procedure and training
regularizations.

Architecture and Setting Details. We design different architectures for different query-set types.
Tables 4, 5 depict the designs for the Querier, and Table 6 for the QuerySet Answerer. For different
datasets, The blocks may have different depths. For the patch-based querier, the number of channels is
the sum of channels for the ground-truth reference image (if any), channels of the history and an extra
channel that is a binary mask indicating what regions of the image are visible C = Cgt + CS + CM .
The input is thus the naive concatenation of these three sources. For attribute-based query-sets,
the input data is formatted differently. We have a two-channel one-dimensional vector that is the
concatenation of an indicator of the answers to the visible attributes with values {−1, 0, 1} and a
binary mask indicating visibility.

We use Imagen Saharia et al. (2022) as the main generative pipeline. We slightly modify the
conditioning methodology to adapt to our requirements. We describe the main modifications:

• Remove LayerNorm from fully connected layers that process attribute-like conditions.

• Attribute query-sets condition the U-Net through masked cross-attention in all layers, an-
nulling the effect of queries that have yet to be asked. Diffusion time t interacts with the
U-Net solely through feature-wise modulation.

• Image-like conditions are concatenated to the noisy input image of the U-Net.

Next, we describe the main hyperparameters used for Imagen’s U-Net. Learning rate: LR = 1e− 4
with a cosine decay; Base dimension: 32; Dimensionality multiplyers: (1, 2, 4, 8), Self-attention
at resolutions: (× 1

4 , × 1
8 ); Query embedding size: 16 × 2; Condition size: 256; Number of steps

for training and sampling: 256; Condition drop probability: p = 0.1. The reference code-base
and other details can be found in https://github.com/lucidrains/imagen-pytorch.
More details can be found in our codebase.

Table 4: Architecture for the
querier used for the patch-based
experiments.

ConvBlock (C → 512)

DeConvBlock (512 → 32)

Dense (32 → 1): Attention logits
Hard Softmax: Selected Query

Table 5: Architecture for the
querier used for the attribute-
based experiments.

LinearBlock (|Q| → 2000)

LinearBlock (2000 → 500)

Channel-concat
Dense (1000 → |Q|): Attention logits

Hard Softmax: Selected Query

Table 6: Architecture for classi-
fier used for the attribute-based
experiments.

LinearBlock (|Q| → 2000)

LinearBlock (2000 → 500)

Channel-concat
Dense (1000 → |Q|): Attribute logits

Our method for LSUN Bedroom experiments has been trained as a wraper to Stable Diffusion V1-4:
huggingface.co/CompVis/stable-diffusion-v1-4. We use the same version for the results displayed in
Fig. 2.

When showing results for Stable Diffusion XL, we use the model in huggingface.co/stabilityai/stable-
diffusion-xl-base-1.0.

Quantitative experiments for the generative approach compositionality capability. We choose
as baselines the Stable Diffusion V1-4 baseline text-to-image model and Structured Diffusion Feng
et al. (2023), a method to improve multi-concept conditioning in text-to-image models, specifically
more accurate attribute binding and better image compositions. Both methods are conditioned by
text, and thus we provide the attributes in the following format:

“Photo of a bedroom with curtains that are light-colored, with white walls, with floor made of wood,
with visible door, without an ensuite bathroom, with white bedsheets, and without a watermark.”

Note that we select 10 attributes from the query set of length 58. They correspond to the attributes
with top entropy in the training dataset.
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The reason why we do not provide the full list of attributes for the LSUN Bedroom dataset is that the
baselines only accept prompts with a maximum length of 77 tokens, and thus we cannot concatenate
all attributes in natural language.

Datasets details. Here, we describe the dataset details.

• MNIST: Training corpus consists of 60k 1×32×32 greyscale images of handwritten single
digits. In inference time we generate 5 samples for each example of the test set, consisting of
120 images. We generate samples for multiple description lengths, in order to generate the
curves in Fig. 9. The test setting is the same for all experiments, except indicated otherwise.

• CelebA: It consists of 50k 3 × 64 × 64 images of celebrity faces, divided into 34-1k-
15k for training, validation and testing. The publicly released dataset can be found in
https://www.tensorflow.org/datasets/catalog/celeb_a.

• Clevr: It consists of 8k (partitioned as 7k-1k-1k for training), validation and test. 3 ×
128× 128 images generated by randomly placing objects in a flat background with different
lightings. The objects have different controllable discrete attributes such as color, shape and
material, as well as continuous attributes such as rotation or size. We choose color for our
attribute-based experiments.

• LSUN Bedroom and Churches with Queries: Given the lack of existing datasets that
met our task’s requirements - adequate number of samples, high image quality, binary
attribute descriptions and images belonging to a concrete and well-defined distribution,
we created our own dataset. To do so, we selected a set of descriptive binary queries,
some of which redundant with others, to categorize a certain image distribution. Bedroom
dataset consists of 316k images, filtered to 60k and resized to 3 × 512 × 512 belonging
to LSUN (Large-scale Scene Understanding) dataset Yu et al. (2016) under the category
’bedroom’. Churches dataset consists of 70k images, filtered to 11k and split as 90% −
10%, for training and validation, reserving 2k images for test. They belong to category
’churches’ of LSUN and are also resized to 3 × 512 × 512. Link to datasets provided in
https://github.com/ArmandCom/InCoDe.
Filtering includes discarding images with width/length ratios exceeding 1.3 or falling
below 0.7, with additional rule-based filtering. The images were then passed through
BLIP Li et al. (2022), a visual question-answering engine with a set of queries designed
to describe the scene with binary answers. The official LSUN dataset can be found in:
https://www.tensorflow.org/datasets/catalog/lsun.
The list of binary attributes were the following (asterisk marks some level of redundancy):
Bedroom:

– Presence of curtains
– Presence of red curtains*
– Presence of brown curtains*
– Presence of blue curtains*
– Presence of light colored curtains*
– Presence of a luggage
– Presence of at least one person
– Presence of an adult*
– Presence of a child*
– Presence of two children*
– Presence of a blue wall
– Presence of a red wall
– Presence of a white wall
– Presence of a dark wall
– Presence of a window
– Presence of sunlight coming out from a window*
– Presence of plants visible from a window*
– Presence of city buildings visible from a window*
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– Visible floor
– Presence of a carpet*
– Wooden floor visible*
– Presence of a door
– Presence of an open door*
– Presence of door to an en-suite bathroom*
– Visible ceiling
– Presence of hanging lights from the visible ceiling*
– Presence of more than one bed
– Whether all beds are from the same size*
– Presence of bunk beds
– Whether the bed is big enough for two people
– Presence of a mosquito net
– Presence of a TV monitor
– Presence of a radio
– Presence of a radiator
– Presence of a bedside table
– Presence of a nightstand light in the bedside table*
– Presence of more than one bedside tables*
– Presence of photo frames in the bedside table*
– Presence of white bedsheets
– Presence of dark bedsheets
– Presence of blue bedsheets
– Presence of red bedsheets
– Presence of green bedsheets
– Whether the image is a collage
– Presence of an animal
– Presence of a dog*
– Presence of a cat*
– Presence of a bird*
– Presence of a hunting trophy in a wall*
– Presence of a telephone
– Presence of plants inside the room
– Whether the image is from a hotel room
– Presence of paintings in a wall
– Whether the lights are on
– Whether the bed is made
– Presence of a closet
– Presence of a wooden closet*
– Presence of an image watermark

Churches:
– Building made of stone
– If building is made of stone, is it a light-colored stone*
– Presence ofgreen grass in the image
– Presence of trees in the image
– If trees in the image, are they large trees*
– Presence of person in the image
– If person appears in the image, are they standing near the building*
– Presence of a chimney on the roof of the building
– Presence of windows in the building
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– If building has windows, are they large windows*
– Wall of the building made of visible bricks
– If wall of the building is made of visible bricks, are the bricks red*
– Sky clear
– If sky is clear, is the sun visible in the image*
– Clouds in the sky
– Presence of more than one building in the image
– Is asphalt visible in the image
– Does the image have a watermark
– Does the building have a bell on the roof
– Presence of garden in the building
– Building in a rural area
– Presence of a mountain in the image
– Nighttime
– Building in the image from the Romanesque architectural style
– Building in the image from the Gothic architectural style
– Building in the image from the Renaissance architectural style
– Building in the image from the Baroque architectural style
– Building located near a body of water
– Presence of a path leading to the building
– Presence of a bell tower in the building
– Presence of a bench near the building
– Building surrounded by a fence
– Building made of wood
– Presence of columns in the building
– Presence of a large rose window in the building
– Does the building have a cross on the roof
– Presence of a bell tower separate from the main building
– Building adorned with sculptures
– If building is adorned with sculptures, are they religious figures*
– Presence of arches or vaulted ceilings inside the building
– Roof of the building tiled
– If the roof is tiled, are the tiles red*
– Presence of a statue of a saint or angel on the building
– Building painted

Image Sampling. Image sampling is done with the same algorithm as described in Saharia et al.
(2022), the main difference being that the diffusion model is conditioned on the selected description
D.

Hardware InCoDe has been trained in two NVIDIA GeForce RTX 2080 Ti GPUs. For images of
resolution 64× 64, it takes ∼ 1 day to train. There are slight fluctuations due to model variations.
The binary attribute image classifier has been trained in two NVIDIA RTX A6000 GPUs during ∼ 3
days.

A.4 CONDITIONAL DIFFUSION FROM THE PERSPECTIVE OF INFORMATION THEORY: PROOF
OF PROPOSITION 2.1

Initial remarks. We wish to approximate p(X0) with our generative model p̂(X0). Next, we
provide derivation of the diffusion objective by means of the variational lower bound. Steps are
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skipped for brevity. An expansion can be found in Ho et al. (2020) and Section A.2.2 of this appendix.

Ep(X0)[− log p̂(X0)] ≤ Ep(X0)[− log p̂(X0) +DKL(p(X1:T | X0) || p̂(X1:T | X0))]

=Ep(X0:T )

[
log

p(X1:T | X0)

p̂(X0:T )

]
=Ep(X0:T )[DKL(p(XT | X0) || p̂(XT ))

+

T∑
t=2

DKL(p(Xt−1 | X0, Xt) || p̂(Xt−1 | Xt))

− log p̂(X0 | X1)]

(A29)

Effectively we optimize the following objective, which is simplified.

min
p̂∈PX

Ep(X0),t∈[1,T ][DKL(p(Xt−1 | X0, Xt) || p̂(Xt−1 | Xt))] + C

≡ min
p̂∈PX

EX0,ϵ,t∼[1,T ]

[
∥ϵt − ϵθ(Xt, t)∥2

]
= Lsimple,

(A30)

where C is a constant not depending on the parameters θ of p̂ and ϵθ(Xt, t) as our noise estimation
model. Instead of a summation we take the expectation for t ∈ [1, T ]. Minimizing Lsimple is
empirically shown to also minimize the KL divergence term in Equation A29 (Ho et al. (2020)).
Here, we are interested in generating X conditioned to a set of conditions c ∈ {c1, . . . , cN}. Ho &
Salimans (2021) makes the following connection:

min
p̂∈PX

Ep(X0|c)[p̂(X0 | c)]

≤ min
p̂∈PX

Ep(X0|c),t∈[1,T ][DKL(p(Xt−1) | X0, Xt, c) || p̂(Xt−1 | Xt, c)] + C

≡ min
p̂∈PX

Ep(X0|c),ϵ,t∼[1,T ]

[
∥ϵt − ϵθ(Xt, t, c)∥2

] (A31)

Ho et al. (2020) only considers the unconditional distribution. The above is true if we consider
p(X0 | c) as being a separate distribution, and our model p̂(X0 | c) equivalent to having a family of
unconditional models with different θ for each condition c. Therefore: p(X0 | c) ≡ pc(X0) and
p̂θ(X0 | c) ≡ p̂θ,c(X0).

Next, we prove the following lemma:

Lemma A.2. Let Q be a user-defined query set and P(Xt) all possible distributions on Xt with t
being an arbitrary noise level of the diffusion process. Then, for any realization S = s, the following
holds true:

min
p̂∈PX ,q∈Q

Ep(X0|Xt,s)

T∑
t=2

[DKL(p(Xt−1 | X0, Xt, q(X0), s) || p̂(Xt−1 | Xt, q(X0), s)]

≡ max
p̂∈PX ,q∈Q

I(q(X0);X1 | s) (A32)

− Ep(X0|Xt,s)

T∑
t=2

[DKL(p(Xt−1 | Xt, q(X0), s) || p̂(Xt−1 | Xt, q(X0), s))] (A33)
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Proof of Lemma A.2: With c = {q(X0), s}, we express our objective in Equation (A1) in terms of
mutual information.

min
p̂∈PX ,q∈Q

Ep(X0|Xt,s)

T∑
t=2

[DKL(p(Xt−1 | X0, Xt, q(X0), s) || p̂(Xt−1 | Xt, q(X0), s)]

= min
p̂∈PX ,q∈Q

Ep(X0|Xt,s)

T∑
t=2

∑
Xt−1

p(Xt−1 | X0, Xt, q(X0), s) log
p(Xt−1 | X0, Xt, q(X0), s)

p̂(Xt−1 | Xt, q(X0), s)


= min
p̂∈PX ,q∈Q

Ep(X0|Xt,s)

T∑
t=2

∑
Xt−1

p(Xt−1 | X0, Xt, q(X0), s) log
p(X0, Xt−1 | Xt, q(X0), s)

p̂(Xt−1 | Xt, q(X0), s)p(X0 | Xt, q(X0), s)


= min
p̂∈PX ,q∈Q

Ep(X0,Xt−1|Xt,s)

T∑
t=2

[
log

p(X0, Xt−1 | Xt, q(X0), s)

p(Xt−1 | Xt, q(X0), s)p(X0 | Xt, q(X0), s)

]

+ Ep(X0,Xt−1|Xt,s)

T∑
t=2

[
log

p(Xt−1 | Xt, q(X0), s)

p̂(Xt−1 | Xt, q(X0), s)

]

= min
p̂∈PX ,q∈Q

T∑
t=2

[I(X0;Xt−1 | Xt, q(X0), s)]

+ Ep(X0|Xt,s)

T∑
t=2

[DKL(p(Xt−1 | Xt, q(X0), s) || p̂(Xt−1 | Xt, q(X0), s))]

(A34)
with X = X0. Now observe that for any fixed S = s and any q ∈ Q,

I(X0, q(X0);Xt−1 | Xt, s) = I(X0;Xt−1 | Xt, s) + I(q(X0);Xt−1 | X0, Xt, s)

= I(X0;Xt−1 | Xt, s)
(A35)

Decomposing I(X0, q(X0);Xt−1 | Xt, s),

I(X0, q(X0);Xt−1 | Xt, s) = I(q(X0);Xt−1 | Xt, s) + I(X;Xt−1 | Xt, q(X0), s) (A36)

We find that:

min
q∈Q

I(Xt−1;X0 | Xt, q(X0), s) ≡ min
q∈Q

−I(q(X0);Xt−1 | Xt, s). (A37)

Then, we apply the equality in A37 to the first term of the last expression in Equation in A34:

T∑
t=2

I(q(X0);Xt−1 | Xt, s) =

T∑
t=2

I(q(X0);Xt−1 | {Xt, . . . , XT }, s) =

= I({X1, . . . , XT }; q(X0) | s) = I(X1; q(X0) | s)

(A38)

We easily see that Lemma A.2 is proven by applying the resulting expression in the mutual information
term of Equation A34.

Proof of Proposition 2.1 Once again, we restate the proposed objective in Equation A1 (ommitting
the parameters subscript for simplicity):

min
θ,ψ

Et∼[1,T ],p(X0|S)DKL (p(Xt−1 | Xt, X0) || p̂(Xt−1 | Xt, q(X0), S) (A39)

where q = g(S) ∈ Q
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We then proceed as follows:

min
θ,ψ

Ep(X0|s)

T∑
t=2

[DKL (p(Xt−1 | Xt, X0) || p̂(Xt−1 | Xt, q(X0), s))] (A40)

=Ep(X0|s)

T∑
t=2

[DKL (p(Xt−1 | Xt, X0) || p̂∗s(Xt−1 | Xt, q
∗
s (X0), s))]

=Ep(X0|s)

T∑
t=2

[DKL (p(Xt−1 | Xt, X0) || p̂(Xt−1 | Xt, q̂(X0), s))]

+ Ep(X0|s)

T∑
t=2

[ ∑
Xt−1

p(Xt−1 | Xt, X0) log
p̂(Xt−1 | Xt, q̂(X0), s)

p̂∗s(Xt−1 | Xt, q∗s (X0), s)

]

=Ep(X0|s)

T∑
t=2

[DKL (p(Xt−1 | Xt, X0) || p̂(Xt−1 | Xt, q̂(X0), s)]

− Ep(X0|s)

T∑
t=2

[ ∑
Xt−1

p(Xt−1 | Xt, X0) log
p̂∗s(Xt−1 | Xt, q

∗
s (X0), s)

p̂(Xt−1 | Xt, q̂(X0), s)

]

=Ep(X0|s)

T∑
t=2

[DKL (p(Xt−1 | Xt, X0) || p̂(Xt−1 | Xt, q̂(X0), s)]

− Ep(X0|s)

T∑
t=2

[DKL (p̂
∗
s(Xt−1 | Xt, q

∗
s (X0), s) || p̂(Xt−1 | Xt, q̂(X0), s))]

≤Ep(X0|s)

T∑
t=2

[DKL (p(Xt−1 | Xt, X0) || p̂(Xt−1 | Xt, q̂(X0), s))] , (A41)

for any realization S = s with p(S = s) > 0. The optimal denoiser p̂∗s and query q∗s are the
solution to the minimzation problem. We denote any denoiser as p̂s, and q̂ = g(s) is the output of
any querier. We make use of Lemma A.2 in the fourth equality. We appeal to the KL divergence
non-negativity for the inequality. This inequality holds for ∀S = s. We conclude that q∗s = g∗(s)
and p̂∗s = p̂∗(Xt, {q∗s , q∗s (x0)} ∪ s) for any given s. Note than in a slight abuse of notation we denote
both the denoising mapping and the posterior probability as p̂. The Theorem A2 is proved by using
Lemma A.2 to characterize q∗s and p̂∗s .

Note that parts of this proof are structurally equivalent to that of Chattopadhyay et al. (2023). However,
we apply it to our particular case of image generation by denoising.

Training Objective Function. Finally, applying the empirical equivalency in A30, we can substitute
the KL divergence term in our objective function, obtaining the following expression:

min
θ,ϕ

Et∼[1,T ],X0|S,ϵt
[
∥ϵt − ϵθ(Xt, t, S ∪ {q, q(X0)})∥2

]
(A42)

where q = gϕ(S) ∈ Q

with ϵθ as the noise estimation model with parameters θ and gϕ as the querier, with trainable
parameters ϕ.

A.5 IMPACT

This paper presents work whose goal is to advance the field of Machine Learning and provide useful
tools for artists to create and edit image content. The ethics of creating realistic images involve a
complex interplay of factors such as intent, consent, impact, and cultural sensitivity. While realistic
images can serve legitimate purposes, responsible creation and use, transparency, and respect for
individuals’ rights are essential to navigate the ethical considerations involved.

32


	Introduction
	Methods
	InCoDe Framework
	Architecture Design, Training, and Sampling

	Experiments
	Qualitative Experimental Results
	Quantitative Experimental Results

	Related Work
	Conclusion
	Ethics Statement
	Acknowledgments
	Appendix
	More Results
	Location-based Experiments
	Attribute-based Experiments

	Background
	Information Pursuit and its Variational Characterization
	Diffusion Denoising Models

	Experimental Details
	Conditional Diffusion from the perspective of Information theory: Proof of Proposition 2.1
	Impact


