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APPENDIX TO “RETHINKING CLASS-PRIOR ESTIMA-
TION FOR POSITIVE-UNLABELED LEARNING”

A PROOFS

In this section, we show all the proofs.

A.1 PROOF OF PROPOSITION 1

Proposition 1. Let β∗ = infS∈S,Pp(S)>0
Pn(S)
Pp(S)

be the maximum proportion of Pp in Pn, given
Pu = (1− π)Pn + πPp, for 0 < π ≤ 1, we have

κ∗ = π + (1− π) inf
S∈S,Pp(S)>0

Pn(S)

Pp(S)
= π + (1− π)β∗. (1)

Proof. Let κ∗ be the maximum proportion of Pp in Pu, which can be formulated as κ∗ =

infS∈S,Pp(S)>0
Pu(S)
Pp(S)

. Then,

κ∗ = inf
S∈S,Pp(S)>0

(1− π)Pn(S) + πPp(S)

Pp(S)

= inf
S∈S,Pp(S)>0

(1− π)Pn(S)

Pp(S)
+ π

= π + (1− π) inf
S∈S,Pp(S)>0

Pn(S)

Pp(S)
. (2)

By letting β∗ = infS∈S,Pp(S)>0
Pn(S)
Pp(S)

, κ∗ = π + (1− π)β∗ which completes the proof.

A.2 PROOF OF LEMMA 1

Lemma 1. Let M be a probability measure over a measurable space (X ,S). For any set A ∈ S,
we have MA +MAc =M .

Proof. Let Ac = X \A. Let 2A and 2A
c

be the power sets on A and Ac, respectively. According to
Definition 2 in the main paper, MA and MAc are defined as follows,

∀S ∈ S,MA(S) =M(S ∩A);
∀S ∈ S,MAc(S) =M(S ∩Ac).

To prove M =MA +MAc , we need to prove ∀S ∈ S,MA(S) +MAc(S) =M(S).

∀S ∈ S,

MA(S) +MAc(S) = M(S ∩A) +M(S ∩Ac) =M((S ∩A) ∪ (S ∩Ac))
= M(S ∩ (A ∪Ac)) =M(S ∩ X ) =M(S),

which completes the proof.
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A.3 PROOF OF THEOREM 1

Theorem 1. Let Pu = (1− π)Pn + πPp. Let A ⊂ support(Pu). By regrouping PAn to Pp, Pu can
be written as a mixture, i.e., Pu = (1− π′)Pn′ + π′Pp′ , where

π′ = π + (1− π)Pn(A), (3)

Pn′ =
PA

c

n

Pn(Ac)
, Pp′ =

(1− π)PAn + πPp

(1− π)Pn(A) + π
, (4)

and Pn′ and Pp′ satisfy the anchor set assumption.

Proof. Firstly, we prove that by regrouping PAn to Pp, Pu is a convex combination of two new
class-conditional distributions, i.e., Pu = (1− π′)Pn′ + π′Pp′ .

Let A ∈ S, we split Pn as PA
c

n and PAn , transport PAn to Pp to regroup them together, i.e.,

Pu = (1− π)Pn + πPp = (1− π)(PAn + PA
c

n ) + πPp = (1− π)PA
c

n + ((1− π)PAn + πPp). (5)

Normalizing PA
c

n and ((1− π)PAn + πPp) in Eq. (5) to probability measures, we have

Pu = (1− π)PA
c

n + ((1− π)PAn + πPp)

= ((1− π)PA
c

n (X )) PA
c

n

PAcn (X )
+ ((1− π)PAn (X ) + πPp(X ))

(1− π)PAn + πPp

(1− π)PAn (X ) + πPp(X )

= ((1− π)PA
c

n (Ac))
PA

c

n

PAcn (Ac)
+ (π + (1− π)PAn (A))

(1− π)PAn + πPp

(1− π)PAn (A) + π

= ((1− π)Pn(A
c))

PA
c

n

Pn(Ac)
+ (π + (1− π)Pn(A))

(1− π)PAn + πPp

(1− π)Pn(A) + π
, (6)

where the last two qualities are obtained by the definition of PAn and PA
c

n . Let Pn′ =
PA

c

n

Pn(Ac)
,

Pp′ =
(1−π)PAn +πPp

(1−π)Pn(A)+π and π′ = π + (1− π)Pn(A), then Eq. (6) becomes

Pu = (1− π′)Pn′ + π′Pp′ ,

which shows that Pu can be made to a convex combination of new class-conditional distributions Pn′

and Pp′ by regrouping PAn with Pp.

Now we prove that Pn′ and Pp′ satisfy the anchor set assumption by checking whether Pn′(A) = 0
and Pp′(A) > 0.

By the definition of Pn and PA
c

n , we have

Pn′(A) =
PA

c

n (A)

Pn(Ac)
= 0. (7)

By the definition of Pp and PAn , we have

Pp′(A) =
(1− π)PAn (A) + πPp(A)

(1− π)Pn(A) + π
=

(1− π)Pn(A) + πPp(A)

(1− π)Pn(A) + π
=

Pu(A)

(1− π)Pn(A) + π
> 0. (8)

The last inequality holds because A ⊂ support(Pu). By combining Eq. (7) and Ineq. (8), we can
conclude that Pn′ and Pp′ satisfy the anchor set assumption.

A.4 PROOF OF THEOREM 2

Theorem 2. Let Pp′ and Pn′ be obtained by regrouping a set A∗ := argminA∈S
Pn(A)
Pp(A)

1 from Pp

and Pn. 1). If Pn and Pp satisfy the irreduciblility assumption, then π′ = π; 2). if Pn and Pp

dissatisfy the irreduciblility assumption, then π < π′ < π + (1− π)β∗ = κ∗.
1We have defined that the fraction tends to infinite if its numerator is larger than 0 and its denominator is

0. Additionally, the infimum may not be always exist, if it does not exist, we could use a sequence of sets that
converges to the infimum value, but the convergence rate can be arbitrarily slow Scott (2015).
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Proof. We define that a fraction tends to infinite if its numerator is larger than 0 and its denominator
is 0. In this case, we could remove the constraint Pp(S) > 0 in Eq. (2) and rewrite it to κ∗ =

π+(1−π) infS⊆support(Pu)
Pn(S)
Pp(S)

. We subtract it with the new class prior after regrouping (Eq. (3)),
i.e.,

κ∗ − π′ = π + (1− π) inf
S⊆support(Pu)

Pn(S)

Pp(S)
− π − (1− π)Pn(A

∗)

= (1− π)
(

inf
S⊆support(Pu)

Pn(S)

Pp(S)
− Pn(A

∗)

)
. (9)

Not that A∗ := argminA∈S
Pn(A)
Pp(A) , if Pn is irreducible to Pp, infS⊆support(Pu)

Pn(S)
Pp(S)

= 0, so as
Pn(A

∗). Therefore κ∗ − π′ = 0 and π′ = π.
If Pn is reducible to Pp, Pp(A

∗) < 0, then infS⊆support(Pu)
Pn(S)
Pp(S)

> Pn(A
∗) and κ∗ − π′ > 0.

Therefore π < π′ by Eq. (3), and π < π′ < π + (1− π)β = κ∗.

A.5 PROOF OF THEOREM 3

For completeness, we illustrate the convergence property of ReCPE, which is presented by employing
the estimator proposed by Blanchard et al. (2010).
Theorem 3. Let Pu = (1− π)Pn + πPp. By selecting a set A and regrouping PAn to Pp. Then, with

probability 1− 2δ, the estimated class-prior π̂′ based on solving infS∈S,P̂p′ (S)>0
P̂x(S)

P̂p′ (S)
satisfies

|π̂′ − π| ≤ εδ,H(Sp′)

P̂p′(A) + εδ,H(Sp′)
+

εδ,H(Su)

P̂p′(A) + εδ,H(Sp′)
+ (1− π)Pn(A), (10)

where εδ,H(S) , 2R̂S(H) + 3
√

log 4
δ

2|S| for a set S, and R̂S(H) is the empirical Rademacher com-
plexity ofH.

Proof. Firstly, we illustrate Rademacher complexity bounds. LetH be a family of functions taking
values in {−1,+1}, and let D be the distribution over the input space X . Then, for any δ > 0, with
probability at least 1 − δ/2 over a sample S = (x1, . . . , xm) of size m drawn according to D, for
any function h ∈ H,

R(h)− R̂S(h) ≤ 2R̂S(H) + 3

√
log 4

δ

2m
, (11)

where R(h) is the expected risk of the function h, and R̂S(h) is the empirical risk of the function h
on the sample S (Mohri et al., 2018). Specifically, let c be a target concept, then,

R(h) = E
x∼D

[1{h(xi)6=c(xi)}], R̂S(h) =
1

m

m∑
i=1

1{h(xi)6=c(xi)}.

After regrouping PAn to Pp and creating Pp′ =
(1−π)Pn′A+πPp

(1−π)Pn′ (A)+π , Pu can be written as a mixture, i.e.,
Pu = (1− π′)Pn′ + π′Pp′ . Additionally, Pn′(A) = 0 and Pp′(A) > 0. Then,

Pu(A) = (1− π′)Pn′(A) + π′Pp′(A) = π′Pp′(A). (12)

In order to bring in the Rademacher complexity bounds to the above equation, we have to connect
both Pu(A) and Pp′(A) with the expected risk. Let’s define a function h ∈ H which is an indicator
of the anchor set A. That is, ∀x ∈ X ,

h(x) =

{
1, x ∈ A
−1, x 6∈ A, (13)
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By treating the sample i.i.d. drawn from the distribution Pu as positive, we can rewrite the Pu(A) as
follows,

Pu(A) =

∫
x∈A

pu(x)dx =

∫
x∈X

pu(x)1{h(x)=1}dx

= 1−
∫
x∈X

pu(x)1{h(x) 6=1}dx = 1− E
x∼Pu

[1{h(xi)6=1}] = 1−R1(h),

where R1(h) represents the false negative risk of the function h.

Similarly, by treating the sample i.i.d. drawn from the distribution Pp′ as negative, , we can rewrite
the Pp′(A) as follows,

Pp′(A) =

∫
x∈A

fPp′ (x)dx =

∫
x∈X

fPp′ (x)1{h(x) 6=0}dx = E
x∼Pp′

[1{h(xi)6=0}] = R0(h),

where R0(h) represents the false positive risk of the function h.

Suppose we have samples Su and Sp′ with sample sizes |Su| and |Sp′ | i.i.d. drawn from Pu and
Pp′ , respectively. Let P̂x(A) and P̂p′(A) be the empirical version of Pu(A) and Pp′(A), which are
defined uniformly over the training samples, that is,

P̂x(A) =
1

|Su|
∑
x∈Su

1{h(xi)=1} = 1− 1

|Su|
∑
x∈Su

1{h(xi) 6=1} = 1− R̂1,Su
(h), (14)

P̂p′(A) =
1

|Sp′ |
∑
x∈Sp′

1h(xi) 6=0 = R̂0,Sp′ (h). (15)

By Eq. (12), the estimated π̂′ is

π̂′ =
P̂x(A)

P̂p′(A)
. (16)

By using the Rademacher complexity bounds and union bound, with probability 1− δ, we have both

Pu(A) = 1−R1(h) ≥ 1− R̂1,Su
(h)−

2R̂Su
(H) + 3

√
log 4

δ

|Su|


, 1− R̂1,Su

(h)− εδ,H(Su), (17)

and

Pp′(A) = R0(h) ≤ R̂0,Sp′ (h) + 2̂RSp′ (H) + 3

√
log 4

δ

|Sp′ |

, R̂0,Sp′ (h) + εδ,H(Sp′). (18)

Substituting Pu(A) and Pp′(A) in Eq. (12) with Eq. (17) and Eq. (18), we have

1− R̂1,Su
(h)− εδ,H(Su) ≤ π′Pp′(A) ≤ π′

(
R̂0,Sp′ (h) + εδ,H(Sp′)

)
, (19)

By Eq. (14) and Eq. (15), the above inequality can be rewritten as,

P̂x(A)− εδ,H(Su) ≤ π′
(
P̂p′(A) + εδ,H(Sp′)

)
.
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Then we have that

π′ ≥ P̂x(A)− εδ,H(Su)

P̂p′(A) + εδ,H(Sp′)

=
P̂p′(A) + εδ,H(Sp′)− εδ,H(Sp′)

P̂p′(A) + εδ,H(Sp′)

P̂x(A)− εδ,H(Su)

P̂p′(A)

=

(
1− εδ,H(Sp′)

P̂p′(A) + εδ,H(Sp′)

)(
π̂′ − εδ,H(Su)

P̂p′(A)

)

=

(
1− εδ,H(Sp′)

P̂p′(A) + εδ,H(Sp′)

)
π̂′ − εδ,H(Su)

P̂p′(A) + εδ,H(Sp′)

= π̂′ − εδ,H(Sp′)

P̂p′(A) + εδ,H(Sp′)
π̂′ − εδ,H(Su)

P̂p′(A) + εδ,H(Sp′)

≥ π̂′ − εδ,H(Sp′)

P̂p′(A) + εδ,H(Sp′)
− εδ,H(Su)

P̂p′(A) + εδ,H(Sp′)
. (20)

By the symmetric property of Eq. (10), with probability 1− 2δ,

|π̂′ − π′| ≤ εδ,H(Sp′)

P̂p′(A) + εδ,H(Sp′)
+

εδ,H(Su)

P̂p′(A) + εδ,H(Sp′)
. (21)

According Eq. (3), π′ = π + (1− π)Pn(A), then, with probability 1− 2δ,

|π̂′ − π| ≤ εδ,H(Sp′)

P̂p′(A) + εδ,H(Sp′)
+

εδ,H(Su)

P̂p′(A) + εδ,H(Sp′)
+ (1− π)Pn(A).

A.6 PROOF OF THEOREM 4

Theorem 4. Let pu and pp be density functions of Pu and Pp, respectively. Let q = P (C =
0)pu + P (C = 1)pp. Let 1A : X → {0, 1} be the identity function which outputs 1 if x ∈ X is in
the set A, and 0 otherwise. Then the set A∗ = argminA∈S

Ex∼q(X)[1A(X=x)q(C=0|X=x)]

Ex∼q(X)[1A(X=x)q(C=1|X=x)] .

Recall that, in the main paper, we have defined another auxiliary distribution q(X,C), where
C ∈ {0, 1} is the positive-vs-unlabeled label i.e., a class label distinguishing between the positive
component and the whole mixture. Specifically, priors are q(C = 1) := π

1−π and q(C = 0) := 1
1−π ;

conditional densities are q(X|C = 1) := Pp and q(X|C = 0) := Pu; class-posterior probabilities
are q(C = 0|X) and q(C = 1|X).

Proof. Firstly, we prove that Pn(S)
Pp(S)

is proportional to Pu(S)
Pp(S)

.

Pu(S)

Pp(S)
=

(1− π)Pn(S) + πPp(S)

Pp(S)

= (1− π)Pn(S)

Pp(S)
+ π.

Since 1
1−π and π

1−π are constants, then Pn(S)
Pp(S)

is proportional to Pu(S)
Pp(S)

, which completes the first part
of the proof.

Recall that, in the main paper, we have defined another auxiliary distribution q(X,C), where
C ∈ {0, 1} is the positive-vs-unlabeled label i.e., a class label distinguishing between the positive
component and the whole mixture. Specifically, priors are P (C = 1) := q(C = 1) := π

1−π and
P (C = 0) := q(C = 0) := 1

1−π ; conditional densities are q(X|C = 1) := pp and q(X|C = 0) :=

pu; class-posterior probabilities are q(C = 0|X) and q(C = 1|X). We have

Pu(S)

Pp(S)
=

∫
x∈S q(X = x|C = 0)dx∫
x∈S q(X = x|C = 1)dx

=

∫
x∈X 1A(X = x)q(X = x|C = 0)dx∫
x∈X 1A(X = x)q(X = x|C = 1)dx

. (22)
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By using Bayesian rules, the above equation can be written as,

Pu(S)

Pp(S)
=

∫
x∈X 1A(X = x)q(X = x|C = 0)dx∫
x∈X 1A(X = x)q(X = x|C = 1)dx

=
P (C = 1)

P (C = 0)

∫
x∈X 1A(X = x)q(C = 0|X = x)q(x)dx∫
x∈X 1A(X = x)q(C = 1|X = x)q(x)dx

.

=
P (C = 1)

P (C = 0)

Ex∼q(X)[1A(X = x)q(C = 0|X = x)]

Ex∼q(X)[1A(X = x)q(C = 1|X = x)]
.

Since P (C=1)
P (C=0) is a constant, then Pu(S)

Pp(S)
is proportional to Ex∼q(X)[1A(X=x)q(C=0|X=x)]

Ex∼q(X)[1A(X=x)q(C=1|X=x)] . Combining

with the first part of the proof, i.e., Pn(S)
Pp(S)

is proportional to Pu(S)
Pp(S)

, we can conclude that Pn(S)
Pp(S)

is proportional to Ex∼q(X)[1A(X=x)q(C=0|X=x)]

Ex∼q(X)[1A(X=x)q(C=1|X=x)] . By definition of A∗ := argminA∈S
Pn(A)
Pp(A) , then

A∗ = argminA∈S
Ex∼q(X)[1A(X=x)q(C=0|X=x)]

Ex∼q(X)[1A(X=x)q(C=1|X=x)] , which completes the proof.

A.7 PROOF OF PROPOSITION 2

Proposition 2. Let Pp̃′ =
PAu +Pp

Pu(A)+1 and Pu(A) < ε. Then, ∀ε > 0 and ∀S ∈ S, |Pp′(S)−Pp̃′(S)| ≤
O(ε).

Proof. To prove Pp′ is a good surrogate of Pp′ , we show that with the decreasing of Pu(A), the
difference between Pp′ and Pp̃′ becomes smaller. Formally, let Pu(A) < ε. For all ε > 0 and for all
S ∈ S, |Pp′(S)− Pp̃′(S)| ≤ O(ε).
Note that the definitions of Pp′ and Pp̃′ are

Pp′ =
(1− π)PAn + πPp

(1− π)Pn(A) + π
;Pp̃′ =

PAu + Pp

Pu(A) + 1
.

We firstly start to prove that for all ε > 0 and for all S ∈ S, Pp′(S)− Pp̃′(S) ≤ O(ε).

Pp′(S)− Pp̃′(S) =
(1− π)PAn (S) + πPp(S)

(1− π)Pn(A) + π
− PAu (S) + Pp(S)

Pu(A) + 1

=
(PAu (S)− πPAp (S)) + πPp(S)

(1− π)Pn(A) + π
− PAu (S) + Pp(S)

Pu(A) + 1

≤ PAu (S) + πPp(S)

π
− Pp(S)

Pu(A) + 1

≤ PAu (A) + πPp(S)

π
− Pp(S)

Pu(A) + 1

=
Pu(A) + πPp(S)

π
− Pp(S)

Pu(A) + 1

=
Pu(A)

2 + Pu(A) + πPp(S)Pu(A) + πPp(S)− πPp(S)

πPu(A) + π

=
Pu(A)(Pu(A) + πPp(S))

πPu(A) + π

≤ Pu(A)(Pu(A) + πPp(S))

π
= O(ε). (23)
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We then prove that for all ε > 0 and for all S ∈ S, Pp̃′(S)− Pp′(S) ≤ O(ε).

Pp̃′(S)− Pp′(S) =
PAu (S) + Pp(S)

Pu(A) + 1
− (1− π)PAn (S) + πPp(S)

(1− π)Pn(A) + π

≤ PAu (S) + Pp(S)

Pu(A) + 1
− (1− π)PAn (S) + πPp(S)

(1− π)Pn(A) + πPp(A) + π

≤ PAu (S) + Pp(S)

Pu(A) + 1
− πPp(S)

Pu(A) + π

≤ PAu (A) + Pp(S)

1
− πPp(S)

Pu(A) + π

=
Pu(A) + Pp(S)

1
− πPp(S)

Pu(A) + π

=
Pu(A)

2 + πPu(A) + Pp(S)Pu(A) + πPp(S)− πPp(S)

Pu(A) + π

=
Pu(A)(Pu(A) + π + Pp(S))

Pu(A) + π

≤ Pu(A)(Pu(A) + π + Pp(S))

π
= O(ε). (24)

By combining (23) and (24), for all ε > 0 and for all S ⊆ X , |Pp′(S) − Pp̃′(S)| ≤ O(ε), which
completes the proof.

B MORE EXPERIMENTAL RESULTS

In this section, we provide more experimental results.

B.1 ESTIMATION ERRORS ON UCL DATASETS

In Table 1, for each baseline method and its regrouped version, we report the average and variance of
the absolute estimation errors and the p-values obtained by using Wilcoxon signed rank test. Note
the, a small p-value reflects the error of the Regrouped-MPE is significantly smaller than the error of
its baseline. The real-word datasets are downloaded from the UCL machine learning database2.

AM ReAM DPL ReDPL EN ReEN KM1 ReKM1 KM2 ReKM2 ROC ReROC RPG ReRPG
adult
(800)

0.127
±0.005

0.13
±0.005

0.122
±0.006

0.108∗
±0.005

0.316
±0.005

0.295
±0.005

0.255
±0.051

0.132
±0.01

0.164
±0.009

0.153
±0.007

0.176
±0.01

0.153
±0.007

0.135
±0.004

0.134
±0.004

p = 0.413 p = 0.036 p = 0.0 p = 0.0 p = 0.182 p = 0.111 p = 0.16
adult
(1600)

0.122
±0.005

0.124
±0.004

0.089∗

±0.003
0.089∗

±0.003
0.31
±0.004

0.29
±0.005

0.131
±0.015

0.091
±0.008

0.12
±0.007

0.13
±0.006

0.121
±0.006

0.095
±0.005

0.123
±0.002

0.137
±0.004

p = 0.775 p = 0.485 p = 0.0 p = 0.0 p = 0.985 p = 0.025 p = 0.934
adult
(3200)

0.105
±0.003

0.086
±0.004

0.054
±0.001

0.057
±0.002

0.297
±0.003

0.279
±0.004

0.054
±0.001

0.04∗
±0.001

0.082
±0.003

0.089
±0.003

0.089
±0.005

0.067
±0.003

0.114
±0.002

0.128
±0.004

p = 0.001 p = 0.519 p = 0.0 p = 0.0 p = 0.879 p = 0.009 p = 0.98
avila
(800)

0.168
±0.011

0.152
±0.009

0.129
±0.005

0.147
±0.004

0.447
±0.004

0.422
±0.004

0.105
±0.007

0.075∗
±0.003

0.104
±0.004

0.081
±0.003

0.263
±0.011

0.228
±0.012

0.119
±0.007

0.111
±0.005

p = 0.015 p = 0.978 p = 0.0 p = 0.0 p = 0.0 p = 0.024 p = 0.047
avila
(1600)

0.165
±0.011

0.132
±0.01

0.104
±0.003

0.084
±0.003

0.439
±0.003

0.418
±0.003

0.086
±0.005

0.076∗
±0.004

0.108
±0.004

0.092
±0.003

0.191
±0.007

0.16
±0.01

0.123
±0.005

0.121
±0.005

p = 0.0 p = 0.002 p = 0.0 p = 0.133 p = 0.005 p = 0.002 p = 0.369
avila
(3200)

0.156
±0.012

0.133
±0.01

0.05∗
±0.001

0.061
±0.001

0.436
±0.002

0.42
±0.002

0.092
±0.005

0.078
±0.003

0.112
±0.007

0.092
±0.003

0.131
±0.005

0.095
±0.004

0.121
±0.005

0.122
±0.005

p = 0.001 p = 0.998 p = 0.0 p = 0.658 p = 0.008 p = 0.0 p = 0.601
bank
(800)

0.135
±0.011

0.158
±0.009

0.116∗
±0.004

0.132
±0.004

0.282
±0.013

0.264
±0.015

0.356
±0.086

0.216
±0.029

0.266
±0.036

0.238
±0.019

0.163
±0.004

0.15
±0.006

0.163
±0.01

0.185
±0.022

p = 0.992 p = 1.0 p = 0.0 p = 0.0 p = 0.088 p = 0.103 p = 0.995
bank
(1600)

0.117
±0.007

0.167
±0.015

0.087∗
±0.001

0.105
±0.002

0.262
±0.009

0.244
±0.01

0.178
±0.02

0.128
±0.013

0.203
±0.021

0.198
±0.015

0.129
±0.004

0.118
±0.005

0.157
±0.01

0.167
±0.011

p = 1.0 p = 1.0 p = 0.0 p = 0.0 p = 0.812 p = 0.119 p = 0.453
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bank
(3200)

0.104
±0.009

0.127
±0.008

0.073∗
±0.002

0.091
±0.002

0.248
±0.007

0.237
±0.008

0.124
±0.008

0.09
±0.004

0.15
±0.014

0.16
±0.005

0.093
±0.003

0.106
±0.003

0.159
±0.005

0.18
±0.012

p = 0.962 p = 1.0 p = 0.0 p = 0.008 p = 0.986 p = 0.947 p = 0.967
card
(800)

0.131
±0.007

0.127∗
±0.007

0.174
±0.007

0.161
±0.009

0.465
±0.029

0.444
±0.03

0.293
±0.041

0.176
±0.013

0.203
±0.025

0.158
±0.015

0.247
±0.019

0.233
±0.021

0.177
±0.013

0.155
±0.011

p = 0.71 p = 0.018 p = 0.0 p = 0.0 p = 0.0 p = 0.207 p = 0.0
card
(1600)

0.173
±0.009

0.14
±0.009

0.14
±0.004

0.14
±0.003

0.459
±0.028

0.437
±0.028

0.19
±0.009

0.135
±0.003

0.159
±0.011

0.129
±0.004

0.194
±0.01

0.163
±0.008

0.126
±0.005

0.115∗
±0.008

p = 0.027 p = 0.478 p = 0.0 p = 0.0 p = 0.003 p = 0.111 p = 0.0
card
(3200)

0.164
±0.006

0.134
±0.003

0.127
±0.004

0.12
±0.002

0.455
±0.025

0.435
±0.025

0.161
±0.002

0.113
±0.002

0.142
±0.004

0.122
±0.002

0.159
±0.005

0.152
±0.004

0.11
±0.004

0.108∗
±0.009

p = 0.009 p = 0.204 p = 0.0 p = 0.0 p = 0.0 p = 0.268 p = 0.095
covtype

(800)
0.16
±0.01

0.123
±0.006

0.155
±0.006

0.151
±0.005

0.367
±0.003

0.343
±0.004

0.157
±0.011

0.142
±0.009

0.122
±0.008

0.13
±0.009

0.291
±0.019

0.258
±0.016

0.116
±0.003

0.105∗
±0.003

p = 0.0 p = 0.255 p = 0.0 p = 0.012 p = 0.973 p = 0.027 p = 0.003
covtype

(1600)
0.12
±0.006

0.1∗
±0.004

0.132
±0.003

0.109
±0.004

0.364
±0.002

0.339
±0.003

0.116
±0.004

0.113
±0.003

0.121
±0.005

0.123
±0.005

0.199
±0.014

0.161
±0.01

0.109
±0.003

0.108
±0.003

p = 0.004 p = 0.002 p = 0.0 p = 0.359 p = 0.768 p = 0.011 p = 0.257
covtype

(3200)
0.128
±0.003

0.09
±0.003

0.093
±0.003

0.083∗
±0.002

0.354
±0.001

0.334
±0.002

0.097
±0.004

0.109
±0.003

0.124
±0.003

0.128
±0.004

0.157
±0.009

0.113
±0.004

0.109
±0.003

0.107
±0.003

p = 0.0 p = 0.032 p = 0.0 p = 0.876 p = 0.825 p = 0.0 p = 0.154
egg
(800)

0.153
±0.011

0.106∗
±0.007

0.218
±0.013

0.225
±0.008

0.505
±0.005

0.505
±0.006

0.173
±0.032

0.264
±0.027

0.119
±0.007

0.131
±0.008

0.476
±0.022

0.396
±0.03

0.171
±0.02

0.124
±0.009

p = 0.002 p = 0.662 p = 0.433 p = 0.991 p = 0.789 p = 0.005 p = 0.009
egg

(1600)
0.137
±0.007

0.12
±0.008

0.121
±0.006

0.142
±0.005

0.486
±0.006

0.489
±0.006

0.234
±0.033

0.214
±0.02

0.116
±0.007

0.108∗
±0.006

0.315
±0.022

0.238
±0.019

0.151
±0.011

0.114
±0.006

p = 0.076 p = 0.992 p = 0.805 p = 0.018 p = 0.047 p = 0.002 p = 0.0
egg

(3200)
0.126
±0.006

0.113
±0.006

0.057∗
±0.003

0.073
±0.004

0.485
±0.012

0.489
±0.011

0.26
±0.02

0.193
±0.017

0.134
±0.007

0.113
±0.006

0.163
±0.009

0.139
±0.008

0.142
±0.008

0.102
±0.005

p = 0.117 p = 0.938 p = 0.958 p = 0.0 p = 0.0 p = 0.015 p = 0.0
magic04

(800)
0.099
±0.006

0.077
±0.004

0.072
±0.003

0.071
±0.002

0.312
±0.003

0.296
±0.004

0.111
±0.005

0.1
±0.006

0.071
±0.002

0.064
±0.001

0.141
±0.01

0.124
±0.007

0.055
±0.001

0.054∗
±0.001

p = 0.012 p = 0.357 p = 0.0 p = 0.0 p = 0.056 p = 0.181 p = 0.203
magic04

(1600)
0.071
±0.002

0.056
±0.002

0.044
±0.002

0.043∗
±0.001

0.292
±0.002

0.274
±0.002

0.084
±0.003

0.072
±0.004

0.079
±0.003

0.065
±0.002

0.1
±0.004

0.073
±0.003

0.058
±0.001

0.052
±0.001

p = 0.001 p = 0.497 p = 0.0 p = 0.0 p = 0.0 p = 0.002 p = 0.003
magic04

(3200)
0.069
±0.002

0.054
±0.001

0.035∗
±0.001

0.036
±0.002

0.274
±0.001

0.258
±0.001

0.07
±0.003

0.047
±0.002

0.085
±0.002

0.063
±0.002

0.065
±0.003

0.047
±0.002

0.054
±0.001

0.052
±0.001

p = 0.0 p = 0.562 p = 0.0 p = 0.0 p = 0.0 p = 0.007 p = 0.176
robot
(800)

0.053
±0.004

0.062
±0.002

0.049
±0.002

0.047∗
±0.001

0.19
±0.001

0.187
±0.001

0.232
±0.023

0.215
±0.02

0.111
±0.007

0.114
±0.007

0.119
±0.006

0.144
±0.004

0.077
±0.003

0.084
±0.003

p = 0.961 p = 0.681 p = 0.101 p = 0.108 p = 0.975 p = 0.986 p = 0.838
robot
(1600)

0.053
±0.005

0.038∗
±0.001

0.087
±0.007

0.054
±0.002

0.139
±0.001

0.132
±0.001

0.15
±0.018

0.141
±0.015

0.098
±0.005

0.099
±0.005

0.08
±0.004

0.075
±0.002

0.076
±0.002

0.079
±0.003

p = 0.129 p = 0.0 p = 0.0 p = 0.003 p = 0.849 p = 0.477 p = 0.762
robot
(3200)

0.052
±0.003

0.039∗
±0.002

0.156
±0.01

0.119
±0.007

0.091
±0.0

0.085
±0.0

0.079
±0.007

0.077
±0.006

0.084
±0.004

0.084
±0.004

0.063
±0.004

0.043
±0.001

0.06
±0.002

0.066
±0.003

p = 0.001 p = 0.0 p = 0.0 p = 0.161 p = 0.395 p = 0.057 p = 0.988
shuttle

(800)
0.083
±0.039

0.031
±0.001

0.016∗
±0.0

0.02
±0.001

0.041
±0.001

0.035
±0.0

0.058
±0.002

0.083
±0.003

0.035
±0.001

0.065
±0.005

0.042
±0.001

0.047
±0.002

0.035
±0.001

0.051
±0.003

p = 0.271 p = 0.898 p = 0.0 p = 1.0 p = 1.0 p = 0.699 p = 1.0
shuttle

(1600)
0.09
±0.048

0.045
±0.011

0.011∗
±0.0

0.018
±0.001

0.04
±0.0

0.034
±0.0

0.048
±0.001

0.079
±0.003

0.024
±0.0

0.05
±0.003

0.029
±0.001

0.043
±0.003

0.026
±0.001

0.039
±0.002

p = 0.958 p = 0.927 p = 0.0 p = 1.0 p = 1.0 p = 0.913 p = 1.0
shuttle

(3200)
0.076
±0.039

0.028
±0.0

0.012∗
±0.0

0.021
±0.001

0.043
±0.0

0.038
±0.001

0.046
±0.001

0.07
±0.002

0.018
±0.0

0.03
±0.001

0.038
±0.005

0.045
±0.004

0.028
±0.001

0.042
±0.002

p = 0.949 p = 1.0 p = 0.004 p = 1.0 p = 0.999 p = 0.811 p = 1.0

average
0.116
±0.012

0.1
±0.007

0.094
±0.006

0.092∗
±0.006

0.311
±0.026

0.297
±0.026

0.146
±0.022

0.121
±0.012

0.117
±0.01

0.111
±0.008

0.157
±0.018

0.136
±0.014

0.106
±0.007

0.105
±0.008

p = 0.0 p = 0.279 p = 0.0 p = 0.0 p = 0.0 p = 0.0 p = 0.002

Table 1: The first column provides the names of the datasets and the sample lengths. We bold the smaller average
estimation errors by comparing each baseline method with its regrouped version. The smallest average estimation error
among all methods in each row is highlighted with ∗. p-values are obtained by using the one-sided Wilcoxon signed
rank test. We underline the p-values which are smaller than the 0.05 significant level. The last column is calculated by
averaging trials on all the different datasets. The proposed Regrouping method provides significantly more accurate
estimations than all the baseline.
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