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Appendix

A THE USE OF LARGE LANGUAGE MODELS

We used a large language model (LLM) minimally for minor sentence rewriting and language
polishing. The LLM was not used for any research-related tasks, and all scientific contributions were
developed solely by the authors.

B RELATED WORK AND DISCUSSION

Generalized Linear Bandits: Filippi et al. (2010) first introduced the GLB problem (Lattimore
& Szepesvari, 2020) by extending the linear bandit framework Abbasi-Yadkori et al. (2011); Dani
et al. (2008) and proposed GLM-UCB with a regret bound of order O(d\/T ), and Li et al. (2017)
subsequently developed improved UCB-style algorithms with tighter regret bounds. A parallel line
of work explores TS approaches for GLBs. Chapelle & Li (2011) proposed Laplace-TS under the
Gaussian design, and then Abeille & Lazaric (2017); Russo & Van Roy (2014) showed that TS can
be analyzed similarly to UCB under general distribution by bounding the information ratio. More
recently, Kveton et al. (2020) demonstrated that their randomized TS-based methods achieve nearly
optimal regret bounds, up to logarithmic factors. To improve the scalability of GLBs, Zhang et al.
(2016) and Jun et al. (2017) proposed algorithms based on the online Newton step, achieving O(\/T)
regret with improved time and space efficiency. Ding et al. (2021) introduced another efficient GLB
algorithm that combines stochastic gradient descent with the TS framework to enhance computational
performance. Recently, Rajaraman et al. (2024) briefly examined a closely related GLB problem with
an unknown link function as part of a broader study. However, they only consider more restrictive
assumptions, including fixed action sets, Gaussian noise, and strong structural constraints on the
reward function. Their method is also computationally intensive and lacks empirical validation. In
contrast, our work offers a more general and efficient framework that supports non-monotone link
functions, handles high-dimensional sparsity, and achieves optimal statistical and computational
guarantees. The very recent work by Arya & Song (2025) focuses on a related but different setting, a
batched multi-armed bandit with covariates, using a single index modeling approach combined with
dynamic binning and arm elimination. This work represents a concurrent and independent effort. To
the best of our knowledge, our work provides the first comprehensive treatment of the single index
bandit problem under mild assumptions.

Single Index Models: The single index model (SIM) has been extensively studied in the low-
dimensional setting (Han, 1987; Hardle, 2004; Carroll et al., 1997), where most approaches estimated
the unknown parameter via (quasi-)maximum likelihood estimation and establish asymptotic guaran-
tees using central limit theorems. For non-asymptotic bounds, seminal works such as Thrampoulidis
et al. (2015); Na et al. (2019); Plan & Vershynin (2016); Neykov et al. (2016) employed traditional
regression techniques such as [;-regularization. These results show that, under standard Gaussian
covariates and certain conditions on the link function, the estimator can achieve the same error rates
as our Theorem 3.1 and Theorem 3.7. However, these guarantees crucially rely on restrictive distribu-
tional assumptions such as standard Gaussian covariates. More recently, Fan et al. (2023) proposed a
regularization-free approach based on overparameterization that achieves optimal non-asymptotic
rates, but still assumes that each entry of the context vector is i.i.d. from a known distribution and that
the noise has finite fourth moment. In summary, due to the inherent challenges of SIM estimation,
prior statistical literature imposes strong assumptions on the data distribution, whereas our work
requires milder conditions.

Since part of our work focus on the case where the unknown link function is monotonically increasing,
we also examine a line of recent work on statistical estimation in monotone SIMs. Balabdaoui et al.
(2019a) propose a least-squares estimator for monotone SIMs, establishing a convergence rate of
n'/3 under a suite of strong assumptions on the noise and covariate distributions (see assumptions
A1-AG therein). To improve upon this, Balabdaoui et al. (2019b) propose a score-based estimator
with the same n'/3 rate under milder assumptions, and achieves the optimal n'/? rate when the
link function is piecewise constant. More recently, Dai et al. (2022) extend this line to the sparse,
high-dimensional setting, but their projection-based estimator still only guarantees a n'/? rate
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under nontrivial distributional assumptions. Collectively, these results underscore the statistical and
algorithmic challenges of efficient monotone SIM estimation even under nontrivial assumptions, and
motivate our pursuit of a computationally cheap and distributionally robust method with optimal
convergence guarantees.

Contextual Bandits under the Realizability Assumption: The general contextual bandit problem
under the realizability assumption was initiated by Agarwal et al. (2012). A substantial line of work
builds on this assumption by reducing the problem to solving either offline or online square-loss
regression oracles (Foster et al., 2018; Foster & Rakhlin, 2020; Simchi-Levi & Xu, 2022; Foster &
Krishnamurthy, 2021; Zhu & Mineiro, 2022; Zhang et al., 2023; Pacchiano, 2024; Ye et al., 2025).
However, as discussed in Section 1, such regression oracles are infeasible under SIMs due to the
composite and nonparametric structure of the reward function. Beyond this limitation, the regret
bounds of modern works (Pacchiano, 2024; Ye et al., 2025) rely on some complexity measure of the
function class, such as the eluder dimension (Russo & Van Roy, 2014). However, in our proposed
SIBs with unknown reward functions, the eluder dimension becomes unbounded, making these results
inapplicable again.

To illustrate this point, we use FALCON+ (Simchi-Levi & Xu, 2022) as a representative state-of-
the-art example to explain why contextual bandit algorithms under the realizability assumption
fail under the SIB setting in detail. FALCON+ critically relies on their Assumption 2, which
assumes access to an offline oracle that can estimate the full reward function, comprising both
the unknown parameter vector and the unknown reward function, with a provable error bound,
using data collected via randomized sampling only from the previous epoch (i.e., line 6 of the
algorithm). To achieve the optimal v/7T" regret bound, this oracle must guarantee an estimation
rate of the optimal order n'/2. However, no existing method for single index models comes close
to satisfying this requirement. As discussed in our review of SIM and monotone SIM literature
above, existing estimators rely on restrictive distributional assumptions (e.g., i.i.d. Gaussian features).
Moreover, the randomized sampling scheme in FALCON+ produces covariate distributions that lie
far outside the regimes where existing estimators have any theoretical guarantee, let alone achieve the
optimal rate of n'/2. As a result, although FALCON+ is conceptually insightful, its reliance on an
idealized regression oracle renders it inapplicable to the SIB setting with any provable theoretical
guarantees. Furthermore, existing methods are computationally expensive as the least squares solver
leads to infinite-dimensional and non-convex optimization problems under SIMs Fan et al. (2023).
These challenges highlight that existing methods are fundamentally inadequate for the SIB setting,
necessitating the development of a completely new solution.

C PROOF OF THEOREM 3.1

C.1 USEFUL LEMMAS

Lemma C.1. (Generalized Stein’s Lemma, Diaconis et al. (2004)) For a d-dimensional continuous
random variable X € R with continuously differentiable density function p : R — R, and any
continuously differentiable function f : R? — R. Denote S(X) : R? — R? as the score function
associated with X, i.e. S(X) = —Vxp(X)/p(X). If the expected values of both V f(X) and
f(X) - S(X) in terms of the density p exist, then it holds that

E[f(X) - S(X)] = E[Vf(X)].

Lemma C.2. (Bernstein’s Inequality, Wainwright (2019) Proposition 2.14) Let X1, ..., X, be real-
valued random variables such that X; < b almost surely foralli =1, ... n, then for any t > 0 we
have that

n

Z(Xi - E(Xi))

i=1

P

>Vot- | D E(X2)+ % <2’
i=1

Lemma C.3. Assume we have ji, = E(f'(X 70.)) # 0 where X denotes the random vector drawn
from the density p(-). By setting
3n(o? + SJ%)M

T=\——a—>

log (2d/3)
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in the single index model setting to solve 0 according to Eqn. (1) with A = 0. Then with probability
atleast1 — § (0 < 0 < 1), it holds that,

[IVL(i0.)] o, < <4\3/§_’_2\[2> M(U2—|—Si)log(2d/5)

Proof. Recall that we have
2 n
L(0) = (0,6) = = > {6+ (yi* S(:)),0),
i=1
where ¢, (y; - S(x;)) = sign(y;S(x;)) - (|y:S(x;)| A 7) and the operation happens on the vector
elementwisely. According to Lemma C.1, it holds that for any ¢ € [n]

E(yiS(w:)) = E(f(2:70.)S(2:)) = E(f' (2 0.)) - 0. = p1.0..
Therefore, it holds that

VL(a0) = 2.6, — = D 6nlyi S(2)
i=1

2 n
=2E(y1 S - — (i - S(;)).
() = 2 3 ol ()
Based on the above equation, we have that

IVL(x0)ll o =

2E (1)) — > Y brli- S(2)

o0

< I2E(y15(21)) = 2E(dr (1 - S(21)))ll oo +

= Qg

2B (pr (1 S(r1))) — = D 0r (3 S(z)
=1

o0

= (3
To bound a1, we first note that for each index j € [d], it holds that
12E(y1S5(1)) — 2E(¢7 (y1 - Sj(1))] < 2-E (|y2S;(@1)] Ljy, 8, (21) 57} ) -
And then we can easily bound the above value by
5 ()

E (1155 (21) L, ey o))" = B (5355 (01)%) B (1,5, 011503 )

<E (475;(21)%) - P (|y15;(x1)| > 7)

(ii)

< [E(f(x] 0.)28(21)?) +E (n7) E (95 (21)%)] - P (|y1S; (1) > 7)

i B[y, ()2 M2

2
< (o2 4 1) ar BT oy gy M

where we have the inequality (i) due to Holder’s inequality, and we can deduce the inequality (ii)
based on the fact that the white noise 7; is independent with the arm 1. The inequality (iii) comes
from Chebyshev’s inequality. Since the above result holds for all index j € [d], which indicates that
2 2
- 2(0* + Lf)M. 3
T
On the other hand, since we have that {y;S(x;)}}_; are i.i.d. samples, and for any ¢ € [n], j € [d]

b (1S ()| < 7, Var (¢ (y; - Sj(2:))) < E (¢7(y:S;(2:))%) < E (y79;(2:)%) < (0®+L})M,

then based on Bernstein’s inequality in Lemma C.2, we have that for any j € [d],

. 2\/2(02 + L3) M log(2/9) N 2Tlo?;g(2/5)

851

P|l2 %Zqﬁr(yz - Sj(x:)) — E(¢r(y1 - Sj(1)))

<. “

16



Under review as a conference paper at ICLR 2026

Taking union bound over j € [d] in the above Eqn. (4) yields that

2(02 + L2)M log(2d/5
p a222\/ (o +)M log( /)+2Tlog§(2d/6)
n n

<. &)

Combining the results in Eqn. (3) and Eqn. (5), with probability at least 1 — 4, it holds that,

2o+ LM 2\/2(02 +L3)Mog(24/8) 21 log(2d/s)
-

L(u40. < . 6
IVL(1.0) . < . 3n ©
By taking
3n(o? + S7)M
T=\
log (2d/4)
into Eqn. (6), we finally have that with probability at least 1 — 6,
43 M (02 4 5?)log (2d/6
1L < <f i m) (0% + 57)log (24/6)
3 n
O

C.2 PROOF OF THEOREM 3.1

Proof. The proof is straightforward since our loss function L(#) is a quadratic function with A\ = 0.

We have L(é) < L(u40y) due to the choice of 0, then based on the nature of quadratic functions, it

holds that 5
L(6) — L(11+05) = VL(11.0,) " (é - ,u,ﬁ*) +2 Hé — 1504

Therefore, it holds that

2 Hé — 0, z < VEL(pabs) " (9 - u*9*)

-,

2
and the last two inequalities are based on Holder’s inequality and Cauchy-Schwarz inequality
respectively. Then by using the results in Lemma C.3, we have that with probability of at least 1 — 4,

2 . <4\3/§+2\/§> M (o2 + S%)log (2d/d)

< IV LG8 |0 = 1.6

VL0l || = o0

2 Hé — Oy

Vi,
2

n

which is identical to

2

. (2\3/3 N \/5> \/dM(a2 n si) log (2d/)

Finally, we can deduce the [;-norm bound:

= (2\3/3+\/5>d- M(o? + 57) log (24/5)

n

Hé—mﬂ*

1§\/&~"§—u*9*

D PROOF OF THEOREM 3.2

D.1 USEFUL LEMMAS

Lemma D.1. Let f be a continuously differentiable and non-decreasing function on an interval
I C R. Let X be a continuous random variable whose support is (or at least covers) the entire
interval I. If

E[f'(X)] =0,
then f is constant on I.
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Proof. First, because f is non-decreasing, we have f’(z) is a nonnegative function on I. Next, by
hypothesis,
E[f(X)] = 0.

In terms of integration against the density of X, this means

/[f’(gc) dPx(z) = 0.

Since f’(x) > 0 for all € I, the integral (or expectation) of a nonnegative function being zero
forces
f'(z) =0 foralmostevery z € I.

Because [ is continuously differentiable, f’'(x) is actually a continuous function on I. A continuous
function that is zero almost everywhere on an interval must be zero everywhere on that interval.
(Otherwise, if f'(xg) # 0 for some g, continuity would force f’(z) to be nonzero on an entire
neighborhood around x¢, contradicting the fact that f'(x) = 0 a.e.) Consequently,

f'(z)=0 forallz e I.
Finally, a function whose derivative is identically zero on an interval is necessarily a constant function

on that interval. Therefore, f must be constant on 1. O

D.2 PROOF OF THEOREM 3.2

Proof. On the one hand, if we have E(f/(X 76.,)) = 0, then based on Lemma D.1 we know that f(-)
is constant on the support of X T 6,. Therefore, the expected reward for all possible arms are constant,
which indicates that cumulative regret R = 0, and Theorem 3.2 naturally holds.

On the other hand, if we have E(f'(X "6.)) # 0, then we can utilize the results from Theorem 3.1.
Denote p* = E(f’(X "0.)) as in Theorem 3.1. Then for any ¢ > T}, we have that

@l 0.) — £l 0.) = Fa) 0. — 1 (ij> Ly (ﬂf) — f(a70.)

< a8 - f (9) i (x:i) _ fTe)
1 1

6
<|Lp-zl, | 0.—— ||+
f t7 ( M*>
6 6

< Ly - ||Zt*||oo 0. — — + Ly - ||$t||oo 0. — — @)

1 1

Ly j Ly j

S R N RN R C N (T
<d M log (2d/9)

Ty ’

with probability at least 1 — ¢ where the last inequality comes from the /1 -norm error bound proved
in Theorem 3.1. Therefore, based on the choice of 77 we have that:

T T
‘%:§;m@ﬁg—ﬂﬁm}+;;U@&M—ﬂﬁ&ﬂ
t= t=T1+
log (2d/4) 2

<2LTy +d xrzc)QﬁJ%(mg@¢m»%)zéiQﬁTs).

T
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Remark D.2. Our final regret bound includes an additional multiplicative factor of 1/, according to
Eqn. 7 if p, is not zero. For special case where p, = 0 we have shown in Lemma D.1 that the regret
is indeed zero. When g, > 0, this factor is a constant and does not affect the order of the final regret
bound. As a special case, when the derivative of the unknown reward function is assumed to be lower
bounded by some constant ¢ > 0, the final regret bound in the worst case inherits an additional 1/¢
multiplier without knowing the value of c. This fact also holds for Theorem 3.5 and Corollary 3.8.

E PROOF OF THEOREM 3.5

E.1 USEFUL LEMMAS

Lemma E.1. Forall a > b > 0, the following inequality holds:

va— Vb < +v2a—2b.

Proof. Dividing both sides by v/b > 0 and setting 2 = \/% > 1, the inequality reduces to
z—1</2(22 - 1).
Squaring both sides (which is valid since both sides are nonnegative for = > 1) yields
(x—1)% <2(2* - 1).
Expanding and rearranging gives
2?—2r4+1<22° -2 < 2°+22>3.
Since z > 1, the inequality 2% + 2z > 3 is always satisfied. Thus the original inequality holds. [

Lemma E.2. Let z1,...,xx be i.id. continuous random vectors in R% drawn from a common
distribution Dy with probability density function p(x). Fix an arbitrary vector 6 € R?, and define

* T
" = arg 12;22{}((:0]» 0).
Then the density function of x* is
K-1
po(x) = Kp(x) (Fo(xTH)) ,

where po(-) and Fy(-) are the density and cumulative distribution functions of x 70 with x ~ Dy, i.e.

d

Fo(m) =P (z"0 <m) and po(m) = d—Fo(m).
m
Furthermore, the score function SP° () = —V log pg(x) can be written as
Po (xTH)
SPo(x) = SP(x) — (K — 1) ——=+%6.
(#) = 5"() ~ (K 1) o T
Proof. Let x1,...,xx beii.d. samples from distribution D. For each realization, define
z* = argmax(z, ).
1<j<K
We compute the density of x*. We have that
K
P(z* e dz) = Z]P’(a:* edzx, 2" =xz;).
i=1

Since z; is drawn from some continuous distribution, the event {z* € dx} occurs exactly when:

1. Exactly one of the x;’s lies in dz. Since z; ~ p(-) and there are K such vectors, the
probability contribution is
K p(x) de.
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2. Given z; € du, the remaining K — 1 vectors satisfy /6 < x6. By independence,
T T T
P(xi 0 < 9) = Fo(xj 9),

SO
P((a0 <] 6) foralli £ ) = (Fo(x0)" .

Hence,
P(z* € dz) = Kp(z) (FO(xTH))K_l dx,

which establishes K1
po(x) = Kp(z) (Fo(zT6)" .

For the score function S??(-), taking logarithms yields

logpe(z) = log K + logp(xz) + (K —1) logFO(acTH).

Then V.p() .
xP\T T
1 = K—-1) ——=V.,F .
V. logpe(x) (@) + ( )Fo(xTQ) V.Fo(z ' 0)
Moreover, by the chain rule, V. Fy(z " 0) = po(x T 0) 6. Thus,
Vap(z) po(z"0)
z 1 = K-1)—/——=90,
Velosn@) = Sy H TV RGET)
and so
V.p(z) po(z"0) po(z"0)
Po — (K -1 g = SP — (K -1 0.
57 (x) (@) ( ) Foz™0) SP(x) — ( ) Fo(z70)
This completes the proof. O

Lemma E.3. Let X be a continuous random variable with probability density function px and
cumulative distribution function F'x. For any constant ¢ > 0, define the random variable Y = cX
with density py and CDF Fy. Then,

Elpy(V)?] = 5 E[px (X)7].

Proof. Since Y = cX has density
1 Y
py(y) = —px (*)
c c
evaluating at y = cX yields:

1
py(eX) = —px(X).
Taking the expectation with respect to X on both sides completes the proof:

E[py (V)] = E[py (eX)%] = 5 E[px(X)?].

E.2 PROOF OF THEOREM 3.5

Proof. Based on our epoch schedule e; = (2¢ — 1)Ty,i > 0, we can easily verify the length of each
epoch denoted as {k;};—; satisfying that k; = e¢; — e;_1 = 2i=1T},. Therefore, this result indicates
that our epoch length follows an exponential growth pattern, specifically doubling each time. We
denote p; = Ex~p, (f(X 76.)). Since we know that the support of p;(-) is identical to that of the
original p(-), then if y1; = 0 for any ¢ = 1,2, ..., then based on Lemma D.1 we know that f(-) is
contant on the support of X 6, with X ~ p(-). Therefore, the expected reward for all arms is fixed
and we have the cumulative regret bound R = 0. This indacates that our Theorem 3.5 simply holds.
So for the rest of the proof, we will focus on the case that p; # 0 forany ¢ = 1,2,. ...
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At the beginning, we assume that the time horizon 7" exactly matches the end of some epoch H > 0,
i.e. ey = T. Hence we have that (27 —1)- Ty =T.

Based on Lemma E.2, we have for i > 2, p;(z) = K - p(x) - Fi(x7 6;)%X 1 is the actually the density
function of y = argmax,, . Y T, where Y1, ..., Yk are randomly sampled from D. Since we

assume the arm set X, ¢t = 1, 2 . consisting of K random samples drawn from D, we can deduce
that all the chosen arms at epoch z' (k4) follows the distribution with density function p;(x), i.e.

e .
{widiie, 1 ~pis 1=1,2,...

holgl, and this indicates that we can use our Stein’s-method-based Theorem 3.1 to bound the error
of ¢; at each epoch. For p;, we know E(S7* (X)) < M for all j € [d] with X ~ p; according
to Assumption 2.2. To bound the second moment of the score function for p;, ¢ > 1. Based on
Lemma E.2, we know that for¢ > 1

pi(z) = K -p(x) - Fi(z 6,51, 87 () = SP(z) — (K — 1) ZCHDIPY
1 1 (3 b) Fz(xTey) 1
Therefore, for X ~ p; it holds that
IE(S?(X H/ V’p Kp(x)Fi (27 6:)51da
KH/ v”p (z)dz| < KM,

based on Assumption 2.3. On the other hand, we have that for X ~ p; and under K > 3,

(A THNK—1
/KF xTG 5 p(x)Fi(z ' 0;)" " da

i XTGl 2
= K(K - 1)? ] [ piaT00 bl BT
<k 6] [mtaTa? plaras ®
— k3|4, ‘: -IEYNP( i(YTéi)2> .

~ 112 R
Based on Lemma E.3, we can conclude that ‘ 0; “Eyp (pi(YTHiV) is invariant to the scale of

0;, and hence based on Assumption 3.3, we know this term is actually bounded by some constant C'.
Therefore, it holds that

2 pZ(XTél>2 . ‘

E ((K 1)

2
) < K3C.

oo

Consequently, for X ~ p;(-), we have that

. e 2 PiXT0)? s 2
(™ (0P < 2" (x)) “m“E<(K Voo oo>

< KM + K3C := My,

Furthermore, at epoch ¢ > 1, based on Theorem 3.1 we have that
with probability at least 1 — §. Taking the union we have that for all epoch i = 2,..., H, we have

‘Aq <d My log (2d1og,(T)/0)
Ri—1

My log (2d/96)

Ri—1

J o<
1

21



Under review as a conference paper at ICLR 2026

holds simultaneously with probability at least 1 — d. Then at some time step ¢ in epoch ¢, 7 > 1, we
have that

0 0
e 0 = staL0) 5 (st ) 5 (L ) - T

0 0
Sﬂ@ﬂn—fG;*)+fQJ*)—ﬂ@m>
1 1
g 0
<\Lpa 00— — || +|Lp -2 |0.——
f t7< M*> f t( M*>|

< Ly |lze o |0 + Ly el o ||0

0

* *

1 1

Ly L
Lol e, 4]
" 1

L 7
< Ll |

< g, [Molog (2d1ogy (1) /0
Ki—1

)

Therefore, with probability at least 1 —

My log (2d1 o
RT<szm+Z \/ olog (210ga(T)/6)

RKm—1

=2LTy + Z d /Mo log (2d1ogy(T)/6)2\/Fm—1

m=2
= 2L Ty + 2d /My log (2d10go(T)/8) - /Tp - @511—1
2 2L Ty + (2 + V2)d /My log (2d10g, (T) /) - 1/ (2H —2) Ty
< 20Ty + (2+V2)d /(MK + CK3)log (2dlog,(T)/8) - VT
-0 (TO + dv/CK3log (dlog,(1)/9) T) :
where inequality (i) comes from Lemma E.1. Finally, based on the choice of Tj, we have that
Ry =0 (dK#/C T log(dlog, (T)/3)) = O (dK3VT).

On the other hand, if the time horizon 71" does not match the gnd of an epoch, i.e. we have some
H > Osuchthatey < T < epmy1. Since we have that e; = (2 — 1)Tp, ¢ > 0, which indicates that
e; > 2e;41,% > 0. Therefore, it holds that

eyl < 2ey < 2T.

Therefore, it holds that
Ry <R.,. =0 (dK% Veri1 - log(dlog, (ex1) /5)) <0 (dK%\/zT Tog(dlog, (27T) /5))

-0 (dK% VT - log(dlog, (T) /5)) .

And this concludes our proof. O

Note that the final regret bound of order OT(\/T) holds as long as C' does not scale with T, which
naturally occurs as 1" grows large. Consequently, Assumption 3.3 is not required to establish this
nearly-optimal regret bound, and the final regret bound with C' becomes

Ry <O (dK%\/C~T-log(dlog2( )/5)) (dK W)

However, as we emphasize in the main paper, assuming that C' is of constant scale is a very mild
requirement, and in fact is satisfied by most practical distributions. For simplicity, we adopt this
assumption here, which we consider both natural and reasonable.
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F PROOF OF THEOREM 3.7

The proof of Theorem 3.7 builds upon our previous proof of Theorem 3.1 and also relies on Lem-
mas C.1-C.3, which we introduced in Appendix C. Notably, Lemma C.3 naturally extends to the
high-dimensional single index model. However, to eliminate the dependency on d in the final estima-
tion bound, we incorporate an /; -norm penalization in the loss function (Eqn. (1)) and introduce a
novel technical approach.

Proof. Since 6 minimizes the loss function in Eqn. (1), based on the property of sub-gradient it holds
that

VL) + Ae =0, whereeed HéHl .

Therefore, based on a widely known result (Boyd & Vandenberghe, 2004) on the /; norm, we have
for any j € [d],

[ =sign(d)), ifj € supp(h),
"lel-1,1], ifj ¢ supp(f),

where we denote supp(f) as the support of 0, i.e. supp(d) = {j € [d] : éj # 0}. For some set
V C [d] and vector v € R%, we use vy to denote a d-dimensional vector whose jth entry is equal

to v; if j € V and O otherwise. For simplicity, we denote U = supp(6) and 8 = 0 — 150, In
the following proof, and we know that € = ey + eye and the cardinality of U is s. Since L(0) is a
quadratic function for § € R4, we have that

2 N T o T
208113 = (VL) = VL(1.0.)) 8= (~Ae = VL(.0.))" B
< (“Xey = Aewe) " B+ IVL(ba)lloo 1Bl - ©)
Due to the fact that ||er/ ||, < 1, it holds that

—AepB = —AeBu < A Bull; -

And based on the definitions above, we have that

NGB = NGB — 11.0.) = —Aefl = -2 HéUc

=-A elly -
1 ”/BU H 1
By combining the above results with Eqn. (9), it holds that

2(18I15 < =MBuelly + MBully + VL ()l 11, -
If we have A\ > 2|V L(u.6.)]| .. then it holds that

||oc’

2(|8]15 < =X || Bue

A
L+ M8l + 5 181

< =AllBye

A
1AM Bully + 5 (lBully + 11Buell)

3\
1+ 5 Bully (10)

3 3\
S Bull V5 < SVl

and the inequality (i) is due to Cauchy-Schwarz inequality and |U| = s. Therefore, we have

3\
181, < 5 (an

Moreover, due to the Eqn. (10), we have that

A
<-Z .
<2 loo

3\ (i)
<5 1Bull, <

A 3\
=5 Buelly + 5 1Bully 2 0,
which indicates that || Sy ||; < ||Bu||,. Therefore, with Eqn. (11), it holds that
181y = 1Buelly + 1Bully < 4llBully <4l1Bully - Vs < 4v/s|[Blly < 3As. (12)
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According to Lemma C.3, by taking

3n(o? + 52)M
log (2d/5)

we have that with probability at least 1 — 6,

o2 2
HVL<M*9*)” (4\/>+2\/>> M( +Sf)log(2d/5).

n

Therefore, by setting the same value for 7 and taking

A=11- \/M("z + Lj)log(2d/9) <8x3/§ +4ﬁ> M2+ 13) log(24/5)

)

n n

then with probability at least 1 — § we have A > 2 ||V L(p.6,)|| .. Finally, based on Eqn. (11) and
(12), we can deduce that

<=0 (|2, o-me <mr=0(:

4 O 17 - vn)’

G PROOF OF COROLLARY 3.8

-],

Proof. Corollary 3.8 consists two parts, where the first part is the regret bound of Algorithm 1 and
the second part is the regret bound of Algorithm 2. We will omit the detailed proof here since they
are a simple combination of our deduced results above. Specifically, the proof of the first part is a
combination of results in Theorem 3.7 and the proof of Themrem 3.2, and the proof of the second
part is a combination of the results in Theorem 3.7 and the proof procedure of Theorem 3.5. And
compared with the estimation error deduced under the low-dimensional case under Theorem 3.1,
the estimation bound under the high-dimensional case under Theorem 3.7 depends on the sparsity
index s instead of the dimension d in terms of the non-logarithmic factors. Therefore, the final regret
bound will also be adjusted by replacing d by s in the non-logarithmic terms. In other words, if we
ignore the logarithmic factors in the final regret bound, then the regret bounds will simply replace d
by s. And all the proof procedure can be identically reused under the high-dimensional sparse case.
Therefore, we will omit the detailed proof due to redundancy. O

H EXPLANATIONS ON ASSUMPTION 2.3

H.1 EQUIVALENCE BETWEEN ||z ;|| < L SETTING AND ||z ||, < L SETTING

As we mentioned in Section 2 under Assumption 2.3, our main results hold regardless of the
assumption on types of the norms. Specifically, we have the following two types of assumptions:

¢ Condition I ||0. ||, = 1, ||z ]|, < L, Vt € [T],i € [K] for some L > 0.
* Condition II: ||0, ||, = 1, |24 ]|, < L, Vt € [T],i € [K] for some L > 0.

Note we set the I (I;)-norm as some constant for §, due to the identifiability of the single index
model. The former one is more commonly used in the contextual linear bandit literature (Abbasi-
Yadkori et al., 2011; Filippi et al., 2010), while we use the latter one in this Work As we explained,
both of these two assumptions are mainly used to ensure the inner product xt .0, can be bounded by
L based on Holder’s inequality, and hence they are identical. And we use the latter one merely to keep
consistent with the sparse linear bandit case in Section 3.4 where [y norm is commonly assumed to
be bounded. Furthermore, we will claim here our main Theorem 3.2, Theorem 3.5 and Theorem K.2
still hold: First, the estimation bounds presented in Theorem 3.1 and Theorem K.1 remain valid
irrespective of the assumptions. In particular, the proof of Theorem 3.1 does not depend on the
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magnitude of 0., ensuring that its bounds hold under both Condition I and Condition II. Moreover,
the final results of Theorem K.1 differ at most by a constant factor under these conditions, indicating
that the bounds remain valid as well. Second, for the regret bounds established in this work, such
as Theorem 3.2, Theorem 3.5, and Theorem K.2, we show that the same conclusions hold. As an
illustrative example, we examine the proof of Theorem 3.2 in Appendix D.2, as all regret analyses
follow a similar way on leveraging the estimation bound of the parameter. In its proof, we use the
estimation bound from 3.1 with Holder’s inequality in Eqn. (7). Under condition II in our work, we
have that

0.0
I

1l <2 L ,

. M
where M can be considered as a constant since each entry of x; ; is in a constant scale. Specifically,

for a Gaussian random variable N (119, 02), we can calculate that M = 1/03. On the other hand, if
we have Condition I, then we should rewrite the above equation with

. % <2g§+\/§> .\/dM(02+L?)log(2d/6).

n

S <2‘3/§+ﬁ>d. M (0?4 L?%)log(2d/9)

6.~ 2
"

il -

2
Although the bound seems to improve by a multiplier of v/d explicitly, but here the value of M
may not be in a constant scale. Specifically, since we have ||z, ;||, is bounded by some constant
L, then each entry will be bounded by the order 1/+/d in magnitude on average. Assume the entry
follows N (pg, 02) with 02 = Q(1/+/d), then it holds that M = Q(d). Therefore, with M = Q(d),
we actually obtain the same bound of order O(d+/log (d/8)/n) under Condition II. This identical
argument can be used in the proof of all other Theorems with regret bounds, and hence we can
conclude that the regret bounds are the same under Condition I and Condition II.

H.2 DETAILS OF L = O(1)

As we mentioned in the paragraph right after Assumption 2.3, we can actually let L be in a constant
scale up to some logarithmic terms, i.e. L = O(1), and our main theorems in this work will still
hold. This enables us to work with a wider range of distributions such as any sub-Gaussian or
sub-Exponential distributions, and we will explain why this holds. Since sub-Gaussian distribution is
a specific case of sub-Exponential, we will use the following Lemma H.1 to illustrate that L = O(l)
with arbitrary high probability under sub-exponential D, and hence it will not contribute to the final
regret bound after ignoring all logarithmic terms. We also assume zero mean for simplicity in the
following lemma since the final bound will only differ by a constant mean shift.

Lemma H.1. Let X1, ..., X, be i.i.d. zero-mean sub-Exponential random variables. Specifcially,
suppose there exist positive constants o and v such that

E[ele] < exp(’ﬂ;‘?) Sorall |\ < é

Then there is a constant ¢ = ¢ («, V) for which, for every 0 < § < 1,
]P’( max | X;| > ¢ 10g(%)> < 6.

1<i<n

Proof. By a standard sub-exponential tail estimate (Vershynin, 2018), there exist constants C; > 0
depending only on o and v such that for all ¢ > 0,

P(X1| > ) < 2exp( ).
A union bound then shows

I>t) < —L)
P(lrg%xn|Xz| _t) < 2n exp( o

Choosing t = ¢ log(%) with a sufficiently large c absorbs n and C' inside the exponential, making
the above probability at most d. It holds that

]P’(max | X > clog(%)) < 9,

1<i<n
as claimed. ]
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This result indicates that with assuming D is any sub-Exponential distribution, we will get the same
final regret bounds up to logarithmic factors with high probability.

I EXPLANATIONS OF REMARK 3.4

In this section, we show that Assumption 3.3 is not restrictive and holds for many common distri-
butions. In particular, to support Remark 3.4, we demonstrate that if the random vector X € R is
drawn from some multivariate normal distribution, then Assumption 3.3 is satisfied. Firstly, based on

Lemma E.3, we know that the value of E (p, (X "v)?) - ||v||3>O is fixed regardless of the scale of v. In
other words, to prove Assumption 3.3, it is equivalent to show that for any v with ||v||, = 1, we have

o, (X020l = ol [ e ope) o < C.

Lemma L1. Let X € RY be a random vector sampled from some d-dimensioanl multivariate normal
distribution with expected value px € R? and covariance matrix ©x € R*? And v € R? is an
arbitrary vector with ||v||, > 0. Then we have Assumption 3.3 hold:

E (pU(XTv)z) . ||v||io < C for some constant C > 0,

where p,(-) is the density of X .

Proof. Since X ~ N(ux,Y¥x), the univariate random variable Y := X "v is itself normally
distributed: Y ~ N (1 4v, v"¥x v). Denote 02 := v X x v > 0. Then the density of Y is

1 T2
po(t) = NorP exp(—(t 2;?2) )

We must show that E[p,, (Y)?] is finite. Since for every real ¢ we have

(t) < ! = (t)? < L
pU — \/ﬂo' pv = 27_(_ 0_2'
Hence
1
W(Y)?] < :
|p (¥) | — 2mo?
Taking expectations on both sides yields
E[p,(Y)?] € — < oo
[ ( ) ] — 2702 o0
Since we have that [|v||, < [|v[|, = 1, we can take C' = 51, proving the claim. O

Based on the above proof, we can further conclude that Assumption 3.3 is satisfied once the density
function of X T v is a bounded function, i.e. py(+) < C for some C' > 0, then we naturally have that
E((p,(X Tv)?)) < C2%. Note this finiteness holds for most commonly-used distributions, such as
Gamma distribution I'(k, §) with k > 1, Laplace distribution, uniform distribution, etc.

Finally, If each entry of X is i.i.d. sub-Gaussian and v is a unit vector, then Y = X "wv is itself
sub-Gaussian with the same tail parameter. In particular, this guarantees tail decay of the form

P(|Y] > r) < exp(—cr?) for some ¢ > 0.

It is noteworthy that the square density p,(y)? inherits rapid decay (dominated by 6_2"?’2) at in-
finity ensuring its integrability. Near y = 0, standard Sub-Gaussian distributions also typically

avoid pathological density spikes, so [ v (y)] ? remains well controlled. Consequently, one expects

E [pv (X Tv)z] to be finite for a broad class of sub-Gaussian families. While exotic sub-Gaussian
distributions with unbounded and non-integrable squared densities could theoretically violate this,
such cases are very atypical in applied settings.
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J K DEPENDENCY OF THEOREM 3.5 IN REMARK 3.6

Note that we remove the term F; (mTéi)K ~! directly in the above proof in Eqn. 8 since it must be
less than 1. However, this is a very conservative step since Fi(xTéi)K ~! is exponentially small
and quickly converges to 0 under a large value of K. Therefore, our proof holds under worst cases,
whereas the dependence on K could be significantly improved under lots of common settings. For
example, if z; ; is sampled from some d-dimensional normal distribution, then we can prove that
log K
K2

and this fact indicates that M| is in the order of log(K') when K is large. Therefore, the final regret
bound of Algorithm 2 exhibits an order of O(y/My) = O(4/log (K)), as established in our proof in
Appendix E.2 by setting 75 to be any value such that Ty < d+/T log(K)log(2dlog, (T)/9).

E[K- -p(X)* F(X)" =0 ( ) as K — oo,

In Lemma J.1, we provide a proof sketch under the standard normal assumption for simplicity, while
noting that the asymptotic order remains unchanged for any normal distribution, regardless of its
specific mean or variance.
Lemma J.1. Let X ~ N(0,1) be a standard normal random variable with probability density
Sunction p(zx) = \/%6_362/2 and cumulative distribution function (CDF) F(x) = ®(x). For K > 3,
the expectation

E[K - p(X)* - F(X)*7]

satisfies the asymptotic relation:
log K
K2

E[K p(X)* F(X)"?] =0 ( ) as K — oo.

Proof. The expectation can be expressed as:
Ix = K/ p(z)3®(2) 53 da.
Under the substitution u = ® (), we transform the integral as:

1
I :K/ p (B (w)? uk 3 du.
0

To analyze the asymptotic behavior as K — oo, we first note that the dominant contribution to the
integral arises from values of u near 1. For u € [0,1 — §] with fixed § € (0, 1), the term u® =3

decays exponentially as (1 — §)%—3

the integral over [0, 1 — J] satisfies:

, and the squared density p (®~*(u)) ? is bounded by 5—. Thus,

1-6
K/O p(@‘l(u))zuK_3du:O(K(1—5)K),

which is exponentially negligible compared to any polynomial decay as K goes to infinity.

For the dominant region u € [1 — §, 1], letuw = 1 — ¢ with ¢ € [0, ¢]. The inverse CDF satisfies the
asymptotic expansion as t — 07

O-1(1 = t) = \/2Togiyp) — e lrlos(/t) | ( L ) .

2./2log(1/t) log(1/t)

The density at this point is:

1 1 t 1
©-1(1 _ f)) = Lo~ o1/ —log(an o1/ +0) _ _t =7 (4 o
p (@711 - 1)) o m\/ mlog(1/t) (1+ O a1/ )

which simplifies to:

p (2711 — 1)) = t\/2log(1/t) (1+O (1)> .

log(1/%)
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Squaring this gives:

p (@711 = 1)) = 262 1og(1/t) (1 +0 (k)g(ll/t))> .

Substituting (1 — ¢)% =3 ~ e~ (K=3) and extending the upper limit to co (with exponentially small
error), we have:
oo
I ~ 2K/ 2 log(1/t)e K3t gt
0

where ~ denotes asymptotic equivalence (exact leading term precision including constants). Using
the substitution s = (K — 3)t, the integral becomes:

2K o0 K -3
Iy = —— 2] _ —Sds.
x <K7a34 S(%( s )e ’

Expanding log (£=23) = log K — log s + O(1/K), the dominant term is:
p g

S

2Klog K % , s g 4K log K
- se % ds = ———.
(K =37 Jy (K —3)
Since fooo s2e~%ds = 2, we obtain:
4log K log K
I ~ ng = (;‘2) as K — oo

Combining the negligible contribution from [0, 1 — §] and the dominant term from [1 — 4, 1], we

conclude:
log K

E[K p(X)* F(X)X =0 <K2> as K — oo.

K DETAILS AND THEORY OF GSTOR

K.1 DETAILS OF GSTOR

In this part, we present the pseudocode of our proposed GSTOR in Algorithm 3. As mentioned
in Section 3.5, our GSTOR adopts a double exploration-then-commit strategy. Specifically, our

algorithm uses 77 random samples to estimate the parameter 6, and obtain the estimator 6 (line
4). Afterward, we normalize the estimator and obtain 6y (line 5). Furthermore, we choose another
independent set of 77 samples. We leverage 6 and the kernel regression to approximate the unknown

function, and obtain the function predictor f (line 9). For the remaining rounds, we select the best
arm greedily based on the estimates (line 11).

K.2 USEFUL LEMMAS

We first prove that our normalized estimator éo holds a similar error bound as the rate in Theorem 3.1.

Lemma K.1. (Bound of SIM) Following the same notation of Theorem 3.1. For any single index
model defined in with samples x1, . . ., x,, drawn from some distribution D with covariance matrix
Y x. Under Assumption 2.2, 2.3 and the identifiability assumption that ||E§(/29* Il =1,u* >0, by
solving the optimization problem in Eqn. (1) with T = \/3(02 + L?)Mn/ log(2d/0) and A = 0,
with the probability at least (1 — 20) it holds that :

0 ./ d
_ 9 _o<).
hmy%n . Vi

Note this result holds under general distributions D without the need for a Gaussian design.
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Algorithm 3 General Stein’s Oracle Single Index Bandit (GSTOR)

Input: 7', the probability rate d, parameters 71, A, 7, W, h
1: fort =1to T} do
: Pull an arm x; € A} uniformly randomly and observe the stochastic reward ;.
: end for
: Obtain the estimator § with {xl, yz 1 based on Eqn. (1).

2
3
4
5: Get the normalized estimator 6, as 90 = 9/HE¥29||1.
6
7
8

:fort=T; +1to 27 do
: Pull an arm x; € A uniformly randomly and observe the stochastic reward y;.
: end for . .

9: Approximate the unknown reward function f(-) with 6y based on Eqn. (2).

10: fort =277 + 1to T do R R

11: Choose the arm z; = arg max,cy, f(z ' o), break ties arbitrary.

12: end for

Proof. We start by controlling the difference between ||E§(/29AH 1 and p.. When the dimension d is
low, the eigenvalues of X x are bounded, and we denote Cy,;,, and Cy, .« are two positive constants
such that Chin < Apin(Zx) < Amax(Zx) < Chax. Notably, for sufficiently large n, since

|‘2¥20*||2 =1, we have
ISY20], = 2520 — 2200, + S 210111
> p = 1220 = p8.) 1
> i — V|22 (0 = 11.6,)]2

> e = Vary/Comellf = 202 (13)
> e = Vi Gl = et
~ L
> 1 — e
= H O(\/ﬁ) 27

holds with probability at least 1 — §, where the triangle inequality gives the first inequality, the second
inequality comes from Cauchy-Schwarz, the third inequality is because of Apax(Xx) < Chpax. The
last two inequalities holds with the same probability as indicated by Theorem 3.1. Using the similar
reason with the triangle inequlity for the other direction, we have

IS0 < e+ 0 ﬁ) < o (14)
hold with probability at least 1 — §. Combining Eqn. (13) and (14) gives us the result that
e
123200 - .| < O(ﬁ) < (15)
holds with probability at least 1 — 2§. We proceed with
o, :‘ A 25 P2
=20l (isYcen =Y
16 — pbully [ = 12200210410
123201l 1232011
16— gt e — IS0 6.
1= 01 12301
16— pblly | — 1232001V
=320l Conin | Y0111
N 9 a3 92 N 2
<o(L)Zo(4) 2 _o(£),
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AP

Cmin

where the third inequality comes from the fact that ||0,]1 < Vd||6.]2 < Vd -

1/2
Vai=x HE Oulls C( , and the last inequality is obtained after combining results of Theorem 3.1 and

Eqn. (15) O]

<

K.3 KERNEL REGRESSION ERROR BOUND

We slightly abuse the notations for easy presentation in this section. Specifically, we use {y;, z; }7 ;
to denote the samples for the kernel regression after the parameter estimation and normalization.

Theorem K.2. (Full Bound of SIM) We use n pairs of samples to obtain the normalized estimator
6o based on Eqgn. (1). And we use another n pairs of samples {y;, x;}_, for the kernel regression
with 0y based on Eqn. (2). Assume that d = O(n). With M = 2+/log(n) and h = n~/3,
X ~D = N(ux,Xx), we have

E|f(X ) — /(X700 = 0( %),

ns

where the expectation is taken with respect to X and {z;, y,»}?zl.

Proof. The core of our analysis relies on decomposing the prediction error into approximation and
statistical components. We first bound the deviation between the predicted and true rewards by
separating the prediction error into controllable terms using a novel indicator-based partitioning. We
then apply Gaussian concentration inequalities to control tail events, and innovatively leverage Stein’s
method and a perturbation-style argument to precisely control the relationship between Z and Z*.

For notation simplicity, with ¢ € [n], we denote

ZF =0, Zi=x] 0y, Z=21"0y, Z* =z0,. (16)
Based on Theorem K.1 and the assumption that d® = O(n), it holds that
160 — 0.1 = O(n~Y/3). (17)
Z—puxbo _ (X—px)" 8y : . . . e
Notably, —7z2 = oy is a random variable which follows the Gaussian distribution
1 "6oll2 1Y 6ol
N (0, 1) under our settings given in the assumption, then we get a tail bound for Z as
Z <0
P ('1“0 > t) < 2exp (—t%/2). (18)
/2
[P

In other words, by letting ¢ = 21/Iog n in Eqn. (18), with probability 1 — 2/n2, we have % <

2+/logn. Since ||El/290||2 < \\21/200H1 holds almost surely, and ||El/ 0o||1 = 1 in our assumption,
we continue to have |Z — u%0| < 2v/Togn with the same high probability.

Next, we separate our ¢; prediction error into two parts

E|f(2)-f(2")

=E||/(2) = £ (Z)| Yjzepgin|ewy | TE||[F(2) = £ (2] Tz ,p4 (19)
{|Z—nZbo|<w} {|Z-nbo|[>M}] -

() (I

For term (II), by our definition of f(-) given in Eqn. (2) (it is 0 when the event {|Z — 10, < W}
holds), and Assumption 2.3 , we have
1

E[|£(2) = 1 (2|1 seginforry) < LaP (|2 = ukbo| > M) 5 —.

For term (I), we further separate it into (IIT) and (IV), which can be regarded as integrated mean (III)
error and approximation error (IV) respectively. After defining the function g(z) = E(y|Z = z) for
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z € R, we continue to have
MH<E Hf(Z) -9(Z) H{|Z_H)T(éo‘§w}} +E [|9(Z) - f(Z*)|H{|z_u;@o|§W}} . (20
1m av
To handle the term (IIT), we define go(Z) as

Yo [(Z)Kn(Z — Z;)
Z?:l Kn(Z-2;)

90(Z) =
and we proceed to control (III) by
am < E[|£(2) - 00(2)| 1 1 zinfcwy] T E [1902) = 9D riogewy] - @D

V) (VD

Combining Eqn. (19), Eqn. (20) and Eqn. (21), we can see that ¢; prediction error can be bounded
by the sum of (II), (IV), (V) and (VI). Next, we will bound these terms separately.

Step 1 (bound (IV)): According to the data distribution assumption, Z — ,u;( 90 follows N (0, éoT b)) Xéo)
and Z* — pu0. follows N(0,0.Yx6.). Moreover, for two random variables following normal
distributions, there exists the general result that

T 1/2 0% x 0. (X — pux) 6o 002 x 0.
Z" = px O + (XX 702 /2, 1/2 /25 Cvl/2; 1/2
12X 0oll21Zx"0xll2 Ex"0oll2 135 " 00ll2][2 ¥ 04 |2

T2
= O + \\Z¥29*||2 <cosa . ZTM +sina- §> )
1% "0oll2
where « is a real number within [0, 7/2], and ¢ ~ N (0, 1) is independent of Z. In addition, notice
the equality that

lallzllbllz — {a,b) _ —(llall2 = [[bll2)* + lla — b]13

llall2llbll2 2[|all2|b]]2

and |[lallz — [|b]|2| < [la — b]|2 for any real vectors a,b € R?. If we let E%Q(% and E%QQ* play the
roles of a and b respectively, then by Eqn. 17, it holds that

1/245 1/2 A
e < |2§2§)02)1{/20*||§ < Gl 0-I3
I=X200l1 252012 ™ 125 ollo 01 )
dCI2I’1aX||é0 — 9*”% 2

— 2 ) 2 _ 2
SR e, Cmenlfo = Belli = OdnTE),
X X *

where the third inequality comes from Cauchy-Schwarz inequality, and the last order equality comes
from Eqn. 17. Thus, the single index model can be equivalently written as

Z — pih
Y=f(Z")4e Z*= ||E§(/29*||2 (cosa L2 Ex%0 +sina~§> + 130,

1/2,
1=50oll>

molici 5 1232612 ) T 2 12320112
For simplicity, we denote Z(z) = cos - =257 (2 — pix00) + pix b+, Z = cosa - =32 (Z —

) =X "6oll2 IEX " 0oll2

1 00) + 1% 0x, and according to the definition of g(z), we have
9(2) =E@|Z = 2) =E[{(Z(2) + |Z . asina - )| Z = 2|

(23)

- / F(2() + |20, 2 sina - ) - S(O)dC,

where ¢ is the density of the standard normal distribution. It is obvious that g(z) < Ly by Assumption
2.3. To bound (IV), we first use f(Z) to approximate f(Z*) as well as g(Z), then (IV) is bounded as

E [If(Z*) —9(2)| H{|Z—u;éo\}SW:| <E Hf(Z*) - f(Z)‘ H{|Z—u;éo\svv}}

] 24
+E Hf(Z) - g(Z)‘ H{|z—u;éo\sw}] :
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For the first term on the right side of Eqn. (24), by mean value theorem
H(Z°) = 1(2) = [(Z + | ZX6. |20 - Q) ~ f(2)
= ['(Z+1(Z, Q5?0 lasina- Q) - [EX6.[2sina -,
where t1(Z, ¢) is a constant between [0, 1] depending on Z and ¢. We continue to have
E Hf(Z*) - f(Z)‘ H{|z_#;éo\§vv}}
= ||E§(/29*H2 Sina/

|Z— HX90‘<W

(Z+1(Z, QIS 20, |2 sina - O)¢H(Q)| dCdF (Z) 25)

R
S Ly ||E§(/29*H2 sina = O( dn_%),
where the inequality is due to Assumption 2.3 that f/(-) is bounded, and the last equality comes from

Eqn. (22) and Eqn. 17 that ||E§(/20* l2 < ||E§(/20* |1 = 1. For the second term on the right side of
Eqn. (24), by the definition of ¢g(z) in Eqn. (23), we have

1(2)=a2) = (2) = [ 1Z+1250.asina- Qo0)ac
el/2 . 15 1/2 .
— IS8, lasina | £12+ (2,026, [2sina- o),
R
where t2(Z, ¢) is a constant between [0, 1] depending on Z and ¢, and this further implies that
E Hf(Z) - Q(Z)‘ H{\z_,tj(édng
< ||z§(/29*\|2sina/
|Z—nLfo|<W
= 0(Vdn %),

where the last equality is due to Assumption 2.3 that f/(z) is bounded, Eqn. 17 that HZ%ZG* Il2 <
|£3/%6,]l1 = 1 and Eqn. (22).
Combining Eqn. (25) and Eqn. (26) give us that

(IV) = O(Vdn™3).

(Z+ (2, Q)15 28, |2 sina - O)¢| $(Q)dCdF(Z) (26)

R

Step 2 (bound (V)): For term (V), we have

(V)_/Z . l<W/IE{|f(Z)gO(Z)|‘Z1,...,Zn,Z] AF(Zy,. .., Z,)dF(Z).

For any fixed Z, we let B, (Z) to be the event {nP,(B(Z,h)) > 0}, where P,,(B(Z,h)) =
LS {12~ 7z|<n}- then we further have

E[1£(2) - 90(2)l|21..... 2, 2] <E} [ 2)|2.....2,.]
2
_gl | (Zis 1%* 9(Zi))Yz; Z|§h}> ‘Zl,...,ZmZ
Yoic1 Lz-z1<ny
:<Z? Var(Y;| Z;)ly) z, Z|<h})%
n*P,(B(Z, h))?

1
< - 7 .
~ 0P, (B(Z,h)) 2%

For the last inequality, we can further prove that Var(Y;|Z;) < E(Y?|Z;) < 1. Specifically, by
definition, we know that

Var(Y|Z = 2) <E(Y?|Z = 2) <2 / FA(Z(2) + 2320, sina - Qd(Q)dC +20% S 1,
R
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where the last inequality holds since f is bounded and o2 is finite.

When conditional on Z, we have nP,(B(Z,h)) = Y1 Ifz,_z<n} ~ Binomial(n,q), with
q =P(Z, € B(Z,h)|Z), and B(Z, h) represents the ball centered at Z with the radius R. Thus,
when conditional on Z, we obtain

Ip,(2) Linp, (B(Z,h))>0} 1
— BB gp(z,,...,2,) = | LEBENZG gz 7)< —,
/nIP’n(B(Z,h))d (21,5 Zn) / nP,(B(Z,h)) dF(Z, ) nq

where the last inequality follows from Lemma 4.1 in Gyorfi et al. (2006). We further get one upper
bound for (V) as

(V)</ dF (Z) |
~ \z—uTéo)<w nP(Z1 € B(Z,h)|Z)

As{|Z — u;é(ﬂ < W} is a bounded area, we can choose ay, ..., ap such that {|Z — u;é0| <WwW}
is covered by U | B(a;, h/2) with R < ¢W/h for some constant ¢ > 0. Then we finally bound the
term (V) as

R

V) </ r(2) Z/H{ZeB aih/2)}AF(Z)
~ Jiz—uTéoj<w nP(Z1 € B(Z,h)|Z) — &= ] nP(Z: € B(Z,h)|Z)
- 27)
<5 [ Uit ) KO e
- nP(Zy € B(a;,h/2)) — n — nh ~ n2/3

where the last inequality is due to the set that i =< n~1/3,

Step 3 (bound (VI)): We first showcase that function g(z) defined in Eqn. (23) is a Lipschitz function,

with Lipschitz constant bounded by the order of v/d: for any 21, z € R, by the mean value theorem,
we have

9(e1) — g o) < [ooma X Cellz
glz1) —gl22)| > |cCOS—5— (k2 — 21)|
1= 20012
, 1256, |2
[ £ G0) + 120 asina - ¢) + () cosar =571 g - 20)| o()de
R 1242601

DRAP
< X ey — z|Lp < Vd|za — 21|Lyp S Vd|zo — 21,
1= 20o)2

where the second inequality uses the boundness of f(-) and f/(-), and the third inequality utilizes

the fact that || 24?6, ]|, < [SY26.])1 = 1, and VA|[£Y?0o||2 > £V ?0o]|1 = 1. To deal with term
(VI), we first bound the difference between go(Z) and g(Z),

l90(Z) — 9(2)| = |90(Z2)1B, (z) — 9(Z)lB, (z) — 9(Z)B, (z)]
_ | Xi10(Zi) — 9(2))Kn(Z — Zi)
Zi:l Kh(Z - Zz)
<Vdh + g(2)p, 2,

I, (z)| +9(Z2)B,(z)
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where the last inequality follows from the Lipschitzness of ¢(-), which yields that g is a Lipschitz
function with the Lipschitz constant bounded by v/d. We proceed to have

E[190(2) ~ 9(D)l 5 ,i1001<w]

<Vdh+ / 9(Z2)E(Ip, (2):|Z2)dF (Z)
|Z—p o<W

< Vdh + Lf/ (1-P(Z1 € B(Z,1h)|Z))"dF(Z)

|Z—p% b0l <W

< Vdh + Lf/ exp(—nP(Z, € B(Z, h)|Z))”]P(Z1 € B(Z,M\Z) dF(Z)

|Z—p% 60| <W nP(Zy € B(Z,h)|Z)

1
<Vdh+ sup {ue ™}
u€l0,1] \Z—uTéo|<w NP(Z1 € B(Z,h)|Z)

< O(Wdn™5),

where the third inequality is due to (1 — z)™ < e~ "* for any = € [0, 1], and the last inequality comes
from the fact that sup,, (o 1j{ue™ "} < 1 and the result in Eqn. (27). We finish the proof of the
theorem. O

dF(Z)

K.4 PROOF OF THEOREM 3.9

First, note that the Gaussian distribution naturally follows Assumption 2.2 with constant M. And the
proof of Theorem 3.1 only relies on the boundness of the unknown function f(-). Therefore, based
on Theorem 3.1 and Lemma K.1, it holds that
~( d
=0|—]).
1 ( V1 )

Ma2+L2 log(2d/8) -/ d

<3d\/ g /)_O<>’
VT

Furthermore, we can deduce that d6 = O(Ty). Then based on Theorem K.2 for X ~ D =

N(ux,Xx), we have

. . ds
E|f(XT60) — f(X"6,)] =0 <> :
Ty
Since the arm at each round is randomly sampled from D, then we know that for any ¢ € [T, k € [K],
it holds that

Bl (e Tdo) — f(eTo0.)| = O (C” ) |

Then for any ¢ > 27T}, we have that

E(f(@].0.) = /(2] 0.)) =E (f(2].0.) = F (27.0)) +E (f (27.0) - f(a]0.))

Therefore, based on the choice of T we have that:

2T, T
ZE (x.0.) = fal 0]+ Y E[f(x].0.) - f(z/]0.)]
t=2T7+1

d> .
<SOL,Th + ( ) T =0 (diT?).
Ty
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Table 1: Average running time (in seconds) of each method under different link functions in our
simulations in Figure 1 and real-data experiments in Table 2.

Dataset \ ESTOR STOR GSTOR UCB-GLM GLM-TSL LinUCB LinTS
(1). Linear 0.69 0.20 - - - 0.39 0.71
(2). Poisson 0.72 0.26 - 131.24 364.89 - -
(3). Square 0.76 0.28 - 249.01 707.95 - -
(4). Five 0.76 0.29 - 1151.08 3276.35 - -
Forest Cover 4.61 1.88 5.01 662.09 1512.92 3.64 3.39
Yahoo News 0.43 0.16 0.52 57.80 121.35 0.28 0.42

Cumulative Regret on Sparse Linear Case
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Figure 2: Plot of regret of STOR, ESTOR, LinUCB and LinTS under the sparse high-dimensional
linear case (identity reward function).

L EXPERIMENTAL DETAILS

L.1 ADDITIONAL DETAILS OF SIMULATIONS

We first report the hyperparameter configuration used in our experiments. We use the false rate
0 = 0.05, the dimension d = 15 and the number of arms at each round K = 20. Each entry of the
contextual vector is i.i.d. sampled from a standard normal distribution. In each of the 20 repetitions,
the parameter vector 6, is generated by independently sampling each entry from a standard normal
distribution and then normalizing the vector to have an /; norm equal to 1, in accordance with our
problem setting in Section 2. To ensure a fair comparison, we use the theoretically recommended
values for key hyperparameters in each algorithm, such as the exploration rate for UCB-based methods,
and parameters 7;, Ty, and 73 for our ESTOR and STOR algorithms. For each method, we conduct
two sets of experiments by multiplying the key hyperparameters by 1 and by 2, respectively. Each
configuration is run over 20 repetitions, and we report the better regret curve over two different settings
for each method. Specifically, for UCB-based methods such as LinUCB and UCB-GLM, the key
hyperparameter is the exploration rate scaling the confidence bound. For TS-based methods, including
LinTS and GLM-TSL, the key parameter is the variance multiplier of the posterior distribution, which
plays a role analogous to the exploration rate in UCB by influencing the spread of the posterior
distribution. For ESTOR, the main hyperparameter is the threshold value 7; used in estimating the
unknown parameter ... We adopt the theoretical value 7; = \/3(e;—1 — e;—2)/log(2dlog,(T)/6)
and evaluate two versions of the algorithm using multipliers 1 and 2 on 7;, respectively. We set
Ty = 50 since it can be any value less than a bound in the theoretical result. For STOR, we consider
the exploration phase length 77 as the key hyperparameter. Inspired by our theoretical analysis, we
use the formula Ty = (d7')%/3 log(2d/$)"/3 /8 and apply multipliers of 1 and 2 to this value as well.
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Table 2: Results on the Forest Cover Type and the Yahoo news recommendation dataset.

Dataset ~ Metric ‘ESTOR STOR  GSTOR UCB-GLM GLM-TSL LinUCB  LinTS

Forest Regret | 844.78 1101.28 1278.91 1497.39 2330.80 5506.45  4081.33
Yahoo  Reward 349.8 302.7 344.6 255.6 248.1 221.0 219.3

We also report the average running time of different methods across the four cases in Figure 1 over
20 repetitions. All simulations were conducted on a machine equipped with the Apple M3 chip.
Consistent with our time complexity analysis in section 3.3, our proposed methods are significantly
faster than the commonly used GLB algorithms. Specifically, both STOR and ESTOR are hundreds
of times faster than UCB-GLM and thousands of times faster than GLM-TSL, demonstrating their
strong practical scalability. This efficiency stems from the fact that our methods avoid solving
computationally intensive optimization problems at each iteration. Moreover, our methods exhibit
stable running times across all settings. In contrast, the running times of UCB-GLM and GLM-TSL
vary depending on the reward functions, which is due to the varying difficulty of solving their
respective optimization problems. In summary, our methods are not only robust to unknown reward
functions but also substantially more efficient than these state-of-the-art GLB algorithms.

Furthermore, we consider the sparse high-dimensional case (section 3.4) by setting K = 30,d = 60
and the sparsity index » = 10, where we choose the non-zero entry indexes by uniform sampling
without replacement. Due to the great computational cost of GLB methods under the high-dimensional
setting, here we only conduct the experiments on the linear case, i.e. the reward function is the
identity function. All the hyperparameter configurations are the same as the former simulations
on low-dimensional settings. For the regularizer parameter A in Eqn. (1), we leverage its exact
theoretical value deduced from Theorem 3.7. We showcase the average cumulative regret over
20 repetitions in Figure 2. Compared to the low-dimensional setting shown in Figure 1 (1), our
proposed methods ESTOR and STOR achieve significantly better performance than LinUCB and
LinTS. This demonstrates that our algorithms are not only agnostic to the unknown reward function
while maintaining high efficiency and accuracy, but also generalize effectively to the popular sparse
high-dimensional regime with similarly strong performance.

L.2 ADDITIONAL DETAILS OF REAL-WORLD EXPERIMENT

For our real-world experiment, we use the Forest Cover Type dataset (Blackard, 1998) from the UCI
repository and the benchmark Yahoo Today Module dataset on news article recommendation (Chu
et al., 2009). We approximate the arm feature vector distribution by fitting a normal distribution using
the estimated mean and covariance matrix from a small subset of the data, since our proposed methods
further rely on the distribution of the feature vector. We will show that this approximation works
effectively, as our methods demonstrate superior and consistent performance, highlighting their ro-
bustness and efficiency in real-world applications. However, we do not provide theoretical guarantees
under this approximation for real-world applications, as the resulting error would introduce additional
terms in the final regret bound. All the algorithmic settings and hyperparameter configurations are
identical to the simulations presented above. The Forest Cover Type dataset consists of 581,012
samples with 55 features. The label of each instance denotes a specific type of forest cover. Following
the setup in Ding et al. (2021), we assign a binary reward to each data point: a reward of 1 if the point
belongs to the first class (Spruce/Fir species), and 0 otherwise. We extract feature vectors from the
dataset and partition the data into K = 32 clusters, each representing an arm. The reward of a cluster
is defined as the proportion of data points within the cluster that have a reward of 1. At every round,
we sample a feature vector randomly from each cluster to represent its observation. Table 2 reports
the average cumulative regret at the final time step 7" = 10,000, averaged over 10 independent runs.
For GLB algorithms UCB-GLM and GLM-TSL, we adopt the logistic bandit setting for both, as
this is the default and most common modeling assumption in binary reward scenarios. We report the
average cumulative regrets of each method over repetitions in Table 2.

The Yahoo news recommendation dataset comprises over 40 million user visits to the Yahoo Today
Module between May 1 and May 10, 2009. In each visit, the user is presented with a news article
and chooses to click (reward 1) or not click (reward 0). Both users and articles are represented by
feature vectors of dimension 5 with an additional constant feature, constructed via conjoint analysis
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with a bilinear model (Chu et al., 2009). For our experiment, we discard article features and use data
from May 1 and May 2, 2009. Due to the heavy click response imbalance, we subsample the data by
removing a portion of the non-click (reward 0) events. We set the time horizon to 7' = 5, 000, and at
each round, randomly select X = 10 arms without replacement. For each method, we compute the
total reward as the number of clicks accumulated over the time horizon 7' (higher values indicate
better performance). Results are averaged over 10 independent runs and reported in Table 2. The
average running time of each algorithm on these two real datasets is also displayed in Table 1.

It is evident that all our proposed algorithms consistently outperform the other methods on both
datasets. This strong performance stems from the fact that, in real-world settings, the true underlying
link function is unknown and potentially complex. Unlike other methods, our methods do not rely on
the explicit knowledge of the link function, again highlighting the advantage of adopting agnostic
approaches in practice. In contrast, GLB methods require the reward function to be specified a priori.
While the logistic model is commonly used under the binary reward case, this choice is inappropriate
in many real-world applications, making such methods susceptible to model misspecification. It
is also worth noting that GSTOR demonstrates strong performance on both real-world datasets,
particularly on the Yahoo News dataset. This suggests that the underlying reward function in the
Yahoo setting may not exhibit a monotonic structure, making GSTOR’s flexibility advantageous. In
contrast, on the Forest Cover Type dataset, ESTOR and STOR outperform GSTOR, indicating that
the reward function in this environment is likely monotonic. Nonetheless, all three proposed methods
consistently outperform the GLB baselines across both datasets.

Moreover, although our methods assume knowledge of the covariate distribution for theoretical
analysis, we approximate it using a normal distribution fitted from a small subset of the data in our
real data experiments. The strong results obtained under this approximation further demonstrate the
robustness and feasibility of our methods in real-world applications.
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