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A Proofs

Proof of Theorem 2:

background poison signal and @ to represent the indiscriminate background noise, The training
distribution contains negative samples (y = —1) of the form {@, = 1,85 > 1,c¢; = 1} and
{@p, =1,0p > 1,cp = 1}, and positive samples (y = 1) of the form {@p > 1,¢1 =1,¢2 = 1}.

Proof. g({@,c1,c2}) = ¢c1 2 1 Acy > 1 is the target function. Using @, to represent the

By exhaustive enumeration, only two possible logic rules can distinguish the positive and negative
bags. Either the (MIL) rule ¢y > 1 A ¢z > 1, and the non-MIL rule @, = 0. However, a MIL model
cannot legally learn to use @, because it occurs only in negative bags.

By changing the test distribution to evaluate the sample @g = 1,c; = 1,2 = 1 and observing the
model produce the negative label y = —1, the only possible conclusion is it has learned the non-MIL
hypothesis. O

Proof of Theorem 3:

Proof. g({@,c1,¢2}) = ¢c1 = 1 Acy > 1 is the target function. Using @p to represent the
indiscriminate background noise, The training distribution contains negative samples (y = —1) of the
form {@p € [1,10],c1 € [1,2]} and {@p € [1,10], ¢, € [1,2]}, and positive samples (y = 1) of the
form {@p € [1,10],c; € [1,2],¢c2 € [1,2]}.

By exhaustive enumeration, only two possible logic rules can distinguish the positive and negative
bags: ¢; > 1 A c; > 1. However, there is a naive MIL rule that can obtain non-random, but not
perfect accuracy, ¢1 + ¢o > 3.

By changing the test distribution to evaluate the samples @p = 1,¢; = 35 and @g = 1,¢2 > 35 and
observing the model produce the positive label y = 1, the only possible conclusion is it has learned
the non-threshold MIL hypothesis.
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