A Additional information for Anchor Data Augmentation

A.1 Derivation of ADA for nonlinear data

In the following, we provide the more detailed derivation to Equation (T0), which motivates the usage
of the scaled transformation we use in ADA to obtain (Xﬂ, A, Y A ). We use the same notation that

was introduced in Section As discussed in Section [3| we can wrlte YEJ)A in Equationas
(12)

for some noise variable e,(YZ)A, where Fy(X) = [f,(XM), ..., £,(X™)]T. For differentiable function

f with continuous first-order derivative f , we can use Taylor expansion around X(W’)A of the nominator
and get
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where in the second equality we use the fact that coefficient of fb( 5, A) (in the second and fourth

term) is zero for any f; due the definition of X in Equation [/ I and therefore,
YO, ~fp(X0y) + e,

which is approximately s‘imilar to the original nonlinear model for small || X() — X,(Yl,)A||2 or
|525(TA) (XD =X >

A.2 Additional information on hyperparameters of ADA

In this section, we illustrate in a simple 1D example (i.e. cosine data used in Figure[I)) how changes
in the hyperparameter values modify the data and affect the achieved estimation. Additionally, we
show in Appendix [B.4/how ADA performance on real-world data is impacted by changes in the
hyperparameter values.

Having a fixed pair of (y, A) enforces the model to learn the optimal parameters for a particular
trade-off between performance on Py, and predefined interventional distributions [42]. Instead
of limiting the regularization to a fixed pair of (v, A) that performs well on a previously known
set of interventions, we propose to optimize the loss simultaneously over a set of v € [0, c0) and
different anchor matrices. In particular, we optimize the parameters on a mixture of essentially
similar distributions to Py, simultaneously. To reduce the anchor regression’s regularization effect,
we propose using a combination of the following methods to exploit the data invariances and avoid
conservative predictions.

Anchor Matrices and Locality: ~ Anchor variable A is assumed to be the exogenous variable that
generates heterogeneity in the target and has an approximately linear relation with (X, y) (see AR
loss in Equation [3). It is recommended to choose the variable relying on expert knowledge about the
features that the target has a higher dependence on or is possibly misrepresented in the dataset so that
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we encourage the robustness of the trained model against this type of discrepancy. After deciding
the features, one way to construct the anchor matrix A is to partition the dataset according to the
similarity of the features, using for example binning or clustering algorithms. Then we can fill the
rows of A with a one-hot encoding of the partition index that each sample belongs to.

We use the following nonlinear Cosine data model as a running example to demonstrate more clearly
how A is constructed and affects the augmentation procedure.

e~ N(0,0.12-T), X ~ U(=3m,37),y = cos(XTb) + e, (13)

For illustration purposes, we use in Figures [5, [7 equidistant x values as this reduces noise and
emphasizes the effect of ADA parameters more.

Further, we note @ : X — {1,...,¢} that maps each sample X € X to one of ¢ partitions and
returns its index. For instance, with an equal width binning scheme one can partition the range of
a feature map g : X' — [0, B] to ¢ parts and set a(X) := argmin, .y o {r : /g > gp(X)}.

Using, equal size binning scheme, one would first sort g, (X)) fori € {1,...,n} get the indices

.....

it is possible to use a clustering algorithm such as k-means [33] to partition {X (i)}i into hard
clusters based on the similarity of each sample to cluster center ¢, € X for r € {1, ..., ¢} leading to
a(X) = argmin, ¢y o D(X, ;) for some distance metric D : X x X' — [0, 00).

With A constructed from the one-hot encoding of partition indices of samples, the ITo operator
returns the average value of the projected values in the same group as each sample.

1

(Ta) X = — Z X ) and
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where n,. is the size of group with index 7 = a(X (). Getting weighted averages of partition samples
is also straightforward by scaling the one-hot encodings of group indices with the squared root of the
desired weights.

Partition Size and Number: As was mentioned before, the target should have a high dependence
on the anchor variable A. Specifically, with the partitioning scheme explained above, X(j’)A is
constructed as a linear combination of X () and the partition average with a target variable constructed
in a similar manner. If the generative function f varies significantly in a partition, the average value
is going to flatten out the variations and decrease the heterogeneity of the augmented samples in that
partition. For a smaller partition size, the augmented data is going to be close to the mean value f and
improve the optimization, however, partitions with a smaller number of samples will have a noisier
estimation of the sample mean in each partition and deem the augmentation ineffective. We show the
same effect of ¢ on the Cosine data model in Figure[d]for ~ set via v = 2 (as described in Section[4.T)
and a different number of groups when g5 (X) = X and K-Means is used for partitioning the dataset.
In the groups where f is approximately linear, the augmentation line is approximately tangent to f,
specifically when the clusters are small and the cluster average lies close to cos(X).

ADA (2 groups) ADA (5 groups) ADA (10 groups)

cos(x)
cos(x)

y=
y = cos(x)
y=

Figure 4: Model predictions for models fit on the original data and ADA augmented data with
varying partition sizes. On a hold-out validation set the base model has M SE = 0.097. The
augmented model achieves MSEs of 0.124, 0.069, 0.079, respectively. We use MLPs with architecture
[50, 50, 50, 50, 50] and ReLU activation function. The original data has n = 20 points. We use k-
means clustering, o = 2, and augmented 10 additional points per given point.
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Values of y:  For v € [0, ), the transformations in Equationanddeﬁnes a line passing through
(X®,Y®) and the group average ((ITo)?X, (IT5)*Y). As |y — 1| grows the augmented sample
gets further away from X (*) and in large groups this may result in misleading augmentation. Therefore,
when group diameter is large it is important to keep -y close to one. In Figure 5| we show how varying
~ changes the efficacy of the augmented samples for the Cosine data model with ¢ = 2 groups.
To be precise, we vary the range of ~ by defining a parameter & € {1.5,2,5,10}. We further
specify 3; = 14 % /2 -4 (with s € {1,...,k/2}) where k is the number of augmentations and finally

yeqd, m, o E’ 1, B1s s Brja—1 a}. Additionally, we provide a baseline and an augmented

model fit in Figure [f] with different values for .
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Figure 5: ADA Augmented samples for varying ranges of - controlled via the parameter c«. We use
k-means clustering into ¢ = 5 groups and augmented 2 additional points per given point.
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Figure 6: Model predictions for models fit on the original data and ADA augmented data with
different ranges of ~y controlled via the parameter o. On a hold-out validation set the base model has
MSE = 0.097. The augmented model fits achieve MSEs of 0.083, 0.124, 0.470, respectively. We
use MLPs with architecture [50, 50, 50, 50, 50] and ReLU activation function. The original data has

n = 20 points. We use k-means clustering into ¢ = 2 groups and augmented 10 additional points per
given point.

Number of augmentations:  For each anchor matrix A and v we can add n new samples to the
dataset. The addition of more augmented samples may not be beneficial as the optimization may
overfit the approximations in the augmented data model in Equation [0} In the Cosine data model this
is specifically problematic when X is close to multiples of 7 as depicted in Figure[7} Additionally, we
provide a baseline and an augmented model fit in Figure 8 with different number of augmentations.
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Figure 7: ADA Augmented samples for varying numbers of parameter combinations. We use k-means
clustering into ¢ = 2 groups e = 1.5.

As it is standard practice to use stochastic gradient descent methods for optimizing a regressor, we
suggest applying ADA on each minibatch instead of the entire dataset. This avoids choosing a fixed
numbers of augmentations. Furthermore, it adds diversity to the "mixing" behavior of ADA, because
the samples that are being mixed change in each iteration.
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Figure 8: Model predictions for models fit on the original data and ADA augmented data with
a different number of parameter combinations (equal number of augmentations). On a hold-out
validation set the base model has M SE = 0.097. The augmented model fits achieve MSEs of
0.470,0.071,0.057, respectively. We use MLPs with architecture [50, 50, 50,50, 50] and ReLU

activation function. The original data has n = 20 points. We use k-means clustering into ¢ = 5
groups and o = 2.

B Experiments

B.1 Linear synthetic data

In this section, we present more detailed results of the experiments on synthetic linear data (Sec-
tion[4.T). First, Figure[9]shows a comparison of using 10 instead of 100 additional augmentations per
original sample using Ridge regression model. Performance increases when using 100 instead of 10
augmentations for all methods, as the resulting prediction error is lower.

Ridge Regression
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Figure 9: Comparison of augmenting the synthetic linear dataset by a factor of 10 and 100. More
augmentations achieve lower MSE on all methods. Here, anchor augmentation is performed for
o =38.

Second, we report experimental results for using a wider interval for ~ values in Figure [I0. The
width is controlled via the parameter «, as described in Section[3. While for ridge regression, the
effectiveness of anchor augmentation is not sensitive to the choice of «, the MLP model shows more
sensitivity.

Ridge Regression MLP with 10 hidden units
100 = ERM 0 = ERM
[==1¥} w [==1¥
a4 =3
-6 -6
. = =)
v = 10 o = 10
@ fm
& ]
g g
g g
10 * 104 i
L L]
GEEE @ i
o PEEEE memrr memeee . b JENS

10 20 160 320 10 20 320 1280 7040

40 80 160
number of samples number of samples

Figure 10: Comparison of augmenting the synthetic linear dataset with different intervals of v
controlled via «.. The ridge regression is not sensitive to the choice of «, as different values result in
a similar prediction error. Contrary, for the MLP a larger value of « is more effective.

Finally, we report results for using an MLP with 40 hidden units in Figure [TT. The results are
consistent with the results from the MLP with 10 hidden unity.
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MLP with 40 hidden units
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Figure 11: Analysis of the sensitivity of ADA to the choice of « using an MLP with 40 hidden units.

B.2 Additional results for real-world regression data

In Figure[I2]we provide additional results showing, that the Ridge regression model performs worse
on the California housing data. The experimental setting is the same as described in Section {2}
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Figure 12: MSE for California housing averaged over 10 different train-validation-test splits.

B.3 Additional results on real-world data

In this section, we provide further experimental results on real-world regression problems. We use the
following datasets from the UCI ML repository [12]]: Auto MPG (7 predictors), Concrete Compressive
Strength(8 predictors), and Yacht Hydrodynamics (6 predictors). The experimental setting follows
the one described in Section @ except that we use here to training, validation, and test datasets
of relative sizes 50%, 25%, and 25% respectively. We use MLPs with one layer and varying layer
width and sigmoid activation. The models are trained using Adam optimization. We generate 9
different dataset splits and report the average prediction error in Figure[I3. Similar to the results in
Section4.2; ADA outperforms the baseline and C-Mixup especially when little data is available. The
performance gap vanishes when more samples are available demonstrating the effectiveness of ADA
in over-parameterized scenarios.
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Figure 13: MSE for housing datasets averaged over 9 different train-validation-test splits.
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B.4 Details: In-distribution Generalization and Out-of-distribution Robustness

In this section we present details for the experiments described in section[4.3]and Section We
closely follow the experimental setup of [49].

Data Description

In the following, we provide a more detailed description of the datasets used for in-distribution
generalization and out-of-distribution robustness experiments.

Airfoil [12]: is a tabular dataset originating from aerodynamic and acoustic tests of two and three-
dimensional airfoil blade sections. Each input has 5 features measuring frequency, angle of attack,
chord length, free-stream velocity and suction side displacement thickness. The target variable is
the scaled sound pressure level. As in [49], we additionally apply Min-Max normalization on the
input featues and split the dataset into train (1003 samples), validation (300 samples) and test (200
samples) data.

NO2: is a tabular dataset originating from a study where air pollution at a road is related to traffic
volume and meteorological variables. Each input has 7 features measuring, the logarithm of the
number of cars per hour, temperature 2 meter above ground, wind speed, the temperature difference
between 25 and 2 meters above ground, wind direction, hour of day and day number from 1st October
1 2001. The target variable is the logarithm of the concentration of NO2 particles, measured at
Alnabru in Oslo, Norway. Following [49], we split the dataset into a train (200 samples), validation
(200 samples) and test data (100 samples).

Exchange-Rate [27]: is a timeseries measuring the daily exchange rate of eight foreign countries
including Australia, British, Canada, Switzerland, China, Japan, New Zealand and Singapore ranging
from 1990 to 2016. The slide window size is 168 days, therefore the input has dimension 168 x 8 and
the label has dimension 1 x 8. Following [27, 49] the dataset is split into training (4,373 samples),
validation (1,518 samples) and test data (1,518 samples) in chronological order.

Electricity [27]: is a timeseries measuring the electricity consumption of 321 clients from 2012 to
2014. Similar to [27, |49]] we converted the data to reflect hourly consumption. The slide window
size is 168 hours, therefore the input has dimension 168 x 321 and the label has dimension 1 x 321.
The dataset is split into training (15,591 samples), validation (5,261 samples) and test data (5,261
samples) in chronological order.

RCF-MNIST [49]: is rotated and colored version of F-MNIST simulating a subpopulation shift.
The author rotate the images by a normalized angle g € [0, 1]. In the training data they additionally
color 80% of images with RGB values [g; 0; 1 — g] and 20% of images with RGB values [1 — g; 0; g].
In the test data, they reverse the spurious correlations, so 80% of images are colored with RGB values
[1 — g;0; g] and the remaining are colored with [g; 0;1 — g].

Crime [12]: is a tabular dataset combining socio-economic data from the 1990 US Census, law
enforcement data from the 1990 US LEMAS survey, and crime data from the 1995 FBI UCR. Each
input has 122 features that are supposed to have a plausible connection to crime, e.g. the median
family income or per capita number of police officers. The target variable is the per capita violent
crimes, representing the sum of violent crimes in the US including murder, rape, robbery, and assault.
Following [49]], we normalize all numerical features to the range [0.0, 1.0] by equal-interval binning
method and we impute the missing values using the mean value of the respective attribute. The state
identifications are used as domain information. In total, there are 46 distinct domains and the data is
split into disjoint domains. More precise, the training data has 1, 390samples with 31 domains, the
validation data has 231 sampels with 6 domains and the test data has 373 samples with 9 domains.

SkillCraft [12]: is a tabular dataset originating from a study which uses video game from real-time
strategy (RTS) games to explore the development of expertise. Each input has 17 features measuring
player-related parameters, e.g. the age of the player and Hotkey usage variables. Following [49]], we
use the action latency in the game as a target variable. Missing values are imputed using the mean
value of the respective attribute. "League Index", which corresponds to different levels of competitors,
is used as domain information. In total there are 8 distinct domains and the data is split into disjoint
domains. More precise, the training data has 1, 878 samples with 4 domains, the validation data has
806 samples with 1 domain and the test data has 711 samples with 3 distinct domains.
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DTI [17]: is a tabular dataset where the target is the binding activity score between a drug molecule
and the corresponding target protein. The input consists of 32, 300 features which represent a one-
hot encoding of drug and target protein information. Following [49], we use "Year" as domain
information with 8 distinct domains. There are 38, 400 training, 13, 440 validation and 11, 008 test
samples.

Methods and Hyperparameters

For ERM, Mixup, ManiMixup and C-Mixup, we apply the same hyperparameters as reported in
the original C-Mixup paper [49]. According to the authors they are already finetuned via a cross-
validation grid search. The details can be found in the corresponding original paper. We rerun
their experiments with the provided repository (https://github.com/huaxiuyao/C-Mixup) over three
different seeds € {0, 1, 2}. Furthermore, we finetune ADA and training hyperparameters using a
grid search. The detailed hyperparameters for in-distribution generalization and out-of-distribution
robustness are reported in Table[3] We apply ADA using the same seeds.

Table 3: Hyperparameters for ADA
Airfoil NO2 Exchange Electricity RCF-MNIST Crime SkillCraft DTI

Architecture FCN3 FCN3 LST-Attn LST-Att ResNet-18 FCN3 FCN3 DeepDTA
Learningrate 0.01 Se-4 Se-4 Se-4 Te-5 le-4 0.001 le-4
Optimizer Adam  Adam Adam Adam Adam Adam Adam Adam
Batchsize 16 32 64 64 128 48 48 32
Maximum Epoch 200 150 100 100 40 250 100 20

« (determines ) 2 35 1.125 1.125 3 2.5 4 3
Number Groups 8 4 40 40 25 2 16 24
Manifold 1 0 0 0 1 1 0 1

Furthermore, we provide the performance of ADA for different parameter parameter values to get a
better understanding of their impact. We vary values for ¢, the number of clusters used in k-means
clustering, and «, the parameter that controls the range of y-values on selected in-distribution and
out-of-distribution datasets. Results are reported in Figure[T4]

Figure 14: Results for different v values (upper row) and ¢ values (lower row). Results are reported
of three different seeds € {0, 1,2}. For Airfoil and Electricity we report RMSE and for Crimes we
report "worst within-domain" RMSE.
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We report the results for in-distribution generalization experiments in Table i and for out-of-
distribution generalization experiments in Table[5. Following [49]], we further evaluated the per-
formance of ADA and C-Mixup on the Poverty dataset [23]], which contains satellite images from
African countries and the corresponding village-level real-valued asset wealth index. Again we closely
followed the experimental setup, so for details we refer to [49]. However, due to computational
complexity, ADA hyperparameters are not tuned on this dataset. We use the same learningparameters
as reported in and ¢ = 24 and o = 2.
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Table 4: Detailed results for in-distribution generalization. We report the average RMSE and MAPE
and the respective standard deviations over three seeds € {0, 1, 2}.

Airfoil NO2
RMSE MAPE RMSE MAPE
mean std mean std mean std mean std
ERM 2.7582 0.1094 1.6942 0.0486 0.5294 0.0128 13.4019 0.3373
Mixup 3.2637 0.1633 19645 0.1092 0.5220 0.0037 13.2260 0.1237
ManiMixup 3.0922 0.1668 1.8712 0.0903 0.5277 0.0066 13.3579 0.2148
Local Mixup 3.3727 0.1068 2.0426 0.0211 0.5242 0.0004 13.3087 0.1990
C-Mixup 27997 0.2136 1.6289 0.1088 0.5157 0.0123 13.0688 0.3593
ADA 2.3601 0.1339 1.3730 0.0564 0.5147 0.0075 13.1277 0.1468
Exchange-rate Electricity
RMSE MAPE RMSE MAPE
mean std mean std mean std mean std
ERM 0.0236 0.0065 2.4366 0.7142 0.0582 0.0002 13.9153 0.3410
Mixup 0.0246  0.0058 2.5131 0.6667 0.0581 0.0002 13.8390 0.0539
ManiMixup 0.0246 0.0065 2.5411 0.7417 0.0583 0.0004 14.0308 0.2174
Local Mixup 0.0209 0.0046 2.1360 0.5851 0.0627 0.0054 14.2382 1.2349
C-Mixup 0.0238 0.0061 2.4307 0.6819 0.0573 0.0003 13.5121 0.0979
ADA 0.0209 0.0060 2.1159 0.6889 0.0587 0.0008 13.4642 0.2956

Table 5: Detailed results for out-of-distribution generalization. We report the average and standard
deviation of average and worst RMSE or R over three seeds € {0, 1, 2}.

RCF-MNIST Crime SkillCraft
avg. RMSE avg. RMSE worst RMSE avg. RMSE worst RMSE
mean std mean std mean std mean std mean std
ERM 0.1636  0.0066 0.1356 0.0057 0.1698 0.0066 6.1473 0.4070 7.9064 0.3223
Mixup 0.1585 0.0048 0.1341 0.0031 0.1681 0.0171 6.4605 0.4259 9.8338 0.9415
ManiMixup 0.1572  0.0205 0.1283 0.0030 0.1554 0.0086 5.9080 0.3438 9.2643  1.0117
Local Mixup 0.1873 0.0179 0.1325 0.0033 0.1590 0.0052 7.2514 0.4121 10.9957 0.5702
C-Mixup 0.1579 0.0066 0.1320 0.0017 0.1647 0.0045 6.2156 0.3822 8.2232  0.5463
ADA 0.1629 0.0142 0.1298 0.0032 0.1556 0.0066 5.3014 0.1821 6.8771  1.2666
DTI Poverty Map
avg. R worst R avg. R worst R
mean std mean std mean std mean std
ERM 0.4827 0.0080 0.4391 0.0154 n/a n/a n/a n/a
Mixup 0.4589 0.0131 0.4239 0.0025 n/a n/a n/a n/a
ManiMixup 0.4736 0.0040 0.4306 0.0087 n/a n/a n/a n/a
Local Mixup 0.4700 0.0127 0.4325 0.0075 n/a n/a n/a n/a
CMixup 0.4735 0.0041 0.4346 0.0082 0.8040 0.0396 0.5388 0.0725
ADA 0.4928 0.0098 0.4483 0.0094 0.7938 0.0328 0.5218 0.0616
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