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1 Examples of solving non-decomposable objectives by LP

1.1 LP formulation for Integral Metrics such as Multi-Class AUC

Area Under Curve (for instance, of the Receiver Operating Characteristic curve) provides a graphical
summary of the performance of a binary classifier as the classification threshold is varied. The most
simplest approach to extend binary AUC to multi-class is by considering multiple one-versus-all
pairs which can be formulated as a pairwise separable optimization problems (each) given by:

AUC :min
zij

n∑
i=1

n∑
j=1:x∗

i ̸=x∗
j

zij (1)

s.t. (f(xi, x
∗
i )− f(xj , x

∗
i )) ≥ ϵ− zij∀i, j : x∗

i ̸= x∗
j ,

zij ≥ 0

It is well known that such pairwise extensions have many technical caveats including basic properties
such as consistency of the estimator. Recently, Kleiman and Page [2019] used the classical U-
Statistic to extend the definition to multiclass settings that alleviates such common pitfalls. In our
multi-class AUC experiment, we use this one-versus-all AUC as training loss and report performance
in both one-versus-all AUC and AUCbin

µ . In addition, we can also consider the setting of AUCµ

where P is set arbitarily. In this case, the exact terms in orientation function O proposed by Kleiman
and Page [2019] can be written as follows:

AUCarbit
µ :min

zij

n∑
i=1

n∑
j=1:x∗

i <x∗
j

zij (2)

s.t. d̃ij

K∑
k=1

ṽ(k)(f(xi, k)− f(xj , k)) ≥ ϵ− zij

∀i, j : x∗
i < x∗

j ,

zij ≥ 0

Note that AUCarbit
µ has the same number of constraints and variables as AUCbin

µ . Once the LPs are
solved, the loss function is calculated the same way as binary AUC.
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1.2 LPs for Ratio Objectives and Latent Probabilistic Modeling

Often times, we are interested in assessing the classification performance of submodules in (larger)
networks. In such settings, we have optimize general probabilistic loss functions, especially when
used such loss functions are used in hidden layers. The key property in such formulations is that
the overall training loss function contains ratio terms that are unsuitable for training purposes. In
this section, we study a subset of non-decomposable metrics, which are typically expressed as ratios
of some combination of True Positives (TP), False Positives (FP), True Negatives (TN) and False
Negatives (FN). These can be expressed in a general form as

a11TP + a12
a21TP + a22FP + a23FN + a24

(3)

where apq are constants/cofficients which if set to 0, means the term is absent and not equal to zero
in other cases. This formulation can used to define Fscore, Fβ , Jaccard, IOU and Precision at fixed
recall. In the following section, we describe the formulation of Fscore as a representative of this
approach, other metrics can be formulated similarly.

Given Y the ground truth, our goal is to compute Ŷ both of length n, which aligns with Y based on
the specific metric. We first show how to write TP, FP, TN and FN wrt to these vectors.

TP = Y T × Ŷ FP = (1− Y )T × Ŷ

TN = (1− Y )T × (1− Ŷ ) FN = (Y )T × (1− Ŷ )

1.2.1 LP Formulation of F -score

The F -score (or F -measure) is a representative of objectives expressed as ratios of some combina-
tion of True Positives (TP), False Positives (FP), True Negatives (TN) and False Negatives (FN).
The general form of the ratio functions and formulations for other objectives is in the supplement.
Specifically, F -score is defined as follows:

Definition 1.1 (F -score). F -score = 2×(Precision×Recall)
Precision+Recall = 2TP

2TP+FP+FN = 2(Y T × Ŷ )/(1TY + 1T Ŷ ).

The second equality in the definition is due to a simplification of the precision
(

TP
TP+FP

)
and recall(

TP
TP+FN

)
expressions based on Dembczynski et al. [2011]. The last part is obtained by replacing TP

with Y T × Ŷ , FP with (1− Y )T × Ŷ and FN with (Y )T × (1− Ŷ ) as functions of Y and Ŷ . This
leads to the following integer fractional optimization model,

F -score =max
Ŷ

cT Ŷ

dT Ŷ + b
(4)

s.t. Ŷi ∈ [0, 1], i = 1, . . . , n where c = 2Y d = 1 and b =

n∑
i=1

Yi.

To solve this, we first relax the constraint on Ŷ and reformulate the model as the following LP, by
introducing two variables z ∈ Rn and t ∈ R1 where z = bŶ

1T Ŷ+b
, t = b

1T Ŷ+b
and i ∈ {1, · · · , n}:

max
z,t

cT z

b
s.t 1T z + bt = b︸ ︷︷ ︸

(a)

; zi ≤ t︸ ︷︷ ︸
(b)

; (5)

ϕ(f(xi))t ≤ zi ≤ (1 + ϕ(f(xi)))t︸ ︷︷ ︸
(c)

; 1 ≥ zi, t ≥ 0

Remark 1. In our formulation above, (a) ensures the appropriate relation between z, t and Ŷ and
corresponds to (a reformulaton of) the ratio objective as a linear function with a fixed denominator.
Ŷ is recovered from the solution to the LP by computing Ŷi =

zi
t when t > 0 and Ŷi = zi otherwise;

(b) sets an upper bound for Ŷi ≤ 1; and (c) ties the output of the previous layer ϕ(f(xi)) (a classifier
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score for Ŷi) as a input in this layer. Assume ϕ(.) ∈ {−1, 1} (ensured if ϕ is sigmoid or tanh) is
the indicator of the class label (based on sign), then the constraints become Ŷi ≥ ϕ(f(xi)) and
Ŷi ≤ 1 + ϕ(f(xi)). If Ŷi is {0, 1}, the constraints ensures that Ŷi = 0 when ϕ(f(xi)) ≤ 0 and
Ŷi = 1 when ϕ(f(xi)) > 0. We obtain (c) after relaxing Ŷi and replacing it with z and t.

This model imposes 4n constraints for n samples. Since this is a maximization, a solution to the LP,
OŶ , is an upper bound on the integer objective opt∗, and serves as the loss.

Maximizing Jaccard Coefficient. The Jaccard Coefficient and Dice Index lead to similar formula-
tion as F -score. The Jaccard coefficient can be expressed as:

Jacc(Y, Ŷ ) =
TP

TP + FP + FN
(6)

=
(Y T × Ŷ )∑n

i=1 yi +
∑n

i=1 ŷi −
∑n

i=1 yi × ŷi

=
(Y T × Ŷ )

1TY + (1− Y )T Ŷ

This can be equivalently written as a linear factional program as shown in equation 4 where c = Y ,
d = (1− Y ) and b = 1TY . The rest of the construction is similar to F -score.

Maximizing Fβ . Note that Fβ which is defined as

Fβ(Y, Ŷ ) = (1 + β2)
P (Y, Ŷ )×R(Y, Ŷ )

β2P (Y, Ŷ ) +R(Y, Ŷ )
(7)

where β is a user specified parameter (balancing the importance of precision and recall) also permits
a similar formulation. Here we simply set c = (1 + β2)Y , d = 1 and b = β21TY .

Maximizing P@R. We begin by defining the maximum precision at fixed minimum recall problem
as

P@Rα = maximize P s.t.R ≥ α (8)

= maximize
(Y T Ŷ )

1T Ŷ
s.t. Y T Ŷ ≥ α1TY

This is again a linear fractional objective with a linear constraint. So we can write it as an equivalent
Linear program using the same transformation where c = Y , d = 1 and b = 0. R@P on the other
hand directly leads to a linear program.

2 Additional Experiments

2.1 Experimental details of AUC and F -score experiments

Datasets. Cat&Dog is a dataset from Kaggle which contains 25000 images of cats and dogs. 80%
of the dataset is used as training set and the rest 20% as test set. STL10 is inspired by the CIFAR-10
dataset but with some modifications. Each class in STL10 has fewer labeled training examples than
in CIFAR-10. We follow Liu et al. [2019] to use 19k/1k, 45k/5k, 45k/5k, 4k/1k training/validation
split on Cat&Dog, CIFAR10, CIFAR100, STL10 respectively.

Construction of imbalanced datasets. We construct the imbalanced binary classification task by
using half of the classes as the positive class and another half as the negative class, and dropping
samples from negative class by a certain ratio, which is reflected by the positive ratio (the ratio of
the majority class to the minority class).

Implementation Details. We use a Resnet-18 He et al. [2016] as the deep neural network for all
algorithms. During optimization, the batch size is set to 64. The initial learning rate is tuned in
{0.1, 0.01, 0.001} and decays 2/3 at 2k, 10k, 25k-th iteration. We train 40k iterations in total. The
ϵ in Newton’s method is 0.001. We use the same random seed, learning rate and total number of
iterations in all of our experiments including multi class AUC and F -score experiments. During the
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Objective AUC AUCbin
µ F -score

g 1 ∈ Z|T |×|N | 1† c
h - - 0

E -1 ∈ Z|T |×|N | -1†

[ 1
-1
1

]§

F - -

[ -1
ϕ(f(xi))

−(1 + ϕ(f(xi)))

]§

p pij = (f(xi)− f(xj)− ϵ) pij = (f‡ij − ϵ) 0
B - - d
G - - b
q - - b

Table 1: Table showing the general LP coefficients for each model. †: length based on problem
setting; ‡: f‡ij = d̃ij(f(xi, yC(xi)) − f(xj , yC(xi)) + f(xj , yC(xj)) − f(xi, yC(xj)));

§: one block
for each i ∈ [1, ..n]. We do not include NMF in this table, as its formulation is known in the literature
Recht et al. [2012].

experiment, We use the same random seed, learning rate and total number of iterations in all of our
experiments including multi class AUC and F -score experiments.

Code. We provide an example code to show how to compute F -score differentiably using our solver,
CVXPY-SCS, and Ap-Perf respectively in “example_code_Fscore_optimization.ipynb”.

2.2 Explanation regarding time/memory cost of Perturbed solver relative to our algorithm

When implementing the Perturbed solver from Berthet et al. [2020] to compute the backward gradi-
ent, there are two options one can use. The implementation from the authors of Berthet et al. [2020]
approaches the problem as follows. Suppose that the number of perturbations used is M . During
the forward pass, suppose that originally the mini-batch size was B. The implementation perturbs
the mini-batch M times to form a mini-batch of size M ∗B and calls the solver (any state-of-the-art
solver can be used) to solve this mini-batch. Then this result will be used to calculate the backward
gradient. In this way, the extra cost for backward gradient can be seen as the cost of solving a batch
of size M ∗ B minus the cost of solving a batch of size B – indeed, since/if we do not need the
backward gradient, we can just call the solver to solve this B sized batch. It is easy to see that the
extra memory one would need is M times the original memory cost, and the extra time cost will
depend on the specific solver (can be 1 − −M times the original forward time cost). Another way
to implement the above procedure is as follows. During the forward pass, we only solve the B sized
batch and during the backward pass, we solve the B sized batch repeatedly M times. In this way,
the extra memory cost for the backward pass is the same as the forward one, but the extra time cost
will be M times more than the forward pass. In other words, the two options described above point
to a trade-off: the first option has an extra memory cost (M times although M can be set to be
small) and relatively small extra time cost, while the second option has a low extra memory cost by
sacrificing runtime (M times). The reader can verify that in comparison, our method only needs to
solve a batch of size B once during the forward pass, and the backward pass is almost free. Thereby,
our strategy is more efficient compared to both obvious ways of implementing Berthet et al. [2020].

2.3 Verification of Unrolling gradient and the one provided by solving at fixed point

We use the F -score formulation as an example. For input sample x, the neural network predicts a
score f(x), and then the scores of a batch of samples will be used to solve the LP form of F -score
which serves to construct the loss function. We compute the gradient from the final loss function
back to the predicted scores from the neural network and compare two possible approaches. One
option is that we use z = Ã−1b̃ as the solution (the one we used/reported in our experiments) where
we can compute the gradient with only one step. Another option is that we directly use yt resulting
from the Newton iterations as the solution and compute gradients by unrolling those iterations. We
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then compute the cosine value between these two gradient vectors. On experiments on 100 randomly
sampled batches, we find that the average cosine value is 0.9991, which means that the two gradients
are highly consistent.

2.4 How to choose ϵ?

If we can successfully retrieve the active constraints at the optimal solution, we do not need to store
the intermediate iterates yt at all during the forward pass (memory efficient). However, setting ϵ
correctly may be tricky for arbitrary polyhedra since it depends on the geometric properties such
as facets and vertices that may be difficult to enumerate. One standard way to get around this is to
use a “burn-in” period in which we increase ϵ slightly in each iteration (of deep network training)
and backpropagate through the unrolled Newton’s iterations during this period. Once we see that
the convergence profile has stabilized, we can fix ϵ at that value and start using the complementarity
conditions and derive the active linear system Ã−1b̃ as discussed above.

Table 2: Ablation study of ϵ on Cat&Dog dataset.
Positive Ratio 91% 83% 71% 50%
Ours(ϵ = 0.1) 71.3 77.0 84.4 87.3
Ours(ϵ = 0.01) 78.6 81.3 85.6 87.8
Ours(ϵ = 0.001) 65.9 71.3 71.8 76.1

2.5 Experimental results on Nonnegative Matrix Factorization

Figure 1: NMF example. Three rows correspond to original images, k = 1, k = 2 and k = 3
respectively.

We demonstrate applicability of our strategy to nonnegative matrix factorization (NMF) by per-
forming a rank k factorization on Convolutional Neural Network (CNN) activations as an example,
following Collins et al. [2018]. Recall that the activation tensor of an image at some layer in CNN
has the shape V ∈ Rc×h×w where h,w are the spatial sizes and c is the number of channels. We
can reshape it into V ∈ Rc×(h·w) and calculate a rank k NMF for V : V = FW . Each row Wj of
the resultant W ∈ Rk×(h·w) can be reshaped into a heat map of dimension h × w which highlights
regions in the image that correspond to the factor Wj . We show an example for k = 1, 2, 3 in Fig.
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Figure 2: NMF reconstruction error using the sparse implementation of our solver, where c = 40,
h · w = 960.

1. We can see that heatmap consistently captures a meaningful part/concept in the examples. Note
that the memory consumption increases quickly with c here since the constraint matrix in our LP
formulation is of size O(c2) × O(c2). We utilize the sparse implementation of our solver so that
it can fit into GPU memory. See Fig. 2 for the relationship between reconstruction error and the
rank k, which also shows that our solver can solve NMF problem correctly. Since our method pro-
vides backward gradients for the NMF operation, the heatmap generated here can, in fact, be used
to construct a loss function during training in order to learn interpretable models.

3 Proofs and Details of Results in Section 3

In this section, we will provide the missing proofs and additional calculations in Section 3.

3.1 Proof of Lemma 1.

Lemma 1 is restated here for convenience.
Lemma 1. Assume that A ∈ Rm×n is a random matrix, and fix some y ∈ Rn. Then with probability
one, g in equation (3) is quadratic (given by H̃,∇g(y)) over a sufficiently small neighborhood of y.

Proof. Using the integral form of second order Taylor’s expansion of σ2(y) = (max(0, y))
2, we

can show that,

g(y + h)− g(y)− hT∇g(y) =
1

2
hTAT diag (d)Ah (9)

where

d =

∫ 1

0

(∫ 1

0

(σ (Ay − b))∗ ds

)
2dt. (10)

See Remark 1 in Golikov and Kaporin [2019] for details. Without loss of generality, we can assume
b = 0 by simply translating the origin. Following the same remark, the diagonal matrix coincides
with the step function based diagonal in H̃ under the following condition on h:

eTj Ah · eTj (Ay) < 0 =⇒ |eTj Ah| ≤ |eTj (Ay)|. (11)

Since y is fixed, assuming that the entries of A are chosen from a continuous distribution such
that eTj A is uniformly distributed over the sphere, then (eTj Ah)2 follows a Beta

(
1
2 ,

n−1
2

)
when h

is drawn uniformly at random from the unit sphere, independent of A. This means that no matter
what y is, there exists sufficiently small h such that the left hand side of equation 11 is false with
probability one, and in that neighborhood diag(d) = H̃ .
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3.2 Differentiating the Step Function in Remark 4

We will use a slightly modified “suffix" notation as in Brookes [2005] in our calculations. That
is, for a matrix A, A⃗ is the same as vec(A), vectorization of A obtained by concatenating all the
columns. The following three properties relating the Kronecker product, ·⃗, and differentials will be
used often:

1. Fact 1: For two vectors a, b, a⊗ b =
−−→
baT .

2. Fact 2: If A is p × q matrix, and B is a m × n matrix, then
−→
∂B = (∂B/∂A)

−→
∂A where

∂B/∂A is the (mn)× (pq) Jacobian matrix of B⃗ with respect to A⃗. If A or B is a column
vector or scalar, then ·⃗ has no effect.

3. Fact 3:
−−−−−−→
∂(AXB) =

(
BT ⊗A

)−→
∂X .

Using the above two facts, we can compute all the gradients needed to backpropagate through the
unrolled iterations. We will show the computation for the gradient of Q−1u with respect to A ∈
Rm×n for a fixed u ∈ Rn. We can apply chain rule to the following composition:

A
(
AT H̃A+ ρI

)−1

u

AT H̃A+ ρI

f1◦f2

f1 f2

to get, Jf2◦f1 = Jf2 ◦ Jf1 . Now using Fact 2 on ∂
(
X−1

)
= −X−1(∂X)X−1 and some algebraic

manipulation, we obtain,

−−−→
Jf2◦f1 = −

(
uT

(
AT H̃A+ ρI

)−1

⊗
(
AT H̃A+ ρI

))−→
Jf1 . (12)

We will now compute
−→
Jf1 . Note that H̃ is also a function of A, so using product rule, we can write

−→
Jf1 as a sum of three derivatives – with respect to each of A,AT , H̃ . The derivatives with respect
to A and AT are fairly straightforward to compute, so will focus on computing the derivative with
respect to H̃ . To that end, we will use Fact 3, and show to compute the derivative of the step function
by approximating it using the logistic function.

∂

∂A
diag ((Ay − b)∗) ≈

∂

∂A
diag (1⊘ (1 + exp (κ (−Ay + b)))) , κ > 0. (13)

Note that these derivatives are used in computing derivatives of upstream network, so using distribu-
tional derivatives, and another application of chain rule to the left hand side of equation (18) results
in the dirac delta function which is atomic, that is, has all its mass in a measure zero set. Hence this
calculation provides an mathematical justification that the set of nondifferentiable points has mea-
sure zero for our training purposes. It is easy to formally verify this argument using differentiable
tent functions as approximations to the heaviside step function.
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