
Risk-Aware Transfer in Reinforcement Learning
using Successor Features

Supplementary Material

Abstract

This part of the paper discusses algorithmic details for the total reward and the
discounted setting that were not included in the main paper due to space limitations.
It includes proofs of all main theoretical claims, as well as all domain configurations
and parameter settings that are required to reproduce the experiments. Finally, it
includes additional experiments and ablation studies that had to be excluded from
the main paper due to space limitations, and the NeurIPS paper checklist.

Contents

A Mathematical and Algorithmic Details 15

A.1 Mean-Variance Approximation for Episodic MDPs 15

A.2 Mean-Variance Approximation for Discounted MDPs 15

A.3 Histogram Representations for Successor Features 18

A.4 Possible Generalizations of the Mean-Variance Approximation . . 21

B Proofs of Theoretical Results 23

B.1 Proof of Lemma 1 . 23

B.2 Proofs of Theorem 1 and 2 for Episodic MDPs 23

B.3 Proofs of Theorem 1 and 2 for Discounted MDPs 25

B.4 Proof of Theorem 3 . 27

C Experiment Details 29

C.1 Motivating Example . 29

C.2 Four-Room . 30

C.3 Reacher . 31

C.4 Additional Details for Reproducibility 33

D Additional Ablation Studies and Plots 34

D.1 Four-Room . 34

D.2 Reacher . 35

E Checklist 41

14

A Mathematical and Algorithmic Details

In this section, we outline the ways in which successor features and their covariance matrices can be
learned in practical RL settings. Specifically, we discuss the details surrounding Bellman updates
and the distributional RL framework, and also discuss the mean-variance approximation under more
general assumptions in parameteric density estimation.

A.1 Mean-Variance Approximation for Episodic MDPs

Directly Computing Successor Features and Covariances. In the tabular setting, we compute
estimates of the mean ψ̃πh(s, a) and covariance Σ̃πh(s, a) by extending the analysis in Sherstan et al.
[37] to the d-dimensional setting. For a transition (s, a,φ, s′, a′), whereφ = φ(s, a, s′), and learning
rate α > 0, the update for successor features is:

δ̃h = φ+ ψ̃πh+1(s
′, a′)− ψ̃πh(s, a),

ψ̃πh(s, a) = ψ̃
π
h(s, a) + αδ̃h.

(9)

By virtue of the covariance Bellman equation (8), a per-sample update of the covariance matrix can
be computed by using the Bellman residuals δ̃h as a pseudo-reward:

∆h = δ̃hδ̃
ᵀ
h + Σ̃πh+1(s

′, a′)− Σ̃πh(s, a),

Σ̃πh(s, a) = Σ̃πh(s, a) + ᾱ∆h.
(10)

In practice, ᾱ is usually set much smaller than α, e.g. ᾱ = ρα for some positive ρ� 1.

Computing Reward Parameters. When the reward parameters w are unknown, they can be
learned by solving a regression problem. Specifically, for known or estimated features φ(s, a, s′) and
an observed reward r, the objective function to minimize is the mean-squared error,

L(w) =
1

2

(
r − φ(s, a, s′)ᵀw

)2
,

that can be minimized using stochastic gradient descent (SGD). Introducing a learning rate αw > 0,
an update of SGD on a single transition (s, a)→ s′ is

w← w + αw(r − φ(s, a, s′)
ᵀ
w)φ(s, a, s′).

Pseudocode. The general routine for performing risk-aware transfer learning in an online setting,
which we call Risk-Aware Successor Feature Q-Learning (RaSFQL), can now be fully described.
Pseudocode adapted for the total-reward episodic MDP setting is given as Algorithm 1. Please note
that our approach closely follows the risk-neutral SFQL in Barreto et al. [2].

Both the discounted and total reward episodic settings are amenable to function approximation.
However, as discussed in the main text, this “residual" method is usually not advisable as the
approximation errors in the residuals δ̃h can dominate the environment uncertainty. While this could
be useful for handling epistemic or model uncertainty in successor features [21], the intent of our
work is to learn the aleatory or environment uncertainty. Therefore, a more precise method — based
on the projected Bellman equation — will be introduced in Appendix A.3.

A.2 Mean-Variance Approximation for Discounted MDPs

Bellman Principle and Augmented MDP. The utility objective in the discounted infinite-horizon
setting becomes

Qπβ,γ(s, a) = Uβ

[∞∑
t=0

γtr(st, at, st+1)

]
,

where γ ∈ (0, 1) is a discount factor for future rewards.

In the discounted setting, it is necessary to accumulate and keep track of the discounting over time.
This can be implemented by augmenting the state space of the original MDP [5]. Specifically, define

15

Algorithm 1 RaSFQL with Mean-Variance Approximation

1: Requires m,T,Ne ∈ N, ε ∈ [0, 1], α, ᾱ, αw > 0, β ∈ R, φ ∈ Rd, M1, . . .Mm ∈M
2: for t = 1, 2 . . .m do

\\ Initialize successor features and covariance for the current task
3: if t = 1 then Initialize ψ̃t, Σ̃t to small random values else Initialize ψ̃t, Σ̃t to ψ̃t−1, Σ̃t−1

4: Initialize w̃t to small random values
\\ Commence training on task Mt

5: for ne = 1, 2 . . . Ne do
6: Initialize task Mt with initial state s
7: for h = 0, 1 . . . T do

\\ Select the source task Mc using GPI
8: c← argmaxj maxb{ψ̃jh(s, b)

ᵀ
w̃t − βw̃ᵀ

t Σ̃
j
h(s, b)w̃t}

\\ Sample action from the epsilon-greedy policy based on πc
9: random_a ∼ Bernoulli(ε)

10: if random_a then a ∼ Uniform(A) else
a← argmaxb{ψ̃ch(s, b)

ᵀ
w̃t − βw̃ᵀ

t Σ̃
c
h(s, b)w̃t}

11: Take action a in Mt and observe r and s′

\\ Update reward parameters for the current task
12: w̃t ← w̃t + αw(r − φ(s, a, s′)ᵀw̃t)φ(s, a, s

′)
\\ Update the successor features and covariance for the current task

13: a′ ← argmaxbmaxj{ψ̃jh(s′, b)
ᵀ
w̃t − βw̃ᵀ

t Σ̃
j
h(s

′, b)w̃t}
14: Update ψ̃th, Σ̃

t
h on (s, a,φ, s′, a′) using (9) and (10)

\\ Update the successor features and covariance for task Mc

15: if c 6= t then
16: a′ ← argmaxb{ψ̃ch(s′, b)

ᵀ
w̃c − βw̃ᵀ

c Σ̃
c
h(s

′, b)w̃c}
17: Update ψ̃ch, Σ̃

c
h on (s, a,φ, s′, a′) using (9) and (10)

18: end if
19: s← s′

20: end for
21: end for
22: end for

Z = [0, 1] and let z ∈ Z denote the state of discounting. For a given MDP 〈S,A, r, P 〉, we define
the augmented MDP 〈S ′,A, r′, P ′〉, with state space S ′ = S × Z , action space A, reward function

r′((s, z), a, (s′, z′)) = zr(s, a, s′),

and dynamics
P ′((s′, z′)|(s, z), a) = P (s′|s, a)δγz(z′),

where δ is the Dirac delta function. Applying this augmentation transformation to a set of MDPs with
common transition function and common discount factor implies that the set of augmented MDPs
will also have the same transition functions.

Moreover, the following Bellman equation can be derived for the augmented MDP [5]:

J πβ (s, a, z) = Uβ
[
zr(s, a, s′) + J πβ (s′, π(s′, γz), γz)

]
=

1

β
logEs′∼P (·|s,a)

[
exp

{
β
(
zr(s, a, s′) + J πβ (s′, π(s′, γz), γz)

)}]
.

(11)

Then, we can recover the original utility with Qπβ,γ(s, a) = J πβ (s, a, 1). Furthermore, the Bellman
equation above converges to a unique fixed point, and so the search for optimal policies can be
restricted to stationary Markov policies π : S × Z → A.

However, learning general policies π : S × Z → A introduces additional difficulties in the function
approximation setting. In this case, successor features and their covariance matrices would have to
be functions of z. For a single transition, their corresponding updates would also require a sweep
over all possible values of z, e.g. z = 1, γ, γ2, . . . , and would be computationally demanding. On
the other hand, restricting the search to stationary policies π : S → A alleviates this computational

16

burden, making the overall time and space complexity per update comparable to the risk-neutral SF
representation, and also allows off-the-shelf RL algorithms to be used to learn successor features.
This also facilitates more precise estimation of risk using the distributional framework discussed in
the next section.

Fortunately, the restriction to z-independent source policies does not affect the validity of Theorem 1,
since policy improvement was shown for arbitrary admissible policies. This implies that monotone
policy improvement is guaranteed even for z-independent policies, provided that their utilities can be
estimated. In the case of Theorem 2, the approximation error ε generally arises from two sources of
additive error, namely that of restricting optimal policies π∗

i to z-independent optimal policies π̄∗
i ,

and that of approximating utilities using function approximation, e.g.

ε =
∣∣∣J̃ π̄∗

i

β (s, a, 1)− J π
∗
i

β (s, a, 1)
∣∣∣

=
∣∣∣J̃ π̄∗

i

β (s, a, 1)− J π̄
∗
i

β (s, a, 1) + J π̄
∗
i

β (s, a, 1)− J π
∗
i

β (s, a, 1)
∣∣∣

≤
∣∣∣J̃ π̄∗

i

β (s, a, 1)− J π̄
∗
i

β (s, a, 1)
∣∣∣+ ∣∣∣J π̄∗

i

β (s, a, 1)− J π
∗
i

β (s, a, 1)
∣∣∣

=
{

approximation error of J π̄
∗
i

β

}
+ {absolute difference between utilities of π̄∗

i and π∗
i } .

The first source of error arises solely due to the method of function approximation, and can be
reduced by using architectures whose training parameters and capacity are well-calibrated for each
problem. The second source of error is in general irreducible, but whether it can be tolerated should
be traded-off against the difficulty of learning z-dependent policies. In general, the learning of
z-dependent policies tractably is a challenging problem, which we leave for future investigation.

Incorporating Moment Information into GPE in Discounted MDPs. We now apply the idea of
generalized policy evaluation to discounted objectives. First, observe that for fixed π : S → A:

J πβ (s, a, 1) = Uβ

[∞∑
t=0

γtr(st, π(st), st+1)

]
= Uβ [Ψ

π(s, a)
ᵀ
w] , (12)

corresponding to the random vector Ψπ(s, a) =
∑∞
t=0 γ

tφt of unrealized feature returns at time h.
Thus, we have again transformed the problem of estimating the utility of rewards into the problem of
estimating the moments of the random variable Ψπ(s, a)

ᵀ
w.

Next, computing the Taylor expansion of Uβ :

J πβ (s, a, 1) = EP [Ψπ(s, a)ᵀw] +
β

2
VarP [Ψ

π(s, a)
ᵀ
w] +O(β2)

≈ ψπ(s, a)ᵀw +
β

2
wᵀVarP [Ψ

π(s, a)]w = J̃ πβ (s, a, 1). (13)

From a practical point of view, the mean-variance approximation in the discounted setting is identical
to the episodic total-reward setting, with the exception that the successor features and covariance are
discounted (and also time-independent). As in the undiscounted case, (13) induces an error of O(β2),
but is now another instantiation of GPE. However, restricting the search to z-independent policies
introduces additional approximation error that can also be absorbed into ε, as discussed previously.
Crucially, the theoretical results proved for the discounted setting (Appendix B.3) will now also hold
for z-independent stationary policies.

Bellman Updates for Covariance in Discounted MDPs. The covariance matrix satisfies the
covariance Bellman equation

Σπh(s, a) = Es′∼P (·|s,a)
[
δhδh

ᵀ + γ2Σπh+1(s
′, πh+1(s

′)) | sh = s, ah = a
]
, (14)

Similar to (9) and (10), in the discounted setting the successor features can be computed as [2]:

δ̃h = φ+ γψ̃πh+1(s
′, a′)− ψ̃πh(s, a),

ψ̃πh(s, a) = ψ̃
π
h(s, a) + αδ̃h.

(15)

17

Once again, the covariance matrix can be updated per sample following (14):

∆h = δ̃hδ̃
ᵀ
h + γ2Σ̃πh+1(s

′, a′)− Σ̃πh(s, a),

Σ̃πh(s, a) = Σ̃πh(s, a) + ᾱ∆h.
(16)

In the context of Algorithm 1, all calls to (9) and (10) would be replaced with (15) and (16),
respectively.

The convergence of the covariance matrix in the discounted setting (14) is established in the following
result that can be easily proved using the techniques in Appendix B.4 for the episodic setting.
Theorem 4 (Convergence of Covariance). Let ‖ · ‖ be a matrix-compatible norm, and suppose
there exists ε : S ×A× T → [0,∞) such that

1. ‖ψ̃πh(s, a)−ψπh(s, a)‖2 ≤ εh(s, a)

2. ‖Es′∼P (·|s,a)[γδ̃h(ψ̃
π
h(s

′, πh+1(s
′))−ψπh(s′, πh+1(s

′)))
ᵀ
]‖ ≤ εh(s, a).

Then, ∥∥∥Σπh(s, a)− Es′∼P (·|s,a)

[
δ̃hδ̃

ᵀ
h + γ2Σ̃πh+1(s

′, πh+1(s
′))

]∥∥∥ ≤ 3εh(s, a).

Please note that this result is identical to Theorem 3, with the exception of the discount factor.

A.3 Histogram Representations for Successor Features

The theoretical framework for distributional RL is discussed in details in the relevant literature [6]. In
this appendix, we discuss how this framework can be applied to learn distributions over successor
features, and how to use these distributions to select actions in a risk-aware manner.

Learning Distributions over Successor Features. As discussed in the main text, the goal is to
estimate the distribution of each component in the discounted infinite horizon setting

Ψπi (s, a) =

∞∑
t=0

γtφi(st, at, st+1),

starting from s0 = s, a0 = a, where at = π(st) is selected according to a policy π. Treating
Ψπ1 , . . .Ψ

π
d as value functions, we are now able to apply distributional RL.

Specifically, suppose that each state feature component is bounded in a compact interval, e.g.
φi(s, a, s

′) ∈ [φmini , φmaxi]. Then, we may define corresponding bounds on Ψπi (s, a) by bounding
the terms of its geometric series representation above:

Ψmini =
φmini

1− γ
≤ Ψπi (s, a) ≤

φmaxi

1− γ
= Ψmaxi .

Now, we may model each Ψπh(s, a) by using a discrete distribution parameterized by N ∈ N and
[Ψmini ,Ψmaxi], whose support is defined by a set of atoms

Zi =
{
zj,i = Ψmini + j∆zi : 0 ≤ j < N

}
, ∆zi =

Ψmaxi −Ψmini

N − 1
, ∀i = 1, . . . d.

Finally, the atom probabilities for zj,i are given by a parameteric model θj,i : S ×A → RN , e.g.

Zθ,i(s, a) = zj,i w.p. pj,i(s, a) =
eθj,i(s,a)∑
j e
θj,i(s,a)

, (17)

where the softmax layer ensures that probabilities are non-negative and sum to one.

In order to update pj,i on environment transitions (s, a, φi, s′), we project the Bellman updates for
each i onto the support of Zi. To do this, given a sample (s, a, φi, s

′), we compute the projected
Bellman update, clipped to the interval [Ψmini ,Ψmaxi]

T̂izj,i = clip
(
φi + γzj,i; [Ψ

min
i ,Ψmaxi]

)
,

18

and then distribute its probability pj,i(s
′, π(s′)) to the immediate neighbors of T̂izj,i. Here, we again

follow Bellemare et al. [6] and define the projected operator Φ with j-th component equal to

(ΦT̂iZθ,i(s, a))j =
N−1∑
k=0

clip

1−

∣∣∣T̂izk,i − zj,i

∣∣∣
∆zi

; [0, 1]

 pk,i(s
′, π(s′)).

As standard in deep RL, we view the target distribution pk,i(s
′, π(s′)) as parameterized by a set of

frozen parameters θ′. Then, the loss function to optimize for the sample (s, a, φi, s
′) is given as the

cross-entropy term
Li(θ) = DKL

(
ΦT̂iZθ′,i(s, a)

∥∥∥Zθ,i(s, a)) ,

that can be easily optimized using gradient descent.

Calculating Utilities. The calculation of (7) is a trivial matter given the distribution (17). In
particular, we have:

E[Zθ,i(s, a)p] =
N−1∑
j=0

(zj,i)
p
pj,i(s, a), p ∈ N, (18)

from which we can easily compute the variance

Var[Ψπi (s, a)] = Var[Zθ,i(s, a)] = E[Zθ,i(s, a)
2]− E[Zθ,i(s, a)]2. (19)

Recall that by the independence assumption, the cross-covariance terms are ignored in these calcula-
tions, and thus Σπi (s, a) is represented as a diagonal matrix with entries on the i-th diagonal term
equal to Var[Ψπi (s, a)].

Another possibility is to compute the entropic utility Uβ exactly. In particular, using the independence
assumption of Ψπi (s, a) again, we have:

Uβ [Ψ
π(s, a)

ᵀ
w] =

1

β
logE

[
eβΨ

π(s,a)ᵀw
]
≈

d∑
i=1

1

β
logE

[
eβΨ

π
i (s,a)wi

]
=

d∑
i=1, wi 6=0

wi
1

βwi
logE

[
e(βwi)Ψ

π
i (s,a)

]
=

d∑
i=1

wiUβwi
[Ψπi (s, a)], (20)

and can be seen as another risk-sensitive instantiation of GPE. Crucially, the utility terms in (20) can
be calculated efficiently in the C51 framework using (17)

Uβ [Ψ
π
i (s, a)] =

1

β
logE

[
eβZθ,i(s,a)

]
=

1

β
log

N−1∑
j=0

eβzj,ipj,i(s, a).

However, this quantity is difficult to compute numerically, since for negative β, the terms eβzj,i often
suffer from overflow at zj,i close to Ψmini , and underflow for zj,i close to Ψmaxi . This becomes
considerably more problematic for β of larger magnitude, such as when risk-awareness is a priority, or
for rewards w of larger magnitude. We also find that the log-sum-exp trick, a standard computational
device used for calculations of this form, offers relatively little improvement. A similar issue has
also been previously pointed out in other work using the entropic utility [52]. For this reason, we
use the mean-variance approximation, which provides an excellent approximation to the entropic
utility for various values of β, as we demonstrated experimentally, and without suffering from the
aforementioned issues above.

Pseudocode. The approach described above can be applied to compute the distribution of successor
features for every component i = 1, . . . d across all training task instances. This results in a new
algorithm that we call SFC51. Generally, the training procedure of SFC51 is identical in structure
to SFDQN in Barreto et al. [2], except the deterministic DQN update of successor features [55] is
replaced by the distributional C51 update described above. Therefore, the overall training procedure
is similar to Algorithm 1, but with a few subtle differences. First, instead of learning w, it is provided
to the agent as done in SFDQN. Second, every sample (s, a,φ, s′) collected from any training is

19

Algorithm 2 RaSFC51 with Mean-Variance Approximation

1: Requires m,T,N,Ne ∈ N, ε ∈ [0, 1], β, φmin1 , φmax1 , . . . φmind , φmaxd ∈ R, φ ∈ Rd, γ ∈
(0, 1), M1, . . .Mm ∈M with w1, . . .wm ∈ Rd
\\ Initialize atoms and their probability distributions

2: Initialize θ1(s, a), . . .θm(s, a) to random values
3: for i = 1, 2 . . . d do Ψmini ← φmin

i

1−γ , Ψmaxi ← φmax
i

1−γ , ∆zi ← Ψmax
i −Ψmin

i

N−1

4: for i = 1, 2 . . . d do for j = 0, 1 . . . N − 1 do zj,i ← Ψmini + j∆zi
\\ Main training loop

5: for t = 1, 2 . . .m do
\\ Commence training on task Mt

6: for ne = 1, 2 . . . Ne do
7: Initialize task Mt with initial state s
8: for h = 0, 1 . . . T do

\\ Extract sufficient statistics from θt(s, ·) and select the source task Mc using GPI
9: for j = 1, 2 . . .m do Compute ψ̃j(s, ·), Σ̃j(s, ·) using θj(s, ·) and (18) and (19)

10: c← argmaxj maxb{ψ̃j(s, b)
ᵀ
wt − βwt

ᵀΣ̃j(s, b)wt}
\\ Sample action from the epsilon-greedy policy based on πc

11: random_a ∼ Bernoulli(ε)
12: if random_a then a ∼ Uniform(A) else

a← argmaxb{ψ̃c(s, b)
ᵀ
wt − βwt

ᵀΣ̃c(s, b)wt}
13: Take action a in Mt and observe r and s′

\\ Update θ1(s, a), . . .θm(s, a)
14: for c = 1, 2 . . .m do

\\ Extract sufficient statistics from θc(s′, ·) and select action a′ = πc(s
′)

15: Compute ψ̃c(s′, ·), Σ̃c(s′, ·) using θc(s′, ·) and (18) and (19)
16: a′ ← argmaxb{ψ̃c(s′, b)

ᵀ
wc − βwc

ᵀΣ̃c(s′, b)wc}
\\ Apply Categorical Algorithm to update θc(s, a)

17: for j = 0, 1 . . . N − 1 do for i = 1, . . . d do mj,i ← 0
18: for i = 1, 2 . . . d do
19: for j = 0, 1 . . . N − 1 do

\\ Compute the projection of T̂izj,i onto the support Zi
20: T̂izj,i ← clip

(
φi(s, a, s

′) + γzj,i; [Ψ
min
i ,Ψmaxi]

)
21: bj,i ← (T̂izj,i −Ψmini)/∆zi
22: l← bbj,ic, u← dbj,ie

\\ Distribute probability of T̂izj,i
23: ml,i ← ml,i + pcj,i(s

′, a′)(u− bj,i)
24: mu,i ← mu,i + pcj,i(s

′, a′)(bj,i − l)
25: end for
26: end for
27: Backpropagate through −

∑
j,imj,i log p

c
j,i(s, a) to update θc(s, a)

28: end for
29: s← s′

30: end for
31: end for
32: end for

used to update all successor feature distributions simultaneously, as also done in SFDQN. Finally,
the utility of returns can be used to select actions, rather than the expected return as done in DQN.
Applying this last modification to SFC51 leads our proposed algorithm, which we call Risk-aware
SFC51 (RaSFC51). Of course, SFC51 can be recovered by simply setting β = 0. A complete
description of RaSFC51 with the mean-variance approximation is provided in Algorithm 23.

3In practice, the double for loop starting in lines 18 and 19 can be implemented efficiently by vectoring the
computation of mj,i, in languages that support vectorized arithmetic operations.

20

A.4 Possible Generalizations of the Mean-Variance Approximation

Cumulant-Generating Functions. The quantity KR(β) = logE[eβR] in (1) is often referred to as
the cumulant-generating function. The cumulant generating function admits the well-known Taylor
expansion:

Uβ [R] =
1

β
KR(β) =

1

β

∞∑
n=1

κR(n)
βn

n!
=

∞∑
n=1

κR(n)
βn−1

n!
, (21)

where κR(n) is the n-th cumulant of the random variable R [62]. The mean-variance approximation
(7) then follows directly from (21) by ignoring all terms of order n ≥ 3. Another way to look at the
mean-variance approximation is that it is the result of applying a Laplace approximation to the return
distribution prior to calculating its utility [48]. While it is also possible to approximate (21) using
orders of n greater than 2, such approximations would no longer provide “instantaneous" GPE. In
particular, cumulants are much harder to compute as functions of w for n = 3 [49], and no closed
formulas are even known to us for n ≥ 4.

Elliptical Distributions. The mean-variance approximation (7) results from making the distribu-
tional assumption Ψπh(s, a) ∼ N (ψπh(s, a),Σ

π
h(s, a)). Since the normal distribution is a member

of the class of elliptical distributions, a natural question to ask is whether GPE can apply to other
members of this class of distributions as well.

Formally, a random variable X has an elliptical distribution on Rd if there exists µ ∈ Rd, positive
definite Σ ∈ Rd×d and a positive-valued function ξ : R→ R, and the characteristic function of X
has the form

E[eit
ᵀX] = eit

ᵀµξ(tᵀΣt), ∀t ∈ Rd. (22)
Equivalently, for any random variable with characteristic function (22), there exists a positive function
gd : R→ R such that the density of X is

fX(x) ∝ |Σ|−1/2gd
(
(x− µ)ᵀΣ−1(x− µ)

)
.

In either case, we write X ∼ Ed(µ,Σ, ξ). One advantage of this parameterization is that µ corre-
sponds exactly to the mean of X , e.g. E[X] = µ. Furthermore, if the covariance of X exists, then it
is equal to Σ up to a positive multiplicative constant, e.g. Var[X] = cΣ for some c > 04.

In order to connect this to the SF framework, we parameterize Ψπh(s, a) ∼ Ed(ψπh(s, a),Σπh(s, a), ξ).
Then, using the linearity property (6, 12), GPE evaluates the entropic utilities of the random variables
Ψπh(s, a)

ᵀ
w. Fortunately, affine transforms of elliptically distributed random variables are univariate

elliptically distributed [57].
Lemma 2. Let X ∼ Ed(µ,Σ, ξ) and w ∈ Rd. Then, Xᵀw ∼ E1(µᵀw,wᵀΣw, ξ).

0.0 0.5 1.0 1.5 2.0
wT

Σw

0

1

2

3

4

5

va
ria

nc
e
pe

na
lty

normal
laplace

Figure 8: Comparing 1
β log ◦ξ

in (23) for normal and Laplace
distributions, for β = 1.

Applying Lemma 2 and then substituting t = −iβ, the entropic
utility becomes

Uβ [Ψ
π
h(s, a)

ᵀ
w] = ψπh(s, a)

ᵀ
w +

1

β
log ξ

(
−β2wᵀΣπh(s, a)w

)
,

(23)
and is also a mean-variance approximation. However, unlike (7) in
which 1

β log ◦ξ is the identity mapping, (23) is allowed to depend
non-linearly on the variance of returns. Table 2 illustrates these
mappings for different distributional assumptions. For heavy-tailed
distributions, ξ should increase super-linearly for sufficiently large re-
turn variances, and thus (23) will often be more sensitive to variance
than (7). This phenomenon is clearly illustrated in Figure 8 by com-
paring the variance penalties of the normal and Laplace distributions.
Another advantage of this generalization is that the methodologies
for estimating successor features and their covariances (Appendix
A.1 and A.3) can be directly applied to this more general setting. An
ablation study comparing the Gaussian assumption and the Laplace
assumption in a complex experiment is provided at the end of Appendix D.2.

4This implies that the Bellman updates (10) or (16) can still be used to learn Σπ
h , but now the resulting

estimates must be scaled by c when computing the utilities, if c is not one.

21

Name Parameters 1
β log ◦ξ

multivariate normal µ,Σ β
2w

ᵀΣw
multivariate Student µ,Σ, ν does not exist
multivariate Laplace µ,Σ − 1

β log(1− β2

2 wᵀΣw)

multivariate logistic µ,Σ 1
β log B(1− β

√
wᵀΣw, 1 + β

√
wᵀΣw)

Table 2: Table of common elliptical distributions with corresponding variance penalties. Here B
denotes the Beta function.

Skew-Elliptical Distributions. The elliptical distributions represent a well-known class of symmet-
ric probability distributions, containing both heavy-tailed and light-tailed members as special cases.
However, they cannot capture skew in the return distribution that often arises in strictly discounted
MDPs. The class of generalized skew-elliptical distributions (GSE) can model skew by extending the
characteristic function (22) to

E[eit
ᵀX] = eit

ᵀµξ(tᵀΣt)kd(t), ∀t ∈ Rd, (24)

where kd : Rd → R is some positive-valued function. In this case, we write X ∼ SEd(µ,Σ, ξ).
As for the elliptical distributions (Lemma 2), it is possible to show that GSE distributions are also
closed under affine transforms [59].

Lemma 3. Let X ∼ SEd(µ,Σ, ξ) and w ∈ Rd. Then, Xᵀw is univariate GSE with characteristic
function E[eitXᵀw] = eitX

ᵀµξ
(
t2wᵀΣw

)
k(t;w,Σ) for some real-valued function k.

By using Lemma 3 and the substitution t = −iβ,

Uβ [Ψ
π
h(s, a)

ᵀ
w] = ψπh(s, a)

ᵀ
w +

1

β
log ξ

(
−β2wᵀΣπh(s, a)w

)
+

1

β
log k(−iβ;w,Σπh(s, a)).

This new approximation generalizes (23) through the introduction of the term log k, which intuitively
captures the skew of the return distribution.

Mixtures Densities. One significant limitation of elliptical (and skew-elliptical) distributions to
model returns is that they are unimodal, and can fail to capture multimodal risks in the environment.
Consider the following mixture of elliptical distributions on Rd:

I ∼ CategoricalK(π),

X | I = k ∼ Ed(µk,Σk, ξk),

where π ∈ RK satisfies πk ≥ 0 and
∑
k πk = 1 and k = 1, . . .K define the possible modes of the

distribution. In other words, each component of the mixture is a member of an elliptical distribution.
This model extends the standard Gaussian mixture model, and can approximate any continuous
distribution to arbitrary accuracy provided K is chosen sufficiently large [58, 61]. In the context
of risk-aware transfer (Theorem 1, Theorem 2) this means that the approximation error terms in ε
associated with approximating Uβ could in principle be driven to zero.

Applying Lemma 2 to each component, Xᵀw | I = k ∼ E1(µkᵀw,wᵀΣkw, ξk), and so Xᵀw is a
mixture of univariate elliptical distributions. Now, (6, 12) can be computed using the law of total
expectation,

Uβ [Ψ
π
h(s, a)

ᵀ
w] =

1

β
log

K∑
k=1

ππk (s, a)e
βψπ

k (s,a)ᵀwξk(−β2wᵀΣπk (s, a)w).

This expression does not simplify further unless K = 1 and is thus not a mean-variance approximation,
although it is a generalization of (23). It can be computed numerically by using the log-sum-exp
trick, and the parameters of its associated mixture density could be learned in the Bellman framework
using expectation propagation [56].

22

B Proofs of Theoretical Results

In this section, we verify all the theoretical claims stated in the main paper for the episodic MDPs. For
ease of exposition and due to space limitations, we also state and prove similar results for discounted
MDPs in this section5.

B.1 Proof of Lemma 1

Lemma 1. Let β ∈ R and X,Y be arbitrary random variables on Ω. Then:

A1 (monotonicity) if P(X ≥ Y) = 1 then Uβ [X] ≥ Uβ [Y]
A2 (cash invariance) Uβ [X + c] = Uβ [X] + c for every c ∈ R
A3 (convexity) if β < 0 (β > 0) then Uβ is a concave (convex) function
A4 (non-expansion) for f, g : Ω→ Ω, it follows that

|Uβ [f(X)]− Uβ [g(X)]| ≤ sup
P∈PX(Ω)

EP |f(X)− g(X)|,

where PX(Ω) is the set of all probability distributions on Ω that are absolutely continuous
w.r.t. the true distribution of X .

Proof. The first three properties are derived in Föllmer and Schied [13]. As for the fourth property,
we use A3 and convex duality [13], [54] to write

Uβ [R] = sup
P∈PR(Ω)

{
EP [R]− 1

β
D(P ||P ∗)

}
, (25)

where PR(Ω) is the set of all probability distributions on Ω absolutely continuous w.r.t. the true
distribution P ∗ of R, D is the KL-divergence between P and P ∗. Now, for f, g : Ω→ Ω, f and g
are bounded and hence P -integrable for any P ∈PR(Ω), and using (25):

|Uβ [f(X)]− Uβ [g(X)]|

=

∣∣∣∣∣ sup
P∈PX(Ω)

{
EP [f(X)]− 1

β
D(P ||P ∗)

}
− sup
P∈PX(Ω)

{
EP [g(X)]− 1

β
D(P ||P ∗)

}∣∣∣∣∣
≤ sup
P∈PX(Ω)

|EP [f(X)]− EP [g(X)]|

≤ sup
P∈PX(Ω)

EP |f(X)− g(X)|.

This completes the proof.

B.2 Proofs of Theorem 1 and 2 for Episodic MDPs

Theorem 1. Let π1, . . . πn be arbitrary deterministic Markov policies with approximate entropic
utilities Q̃π1

h,β , . . . Q̃
πn

h,β evaluated in an arbitrary task M , such that the errors satisfy |Q̃πi

h,β(s, a)−
Qπi

h,β(s, a)| ≤ ε for all s ∈ S , a ∈ A, i = 1 . . . n and h ∈ T . Define

πh(s) ∈ argmax
a∈A

max
i=1...n

Q̃πi

h,β(s, a), ∀s ∈ S.

Then,
Qπh,β(s, a) ≥ max

i
Qπi

h,β(s, a)− 2(T − h+ 1)ε, h ≤ T.

Proof. We have for all h that

|max
i
Qπi

h (s, a)−max
i
Q̃πi

h (s, a)| ≤ max
i
|Qπi

h (s, a)− Q̃πi

h (s, a)| ≤ ε

5While the analysis of GPI in the risk-neutral setting [2] follows Strehl and Littman [60], our analysis of
risk-aware GPI is also inspired by Huang and Haskell [53].

23

We proceed by induction on h. Clearly, the desired result holds for h = T + 1 since Qπi

T+1,β(s, a) =

Q̃πi

T+1,β(s, a) = 0 uniformly. Next, suppose that Qπh+1,β(s, a) ≥ maxiQπi

h+1,β(s, a)− 2ε(T − h)
holds uniformly at time h+ 1. Using A1 and A2 of Lemma 1:

Qπh,β(s, a) = Uβ [r(s, a, s
′) +Qπh+1,β(s

′, πh+1(s
′))]

≥ Uβ [r(s, a, s
′) + max

i
Qπi

h+1,β(s
′, πh+1(s

′))− 2ε(T − h)]

≥ Uβ [r(s, a, s
′) + max

i
Q̃πi

h+1,β(s
′, πh+1(s

′))− 2ε(T − h)− ε]

= Uβ [r(s, a, s
′) + max

a′
max
i
Q̃πi

h+1,β(s
′, a′)− 2ε(T − h)− ε]

≥ Uβ [r(s, a, s
′) + max

a′
max
i
Qπi

h+1,β(s
′, a′)− 2ε(T − h+ 1)]

≥ Uβ [r(s, a, s
′) + max

i
max
a′
Qπi

h+1,β(s
′, a′)]− 2ε(T − h+ 1)

≥ Uβ [r(s, a, s
′) + max

i
Qπi

h+1,β(s
′, πi,h+1(s

′))]− 2ε(T − h+ 1)

≥ Uβ [r(s, a, s
′) +Qπi

h+1,β(s
′, πi,h+1(s

′))]− 2ε(T − h+ 1)

= Qπi

h,β(s, a)− 2ε(T − h+ 1).

Since i is arbitrary, the proof is complete.

Lemma 4. Let Qijh be the utility of policy π∗
i evaluated in task j at time h. Then for all i, j,

sup
s,a

∣∣∣Qiih (s, a)−Qjjh (s, a)
∣∣∣ ≤ (T − h+ 1)δij .

Proof. Let ∆ij(h) = sups,a |Qiih (s, a) − Q
jj
h (s, a)|. Define Ps,a to be the set of probability

distributions that are absolutely continuous with respect to P (·|s, a). Then, using A4 from Lemma 1:

∆ij(h)

= sup
s,a

∣∣∣Qiih (s, a)−Qjjh (s, a)
∣∣∣

= sup
s,a

∣∣∣Uβ [ri(s, a, s′) + max
a′
Qiih+1(s

′, a′)]− Uβ [rj(s, a, s
′) + max

a′
Qjjh+1(s

′, a′)]
∣∣∣

≤ sup
s,a

sup
P ′∈Ps,a

Es′∼P ′(·|s,a)

∣∣∣ri(s, a, s′)− rj(s, a, s
′) + max

a′
Qiih+1(s

′, a′)−max
a′
Qjjh+1(s

′, a′)
∣∣∣

≤ sup
s,a

sup
s′

∣∣∣ri(s, a, s′)− rj(s, a, s
′) + max

a′
Qiih+1(s

′, a′)−max
a′
Qjjh+1(s

′, a′)
∣∣∣

≤ sup
s,a,s′

|ri(s, a, s′)− rj(s, a, s
′)|+ sup

s,a,s′

∣∣∣max
a′
Qiih+1(s

′, a′)−max
a′
Qjjh+1(s

′, a′)
∣∣∣

= δij + sup
s,a

∣∣∣Qiih+1(s, a)−Q
jj
h+1(s, a)

∣∣∣
= δij +∆ij(h+ 1).

Starting with ∆ij(T + 1) = 0 and proceeding by backward induction, we have ∆ij(h) ≤ δij(T −
h+ 1) for all h.

Lemma 5.
sup
s,a

∣∣∣Qjjh (s, a)−Qjih (s, a)
∣∣∣ ≤ (T − h+ 1)δij .

Proof. Define Γij(h) = sups,a |Q
jj
h (s, a)−Qjih (s, a)|. Then using A4 from Lemma 1:

Γij(h)

= sup
s,a

∣∣∣Qjjh (s, a)−Qjih (s, a)
∣∣∣

24

= sup
s,a

∣∣∣Uβ [rj(s, a, s′) +Qjjh+1(s
′, π∗

j,h+1(s
′))]− Uβ [ri(s, a, s

′) +Qjih+1(s
′, π∗

j,h+1(s
′))]

∣∣∣
≤ sup

s,a
sup

P ′∈Ps,a

Es′∼P ′(·|s,a)

∣∣∣ri(s, a, s′)− rj(s, a, s
′) +Qjjh+1(s

′, π∗
j,h+1(s

′))−Qjih+1(s
′, π∗

j,h+1(s
′))

∣∣∣
≤ sup

s,a
sup
s′

∣∣∣ri(s, a, s′)− rj(s, a, s
′) +Qjjh+1(s

′, π∗
j,h+1(s

′))−Qjih+1(s
′, π∗

j,h+1(s
′))

∣∣∣
≤ sup
s,a,s′

|ri(s, a, s′)− rj(s, a, s
′)|+ sup

s,a,s′

∣∣∣Qjjh+1(s
′, π∗

j,h+1(s
′))−Qjih+1(s

′, π∗
j,h+1(s

′))
∣∣∣

≤ δij + sup
s,a

∣∣∣Qjjh+1(s, a)−Q
ji
h+1(s, a)

∣∣∣
= δij + Γij(h+ 1).

Thus, Γij(h) ≤ δij(T − h+ 1) as claimed.

Theorem 2. Let Qπ
∗
i

h,β be the utilities of optimal Markov policies π∗
i evaluated in task M .

Furthermore, let Q̃π
∗
i

h,β be such that |Q̃π
∗
i

h,β(s, a) − Q
π∗
i

h,β(s, a)| < ε for all s ∈ S, a ∈ A,
h ∈ T and i = 1 . . . n. Similarly, let π be the corresponding policy in (4). Finally, let
δr = mini=1...n sups,a,s′ |r(s, a, s′)− ri(s, a, s

′)|. Then,∣∣Qπh,β(s, a)−Q∗
h,β(s, a)

∣∣ ≤ 2(T − h+ 1)(δr + ε), h ≤ T.

Proof. Using Theorem 1 and the triangle inequality:∣∣Qπh,β(s, a)−Q∗
h,β(s, a)

∣∣ ≤ ∣∣∣Qπ∗
j

h,β(s, a)−Q
∗
h,β(s, a)

∣∣∣+ 2(T − h+ 1)ε.

The goal now is to bound the first term. By the triangle inequality and Lemma 4 and Lemma 5,
|Qiih (s, a) − Q

ji
h (s, a)| ≤ |Qiih (s, a) − Q

jj
h (s, a)| + |Qjjh (s, a) − Qjih (s, a)| = 2(T − h + 1)δij .

Finally, designating j as source task j and i as target task, and substituting this bound into the first
inequality above yields the desired result.

B.3 Proofs of Theorem 1 and 2 for Discounted MDPs

Theorem 5. Let π1, . . . πn be arbitrary deterministic Markov policies with approximate entropic
utilities J̃ π1

β , . . . J̃ πn

β evaluated in an arbitrary task M , such that the errors satisfy |J̃ πi

β (s, a, z)−
J πi

β (s, a, z)| ≤ εz for all s, a, z and i. Define

π(s, z) ∈ argmax
a∈A

max
i=1...n

J̃ πi

β (s, a, z), ∀s ∈ S, z ∈ Z. (26)

Then,

J πβ (s, a, z) ≥ max
i
J πi

β (s, a, z)− 2ε

1− γ
z.

Proof. Define Jmaxβ (s, a, z) = maxi J πi

β (s, a, z) and J̃maxβ (s, a, z) = maxi J̃ πi

β (s, a, z). We
have:

|Jmaxβ (s, a, z)− J̃maxβ (s, a, z)| ≤ max
i
|J πi

β (s, a, z)− J̃ πi

β (s, a, z)| ≤ εz.

Let Tπβ be the operator corresponding to (11). Then using A1 and A2 of Lemma 1 leads to:

Tπβ J̃maxβ (s, a, z) = Uβ

[
zr(s, a, s′) + J̃maxβ (s′, π(s′, γz), γz)

]
= Uβ

[
zr(s, a, s′) + max

a′
J̃maxβ (s′, a′, γz)

]
≥ Uβ

[
zr(s, a, s′) + max

a′
Jmaxβ (s′, a′, γz)

]
− γεz

≥ Uβ
[
zr(s, a, s′) + Jmaxβ (s′, πi(s

′, γz), γz)
]
− γεz

25

≥ Uβ

[
zr(s, a, s′) + J πi

β (s′, πi(s
′, γz), γz)

]
− γεz

= Tπi

β J
πi

β (s, a, z)− γεz

= J πi

β (s, a, z)− γεz

≥ max
i
J πi

β (s, a, z)− γεz

≥ J̃maxβ (s, a, z)− εz − γεz

Finally, using A1 of Lemma 1 and the fact that Tπβ has a unique fixed point [5]:

J πβ (s, a, z) = lim
k→∞

(Tπβ)
kJ̃maxβ (s, a, z) ≥ J̃maxβ (s, a, z)− (1 + γ)

ε

1− γ
z

≥ Jmaxβ (s, a, z)− 2ε

1− γ
z,

and is the desired result.

Lemma 6. Define J ij (s, a, z) be the utility of optimal policy π∗
i on the augmented MDP i when

evaluated in the augmented MDP j. Furthermore, let δij = sups,a,s′ |ri(s, a, s′) − rj(s, a, s
′)|.

Then,

sup
s,a

∣∣∣J ii (s, a, z)− J jj (s, a, z)∣∣∣ ≤ δij
1− γ

z.

Proof. Define ∆ij(z) = sups,a

∣∣∣J ii (s, a, z)− J jj (s, a, z)∣∣∣. Let Ps,a be the set of probability distri-
butions for the one-step transitions of the augmented MDP, e.g. P ((s′, z′)|(s, z), a) that are absolutely
continuous w.r.t. the true distribution. Since P ((s′, z′)|(s, z), a) = P (s′|s, a)δzγ(z′), and δzγ(z

′) is
absolutely continuous only w.r.t. itself, the set Ps,a consists of all products P (s′|s, a)δzγ(z′), where
P (s′|s, a) is absolutely continuous w.r.t. the true dynamics of the original MDP.

Now, using A4 from Lemma 1:

∆ij(z)

= sup
s,a

∣∣∣J ii (s, a, z)− J jj (s, a, z)∣∣∣
= sup

s,a

∣∣∣Uβ [zri(s, a, s′) + max
a′
J ii (s′, a′, γz)]− Uβ [zrj(s, a, s

′) + max
a′
J jj (s

′, a′, γz)]
∣∣∣

≤ sup
s,a

sup
P∈Ps,a

Es′∼P (·|s,a)

∣∣∣zri(s, a, s′)− zrj(s, a, s
′) + max

a′
J ii (s′, a′, γz)−max

a′
J jj (s

′, a′, γz)
∣∣∣

≤ z sup
s,a,s′

|ri(s, a, s′)− rj(s, a, s
′)|+ sup

s,a,s′

∣∣∣max
a′
J ii (s′, a′, γz)−max

a′
J jj (s

′, a′, γz)
∣∣∣

= zδij + sup
s,a

∣∣∣J ii (s, a, γz)− J jj (s, a, γz)∣∣∣
= zδij +∆ij(γz).

Repeating the above bounding procedure leads to:

∆ij(z) ≤ zδij +∆ij(γz)

≤ zδij + γzδij +∆ij(γ
2z)

...

≤ zδij + γzδij + γ2zδij + · · · =
δij

1− γ
z,

and completes the proof.

Lemma 7.
sup
s,a

∣∣∣J jj (s, a, z)− J ji (s, a, z)∣∣∣ ≤ δij
1− γ

z.

26

Proof. Define Γij(z) = sups,a |J
j
j (s, a, z)− J

j
i (s, a, z)|. Then, using A4 from Lemma 1 and the

technique from Lemma 6:

Γij(z)

= sup
s,a

∣∣∣J jj (s, a, z)− J ji (s, a, z)∣∣∣
= sup

s,a

∣∣∣Uβ [zrj(s, a, s′) + J jj (s′, π∗
j (s

′, γz), γz)]− Uβ [zri(s, a, s
′) + J ji (s

′, π∗
j (s

′, γz), γz)]
∣∣∣

≤ sup
s,a

sup
P∈Ps,a

Es′∼P (·|s,a)

∣∣∣zri(s, a, s′)− zrj(s, a, s
′) + J jj (s

′, π∗
j (s

′, γz), γz)− J ji (s
′, π∗

j (s
′, γz), γz)

∣∣∣
≤ z sup

s,a,s′
|ri(s, a, s′)− rj(s, a, s

′)|+ sup
s,a,s′

∣∣∣J jj (s′, π∗
j (s

′, γz), γz)− J ji (s
′, π∗

j (s
′, γz), γz)

∣∣∣
≤ zδij + sup

s,a

∣∣∣J jj (s, a, γz)− J ji (s, a, γz)∣∣∣
= zδij + Γij(γz)

≤ δij
1− γ

z.

The proof is complete.

Theorem 6. Let J π
∗
i

β be the utilities of optimal Markov policies π∗
i evaluated in some task

M . Furthermore, let J̃ π
∗
i

β be such such that |J̃ π
∗
i

β (s, a, z) − J π
∗
i

β (s, a, z)| < εz for all s ∈
S, a ∈ A, z ∈ Z and i = 1 . . . n, and π be the corresponding policy in (26). Finally, let
δr = mini=1...n sups,a,s′ |r(s, a, s′)− ri(s, a, s

′)|. Then,∣∣J πβ (s, a, z)− J ∗
β (s, a, z)

∣∣ ≤ 2(δr + ε)

1− γ
z.

Proof. Using Theorem 5:

J πβ (s, a, z)− J ∗
β (s, a, z) = J πβ (s, a, z)− J

π∗
j

β (s, a, z) + J π
∗
j

β (s, a, z)− J ∗
β (s, a, z)

≥ 2ε

1− γ
z + J π

∗
j

β (s, a, z)− J ∗
β (s, a, z).

The goal now is to bound the difference between the last two terms. Let J ij (s, a) be the entropic
utility of the optimal policy π∗

i evaluated in the augmented MDP for task j. Then, by the triangle
inequality, |J ii (s, a, z) − J

j
i (s, a, z)| ≤ |J ii (s, a, z) − J

j
j (s, a, z)| + |J

j
j (s, a, z) − J

j
i (s, a, z)|.

Applying Lemma 6 and Lemma 7, we have |J ii (s, a, z) − J
j
i (s, a, z)| ≤

2δij
1−γ z, and the result

follows.

B.4 Proof of Theorem 3

The proofs depend on the following result adapted from Sherstan et al. [37].
Lemma 8. Let X be a random vector in Rd that depends only on sh, ah, rh and sh+1. Then,

E
[
X(Ψπh+1(s

′, πh+1(s
′))−ψπh+1(s

′, πh+1(s
′))

ᵀ | sh = s, ah = a
]
= 0.

We first demonstrate that the Bellman equation (8) is correct for our problem.
Lemma 9.

Σπh(s, a) = Es′∼P (·|s,a)
[
δhδh

ᵀ +Σπh+1(s
′, πh+1(s

′)) | sh = s, ah = a
]
.

Proof. Let Ψπh(s, a) = φh +φh+1 + . . . and define ξπh(s, a) = Ψπh(s, a)−ψπh(s, a). By definition
of successor features, we have:

ξπh(s, a) = Ψπh(s, a)−ψπh(s, a)

27

= φh +ψ
π
h+1(s

′, πh+1(s
′))−ψπh(s, a) + (Ψπh+1(s

′, πh+1(s
′))−ψπh+1(s

′, πh+1(s
′)))

= δh + ξ
π
h+1(s

′, πh+1(s
′))

By definition, the covariance is:

Σπh(s, a) = E [(Ψπh(s, a)−ψπh(s, a))(Ψπh(s, a)−ψπh(s, a))
ᵀ | sh = s, ah = a]

= E [ξπh(s, a)ξ
π
h(s, a)

ᵀ | sh = s, ah = a]

= E
[
(δh + ξ

π
h+1(s

′, πh+1(s
′)))(δh + ξ

π
h+1(s

′, πh+1(s
′)))

ᵀ | sh = s, ah = a
]

= E
[
δhδh

ᵀ + ξπh+1(s
′, πh+1(s

′))ξπh+1(s
′, πh+1(s

′))
ᵀ | sh = s, ah = a

]
+ E

[
δhξ

π
h+1(s

′, πh+1(s
′))

ᵀ | sh = s, ah = a
]

+ E
[
ξπh+1(s

′, πh+1(s
′))δh

ᵀ | sh = s, ah = a
]

= E
[
δhδh

ᵀ + ξπh+1(s
′, πh+1(s

′))ξπh+1(s
′, πh+1(s

′))
ᵀ | sh = s, ah = a

]
= E

[
δhδh

ᵀ +Σπh+1(s
′, πh+1(s

′)) | sh = s, ah = a
]
,

where the second-last line follows from Lemma 8.

Theorem 3. Let ‖ ·‖ be a matrix-compatible norm, and suppose there exists ε : S×A×T → [0,∞)
such that:

1. ‖ψ̃πh(s, a)−ψπh(s, a)‖2 ≤ εh(s, a)

2. ‖Es′∼P (·|s,a)[δ̃h(ψ̃
π
h(s

′, πh+1(s
′))−ψπh(s′, πh+1(s

′)))
ᵀ
]‖ ≤ εh(s, a).

Then, ∥∥∥Σπh(s, a)− Es′∼P (·|s,a)

[
δ̃hδ̃

ᵀ
h + Σ̃πh+1(s

′, πh+1(s
′))

]∥∥∥ ≤ 3εh(s, a).

Proof. We start by decomposing the true covariance matrix:

Σπh(s, a) = E
[
(Ψπh(s, a)− ψ̃πh(s, a) +ψπh(s, a)−ψπh(s, a))

(Ψπh(s, a)− ψ̃πh(s, a) +ψπh(s, a)−ψπh(s, a))
ᵀ
| sh = s, ah = a

]
= E

[
(Ψπh(s, a)− ψ̃πh(s, a))(Ψπh(s, a)− ψ̃πh(s, a))

ᵀ
| sh = s, ah = a

]
+ (ψ̃πh(s, a)−ψπh(s, a))(ψ̃πh(s, a)−ψπh(s, a))

ᵀ

+ 2E
[
Ψπh(s, a)− ψ̃πh(s, a) | sh = s, ah = a

]
(ψ̃πh(s, a)−ψπh(s, a))

ᵀ

= E
[
(Ψπh(s, a)− ψ̃πh(s, a))(Ψπh(s, a)− ψ̃πh(s, a))

ᵀ
| sh = s, ah = a

]
− (ψ̃πh(s, a)−ψπh(s, a))(ψ̃πh(s, a)−ψπh(s, a))

ᵀ

where in the last step we use the identity E
[
Ψπh(s, a)− ψ̃πh(s, a) | sh = s, ah = a

]
=

E [Ψπh(s, a)−ψπh(s, a) | sh = s, ah = a] + ψπh(s, a) − ψ̃πh(s, a) = ψπh(s, a) − ψ̃πh(s, a). Now,
we define ξ̃πh(s, a) = Ψπh(s, a)− ψ̃πh(s, a), then follow the derivations in Lemma 9 to write the first
term above as:

E
[
ξ̃πh(s, a)ξ̃

π
h(s, a)

ᵀ
| sh = s, ah = a

]
= E

[
δ̃hδ̃

ᵀ
h + ξ̃πh+1(s

′, πh+1(s
′))ξ̃πh+1(s

′, πh+1(s
′))

ᵀ
| sh = s, ah = a

]
+ E

[
δ̃hξ̃

π
h+1(s

′, πh+1(s
′))

ᵀ
| sh = s, ah = a

]
+ E

[
ξ̃πh+1(s

′, πh+1(s
′))δ̃ᵀh | sh = s, ah = a

]
= E

[
δ̃hδ̃

ᵀ
h + Σ̃πh+1(s

′, πh+1(s
′)) | sh = s, ah = a

]
+ E

[
δ̃hξ̃

π
h+1(s

′, πh+1(s
′))

ᵀ
| sh = s, ah = a

]
+ E

[
ξ̃πh+1(s

′, πh+1(s
′))δ̃ᵀh | sh = s, ah = a

]
.

28

Finally, we norm bound the desired difference as follows:∥∥∥Σπh(s, a)− E
[
δ̃hδ̃

ᵀ
h + Σ̃πh+1(s

′, πh+1(s
′)) | sh = s, ah = a

]∥∥∥
≤ 2

∥∥∥E [
δ̃hξ̃

π
h+1(s

′, πh+1(s
′))

ᵀ
| sh = s, ah = a

]∥∥∥
+
∥∥∥(ψ̃πh(s, a)−ψπh(s, a))(ψ̃πh(s, a)−ψπh(s, a))ᵀ∥∥∥

≤ 2
∥∥∥E [

δ̃h(Ψ
π
h+1(s

′, πh+1(s
′))−ψπh+1(s

′, πh+1(s
′)))

ᵀ | sh = s, ah = a
]∥∥∥

+ 2
∥∥∥E [

δ̃h(ψ
π
h+1(s

′, πh+1(s
′))− ψ̃πh+1(s

′, πh+1(s
′)))

ᵀ
| sh = s, ah = a

]∥∥∥
+
∥∥∥(ψ̃πh(s, a)−ψπh(s, a))(ψ̃πh(s, a)−ψπh(s, a))ᵀ∥∥∥

≤ 2
∥∥∥E [

δ̃h(ψ
π
h+1(s

′, πh+1(s
′))− ψ̃πh+1(s

′, πh+1(s
′)))

ᵀ
| sh = s, ah = a

]∥∥∥
+
∥∥∥ψ̃πh(s, a)−ψπh(s, a))∥∥∥2

≤ 2εh(s, a) + εh(s, a) = 3εh(s, a).

This is the desired result.

C Experiment Details

In this section, we describe the setup of the domains discussed in the main paper in greater detail. We
also provide detailed descriptions of baseline algorithms, as well as all hyper-parameters used and
how they were selected.

C.1 Motivating Example

Domain Configuration. The motivating example is a 5-by-5 grid-world domain with discrete
states and discrete actions described by the four possible directions of movement into an adjacent cell.
The environment is made stochastic by introducing random action noise as follows. Desired actions
are taken only with probability 0.8, while the remaining time a (uniformly) random action is taken.
Furthermore, transitions that would take the agent outside of the boundaries of the grid leave the
agent in its current position. The cost structure is defined as follows. The goal state is terminal and
provides a reward of +20. Each time step incurs a fixed penalty of −1, on top of any other rewards
or costs incurred.

Learning Source Policies and Utilities. To recover the properties of risk-aware and risk-neutral
GPI claimed in the main text, we first learn the source policies π1 and π2 and their utilities Qπ1

β and
Qπ2

β using a variant of the classic value iteration algorithm adapted to maximize the entropic utility
(see Algorithm 3). We consider the non-discounted setting (γ = 1), and iterate until an absolute error
less than εexit = 10−12 is achieved between two consecutive iterations6. The two source policies are
then recovered by acting greedily with respect to the learned utilities.

Transfer Learning. In order to implement GPI, we evaluate these two resulting policies on the
target task by adapting the iterative procedure in Algorithm 3 for policy evaluation. Essentially, line 10
of the algorithm is replaced by r(s, a, s′)+γQ(s′, π(s′)) for π ∈ {π1, π2}. We repeat this procedure
twice to produce two sets of value functions: a set {Qπ1

0 ,Qπ2
0 } for β = 07 and a set {Qπ1

−0.1,Q
π2
−0.1}

for β = −0.1. The two GPI policies are then defined as πβ(s) ∈ argmaxamaxi=1,2Qπi

β (s, a)

for β ∈ {0,−0.1}. Finally, we generate the histogram of returns by simulating episodes of length
T = 35, in which actions are selected from πβ , and computing the cumulative reward obtained on
each episode.

6Please note that convergence of value iteration is guaranteed due to the existence of absorbing states and
because the underlying MDP is ergodic.

7For β = 0, Algorithm 3 reduces to standard value iteration.

29

Algorithm 3 Value Iteration for Entropic Utility Maximization

1: Requires εexit > 0, γ ∈ [0, 1], β ∈ R, 〈S,A, r, P 〉 ∈ M
2: for s ∈ S, a ∈ A do Q(s, a)← 0
3: for n = 1, 2 . . .∞ do

\\ Update Q(s, a) for all state-action pairs
4: for s ∈ S, a ∈ A do

\\ Perform one iteration of (11) with the greedy policy derived from Q
5: Q′(s, a)← 0
6: for s′ ∈ S do
7: if s′ is terminal then
8: target← r(s, a, s′)
9: else

10: target← r(s, a, s′) + γmaxbQ(s′, b)
11: end if
12: Q′(s, a)← Q′(s, a) + P (s′|s, a) eβ×target

13: end for
14: Q′(s, a)← 1

β logQ′(s, a)

15: end for
\\ Check for convergence in utility values

16: ε← maxs,a |Q′(s, a)−Q(s, a)|
17: if ε < εexit then return Q′

\\ If not converged, then continue with value iteration
18: for s ∈ S, a ∈ A do Q(s, a)← Q′(s, a)
19: end for

C.2 Four-Room

State and Action Spaces. The four-room domain consists of a family of discrete-state discrete-
action MDPsM defined as follows. The world is defined as a set of discrete cells arranged in a
grid of dimensions 13-by-13, such that at each time instant, the agent occupies a specific cell with
some x- and y-coordinates (px, py) ∈ {0, . . . 12}2. As the agent explores the space, it can collect
objects belonging to one of 3 possible classes. While the initial positions of these objects remains
fixed throughout the experiment, their existence is determined by whether or not they have already
been collected by the agent in a given episode (the same object cannot be picked up multiple times in
a given episode). In our configuration, there are 6 instances of objects belonging to each class, for a
total of no = 18 collectible objects. Therefore, the state space S = {0, 1}no × {0, . . . 12}2 consists
of the concatenation of the agent’s current position (px, py) and a set of binary variables indicating
whether or not each object has already been picked up by the agent. All objects are reset at the
beginning of each episode. Actions are defined as A = {left,up, right,down} that move the agent
to an adjacent cell in the corresponding direction. In the case that the destination cell lies outside the
grid, then the agent remains in the current cell at the next time instant.

Reward Function and Risk. The goal cell ‘G’ provides a fixed reward of +1 and immediately
terminates the episode upon entry. The reward rc associated with each object class c ∈ {1, 2, 3}
is reset every time a new task begins, and is sampled from a uniform distribution on [−1,+1].
Occupying a trap cell that triggers at a particular time instant defines a failure, and is communicated to
the agent by incurring a penalty of −2 and immediately terminating the episode. However, occupying
a trap cell does not automatically guarantee a failure. Instead, a failure is only triggered with
probability 0.05 independently at every time instant during which the agent occupies a trap cell. This
additional reward stochasticity can be implemented without breaking the existing successor feature
framework by introducing a fictitious terminal state sf to indicate failure, which is reached at random
when in cells marked ‘X’. This state augmentation induces a modified MDP with a deterministic
reward of −2 on arrival to state sf , whose associated transitions are stochastic in nature. Crucially,
this state augmentation transformation applies uniformly to all task instances, and thus does not break
our assumptions aboutM. We use a discount factor of γ = 0.95.

30

Features and Linear Reward Parameterization. Exact state features φ(s, a, s′) are provided
directly to the agent. Specifically, we define φc(s, a, s

′) for every class of objects c ∈ {1, 2, 3} to
take the value 1 if the agent occupies a cell with an object of class c in state s′ and 0 otherwise.
Similarly, we define φg(s, a, s

′) to take the value 1 if s′ corresponds to the goal cell and 0 otherwise.
Unlike Barreto et al. [2], the four-room domain also contains an additional failure state with non-zero
reward, as described above, and this must also be incorporated into the SF representation. This can be
done by defining φf (s, a, s

′) that takes the value 1 if s′ corresponds to the state sf and 0 otherwise8.
The state features φ ∈ R5 are then the concatenation of φc, φg and φf . These features are sparse,
but can represent the reward functions of all possible task instances inM exactly. Finally, we define
wc = rc, wg = 1 and wf = −2, and it is now clear that r(s, a, s′) = φ(s, a, s′)ᵀw holds.

Hyper-Parameters. Each time a new task is created, a new ψ̃π and Σ̃π are created. The training
loop of RaSFQL then proceeds according to Algorithm 1. We set α = 0.5 and ε = 0.12, based on
preliminary experiments for Q-learning. We also set ᾱ = 0.1 for learning Σ̃π and αw = 0.5 for
learning w with gradient descent. Rollouts are limited to T = 200 steps for all algorithms.

Baseline. The baseline used for comparison is the probabilistic policy reuse framework of Fer-
nández and Veloso [12] (PRQL), here adapted for learning risk-sensitive behaviors. In order to do
this, we incorporate the smart exploration strategy of Gehring and Precup [16]. This strategy is
fundamentally similar to our mean-variance approach, since it also incorporates second-moment
or reward-variance information into action selection in a similar way. The controllability bonus
Cπ(s, a) in each state-action pair is learned using a Q-learning approach by using the negative of
the absolute Bellman residuals −|δ| as pseudo-rewards, and learned in parallel to the Q-values in
practical implementations. The penalty for C(s, a) is denoted as ω, and is fundamentally similar to β
used by SFQL. The resulting algorithm, which we call RaPRQL, is described in Algorithm 4.

Baseline Hyper-Parameters. Similar to RaSFQL, every time a new task is created, a new Qπ

and Cπ are created for RaPRQL for learning new policies. We set α = 0.5 for fair comparison
with RaSFQL, and ρ = 0.1 based on the original implementation [16]. The performance is highly
sensitive to the parameters η and τ used by PRQL. To select these two hyper-parameters, we follow
Barreto et al. [2] and run a grid search for η ∈ {0.1, 0.3, 0.5} and τ ∈ {1, 10, 100}, selecting the
combination of η and τ that resulted in the highest cumulative return over 128 task instances. This
validation experiment is repeated for every value of ω.

C.3 Reacher

State and Action Spaces. The state space S ⊂ R4 consists of the angles and angular velocities of
the robotic arm’s two joints. The two-dimensional action space A ⊂ [−1,+1]2 is discretized using 3
values per dimension, corresponding to maximum positive (+1) and negative (−1) and zero torque
for each actuator, resulting in a total of 9 possible actions. At the beginning of each episode, the
angle of the central joint is sampled from a uniform distribution on [−π,+π], while the angle of the
outer joint is sampled from a uniform distribution on [−π/2,+π/2], and the angular velocities are
initialized to zero. Furthermore, state transitions are made stochastic by adding zero-mean Gaussian
noise to actions with standard deviation 0.03, and then clipping the actions to [−1,+1].

Reward Function and Risk. The reward received at each time step is 1 − 4δ, where δ is the
Euclidean distance between the target position and the tip of the robotic arm. We define 12 target
locations, of which 4 are used for training and the remaining 8 for testing. Furthermore, circular
regions of radius δf = 0.06 are placed around 6 of the 12 target locations (2 training and 4 testing)
in which failures occur spontaneously with probability pf = 0.035. Once a failure occurs, a cost of
cf = 3 is incurred and the episode continues without termination. This implies that the expected

8It is not practical to redefine the task space with the augmented state sf in an actual implementation. Instead,
we simulate this by providing the state features φ with a binary variable indicating failure. This does not change
the SF implementation, since the occurrence of a failure event can be deduced using the done flag (indicating
arrival in a terminal state) and the state s′.

31

Algorithm 4 RaPRQL with Smart Exploration

1: Requires m,T,Ne ∈ N, ε, η ∈ [0, 1], α, ρ, τ > 0, ω ∈ R, M1, . . .Mm ∈M
2: for t = 1, 2 . . .m do
3: Initialize Qt(s, a), Ct(s, a) to small random or zero values
4: for k = 1, 2 . . . t do scorek ← 0, usedk ← 0
5: c← t
6: R← 0

\\ Commence training on task Mt

7: for ne = 1, 2 . . . Ne do
8: Initialize Mt with initial state s
9: for h = 0, 1 . . . T do

\\ Select actions according to Q-values plus controllability bonus
10: if c 6= t then use_prev_policy ∼ Bernoulli(η) else use_prev_policy← false
11: if use_prev_policy then

\\ Action is selected from πc, the source policy being used
12: a← argmaxb{Qc

h(s, b) + ωCc
h(s, b)}

13: else
\\ Action is selected from πt, the policy being learned

14: random_a ∼ Bernoulli(ε)
15: if random_a then a ∼ Uniform(A) else a← argmaxb{Qt

h(s, b) + ωCt
h(s, b)}

16: end if
17: Take action a in Mt and observe r and s′

\\ Update the Q-values for the current task
18: δh ← r +maxbQ

t
h+1(s

′, b)−Qt
h(s, a)

19: Qt
h(s, a)← Qt

h(s, a) + αδh
\\ Update the controllability bonus for the current task

20: Cth(s, a)← Cth(s, a) + αρ(−|δh| − Cth(s, a))
21: R← R+ r
22: s← s′

23: end for
\\ Update average return obtained by following policy πc

24: scorec ← scorec×usedc+R
usedc+1

\\ Sample a new source policy
25: for k = 1, 2 . . . t do pk ← eτ×scorek∑

j e
τ×scorej

26: c ∼ Multinomial(p1, p2, . . . pt)
27: usedc ← usedc + 1
28: R← 0
29: end for
30: end for

reward, as a function of the distance δ, is9

R(δ) =

{
1− 4δ if δ > δf
1− 4δ − cf × pf if δ ≤ δf .

Therefore, a rational10 risk-neutral agent would prefer to enter inside the failure region if it holds that
1− cf × pf ≥ 1− 4δf , or in other words if

cf × pf ≤ 4δf .

Clearly, given our choice of values for cf , pf and δf , the above condition holds in our setting. Setting
up the reward structure and risk in this way makes it possible to control the trade-off between risk
and reward, and thus the anticipated behavior of the agents, in a principled way. We also apply
discounting of future reward using γ = 0.9.

9The reasoning here has simplified some of the aspects of the environment, ignoring the effects of multiple
risk regions that could alter the trajectories, limited-length episodes and discounting.

10Of course, a rational agent would want to keep the tip as close to the target location as possible, and so
would want δ = 0.

32

Features and Linear Reward Parameterization. The state features are vectors φ(s, a, s′) ∈ R13,
in which the first 12 components consist of 1− 4δg , where δg are the Euclidean distances to each of
the goal locations g. The last component takes the value 1 if a failure event occurs and 0 otherwise.
As done in the four-room experiment, state features are provided to the agent. However, target
goal locations w ∈ R13 are not learned in this instance, but provided directly to the agent as well.
Specifically, we set wg = 1 for the goal with index g and w13 = cf = −3, and set all other elements
to zero. This recovers the correct reward function r(s, a, s′) for all task instances as described above.

Hyper-Parameters and Learning Architectures. The overall training and testing procedures
closely mimic Barreto et al. [2]. The successor features ψπ and their distribution Ψπ are represented
as multi-layer perceptrons (MLP) with two hidden layers of size 256 and tanh non-linearities. The
SFC51 and RaSFC51 architectures are generally identical and require output layers of dimensions
R9×51×13, with a softmax activation function applied with respect to the second dimension. Similarly,
C51 and RaC51 also require output layers but of dimensions R9×51 and softmax applied with respect
to the second dimension. For SFDQN, the output of the network is linear with dimensions R9×13.
We also use target networks for both SFC51/RaSFC51 and C51/RaC51, which are updated every
1,000 transitions by copying weights from the learning networks. These target networks are only
used for computing the bootstrapped return estimates. For SFC51, RaSFC51 and SFDQN, separate
MLPs are used to learn each policy. To allow C51 and RaC51 to generalize across target locations,
we apply universal value function approximation [35] and incorporate the target position into the
state. This makes C51 essentially identical to the DQN baseline in Barreto et al. [2], except that DQN
is replaced by C51. For C51-based agents, recall that the range of possible values of φ must also be
specified. For SFC51 and RaSFC51, we use φdmin = −1 and φdmax = 1 for d = 1, 2 . . . 12 and use
φ13
min = 0 and φ13

max = 1, which corresponds to a relatively tight bound for state features described
in the previous paragraph. For C51 and RaC51, we set the bounds to Vmin = −30 and Vmax = 10,
which corresponds to a tight bound for the discounted return. These intervals are discretized into
N = 51 atoms for learning histograms, as recommended in the original paper [6].

Training and Testing Procedures. Agents are trained on all 4 training task instances sequentially
one at a time, for 200,000 time steps per task using an epsilon-greedy policy with ε = 0.1. Analogous
to Barreto et al. [2], every sample is used to train all 4 policies simultaneously for SFC51, RaSFC51
and SFDQN. A randomized replay buffer of infinite capacity stores all previously-observed transitions
(s, a,φ, s′) from all 4 training tasks, to avoid “catastrophic forgetting" of previously learned task
instances. Each update of the network is based on a mini-batch of size 32 sampled uniformly from
the replay buffer, and uses the Adam optimizer with a learning rate of 10−3. Please note that these
parameters, and those in the previous paragraph, are generally identical to those used in Barreto et al.
[2]. Testing follows an epsilon-greedy policy with ε = 0.03 and greedy actions are selected according
to risk-aware GPI, e.g. a∗ ∈ argmaxamaxi∈{1,...4}{ψ̃πi(s, a)

ᵀ
wj + βwj

ᵀΣ̃πi(s, a)wj}. Recall
that test rewards wj are provided to the agent. We set the episode length to T = 500 time steps for
training and testing. All visualizations are based on estimating the test return at regular intervals of
5,000 time steps, calculated as the average performance of 5 independent rollouts.

Normalization of Returns. Since the performance varies for different target locations, Barreto
et al. [2] applies a normalization procedure to compare the performance between tasks in a fair
manner. We apply the same procedure, by first training a standard C51 agent from scratch on each
training and test task 10 times, and recording the average performance at the beginning and end of
training, Ḡb and Ḡa, respectively. The normalized return illustrated in all figures is then calculated as
Gn = (G− Ḡb)/(Ḡa − Ḡb).

Physics Simulator. The physics simulator used for the reacher domain is provided by the open-
source pybullet and pybullet-gym packages [50, 51]. We adapted the Python environment in the
latter package to handle multiple target goal locations as required in our problem setting. Please note
that this package is released under the MIT license.

C.4 Additional Details for Reproducibility

Reproducing Four-Room. The four-room experiment was run on an Alienware m17 R3, whose
software and hardware specifications are provided in Table 3. Please note that while this machine has
a GPU and tensorflow installed, neither were used in this experiment.

33

Component Description Quantity

Operating System Windows 10 Home
Python 3.8.5 (Anaconda)

tensorflow 2.3.1

System Memory 32 GB
Hard Disk 953.9GB 1

CPU Intel i7-10875H @ 2.30GHz (turbo-boost @ 5.1GHz) 1
GPU Nvidia RTX 2080 Super 8GB 1

Table 3: Software and hardware configuration used to run all experiments for the four-room domain.

Reproducing Reacher. The reacher experiment was run on a Lenovo ThinkStation P920 worksta-
tion, whose software and hardware specifications are described in Table 4.

Component Description Quantity

Operating System Ubuntu 18.04
Python 3.8.5

tensorflow 2.4.0

System Memory 187 GB
Hard Disk 953.9GB 5

CPU Intel Xeon Gold 6234 @ 3.30GHz (turbo-boost @ 4GHz) 32
GPU Nvidia Quadro RTX 8000 48GB 2

Table 4: Software and hardware configuration used to run all experiments for the reacher domain.

Other Factors. Please note that seeds were not fixed during the experiment but generated in each
trial using Python’s default seed generation algorithm. This allows us to average the performance of
all algorithms over different seed values and initializations. No internal modifications to the Python
environment nor to any of its installed packages were made. No effort to overclock the machines’
CPUs or GPUs beyond their factory settings were made in order to decrease the overall computation
time (see below).

Computation Time. The majority of the computation time in running the experiment was allocated
to the reacher domain, partially because of the size of the network architectures required to learn
meaningful policies (2 hidden layers consisting of 256 neurons), and the number of samples required
to draw meaningful conclusions for all baselines. The computation time is considerably greater for
RaSFC51 (around 28-36 hours per trial) than it is for RaC51 (around 6-8 hours per trial), which is
expected since the former must train 4 neural networks while the latter must train only one. This
could potentially lead to negative environmental impacts if the model is to be deployed on complex
problems in real-world settings. At the same time, the potential speed-ups demonstrated by RaSFC51
as compared to RaC51 could reduce the overall training time considerably and offset the total energy
requirement of learning policies with a satisfactory variance-adjusted return. Parallelization of the
training loop could also be beneficial and provide significant time and cost savings in practice.

D Additional Ablation Studies and Plots

In this section, we include the full details and results of the ablation studies described in the main
text, and additional analysis that had to be left out of the main paper due to space limitations.

D.1 Four-Room

Effect of Varying β. We can study the effect of β on the return performance and risk-sensitivity of
the learned behaviors by repeating the four-room experiment (Appendix C.2) for various values of
β. In particular, we trained RaSFQL for β ∈ {0,−1/2,−1,−2,−4} (ω for RaPRQL), and recorded

34

0 20 40 60 80 100 120
Task Instance

0

20000

40000

60000

80000

Cu
m
ul
at
iv
e
Re

w
ar
d

RaSFQL(4)
RaSFQL(2)
RaSFQL(1)
RaSFQL(0.5)
SFQL

RaPRQL(4)
RaPRQL(2)
RaPRQL(1)
RaPRQL(0.5)
PRQL

0 20 40 60 80 100 120
Task Instance

0

1000

2000

3000

4000

5000

6000

7000

Cu
m
ul
at
iv
e
Fa

ilu
re
s

RaSFQL(4)
RaSFQL(2)
RaSFQL(1)
RaSFQL(0.5)
SFQL

RaPRQL(4)
RaPRQL(2)
RaPRQL(1)
RaPRQL(0.5)
PRQL

Figure 9: Left: cumulative reward collected across all training tasks in the four-room domain, for
various values of β for RaSFQL (ω for RaPRQL). Right: cumulative number of failures across all
training tasks in the four-room domain, for various values of β, ω. Please note that legend entries in
parentheses indicate the negative values of β and ω. Shaded error bars indicate one standard error
over 30 independent runs of each algorithm.

the cumulative reward and number of failures across all 128 training task instances. The results of
these experiments are summarized in Figure 9. We see that the performance of RaSFQL degrades
gracefully as β decreases (a relative drop in cumulative reward of approximately 25% is observed
when β is decreased from 0 to −4), while the corresponding degradation for RaPRQL is considerably
more pronounced (a relative drop in cumulative reward of roughly 75% is observed for an identical
change in ω). Meanwhile, the number of cumulative failures of RaSFQL is generally lower than
RaPRQL for every pair of identical values of β and ω. In fact, for β ∈ {−1,−2,−4}, the cumulative
numbers of failures are increasing at sub-linear rates, which implies that risk-avoidance behavior is
becoming more prominent as the number of training task instances increases.

Examination of Learned Behaviors. In order to better understand the kind of risk-averse behaviors
being learned, we instantiated 27 novel test task instances by enumerating wi ∈ {−1, 0, 1} for every
object class i = 1, 2, 3. We then tested the performance of the GPI policy obtained from the training
procedure described in the main paper, by simulating 100 rollouts following the epsilon-greedy policy
with ε = 0.1 on each of the test tasks. Please note that no training was ever performed on the test
tasks. The state visitation counts across all 100 trajectories were computed for every task instance
and arranged in a 3D-lattice as indicated in Figure 10. We repeated this procedure twice: once for
RaSFQL with β = −2 and once for SFQL. Interestingly, RaSFQL and SFQL learn behaviors that
are similar to each other when looking at the same task, but each of them exploits different regions
of the state space depending on the reward. However, RaSFQL almost always learns to avoid the
dangerous objects in the bottom-left and top-right rooms, whereas SFQL does not necessarily do so.
This discrepancy is most evident, for instance, when w2 = 1 and for (w1,w2,w3) = (1,−1,−1)
and (w1,w2,w3) = (1,−1, 0).

D.2 Reacher

Benefit of Distributional RL for Learning Successor Features. The left plot in Figure 11 illus-
trates the normalized test return, averaged across all test tasks, for SFC51 and the original SFDQN
implementation of Barreto et al. [2]. Both agents are risk-neutral in this comparison. It is likely that
learning the full distribution of SF returns provides additional stability of the Bellman backups in
stochastic domains, and thus allows SFs to inherit the advantages of distributional RL for maximizing
expected return [6].

Effect of Varying β. Unlike the four-room domain, we saw that the number of failures of RaSFC51
was modestly greater than RaC51 for the same values of β. In order to better understand how
efficiently the trade-off between risk and reward is handled by these two algorithms, we decided
to compute an alternative measure of return by dividing the normalized return by the total number

35

−1 0 +1
w1

−1

0

+1

w2

−1

0

+1

w3

−1 0 +1
w1

−1

0

+1

w2

−1

0

+1

w3

Figure 10: Visitation counts over 100 rollouts from behavior/training policies (epsilon-greedy with
ε = 0.12) derived from GPI after training on all 128 task instances. The behavior policies are
illustrated on 27 novel task instances in which the reward w varies, e.g. w1,w2,w3 ∈ {−1, 0, 1}.
Left: Behavior policies derived from GPI for RaSFQL with β = −2. Right: Behavior policies
derived from GPI for standard SFQL. Visitation counts are averaged over 30 independent runs for
each algorithm.

of failures. Intuitively, this quantity provides an estimate of the expected reward collected between
between successive failure events. The right plot contained in Figure 11, which compares this
quantity for RaSFC51 and RaC51 for different values of β, shows that RaSFC51 is actually much
more efficient at managing the trade-off between risk and reward for larger-magnitude values of β.
This is not surprising, given that RaSFC51 can obtain much high return than RaC51 for a comparable
number of failures, when β = −3 and β = −4. In fact, for β = −4, the number of failures of
RaSFC51 and RaC51 become equivalent as both methods learn sufficiently conservative policies.
Even in this case, successor features combined with GPI allow RaSFC51 to generalize much better
on novel tasks than RaC51.

Examination of Learned Behaviors. As suggested in the main text, one possible conjecture is
that RaSFC51 learns to correctly solve the test tasks, requiring the robotic arm to hover closer to the
edge of the risky areas, while RaC51 does not. The presence of environment stochasticity, errors in
function approximation, and the stochasticity of the epsilon-greedy policy used during testing could
exacerbate this. Comparing rollouts of successfully-learned behavior produced by RaSFC51 and
RaC51 in training tasks in Figure 12, and testing tasks in Figure 13, confirms that RaSFC51 is much
better at task generalization than RaC51. Here, RaSFC51 learns to hover right at the boundaries
of the high-variance regions, preferring not to enter them whenever possible. On the other hand,
risk-neutral SFC51 is completely unaware of the risky areas, focusing exclusively on minimizing
the distance to the target location, but is able to successfully locate all targets. RaC51 demonstrates
similar risk-aware behaviors as RaSFC51, but cannot reliably locate the target on some of the test
task instances.

36

0 1 2 3 4
Training Task Instance

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz
ed

Re
tu
rn

SFC51
SFDQN

0 1 2 3 4
Risk-Aversion

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
iz
ed

Re
tu
rn

pe
rF

ai
lu
re RaSFC51

RaC51

Figure 11: Additional ablation studies for the reacher domain, that were left out of the main paper
due to space limitations. Left: Normalized average test return for the reacher domain, showing the
improvement obtained by replacing DQN by C51 as a function approximator for SFs. Right: In
order to assess the trade-off between return and possibility of failure, we divide the normalized return,
averaged across all test tasks, by the total number of failures for each value of β. The resulting
measure is compared between RaSFC51 and RaC51. The x-axis indicates the negative values of β.

RaSFC51
SFC51

RaC51

Figure 12: Evolutions of the robotic arm tip position in three successful rollouts of the reacher domain
according to the GPI policy obtained after training on all 4 tasks. Here, all 4 training tasks are shown.

Examination of Learned Covariance. A similar conclusion can also be drawn by observing the
heat-maps of the learned mean-variance objectives in Figure 15. For SFC51, these objectives take the
highest values precisely at the target locations, whereas for RaSFC51 these take the highest values
slightly away from the targets in regions of low volatility. This is expected as the utility of hovering
very close to a target location centered in a risky region should be lower than hovering outside the
risky region, for a sufficiently risk-averse agent. Moreover, the first 4 rows correspond to training task
values and the last 8 correspond to test task values. Because a similar pattern described above can
also be observed in test tasks, the ability of SFs to generalize expected return estimates to novel task
instances also extends to higher-order sufficient statistics, namely the variance of return. Finally, the
aggregated plots located in the top half in Figure 16 show that RaSFC51 learns the return variance
correctly after having trained on all 4 task instances. On the other hand, the SFDQN architecture that
learns the covariance using the residual method (8) is unable to learn the variance correctly, likely
due to the propagation of errors and overestimation bias in ψ̃πi(s, a) as discussed in the main paper.

37

RaSFC51
SFC51

RaC51

Figure 13: Evolutions of the robotic arm tip position in three successful rollouts of the reacher domain
according to the GPI policy obtained after training on all 4 tasks. Here, all 8 test tasks are shown.

0 1 2 3 4
Training Task Instance

0.0

0.2

0.4

0.6

0.8

No
rm

al
iz
ed

Re
tu
rn

Gaussian Laplace

0 1 2 3 4
Training Task Instance

5

10

15

20

25

30

35

Fa
ilu

re
s

Gaussian Laplace

Figure 14: Ablation study for varying the distributional assumption used in the mean-variance
approximation in the reacher domain. Gaussian implies the usual mean-variance approximation with
the assumption of normally-distributed returns, while Laplace assumes a Laplace distribution for
returns. Both approximations use β = −2. Left: Normalized average test return across all test tasks.
Right: Total failures across all test tasks.

Effect of Varying the Distributional Assumption of Returns. A final ablation study we con-
ducted was to assess the stability of the task generalization of risk-aware SFs under different dis-
tributional assumptions of the cumulative reward. As discussed in Section A.4, the mean-variance
approximation used in this work results from making a Gaussian assumption on the cumulative
reward distribution, which may not always be closely-aligned with reality. To assess the flexibility
of our approach, we evaluate the performance of RaSFC51 when the distribution of cumulative
reward is assumed to follow a Laplace approximation (see Table 2 for details). We repeat the reacher
experiment with this modification and report the results (test return and test failures) in Figure
14. As we can see, the normalized test return under both distributional assumptions is essentially
unchanged. However, the number of test failures is reduced to almost half its original amount by
simply replacing the normal distribution with the Laplace distribution for modeling returns. By
inspecting and comparing the penalties of these two distributional assumptions in Figure 8, this result
is expected, since the Laplace distribution is better-suited for modeling heavy-tailed risks and thus
penalizes the variance more than the normal distribution. This further suggests that the assumptions
used for modeling the distributions of returns in GPE can have a profound effect on the effectiveness
of transfer and the risk-sensitivity of the learned policies. Thus, these distributional assumptions
can – and perhaps should – be treated as important hyper-parameters or design parameters in future
experiments. Designing and characterizing suitable distributional assumptions for different classes of
problems could be an interesting topic for further investigation.

38

Figure 15: Each plot located in column i and row j illustrates the value of the mean-variance objective
ψπi(s, a)

ᵀ
wj −wj

ᵀΣπi(s, a)wj as a function of the robotic arm tip position in (x, y) coordinates
for the reacher domain, after training each agent on all 4 tasks. In other words, the first 4 rows
illustrate the value functions learned on the training task instances, while the last 8 rows illustrate the
value functions learned on the test tasks. Left: mean-variance objective computed by RaSFC51 with
β = −3. Right: mean-variance objective computed by SFC51.

39

Figure 16: Each plot located in column i and row j illustrates the value of the variance
wj

ᵀΣπi(s, a)wj as a function of the robotic arm tip position in (x, y) coordinates for the reacher
domain, after training on 1, 2, 3 and 4 source tasks (respectively, left to right). Top: variance
computed by RaSFC51 with β = −3. Bottom: variance computed by SFDQN using (8).

40

E Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] The abstract and contributions paragraph in the introduc-
tion clearly state the paper’s novel contributions. We discuss that the theoretical results
could generalize to other concave utility functions. Our experimental design closely
matches the one in the original paper on successor features, and we also mention that
our approach can take advantage of other improvements in successor features. Thus,
we expect our empirical results to follow through for domains with similar structure
and complexity to those introduced in subsequent literature on successor features.

(b) Did you describe the limitations of your work? [Yes] The conclusion summarizes
several limitations associated with assumptions that are introduced when made in the
paper. Specifically, we describe how the error term ε propagates as a result of relying
on the mean-variance approximation in GPE in Section 3.3. We also point out the
independence assumption used in the SFC51 and RaSFC51 architectures in Section
4. Finally, in the conclusion we mention that our approach is specific to the entropic
utility objective, that is largely based on estimating risk using the variance of returns.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] We do
not foresee any direct societal impacts of this work. However, we do briefly discuss
computation time and the need to train large models in Appendix C.4.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] All assumptions
are stated at the beginning of each theoretical result.

(b) Did you include complete proofs of all theoretical results? [Yes] All complete proofs
are provided in Appendix B.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] Instructions for
replicating the domains and how models are created and trained are provided in detail
in Appendix C. A zip file of our code is also provided.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] All hyper-parameters and how they were selected, along with
other key details regarding training, are provided in Appendix C.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] All plots clearly show error bars, which represent one
standard error around the mean.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] Appendix C.4 describes
the computing infrastructures used, including both hardware and software, to help
reproduce the experiment. We also include a paragraph describing the computation
time to run a trial of the reacher domain, which represented an overwhelming majority
of the overall computation time.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] Our implementation
of the reacher domain is based on the pybullet-gym package as described in Appendix
C.3.

(b) Did you mention the license of the assets? [Yes] We mentioned that the package above
is MIT licensed.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
Our code is provided as a zip file with the submission.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] We do not use data.

41

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] We do not use data.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

References
[48] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

[49] Kris Boudt, Dries Cornilly, and Tim Verdonck. A coskewness shrinkage approach for estimating the
skewness of linear combinations of random variables. Journal of Financial Econometrics, 18(1):1–23,
2020.

[50] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games, robotics and
machine learning. http://pybullet.org, 2016–2021.

[51] Benjamin Ellenberger. Pybullet gymperium. https://github.com/benelot/pybullet-gym,
2018–2019.

[52] Abhijit A Gosavi, Sajal K Das, and Susan L Murray. Beyond exponential utility functions: A variance-
adjusted approach for risk-averse reinforcement learning. In 2014 IEEE Symposium on Adaptive Dynamic
Programming and Reinforcement Learning (ADPRL), pages 1–8. IEEE, 2014.

[53] Wenjie Huang and William B Haskell. Stochastic approximation for risk-aware markov decision processes.
IEEE Transactions on Automatic Control, 2020.

[54] Fabio Maccheroni, Massimo Marinacci, and Aldo Rustichini. Ambiguity aversion, robustness, and the
variational representation of preferences. Econometrica, 74(6):1447–1498, 2006.

[55] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis
Hassabis. Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[56] Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima, Hirotaka Hachiya, and Toshiyuki Tanaka.
Parametric return density estimation for reinforcement learning. In UAI, pages 368–375, 2010.

[57] Joel Owen and Ramon Rabinovitch. On the class of elliptical distributions and their applications to the
theory of portfolio choice. The Journal of Finance, 38(3):745–752, 1983.

[58] David W Scott. Multivariate density estimation: theory, practice, and visualization. John Wiley & Sons,
2015.

[59] Tomer Shushi. Generalized skew-elliptical distributions are closed under affine transformations. Statistics
& Probability Letters, 134:1–4, 2018. ISSN 0167-7152. doi: https://doi.org/10.1016/j.spl.2017.10.012.

[60] Alexander L Strehl and Michael L Littman. A theoretical analysis of model-based interval estimation. In
ICML, pages 856–863, 2005.

[61] D Michael Titterington, Adrian FM Smith, and UE Makov. Statistical analysis of finite mixture distributions,
volume 198. John Wiley & Sons Incorporated, 1985.

[62] Eric W. Weisstein. Cumulant. from mathworld—a wolfram web resource. URL https://mathworld.
wolfram.com/Cumulant.html. Last visited on 13/4/2021.

42

http://pybullet.org
 https://github.com/benelot/pybullet-gym
https://mathworld.wolfram.com/Cumulant.html
https://mathworld.wolfram.com/Cumulant.html

