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A ACRONYMS AND NOTATION

Table 2: Key notation used repeatedly across this paper.

Symbol Space Description

t R�0 Time
T R�0 Maximum time in a given sequence’s observation window
ti R�0 i

th time
t� R�0 Subscript minus indicates left-limit
t+ R�0 Subscript plus indicates right-limit
k M = {1, . . . , K} Event mark
H MN ⇥ RN

�0 Event history for N events
Nt ZK

�0 Counting process for K marks at time t

�
k

t
R�0 Intensity of kth mark type at time t

�t RK

�0 Vector of K mark intensities at time t

�t R�0 Ground/total intensity (sum of mark-specific intensities)
L(·) R Log-likelihood of the argument under the model
⌫
k R�0 Background intensity for the k

th mark
↵ RK,K

�0 (For LHP) Matrix of intensity impulses from each type of mark
� RK,K

�0 (For LHP) Dynamics matrix of intensity evolution

R N Mark embedding rank
P N LLH/SSM hidden dimension
xt RP LLH/SSM hidden state at time t

x0 RP Learned LLH/SSM initial hidden state
H N LLH/SSM output dimension
yt RH LLH/SSM output at time t

ut RH LLH/SSM input at time t

A RP⇥P LLH/SSM transition matrix
B RP⇥H LLH/SSM input matrix
C RH⇥P LLH/SSM output matrix
D RH⇥H LLH/SSM passthrough matrix
E RP⇥R LLH mark embedding matrix (P ⇥ R in low-rank factorization)
L N Number of linear recurrences in a DLHP model; model “depth”
↵ RR⇥K (For DLHP) Mark impulses (R ⇥ K in low-rank factorization)
⇠ N/A Tilde (e.g. B̃) denotes variable is in the diagonalized eigenbasis
⇤ CP⇥P Matrix of eigenvalues of A; diagonalized dynamics matrix
⇤̄ CP⇥P Discretized diagonal dynamics matrix
(l) N/A Superscript index in parenthesis indicates layer (i.e. x for layer l)

Table 3: Key acronyms used throughout this paper.

Acronym Page number Definition

CNN 6 Convolutional neural network
LHP 1 Linear Hawkes process
LLH 2 Latent linear Hawkes
MTPP 1 Marked temporal point process
RNN 1 Recurrent neural network
SSM 1 (Deep) State-space model
TPP 7 Temporal point process
ZOH 5 Zero-order hold

RMTPP 7 Recurrent marked temporal point process (Du et al., 2016)
NHP 1 Neural Hawkes process (Mei & Eisner, 2017)
SAHP 7 Self-attentive Hawkes process (Zhang et al., 2020)
THP 7 Transformer Hawkes process (Zuo et al., 2020)
AttNHP 7 Attentive neural Hawkes process (Yang et al., 2022)
IFTPP 7 Intensity-free temporal point process (Shchur et al., 2020a)
DLHP 1 Deep linear Hawkes process (ours)
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B ADDITIONAL DETAILS ON METHODS

B.1 DISCRETIZATION AND ZERO ORDER HOLD

The linear recurrence is defined in continuous-time. This mirrors the (M)TPP setting, where event
times are not on a fixed intervals. We use the zero-order hold (ZOH) discretization method, to
convert the continuous-time linear recurrence into a sequence of closed-form updates, given the
integration times, that can also be efficiently computed. We refer the reader to Iserles (2009) for a
comprehensive introduction to the ZOH transform.

The main assumption of the ZOH discretization is that the input signal is held constant over the time
period being integrated. Under this assumption, it is possible to solve for the dynamics and input
matrices that yield the correct state at the end of the integration period. For the LLH dynamics in
Eq. (10), when no events occur in (t, t0), this becomes

xt0� =

Z
t
0

t

Axt + AButdt = Axt + ABut assuming dut = 0 2 [t, t0], (18)

where the resulting discretized matrices are
A = eA�t, AB = A�1(eA�t � I)AB, where �t = t0 � t. (19)

The ZOH does not affect the output or passthrough matrices C and D. To compute the matrices A
and AB however requires computing a matrix exponential and a matrix inverse. However, Smith
et al. (2022) avoid this by diagonalizing the system (also avoiding a dense matrix-matrix multiplica-
tion in the parallel scan). The diagonalized dynamics and input matrices are denoted ⇤ (a diagonal
matrix) and ⇤B̃ respectively. In this case, Eq. (19) reduces to

A = e⇤�t, (20)

AB = ⇤�1(e⇤�t � I)⇤B̃ (21)

= (e⇤�t � I)B̃ (diagonal matrices commute) (22)

where e⇤�t is trivially computable as the exponential of the leading diagonal of ⇤�t. These op-
erations are embarrassingly parallelizable across the sequence length and state dimension given the
desired evaluation times.

To contextualize, suppose an event occurs at time t, Eq. (22) allows us to exactly (under the constant-
input assumption) efficiently evaluate the linear recurrence at subsequent times t0. We use this exten-
sively in the DLHP to efficiently evaluate the recurrence (and hence the intensity) at the irregularly-
spaced event times and times used to compute the integral term.

It should be noted the discretization was done to compute a left-limit xt0� from a previous right-
limit xt. Should an event not occur at t0, then the left- and right-limits agree and xt0� = xt0+ = xt0 .
If an event does occur at time t0 with mark k, then the left-limit xt0� can be incremented by Ẽ↵k to
compute xt0+ = xt0 . This increment from left- to right-limit is exact and leverages no discretization
assumption.

B.2 INTERPRETATION FOR INPUT-DEPENDENT DYNAMICS

Consider the input-dependent recurrence for an LLH layer, as defined in Eq. (17):

dx̃t := ⇤ix̃t�dt + ⇤iB̃ut�dt + Ẽ↵dNt (23)
for t 2 (ti, ti+1] where ⇤i := diag(�i)⇤ with the input-dependent factor defined as �i :=
softplus(W0uti

+ b0) 2 RP

>0. This factor can be thought of as the input-dependent relative-time
scale for the dynamics. To see this, we first note that for vectors p,q 2 Rd, the following holds true:
diag(p)q = p� q = q� p where � is the Hadamard or element-wise product. It then follows that

dx̃t := ⇤ix̃t�dt + ⇤iB̃ut�dt + Ẽ↵dNt (24)

= ⇤i(x̃t� + B̃ut�)dt + Ẽ↵dNt (25)

= diag(�i)⇤(x̃t� + B̃ut�)dt + Ẽ↵dNt (26)

= [⇤(x̃t� + B̃ut�)] � (�idt) + Ẽ↵dNt. (27)
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As shown, the positive vector �i can be thought of as changing the relative time-scale for each
channel in the hidden state x̃. Large values of �i will act as if time is passing quickly, encouraging
the state to converge to the steady-state sooner. Conversely, smaller values will make time pass
more slowly causing the model to retain the influence that prior events have on future ones (for that
specific channel in x̃ at least).

B.3 FORWARDS AND BACKWARDS ZERO ORDER HOLD DISCRETIZATION

In Section 3.3 we highlighted that the ZOH discretization is exact when ut is held constant over the
integration window. This raises a unique design question for DLHPs: what constant value should
ut take on when evolving x from time t to t0? For the first layer of the model, the input is zero
by construction, so there is no choice to be made—in fact, since u is constant for the first layer the
updates are exact. However, the input is non-zero at deeper layers, and, crucially, varies over the
integration period.

We must therefore decide how to select a u value over the integration period. This should be a value
in (or function of) {us | s 2 [t, t0)}. Note this is because the value at t0, ut0 , cannot be incorporated
as this would cause a data leakage in our model; while values prior to t would discard the most
recent mark. For this work, we explore two natural choices: (i) the input value at the beginning of
the interval, ut, and (ii) the left-limit at the end of the interval, ut0�. We illustrate the backwards
variant in Fig. 2, where in the rightmost panel, we use the ut⇤ values at each layer, as opposed to
ut3 . We refer to these options as forwards and backwards ZOH, respectively. All experiments in the
main paper utilize backwards ZOH.

It is not obvious a priori which one of these modes is more performant. We therefore conducted an
ablation experiment in Table 9. We see that there is little difference between the two methods. We
also note that models are learned through this discretization, and so this decision does not mean that
a model is “incorrectly discretized” one way or the other, but instead they define subtlety different
families of models. Theoretical and empirical investigation of the interpretations of this choice is an
interesting area of investigation going forwards, extending the ablations we present in Table 9.
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C EXPERIMENTAL CONFIGURATIONS AND DATASETS

C.1 TRAINING DETAILS & HYPERPARAMETER CONFIGURATIONS

We apply a grid search for all models on all datasets for hyperparameter tuning. We use a default
batch size of 256 for training. For models/datasets that require more memory (e.g. large mark space
or long sequences), we reduce the batch size and keep them as consistent as possible among all
the models on each dataset. We use the Adam stochastic gradient optimizer (Kingma & Ba, 2015),
with a learning rate of 0.01 and a linear warm-up schedule over the first 1% iterations, followed
by a cosine decay. Initial experiments showed this setting generally worked well across different
models and datasets leads to convergence within 300 epochs. We also clip the gradient norm to
have a max norm of 1 for training stability. We use Monte-Carlo samples to estimate the integral in
log-likelihood, where we use 10 Monte-Carlo points per event during training.

On the five EasyTPP benchmark datasets and MIMIC-II that are smaller in their scales, we choose
an extended grid based on the architecture reported in the EasyTPP paper. Specifically, we search
over hidden states size h = {16, 32, 64, 128, 256} for RMTPP, h = {32, 64, 128} for NHP, and h =
{16, 32, 64} for IFTPP. For SAHP, THP, and AttNHP, we searched over all combinations of number
of L = {1, 2, 3}, hidden state size = {16, 32, 64, 128}, and number of heads = {1, 2, 4}. Finally,
for DLHP, we considered combinations for number of layers = {1, 2, 3, 4}, p = {16, 32, 64, 128}
and h = {16, 32, 64, 256}. We fixed the activation function as GeLU (Hendrycks & Gimpel, 2016)
and apply post norm with layer norm (Ba, 2016). We fix the dropout as 0.1 for DLHP on the five
core benchmark datasets, and add dropout = {0, 0.1} to the grid search for the other three datasets.
Due to the scale of Last.fm and EHRShot datasets, we perform a smaller search over architectures
that roughly match the parameter counts for all models at three levels: 25k, 50k, 200k, and choose
the model with the best validation results. AttNHP has expensive memory requirements that tends
to have smaller batch sizes than other models. We were unable to train any AttNHP on EHRShot.
The final model architectures used are reported in Table 4a and Table 4b. These configurations are
also included in the supplementary code we include.

Table 4: Model architectures for the experiments presented in Table 1

(a) Model architectures for the five EasyTPP benchmark datasets.

Model Amazon Retweet Taxi Taobao StackOverflow
RMTPP h = 128 h = 16 h = 128 h = 16 h = 256
NHP h = 128 h = 64 h = 128 h = 128 h = 64

SAHP h = 32, l = 2, heads = 2 h = 32, l = 3, heads = 4 h = 16, l = 2, heads = 4 h = 32, l = 1, heads = 1 h = 64, l = 1, heads = 1
THP h = 32, l = 2, heads = 4 h = 16, l = 3, heads = 4 h = 128, l = 1, heads = 4 h = 64, l = 1, heads = 1 h = 16, l = 2, heads = 4
AttNHP h = 64, t = 16, l = 2, heads = 4 h = 16, t = 16, l = 2, heads = 4 h = 16, t = 16, l = 3, heads = 4 h = 32, t = 16, l = 3, heads = 4 h = 32, t = 16, l = 2, heads = 4

IFTPP h = 64 h = 64 h = 32 h = 64 h = 32

DLHP h = 64, p = 128, l = 2 h = 128, p = 128, l = 2 h = 128, p = 16, l = 4 h = 32, p = 16, l = 4 h = 32, p = 32, l = 3

(b) Model architectures for the additional three benchmark datasets.

Model Last.fm MIMIC-II EHRShot
RMTPP h = 256 h = 128 h = 16
NHP h = 112 h = 128 h = 80

SAHP h = 136, l = 2, heads = 4 h = 64, l = 2, heads = 4 h = 8, l = 2, heads = 4
THP h = 48, l = 2, heads = 4 h = 32, l = 3, heads = 4 h = 32, l = 2, heads = 4
AttNHP h = 28, t = 16, l = 2, heads = 4 h = 64, t = 16, l = 3, heads = 2 OOM
IFTPP h = 48 h = 256 h = 16

DLHP h = 144, p = 16, l = 2 h = 256, p = 64, l = 2 h = 128, p = 32, l = 2

C.2 DATASET STATISTICS

We report the statistics of all eight datasets we used in Table 5. We used the HuggingFace version
of the five EasyTPP datasets. For all datasets, we further ensure the MTPP modeling assumptions
are satisfied that no more than two events occur at the same time (i.e. inter-arrival time is strictly
positive), and event times do not lie on grid points that are effectively discrete-time events. Dataset
descriptions and pre-processing details are provided in Appendix C.3.
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Table 5: Statistics of the eight datasets we experiment with.

Dataset K
Number of Events Sequence Length Number of Sequences

Train Valid Test Min Max Mean Train Valid Test

Amazon 16 288,377 40,995 84,048 14 94 44.8 6,454 922 1,851
Retweet 3 2,176,116 215,521 218,465 50 264 108.8 20,000 2,000 2,000
Taxi 10 51,584 7,404 14,820 36 38 37.0 1,400 200 400
Taobao 17 73,483 11,472 28,455 28 64 56.7 1,300 200 500
StackOverflow 22 90,497 25,762 26,518 41 101 64.8 1,401 401 401
Last.fm 120 1,534,738 344,542 336,676 6 501 207.2 7,488 1,604 1,604
MIMIC-II 75 9,619 1,253 1,223 2 33 3.7 2600 325 325
EHRShot 668 759,141 165,237 170,147 5 3,955 177.0 4,329 927 927

C.3 DATASET PRE-PROCESSING

We use the default train/validation/test splits for EasyTPP benchmark datasets. For MIMIC-II, we
copy Du et al. (2016) and keep the 325 test sequences in the test split, and further split the 2,935 train-
ing sequences into 2,600 for training and 325 for validation. In our pre-processed datasets, Last.fm
and EHRShot, we randomly partition into subsets containing 70%, 15%, 15% of all sequences for
training/validation/test respectively. We provide a high-level description of all the datasets we used,
followed by our pre-processing procedure of Last.fm and EHRShot in more detail. Note that for
datasets that contain concurrent events or effectively discrete times, we apply a small amount of
jittering to ensure no modeling assumptions are violated in the MTPP framework.

Amazon (Ni et al., 2019) contains user product reviews where product categories are considered as
marks. Retweet (Zhao et al., 2015) predicts the popularity of a retweet cascade, where the event
type is decided by if the retweet comes from users with “small”, “medium”, or “large” influences,
measured by number of followers (Mei & Eisner, 2017). Taxi data (Whong, 2014) uses data from the
pickups and dropoffs of New York taxi and the marks are defined as discrete locations. Taobao (Xue
et al., 2022) describes the viewing patterns of users on an e-commerce site, where item categories
are considered as marks. StackOverflow contains the badges (defined as marks) awarded to users
on a question-answering website. Finally, MIMIC-II (Saeed et al., 2002) records different diseases
(used as marks) during hospital visits of patients. We add a small amount of noise to the MIMIC-II
event times so that events do not lie on a fixed grid. Both StackOverflow and MIMIC-II datasets
were first pre-processed by Du et al. (2016).

Last.fm Celma Herrada et al. (2009); McFee et al. (2012) records 992 users’ music listening habits
that has been widely used in MTPP literature (Kumar et al., 2019; Boyd et al., 2020; Bosser &
Taieb, 2023). Mark types are defined as the genres of a song, and each event is a play of a particular
genre. Each sequence represents the monthly listening behavior of each user, with sequence lengths
between 5 and 500. If the song is associated with multiple genres we select a random one of the
genres, resulting in a total of 120 different marks.

EHRShot Wornow et al. (2023) is a newly proposed large dataset of longitudinal de-identified pa-
tient medical records, and has rich information such as hospital visits, procedures, and measure-
ments. We introduce an MTPP dataset derived from EHRShot, where medical services and proce-
dures are treated as marks, as identified by Current Procedural Terminology (CPT-4) codes. Each
patient defines an event sequence, and we retain only CPT-4 codes with at least 100 occurrences in
the dataset. For the < 1% events of events where there are more than 10 codes at a single times-
tamp, we retain the top 10 codes with the most frequencies and discard the rest. We then add a
small amount of random noise to the event time to ensure they are not overlapping. This process
ensures we still satisfy the MTPP framework, and can reasonably instead compute top-10 accuracy
for the next mark prediction. Other work has considered extending the MTPP framework to con-
sider simultaneous event occurrence (Chang et al., 2024). Then we standardize each sequence to
start and end with start and end of a sequence events. Note that we do not score these events. Event
times are normalized to be in hours. We discard sequences that have less than 5 events and a single
timestamp. This leads to the final version of our dataset to have 668 marks, and the sequence lengths
range from 5 to 3955 events, reflecting patient histories that can span multiple years. We include the
notebook used for compiling the data we use from the original EHRShot data in the supplementary
code submission.
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D ADDITIONAL EXPERIMENTAL RESULTS

D.1 FULL RESULTS ON BENCHMARK DATASETS

We provide the full log-likelihood results and corresponding plots in Table 6 and Fig. 5 respectively,
where we decompose the likelihood into time and mark likelihoods. The improvement of our DLHP
model is mainly driven by better modeling of time, though we also often obtain best- or second-best
predictive performance on marks from the next event prediction accuracy results conditioned on true
event time in Table 7. In all predictive metrics, our model ranks the best averaged over all of the
datasets.

In aggregate, our model achieves a 1.416 per-event likelihood ratio between itself and the next best
method across all datasets (a 41.6% improvement in likelihood). This is calculated by computing
the mean log-likelihood ratio across all datasets and then exponentiating. Doing so is equivalent to
taking the geometric mean across likelihood ratios.

Table 6: Complete per-event log-likelihood (higher is better) results on the held-out test for the eight
benchmark datasets we consider. In Table 6a we show the full log-likelihood. We then decompose
this log-likelihood into the log-likelihood of the event time in Table 6b, and the time-conditional
log-likelihood of the mark type in Table 6c. OOM indicates out of memory. We highlight the best-
performing model in bold and underline the second-best. We also report the average rank of models
across datasets as a summary metric (lower is better). DLHP is consistently the best or second
best-performing model across all datasets.

(a) Full log-likelihood results (equal to the summation of Table 6b and Table 6c). Extended version of Table 1.

Model Per-Event Log-Likelihood, LTotal (nats) Avg. Ranking
Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II EHRShot

RMTPP -2.137 -7.169 0.347 1.006 -2.403 -1.776 -0.480 -8.035 6.38
NHP 0.205 -6.346 0.516 1.163 -2.243 -0.578 0.076 -3.907 3.13
SAHP -2.040 -6.704 0.372 1.201 -2.283 -1.500 -0.773 -6.845 5.13
THP -2.098 -6.652 0.374 0.791 -2.331 -1.716 -0.587 -7.183 5.63
AttNHP 0.608 -6.459 0.499 1.278 -2.179 -0.558 -0.244 OOM 2.86
IFTPP 0.493 -10.339 0.454 1.335 -2.224 -0.472 0.299 -6.424 3.00
DLHP (Ours) 0.765 -6.367 0.528 1.332 -2.165 -0.496 1.231 -2.189 1.38

(b) Per-event log-likelihood of the event times (higher is better).

Model Next Event Time Log-Likelihood, LTime (nats) Avg. Ranking
Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II EHRShot

RMTPP 0.010 -6.231 0.622 2.427 -0.780 0.259 -0.182 -1.888 5.88
NHP 2.196 -5.583 0.728 2.579 -0.703 1.196 0.240 -0.758 3.38
SAHP 0.173 -5.895 0.681 2.612 -0.681 0.600 -0.298 -1.779 4.63
THP -0.070 -5.867 0.623 2.242 -0.769 0.220 -0.277 -1.890 6.00
AttNHP 2.545 -5.688 0.724 2.665 -0.681 1.213 -0.017 OOM 3.14
IFTPP 2.482 -9.494 0.736 2.730 -0.660 1.290 0.536 -2.642 3.25
DLHP 2.638 -5.600 0.738 2.742 -0.636 1.294 1.345 0.723 1.13

(c) Per event log-likelihood of mark type conditioned on the arrival time (higher is better).

Model Per-Event Next Mark Log-Likelihood, LMark (nats) Avg. Ranking
Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II EHRShot

RMTPP -2.148 -0.939 -0.275 -1.421 -1.623 -2.035 -0.298 -6.147 6.00
NHP -1.992 -0.764 -0.212 -1.416 -1.540 -1.774 -0.164 -3.149 2.75
SAHP -2.213 -0.809 -0.308 -1.411 -1.602 -2.100 -0.475 -5.066 5.88
THP -2.028 -0.786 -0.249 -1.451 -1.563 -1.936 -0.310 -5.294 5.00
AttNHP -1.938 -0.771 -0.225 -1.387 -1.498 -1.771 -0.227 OOM 2.14
IFTPP -1.989 -0.845 -0.282 -1.395 -1.565 -1.763 -0.237 -3.782 3.75
DLHP -1.873 -0.767 -0.209 -1.410 -1.529 -1.790 -0.114 -2.912 1.88
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Figure 5: Visualization of LTotal decomposed into LTime and LMark for all models and all datasets
relative to RMTPP, as discussed in Section 5.2. The improvement of DLHP is mainly driven by
better modeling of LTime.

Table 7: Next event prediction accuracy (reported as a percentage, " is better) conditioned on the
true event time. We report top 1 accuracy for all datasets except for top 10 accuracy for EHRShot,
due to the pre-processing procedure described in Appendix C.3. We bold the best result per dataset,
and underline the runner-up.

Model Next Mark Accuracy (%) Avg. Ranking
Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II EHRShot (Top 10)

RMTPP 30.96 50.36 91.37 60.93 46.46 52.51 92.20 34.09 5.63
NHP 39.23 61.47 92.82 61.58 47.03 56.43 94.32 71.85 1.88
SAHP 32.03 59.18 92.23 60.78 46.46 52.84 84.52 32.56 5.63
THP 34.63 60.17 91.59 60.00 46.64 53.28 90.98 45.47 5.13
AttNHP 38.55 60.92 92.60 61.24 48.33 56.18 91.98 OOM 3.00
IFTPP 35.75 49.08 91.71 60.93 45.69 56.44 93.43 60.60 4.25
DLHP 40.66 61.33 93.05 61.06 47.45 56.26 96.55 75.45 1.75
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D.2 FULL RESULTS FOR SYNTHETIC POISSON EXPERIMENTS

We present the full results in Fig. 6 for all models regarding the synthetic experiments discussed
in Section 5.1. All models are trained until convergence using a set of 5,000 generated sequences,
where we use 20 Monte Carlo points per event to estimate the integral of log-likelihood during
training to accommodate the sparsity of events. We used small models so they do not overfit; model
architecture and parameter counts are reported in Table 8. We plot the background intensity condi-
tioned on empty sequences using 1,000 equidistant grid points between the start and end points. Our
model is the only one that perfectly recovers the underlying ground truth intensity, while also using
the fewest parameters.
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Figure 6: Results for all baseline models for the synthetic Poisson experiment introduced in Section
5.1. The estimated intensity (blue lines) conditioned on an empty sequence are plotted against the
ground truth (dotted black lines).

Table 8: Model architectures and corresponding parameter counts for synthetic Poisson experiments.

Model Architecture # Parameters

RMTPP h = 16 627
NHP h = 8 1010
SAHP h = 16, l = 2, heads = 4 1738
THP h = 16, l = 2, heads = 4 1684
AttNHP h = 8, t = 2, l = 2, heads = 2 1178
IFTPP h = 16 1899
DLHP h = 4, p = 4, l = 2 178
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D.3 ABLATION FOR DIFFERENT DLHP VARIANTS

We perform an ablation study of different model variants that we proposed on all datasets and sum-
marize the results in Table 9. We train EHRShot using 10% of its training data because larger
dataset scale requires more training time (but use the original validation and test sets for model se-
lection and reporting results). Forward and backward discretization are very close in performance,
with backwards discretization having a slight edge. Models that are input-dependent achieve bet-
ter performance on most datasets, although on certain datasets input dependence appears to harm
performance. It is an interesting direction for future work to explore theoretically and empirically
when each of these variants is best. We select backward discretization with input dependence for
the results in the main paper.

Table 9: Ablation for different model variants log-likelihood (LL). ID stands for input-dependent,
see Section 3.4. Backward and Forward respectively refer to using uti�1 and uti� (i.e. the previous
right limit or current left limit), see Appendix B.3.

Dataset Model variant LL Arrival time LL Mark LL conditioned on time

Amazon

Forward 0.705 2.617 -1.912
Forward + ID 0.748 2.634 -1.886
Backward 0.740 2.640 -1.899
Backward + ID 0.765 2.638 -1.873

Retweet

Forward -6.405 -5.625 -0.780
Forward + ID -6.370 -5.602 -0.767
Backward -6.398 -5.618 -0.780
Backward + ID -6.367 -5.600 -0.767

Taxi

Forward 0.473 0.697 -0.224
Forward + ID 0.525 0.733 -0.208
Backward 0.477 0.705 -0.228
Backward + ID 0.528 0.738 -0.209

Taobao

Forward 1.207 2.643 -1.435
Forward + ID 1.332 2.742 -1.410
Backward 1.215 2.648 -1.432
Backward + ID 1.332 2.742 -1.410

StackOverflow

Forward -2.249 -0.676 -1.572
Forward + ID -2.174 -0.644 -1.530
Backward -2.225 -0.679 -1.547
Backward + ID -2.165 -0.636 -1.529

Last.fm

Forward -0.463 1.309 -1.772
Forward + ID -0.477 1.302 -1.779
Backward -0.474 1.303 -1.777
Backward + ID -0.496 1.294 -1.790

MIMIC-II

Forward 0.555 0.847 -0.292
Forward + ID 1.319 1.405 -0.086
Backward 0.322 0.601 -0.279
Backward + ID 1.231 1.345 -0.114

EHRShot (10%)

Forward -3.885 0.105 -3.990
Forward + ID -3.848 -0.021 -3.827
Backward -4.571 -0.432 -4.139
Backward + ID -4.684 -0.641 -4.043
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D.4 MODEL CALIBRATION

To further probe the models, we evaluate the calibration metrics of MTPPs that are proposed in liter-
ature (Bosser & Taieb, 2023), which has a different focus than log-likelihood-based evaluation. On
a high level, calibration describes how well the uncertainty in the model is reflected in the observed
data. However, a model can achieve perfect calibration by predicting the marginal distribution, so
better calibration does not necessarily transform into better predictive performance. We therefore
present these metrics as a secondary metric (secondary to log-likelihood per Daley & Vere-Jones
(2003)) for investigating the performance of different models. We provide summarized statistics for
both probabilistic calibration error (PCE) for time calibration and expected calibration error (ECE)
for mark calibration in Table 10, and visualize the calibration curves in Figs. 7 and 8. From our re-
sults, all MTPP models are well-calibrated on most of the datasets, especially on mark predictions.

Table 10: Calibration results for the models and datasets tests.

(a) Probabilistic calibration error (PCE) for time calibration in percentage.

Model Probabilistic Calibration Error (PCE)
Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II EHRShot

RMTPP 13.70 4.20 3.55 10.18 1.91 11.55 3.85 13.31
NHP 7.57 0.15 0.27 7.38 1.77 4.77 6.05 8.22
SAHP 10.86 9.75 1.73 2.88 1.14 10.89 2.79 15.05
THP 12.28 5.71 3.32 16.32 2.10 10.90 1.21 14.55
AttNHP 6.20 1.26 0.96 3.17 1.52 1.57 4.66 OOM
IFTPP 1.74 23.93 0.44 0.61 0.50 0.30 2.19 17.66
DLHP 3.47 0.40 0.13 2.05 0.60 1.18 8.94 12.47

(b) Expected calibration error (ECE) for mark calibration in percentage.

Model Expected Calibration Error (ECE)
Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II EHRShot

RMTPP 6.41 5.89 2.62 1.60 1.36 2.44 1.97 9.22
NHP 6.75 0.33 0.81 4.40 1.02 4.10 1.92 2.84
SAHP 8.36 4.74 6.96 3.00 1.12 8.55 5.77 11.09
THP 2.02 1.20 1.74 6.48 0.77 2.67 1.81 11.42
AttNHP 2.88 0.39 0.44 2.52 1.21 0.50 2.79 OOM
IFTPP 0.37 0.58 0.41 1.49 1.48 0.59 1.40 2.01
DLHP 1.00 0.72 0.46 1.66 2.01 0.74 2.34 1.19

E
m

p
ir

ic
al

C
D

F

Predicted CDF

0

0.5

1
Amazon

RMTPP NHP SAHP THP AttNHP IFTPP DLHP

Retweet Taxi Taobao

0 0.5 1
0

0.5

1
StackOverflow

0 0.5 1

Last.fm

0 0.5 1

MIMIC-II

0 0.5 1

EHRShot

Figure 7: Reliability diagram for predicted inter-arrival time for each model on all datasets. Diagonal
dashed lines refer to perfect calibration.
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Figure 8: Reliability diagram for mark prediction of all models and all datasets. The x-axis specifies
the confidence of model estimates grouped into 20 bins, and the y-axis of the bar plot is the model
accuracy within that bin. The diagonal lines represent perfect calibration. The solid curves depict the
distribution of confidences, and do not share the y-axis. The grey dashed lines indicate the overall
prediction accuracy of the model for the next event conditioned on true event time.
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Finally, in Figs. 9 and 10 we plot the log-likelihood of time and mark respectively, versus their
corresponding calibration results, to provide an overall view of the performances of different models.
Our DLHP model consistently achieves higher log-likelihood while maintaining good calibration on
both time and mark components on most datasets.
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Figure 9: Log-likelihood of time vs. PCE for all models grouped by datasets. Higher log-likelihood
and lower PCE are better (i.e. top left corner).
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Figure 10: Log-likelihood of mark vs. ECE for all models grouped by datasets. Higher log-
likelihood and lower ECE are better (i.e. top left corner).
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