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A EXTENDED DERIVATIONS

A.1 ESTIMATING M

To apply equation 14 we need to estimate the value of M for different random samples for w(t).
M can be written in terms of the moments of the random variable W = {w} using the Taylor
expansion of L around wi = 0 plugged into equation 3

∂L(w)

∂wi
≈
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1
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where the sum over {ia} means all choices for the set of indices i1 . . . ip+q . Equation 22 states that
we need to know the order p+ q moments EP [wi1 . . .wip+q ] of W to calculate M . This is doable
in some cases. For example, we can use a normal distribution is used to initialize w(t = 0) ∈ Rn.
The local minima of L reachable by GD need to be in a finite domain for w. Therefore, we can
always rescale and redefine w such that its domain satisfies ‖w‖2 ≤ 1. This way we can initialize
with normalized vectors w(0)Tw(0) = 1 using σ = 1/

√
n and get

w(i)j(0) = N
(

0, n−1/2
)
, EP

[
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a=1
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= δi1...ip
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np/2
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where δi...j is the Kronecker delta, (p − 1)!! =
∏[p/2]
k=0 (p − 1 − 2k) and even(p) = 1 if p is

even and 0 if it’s odd. When the number of variables n � 1 is large, order p > 2 moments are
suppressed by factors of n−p/2. Plugging equation 23 into equation 22 and defining the Hessian
Hij(w) ≡ ∂2L(w)/∂wi∂wj we have

M ij(t = 0) =
1

n

[
H2
]
ij

∣∣∣
w→0

+O(n−2), (24)

which yields K ≈ (H/hmax)
−1 where hmax is the maximum eigenvalue of the Hessian at initial-

ization (note, the σ2 = 1/n factor cancels out). Here the assumption is that the derivatives ∂pwL are
not n dependent after rescaling the domain such that ‖w‖ ≤ 1. In the experiments in this paper this
condition is satisfied.

A.2 COMPUTATIONALLY EFFICIENT IMPLEMENTATION

Define M0 ≡ (1 − ξ)M/mmax with ξ � 1. To get an O(qn2) approximation for κ = M
−1/4
0 we

can take the first q terms in the binomial expansion

M
−1/4
0 = [I + (M0 − I)]

−1/4
=

∞∑
m=0

∏m
i=0(−1/4− i)

m!
(M0 − I)m (25)

Since M0 is positive semi-definite and its largest eigenvalue is one, the sum in equation 25 can
be truncated after q ∼ O(1) terms. The first q terms of equation 25 can be implemented as a q
layer GCN with aggregation function f(M) = I −M0 and residual connections. We choose q to
be as small as 1 or 2, as larger q may actually slow down the optimization. Note that computing
f(M)qθ is O(qn2) because we do not need to first compute f(M)q (which is O(qn3)) and instead
use vi+1f(M)vi (O(n2)) q times with v1 = θ.

Lastly, to evaluate M0 we need to estimate the leading eigenvalue mmax. We can use a similar
expansion for approximating mmax. Given any vector v ∈ Rn and using the spectral expansion we
have

Mqv =
∑
i

mq
i (ψ

T
i v)ψi (26)
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Since M is positive semi-definite, for q > 1 the leading eigenvector ψmax quickly dominates
the sum and we have Mqv ≈ mq

max(ψmaxv)ψmax. Additionally, using the generalized Perron-
Frobenius theorem (Berman & Plemmons (1994)) , the components of the leading eigenvector ψmax
should be mostly positive. Therefore, a good choice for v, which may be close to the actual ψmax,
is v = 1/

√
n, where 1 = (1, . . . , 1). This yields

1TMp1 ≈ mp
max(ψTi 1)2, mp−1

max ≈
1TMp1

1TM1
(27)

This is a crude approximation, but it serves our goal by being computationally efficient. Note that,
while computing Mq is O(qn3), because M1 is O(n2), computing Mq1 is O(qn2). Therefore, we
choose p = 2 and write

mmax ≈
1TM21

1TM1
=

∑
ijM

2
ij∑

ijMij
(28)

It is worth noting that if we think of M as the weighted adjacency matrix of a graph with n vertices,
the vector component Di = [M1]i =

∑
jMij is the weighted degree of node i. Hence equation 28

states M/mmax ≈
(∑

iDi/‖D‖2
)
M . This is reminiscent of the graph diffusion operator D−1M

and D−1/2MD−1/2 which are used as the aggregation functions in GCN (here Dij = Diδij is the
diagonal degree matrix).

Equation 9 decomposes the rate of convergence into a part M arising from the loss function and a
partK capturing the effect of the neural architecture. To understand the interplay between these two
matrices, we will first work out the toy example of convex optimization.

A.3 CONNECTION WITH NTK

Note that, like M , the NTK K is positive-semi-definite because K = BBT with Bia ≡√
ε̂a∂wi/∂θa, and so for any vector v ∈ Rn we have vTKv = ‖vTB‖2 ≥ 0. To see that K

is indeed the NTK, note that in neural network for a supervised problem on dataset Z = {zi} the
neural network output f(θ; zn) is a function of zn. Therefore, the supervised NTK has two more in-
dices Kij,nm =

∑
a ∂fi(θ;xn)/∂θa∂fj(θ;xm)/∂θa. However, in our problem the neural network

w(θ) is a separate reparametrization of the trainable parameters in L(w;Z), which doesn’t take the
dataset Z as explicit input. Therefore, the NTK for w(θ) does not have sample indices n,m. The
dataset Z only appears explicitly in L(w;Z), which includes a loss function and an architecture
defining the model used to learn the system.

M(w) is purely a function of the optimization loss function (and potential neural models in it)
and the value of w. In particular, at a given value of w, M(w) does not explicitly depend on the
architecture of the NR w(θ). K(θ), on the other hand, directly depends on w(θ).

A.4 REPARAMETERIZATION WITH GNN

Due to the non-convex nature of the optimization problem, reaching a good local optimum or an
equilibrium state can be computationally expensive. The core idea of our approach to accelerate
optimization is to parametrize the node features X as the output of a deep neural network.

Specifically, we start with a high-dimensional random embedding G0 ∈ RN×h0 . Then we apply
GNN layers to the random embedding sequentially:

G1 = σ(f(A)ZW (1)), G2 = σ(f(A)G1W
(2)), X = σ(GW + b) (29)

where f(A) = D̃−1/2ÃD̃−1/2 is the propagation rule in the GNN Kipf & Welling (2016). Propa-
gation rule is critical to the representation power of GNNs Dehmamy et al. (2019). Here we use the
normalized adjacency matrix Ã = A + I and D̃ii =

∑
j Ãij is the degree matrix of Ã. The new

embeddings G1 ∈ RN×h1 and G2 ∈ RN×h2 are reparametrized via GNNs. W (1) and W (2) are the
trainable weight matrices. We concatenate G0, G1 and G2 along the feature dimension to obtain the
node embedding G = [G0, G1, G2] ∈ RN×h where h = h0 + h2 + h2.

Finally, we apply a fully connected network to project the h-dimensional embedding G to the orig-
inal d dimension features X . We allow G0 to be freely trainable and W ∈ Rh×d is the projection
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a b

dc

Figure 6: Kuramoto model on (a,b) tree and (c,d) circle graph. a,c) loss curves evolution, while b,d)
global order parameter in each iteration steps

a cb

Figure 7: Kuramoto-model on different graph structures. We use the GCN model and switch to the
Linear model after different iteration steps: orange - 20 steps, green - 50 steps, and blue - 100 steps.
The plot shows that each GCN iteration step takes longer.

weight matrix. The set of trainable parameters is θ = {G0,W
(1),W (2),W, b}. In this way, the orig-

inal optimization problem over X becomes the optimization over θ. We initialize all the parameters
θ randomly and optimize them through back-propagation.

B EXPERIMENT DETAILS AND ADDITIONAL RESULTS

B.1 KURAMOTO OSCILLATOR

Relation to the XY model The loss equation 17 is also identical to the Hamiltonian (energy
function) of a the classical XY model (Kosterlitz & Thouless (1973)), a set of 2D spins si with
interaction energy given by L =

∑
i,j Aijsi · sj =

∑
i,j Aji cos(φj −φi). In the XY model, we are

also interested in the minima of the energy.

Method In our model, we first initialize random phases between 0 and 2π from a uniform dis-
tribution for each oscillator in a h dimensional space that results in N × h dimensional vector N
is the number of oscillators. Then we use this vector as input to the GCN model, which applies

14



Under review as a conference paper at ICLR 2022

a b c

Figure 8: Kuramoto-model on 25 × 25 square lattice. We use the GCN and Linear model with
different optimizers and learning rates. The Adam optimizer in all cases over-performs the other
optimizers.

S1
 / 

c

0.01

10

S2 / c0.01 10

Figure 9: Hopf-Kuramoto model on a square lattice (50 × 50) - phase pattern. We can distinguish
two main patterns - organized states are on the left part while disorganized states are on the right
part of the figure. In the experiments c = 1 for the simplicity.
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Figure 10: MNIST image classification. Red curve shows a linear model (92.68% accuracy). Blue
curve is the reparametrized model, where at step 50 we switch from GCN to Linear model (92.71%
accuracy).

D−1/2ÂD−1/2 , Â = A + I propagation rule, with LeakyRelu activation. The final output dimen-
sion is N × 1, where the elements are the phases of oscillators constrained between 0 and 2π. In
all experiments for h hyperparameter we chose 10. Different h values for different graph sizes may
give different results. Choosing large h reduces the speedup significantly. We used Adam optimizer
by 0.01 learning rate.

B.2 MNIST IMAGE CLASSIFICATION

Here, we introduce our reparametrization model for image classification on the MNIST image
dataset. First, we test a simple linear model as a baseline and compare the performance to the
GCN model. We use a cross-entropy loss function, Adam optimizer with a 0.001 learning rate in
the experiments, and Softmax nonlinear activation function in the GCN model. We train our models
on 100 batch size and 20 epochs. In the GCN model, we build the H matrix (introduced in the
eq. 15) from the covariance matrix of images and use it as a propagation rule. In the early stages
of the optimization, we use the GCN model until a plateau appears on the loss curve then train the
model further by a linear model. We found that the optimal GCN to linear model transition is around
50 iterations steps. Also, we discovered that wider GCN layers achieve better performance; thus,
we chose 500 for the initially hidden dimension. According to the previous experiments, the GCN
model, persistent homology (B.3), and Kuramoto (B.1) model speedups the convergence in the early
stages (Fig. 10)

B.3 PERSISTENT HOMOLOGY

Overview. Homology describes the general characteristics of data in a metric space, and is cate-
gorized by the order of its features. Zero order features correspond to connected components, first
order features have shapes like ”holes” and higher order features are described as ”voids”.

A practical way to compute homology of a topological space is through forming simplicial com-
plexes from its points. This enables not only fast homology computation with linear algebra, but
also approximating the topological space with its subsets.

16



Under review as a conference paper at ICLR 2022

In order to construct a simplicial complex, a filtration parameter is needed to specify the scope
of connectivity. Intuitively, this defines the resolution of the homological features obtained. A
feature is considered ”persistent” if it exists across a wide range of filtration values. In order words,
persistent homology seeks features that are scale-invariant, which serve as the best descriptors of the
topological space.

There are different ways to build simplicial complexes from given data points and filtration values.
Czech complex, the most classic model, guarantees approximation of a topological space with a
subset of points. However, it is computationally heavy and thus rarely used in practice. Instead,
other models like the Vietoris-Rips complex, which approximates the Czech complex, are preferred
for their efficiency (Otter et al., 2017). Vietoris-Rips complex is also used in the point cloud opti-
mization experiment of ours and Gabrielsson et al. (2020); Carriere et al. (2021).

Algorithm Implementation. Instead of optimizing the coordinates of the point cloud directly, we
reparameterize the point cloud as the output of the GCN model. To optimize the network weights,
we chose identity matrix with dimension of the point cloud size as the fixed input.

To apply GCN, we need the adjacency matrix of the point cloud. Even though the point cloud does
not have any edges, we can manually generate edges by constructing a simplicial complex from
it. The filtration value is chosen around the midpoint between the maximum and minimum of the
feature birth filtration value of the initial random point cloud, which works well in practice.

Before the optimization process begins, we first fit the network to re-produce the initial random point
cloud distribution. This is done by minimizing MSE loss on the network output and the regression
target.

Then, we begin to optimize the output with the same loss function in Gabrielsson et al. (2020); Car-
riere et al. (2021), which consists of topological and distance penalties. The GCN model can signif-
icantly accelerates convergence at the start of training, but this effect diminishes quickly. Therefore,
we switch the GCN to the linear model once the its acceleration slows down. We used this hybrid
approach in all of our experiments.

Hyperparameter Tuning. We conducted extensive hyperparameter search to fine tune the GCN
model, in terms of varying hidden dimensions, learning rates and optimizers. We chose the setting
of 200 point cloud with range 2.0 for all the tuning experiments.

Fig. 11 shows the model convergence with different hidden dimensions. We see that loss converges
faster with one layer of GCN instead of two. Also, convergence is delayed when the dimension
of GCN becomes too large. Overall, one layer GCN model with h1, h2 = 8, 6 generally excels in
performance, and is used in all other experiments.

Fig. 12,13,14 shows the performance of the GCN model with different prefit learning rates, train
learning rates and optimizers. From the results, a lower prefit learning rate of 0.01 combined with a
training learning rate below 0.01 generally converges to lower loss and yields better speedup. For all
the optimizers, default parameters from the Tensorflow model are used alongside varying learning
rates and the same optimizer is used in both training and prefitting. Adam optimizer is much more
effective than RSMProp and SGD on accelerating convergence. For SGD, prefitting with learning
rate 0.05 and 0.1 causes the loss to explode in a few iterations, thus the corresponding results are left
as blank spaces.

Detailed Runtime Comparison. Fig. 15 and 16 shows how training, initial point cloud fitting and
total time evolve over different point cloud sizes and ranges. Training time decreases significantly
with increasing range, especially from 1.0 to 2.0. This effect becomes more obvious with density
normalized runtime. On the other hand, prefitting time increases exponentially with both point cloud
range and size. Overall, the total time matches the trend of training time, however the speed-up is
halved compared to training due to the addition of prefitting time.
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Figure 11: GCN Hyperparameter Comparison. We recommend using one layer GCN model with
h1, h2 = 8, 6.
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Figure 12: Converged loss of different learning rates and optimizers.
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Figure 13: Training Speedup of different learning rates and optimizers.
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Figure 15: Training, prefitting and total time
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Figure 16: Density Normalized training, prefitting and total time. We normalize the runtime by
N3, where N is the point cloud size. This is because persistence diagram computation has time
complexity of O(N3)
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