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Abstract
In practice, encoding invariances into models im-
proves sample complexity. In this work, we study
this phenomenon from a theoretical perspective.
In particular, we provide minimax optimal rates
for kernel ridge regression on compact manifolds,
with a target function that is invariant to a group
action on the manifold. Our results hold for any
smooth compact Lie group action, even groups of
positive dimension. For a finite group, the gain ef-
fectively multiplies the number of samples by the
group size. For groups of positive dimension, the
gain is observed by a reduction in the manifold’s
dimension, in addition to a factor proportional to
the volume of the quotient space. Our proof takes
the viewpoint of differential geometry, in contrast
to the more common strategy of using invariant
polynomials. This new geometric viewpoint on
learning with invariances may be of independent
interest.

1. Introduction
In a broad range of applications, including machine learn-
ing for physics, molecular biology, point clouds, and social
networks, the underlying learning problems are invariant
with respect to a group action. The invariances are observed
widely in practice, for instance, in the study of high energy
particle physics (Fenton et al., 2022; Lee et al., 2020), galax-
ies (González et al., 2018; Domínguez Sánchez et al., 2018),
and also molecular datasets (Anderson et al., 2019; Wang
et al., 2021; Li et al., 2021). In learning with invariances,
one aims to develop powerful architectures that exploit the
problem’s invariance structure as much as possible. An es-
sential question is thus: what are the fundamental benefits
of model invariance, e.g., in terms of sample complexity?

Several architectures for learning with invariances have been
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proposed for various types of data and invariances, including
DeepSet (Zaheer et al., 2017) for sets, Convolutional Neural
Networks (CNNs) (Krizhevsky et al., 2017), tensor field
neural networks (Thomas et al., 2018) for point clouds with
rotations, translations, and permutations symmetries. These
architectures are to exploit the invariance of data as much
as possible, and are invariant/equivariant by design.

In fixed dimensions, one common feature of many invariant
models, including those discussed above, is that the data
lie on a compact manifold (not necessarily a sphere, e.g.,
the Stiefel manifold for spectral data), and are invariant
with respect to a group action on that manifold. Thus, char-
acterizing the theoretical gain of invariances corresponds
to studying the gain of learning under group actions on
manifolds. Adopting this view, in this paper, we answer the
question: how much gain in sample complexity is achievable
by encoding invariances? As this problem is algorithm and
model dependent, it is hard to address in general. A focused
version of the problem, but still interesting, is to study this
sample complexity gain in kernel-based algorithms, which
is what we address here.

Formally, we consider Kernel Ridge Regression (KRR) with
i.i.d. data on a compact manifold M. The target func-
tion lies in a Reproducing Kernel Hilbert space (RKHS) of
Sobolev functions Hs(M), s ≥ 0. In addition, the target
function is invariant to the action of an arbitrary Lie group
G on the manifold. We aim to quantify: by varying the
group G, how does the sample complexity change, and what
is the precise gain as G grows?

Main results. Our main results characterize minimax opti-
mal rates for the convergence of the (excess) population risk
(generalization error) of KRR with invariances. More pre-
cisely, for the Sobolev kernel, the most commonly studied
case of kernel regression, we prove that a (excess) popula-

tion risk (generalization error) ∝
(

σ2 vol(M/G)
n

)s/(s+d/2)

is both achievable and minimax optimal, where σ2 is the
variance of the observation noise, vol(M/G) is the volume1

of the corresponding quotient space, and d is the effective
dimension of the quotient space (see Section 3 for a pre-
cise definition). This result shows a reduction in sample

1In general, the quotient space is not a manifold; but we can
still define a notion of volume for it.
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complexity in two intuitive ways: (1) scaling the effective
number of samples, and (2) reducing dimension and hence
exponent. First, for finite groups, the factor vol(M/G)
reduces to vol(M)/|G|, and can hence be interpreted as
scaling the “effective” number of samples by the size of
the group. That is, each data point conveys the information
of |G| data points due to the invariance. Second, and im-
portantly, the parameter d in the exponent can in general
be much smaller than dim(M), which would be the corre-
spondent of d in the non-invariant case. In the best case,
d = dim(M)− dim(G), where dim(G) is the dimension
of the Lie group G. Hence, the second gain shows a gain in
the dimensionality of the space, and hence in the exponent.

Our results generalize and greatly expand previous results
by Bietti et al. (2021), which only apply to finite groups
and isometric actions and are valid only on spheres. In con-
trast, we derive optimal rates for all compact manifolds and
smooth compact Lie group actions (not necessarily isomet-
ric), including groups of positive dimension. In particular,
the reduction in dimension applies to infinite groups, since
for finite groups dim(G) = 0. Hence, our results reveal a
new perspective on the reduction in sample complexity that
was not possible with previous assumptions. Our rates are
consistent with the classical results for learning in Sobolev
spaces on manifolds without invariances. (To illustrate our
general results, in the full version, we make them explicit
for kernel counterparts of popular invariant models, such as
DeepSets, GNNs, PointNet, and SignNet).

Even though our theoretical results look intuitively reason-
able, the proof is challenging. We study the space of in-
variant functions as a function space on the quotient space
M/G. To bound its complexity, we develop a dimension
counting theorem for functions on the quotient space, which
is at the heart of our analysis and of independent inter-
est. The difficulty is that M/G is not always a manifold.
Moreover, it may exhibit non-trivial boundaries that require
boundary conditions to study function spaces. Different
boundary conditions can lead to very different function
spaces, and a priori the appropriate choice for the invari-
ant functions is unclear. We prove that smooth invariant
functions on M satisfy the Neumann boundary condition
on the (potential) boundaries of the quotient space, thus
characterizing exactly the space of invariant functions.

The ideas behind the proof are of potential independent
interest: we provide a differential geometric viewpoint of
the class of functions defined on manifolds and study group
actions on manifolds from this perspective. This stands
in contrast to the classical strategy of using polynomials
generating the class of functions (Mei et al., 2021; Bietti
et al., 2021), which is restricted to spheres. To the best of
our knowledge, the tools used in this paper are new to the
literature on learning with invariances. In short, we make

the following contributions:

• We characterize the exact sample complexity gain from
invariances for kernel regression on compact manifolds
for an arbitrary Lie group action. Our results reveal
two ways to reduce sample complexity, including a new
reduction in dimensionality that was not obtainable with
assumptions in prior work.

• Our proof analyzes invariant functions as a function
space on the quotient space; this differential geometric
perspective and our new dimension counting theorem,
which is at the heart of our analysis, may be of indepen-
dent interest.

2. Preliminaries and Problem Statement
Consider a smooth connected compact boundaryless2

dim(M)−dimensional (Riemannian) manifold (M, g),
where g is the Riemannian metric. Let G denote an ar-
bitrary compact Lie group of dimension dim(G) (i.e., a
group with a smooth manifold structure), and assume that
G acts smoothly on the manifold (M, g); this means that
each τ ∈ G corresponds to a diffeomorphism τ : M → M,
i.e., an invertible smooth map. Without loss of generality,
we can assume that G acts isometrically on (M, g), i.e., G
is a Lie subgroup of the isometry group ISO(M, g). To see
why this is not restrictive, given a base metric g, consider
a new metric g̃ = µG(τ

∗g), where µG is the left-invariant
Haar (uniform) measure of G, and τ∗g is the pullback of the
metric g by τ . Under the new metric, G acts isometrically
on (M, g̃).

We are given a dataset S = {(xi, yi) : i = 1, 2, . . . , n} ⊆
(M × R)n of n labeled samples, where xi ∼i.i.d. µ,
for the uniform (Borel) probability measure dµ(x) :=

1
vol(M)d volg(x). Here, d volg(x) denotes the volume el-
ement of the manifold defined using the Riemannian metric
g. We assume the uniform sampling for simplicity; our
results hold for non-uniform cases, too. The hypothesis
class is a set F ⊆ L2

inv(M, G) ⊆ L2(M) including only
G-invariant square-integrable functions on the manifold,
i.e., those f ∈ L2(M) satisfying f(τ(x)) = f(x) for all
τ ∈ G. We assume that there exists a function f⋆ ∈ F such
that yi = f⋆(xi) + ϵi for each (xi, yi) ∈ S, where ϵi’s are
conditionally zero-mean random variables with variance σ2,
i.e., E[ϵi|xi] = 0 and E[ϵ2i |xi] ≤ σ2.

Let K : M × M denote a continuous positive-definite
symmetric (PDS) kernel on the manifold M, and H ⊆
L2(M) its Reproducing Kernel Hilbert Space (RKHS). The
kernel K is called G−invariant if and only if for all x, y ∈

2Although the results in this paper can be easily extended to
manifolds with boundaries, for simplicity, we focus on the bound-
aryless case.

2



The Exact Sample Complexity Gain from Invariances for Kernel Regression

M, one has K(x, y) = K(τ(x), τ ′(y)), for any τ, τ ′ ∈ G.

Kernel Ridge Regression (KRR) on the data S with a G-
invariant kernel K asks for the function f̂ that minimizes

f̂ := argmin
f∈H

{ 1

n

n∑
i=1

(yi − f(xi))
2 + η∥f∥2H

}
. (1)

By the representer theorem (Mohri et al., 2018), the optimal
solution f̂ ∈ H is of the form f̂ =

∑n
i=1 aiK(xi, .) for a

weight vector a ∈ Rn. The objective function R̂(f̂) can
thus be written as

R̂(f̂) = 1
n∥y −Ka∥22 + ηaTKa, (2)

where y = (y1, y2, . . . , yn)
n and K = {K(xi, xj)}ni,j=1 is

the Gram matrix. This gives the closed-form solution a =
(K+ nηI)−1y. Also, define the population risk R(f) :=
Ex∼µ[(y − f(x))2].

This paper focuses on the RKHS of Sobolev functions,
H = Hs

inv(M) = Hs(M) ∩ L2
inv(M, G), s > 0. This

includes all functions having square-integrable derivatives
up to order s. Note that Hs(M) includes only continuous
functions when s > dim(M)/2. Moreover, it contains only
continuously differentiable functions up to order k when
s > dim(M)/2 + k. Note that Hs(M) is an RKHS if and
only if s > dim(M)/2.

3. Main Results
Our first theorem provides an upper bound on the excess
population risk, or the generalization error, of KRR with
invariances.
Theorem 3.1 (Convergence rate of KRR with invariances).
Consider KRR with invariance with respect to a group
G on the Sobolev space Hs

inv(M), s > d/2, with d =
dim(M/G). Assume that f⋆ ∈ Hsθ

inv(M) for some θ ∈
(0, 1], and let s = d

2 (κ+ 1) for a positive κ. Then,

E
[
R(f̂)−R(f⋆)

]
≤ 32

( 1

κθ

ωd

(2π)d
σ2 vol(M/G)

n

)θs/(θs+d/2)

∥f⋆∥d/(θs+d/2)

Hsθ
inv(M)

,

with the optimal regularization parameter

η =
( 1

2κθ∥f⋆∥2Hsθ
inv(M)

ωd

(2π)d
σ2 vol(M/G)

n

)θs/(θs+d/2)

,

where ωd = πd/2

Γ( d
2+1)

is the volume of the unit d−ball in the

Euclidean space Rd.

Setting G = {idG} (i.e., the trivial group) recovers the
standard generalization bound without group invariances.
In particular, without invariances, the dimension d becomes
dim(M), and the volume vol(M/G) becomes vol(M).
Hence, group invariance can lead to a two-fold gain:

• Exponent: the dimension d in the exponent can be much
smaller than the corresponding dim(M).

• Effective number of samples: the number of samples
is multiplied by

ωdim(M)/(2π)
dim(M)

ωd/(2π)d
.

vol(M)

vol(M/G)
. (3)

The quantity (3) reduces to |G| if G is a finite group that
efficiently acts on M (i.e., if any group element acts non-
trivially on the manifold). Intuitively, any sample conveys
the information of |G| data points, which can be interpreted
as having effectively n × |G| samples (compared to non-
invariant KRR with n samples). For groups of positive
dimension, it measures how the group is contracting the
volume of the manifold. Note that for finite groups, one
always has vol(M)

vol(M/G) ≥ 1.

Dimension and volume for quotient spaces. In Theorem
3.1, the quotient space M/G is defined as the set of all
orbits [x] := {τ(x) : τ ∈ G}, x ∈ M, but M/G is not al-
ways a (boundaryless) manifold. Thus, it is not immediately
possible to define its dimension and volume. The quotient
space is a finite disjoint union of manifolds, each with its
specific dimension/volume. In the full version, we review
the theory of quotients of manifolds, and observe that there
exists an open dense subset M0 ⊆ M such that M0/G
is open and dense in M/G, and more importantly, it is a
connected precompact manifold. M0/G is called the prin-
cipal part of the quotient space. It has the largest dimension
among all the manifolds that make up the quotient space.

The projection map π : M0 → M0/G induces a met-
ric on M0/G and this allows us to define vol(M/G) :=
vol(M0/G). Note that vol(M/G) depends on the Rieman-
nian metric, which itself might depend on the group G if
we start from a base metric and then deform it to make
the action isometric. The volume vol(M0/G) is computed
with respect to the dimension of M0/G, thus being nonzero
even if dim(M0/G) < dim(M).

The effective dimension of the quotient space is defined
as d := dim(M0/G). Alternatively, one can define the
effective dimension as

d := dim(M)− dim(G) + min
x∈M

dim(Gx), (4)

where Gx := {τ ∈ G : τ(x) = x} is called the isotropic
group of the action at point x ∈ M. For example, if there
exists a point x ∈ M with the trivial isotropy group Gx =
{idG}, then d = dim(M)− dim(G).
Remark 3.2. The invariant Sobolev space Hs

inv(M) ⊆
Hsθ

inv(M) ⊆ L2
inv(M). If the regression function f⋆ does

not belong to the Sobolev space Hs
inv(M) (i.e., θ ∈ (0, 1)),
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the achieved exponent only depends on θs (i.e., the smooth-
ness of the regression function f⋆ and not the smoothness
of the kernel). The bound decreases monotonically as s
increases; smoother functions are easier to learn.

The next theorem states our minimax optimality result. For
simplicity, we assume θ = 1.

Theorem 3.3 (Minimax optimality). For any estimator f̂ ,

sup
f⋆∈Hs

inv(M)
∥f⋆∥Hs

inv
(M)=1

E
[
R(f̂)−R(f⋆)

]

≥ Cκ

( ωd

(2π)d
σ2 vol(M/G)

n

)s/(s+d/2)

,

where Cκ is a constant only depending on κ.

An explicit formula for Cκ is given in the full version. Note
that the above minimax lower bound not only proves that
the achieved bound by the KRR estimator is optimal but
also shows the optimality of the prefactor characterized in
Theorem 3.1 with respect to the effective dimension d (up
to multiplicative constants depending on κ).

4. Conclusion
In this work, we derived new generalization bounds for
learning with invariances. These generalization bounds
show a two-fold gain in sample complexity: (1) in the
dimension term in the exponent, and (2) in the effective
number of samples. Our results significantly generalize
the range of settings where the bounds apply. In particular,
(1) goes beyond prior work, since it applies only to groups
of positive dimension, whereas prior work assumed finite
dimensions. At the heart of our analysis is a new dimen-
sion counting bound for invariant functions on manifolds,
which we expect to be useful more generally for analyzing
learning with invariances. We prove this bound via differen-
tial geometry, and show how to overcome several technical
challenges related to the properties of the quotient space.
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