LaRa: Latents and Rays for Multi-Camera
Bird’s-Eye-View Semantic Segmentation
— Supplementary Material —

Florent Bartoccioni Eloi Zablocki Andrei Bursuc
Valeo.ai Inria* Valeo.ai Valeo.ai
Patrick Pérez Matthieu Cord Karteek Alahari
Valeo.ai Valeo.ai Inria*

Sorbonne Université

A Implementation details

Following common practice [1, 2, 3] we employ an EfficientNet [4] as our CNN image encoder E.
In particular, we use an EfficientNet-B4 [4] with an output stride of 8. It extracts feature maps for
each image Fy, = F(I;) € RM*%X¢, In practice, h = 224/8 = 28, w = 480/8 = 60 and we define
c=128.

For the BEV CNN, we follow Philion and Fidler [1] and use an encoder-decoder architecture with
a ResNet-18 [5] as backbone. It produces features at three levels of resolutions (1:1, 1:2 and 1:8),
which are progressively upsampled back to the input resolution with bilinear interpolation (first x4
for the 1:8th scale then X2 for the 1:2¢h). Skip connections are used between encoder and decoder
stages of the same resolution.

Both MLP,,y and MLPy., are 2-layer MLPs producing 128-dimensional features. Each consists of
two linear transformations with a GELU [6] activation function:

MLP(z) = WoGELU(Wiz + by) + ba. 5)
The exact specification of other modules will be available in our code upon publication.

A.1 Attention modules

Following the original formulation and notations [7], the attention operation is defined as:

QK"
Attn(Q, K, V') = softmax
@5V Vi

W (6)

with its multi-headed extension:
MultiheadAttn(Q, K, V) = Concat(head,, . . ., head,)W ©°

7

where head; = Attn(QVViQ7 KWE vw}Y). @
with dg, dy, d, the dimensions of (), K and V. In practice, we use dmodcl, @ hyperparameter, to
define the dimension of the queries, keys and values for the inner attention (Equation 6) as well
as h the number of attention heads. More precisely, we linearly project queries, keys and values h
times with different projections, each with dimension demp = dmoder/ - The learnable projection
matrices of each head are defined as WiQ € R Xdemb WiK € Rk X dem Wiv € Rvxdemv gpd
Wio c Rh'dcmbXdu.

*Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

Our architecture integrates three attention modules [7]: (i) a cross-attention between latent vectors
and input features; (ii) a sequence of self-attention on the latent vectors; (iii) a cross-attention be-
tween BEV query and latent vectors. More precisely, and with a slight abuse of notation:

Latent-Input cross-attention

latents := MultiheadAttn(LayerNorm(latents), LayerNorm(input), LayerNorm(input)) + latents
latents := MLP(LayerNorm(latents)) + latents
®)
Latent self-attention
latents := MultiheadAttn(LayerNorm(latents), LayerNorm(latents), LayerNorm(latents)) + latents
latents := MLP(LayerNorm(latents)) + latents
€))
BEVquery-Latent cross-attention

output := Multihead Attn(LayerNorm(BEVquery), LayerNorm(latents), LayerNorm(latents))

output := MLP(LayerNorm(output)) + output
(10)

In particular, the cross-attention between BEV query and latent vectors is not residual. Since the
query is made of coordinates, imposing the network to predict segmentation as residual of coordi-
nates does not make sense.

A.2 Output embedding

In the main paper, we considered Fourier features and learned query as alternative BEV query em-
beddings. Here we detail both of them.

Fourier features. The Fourier encoding has been proven to be well suited for encoding fine po-
sitional features [7, 8, 9]. This is done by applying the following on an arbitrary input z € R:

fourier(z) = (z,sin(f17z), cos(fi7z),...,sin(fp7z), cos(fpmz)), (11)
where B is the number of Fourier bands, and f;, is spaced linearly from 1 to a maximum frequency
fp and typically set to the input’s Nyquist frequency [8]. The maximum frequency fp and number
of bands B are hyper-parameters. This Fourier embedding is applied on the normalized coordinate
grid such that:

Qfourier [i7 J} = fOurier(Qcoords [i, J]z) 3] fourier(@coords [Z7j]j) (12)

Learned. Another alternative, following common transformer practice [7, 10] and most notably
proposed by CVT [3], is to let the network learn its query of dimension dpey-query from data. However,
this is memory intensive as it introduces Apey X Whey X dpey-query additional parameters to be optimized.
In other words, the number of parameters grows quadratically to the resolution of the BEV map. For
experiments using learned output query embedding, we use dpey-query = 32.

B Evaluation details

With no established benchmarks to precisely compare model’s performances, there are almost as
many settings as there are previous works. Differences are found at three different levels:

* The resolution of the output grid where two main settings have been used: a grid of
100mx50m at a 25cm resolution [3, 11, 12, 13] and a grid of 100m x 100m at a 50cm reso-
lution [1, 3]. These settings are respectively referred as ‘Setting 1” (Apey X wpey = 400x200)
and ‘Setting 2” (hpey X Whey = 200 x 200).

* The considered classes. There are slight differences in the classes used to train and evaluate
the model. For instance, some models are trained with a multi-class objective to simulta-
neously segment objects such as cars, pedestrian or cones [11, 12, 13]. Some others

only train and evaluate in a binary semantic segmentation setting on a meta-class vehicles
which includes cars, bicycles, trucks, efc. [1, 3]. Some works also use instance seg-
mentation information to train their model where the centers of each distinct vehicle is
known at train time [2]. In all of our experiments, we place ourselves in the binary se-
mantic segmentation setting of the meta-class vehicles. This choice is made to have fair
and consistent comparisons with our baselines [1, 3], however, it should be noted that our
model is not constrained to this setting.

» The levels of visibility of objects. Objects selected as ground truth, both for training and
evaluating the model, differ in terms of their levels of visibility. Three options have been
considered: objects that are in line-of-sight with the ego car’s LIDAR [11], or objects with
a nuScenes visibility above a defined threshold, either 0% [1] or 40% [3].

C Extension to driveable area segmentation task

front left front ot front right
.
- :)]
- " ; ;
ack left back right
¢ o ' ’
1 1
| [
] 8
3 - 1 -
B |
[Pred |
I E [
. front left |]
s e o2]
~back feft” : . 5
])
1]
GT
l
front right | |
ront right” § I ~- = l' ..
fe]
o i 8 ,
. 1
b i
! i
_

Figure 5: Qualitative results on complex scenes. We show the six camera views surrounding the
vehicle along with segmentation ground truth for reference. Vehicles are shown in blue and driveable
area in gray. Vehicles and driveable area predictions are from two different models trained indepen-
dently for their respective ground-truth, the predictions are then merged for vizualization purpose.
The ego vehicle is located in the center and facing downwards. Predictions of both driveable area
and vehicle segmentation are thresholded at 0.5 for visualization purpose.

In this section, we also provide results for the driveable area segmentation task, also addressed by
CVT [3]. Contrary to vehicle segmentation, this task requires the network to do “amodal comple-
tion” to a high degree, i.e., to correctly estimate regions of the road despite parts of it being severely
occluded.

We followed the protocol of CVT [3] for this segmentation task; the ground truth is generated using
HD-map’s polygons from the dataset. We kept the same hyperparameters we used for the vehicle
segmentation task, with a minor difference to the learning rate: we divide it by a factor 10 after 15
epochs (compared to a constant learning rate for vehicle segmentation).

Quantitative and qualitative results for this additional task are given respectively in Table 3 and
Figure 5. When compared with CVT, we observe that LaRa achieves better performance (+0.9).
Note that we do not do multi-tasking: following CVT [3], we train a model specifically for the
task of driveable area segmentation. The qualitative examples in Figure 5 are produced by fusing
predictions from two models.

Table 1: Driveable area segmentation. Results (in IoU) on nuScenes.
Method TIoU

CVT 74.3
LaRa (ours) 75.2

D A quantitative study of the influence of ray embedding on attention
consistency across cameras

front left front front right

B —— - — = - y
back left i back right

- oo, B

n:80 h:10

front right

B y ; e — .
back left back right

n:10 h:5

Figure 6: Input-to-latent attention study. Analysis of attention maps for two networks trained
with different input embeddings. Top row is with ‘Fourier + Cam. idx’ and bottom row is with our
proposed ‘Cam. rays’ embedding. The attention for one attention head and one latent is shown on
the left superimposed with RGB images. The polar plots represent the directional attention intensity
for one attention head with one latent vector. The radial distance is proportional to the attention level
and shows the directions the network attends to the most.

In this section, we propose a quantitative analysis to support our claim that “our network is able to
retrieve the pixel relationships between views thanks to our ray embedding” (Sec. 4.3 in the main

paper).

To this end, we introduce a metric that directly quantifies the consistency and alignment of attention
values across camera by analyzing behavior in “overlapping” regions, i.e., regions seen by two
different cameras. We provide a visual description of this metric and its computation in Figure 7.

In short, knowing the orientation of each camera, we compute the Mean Squared Error (MSE) of the
directional attention intensity between cameras on their overlapping regions. This score is averaged
for all the overlapping regions, latents and attention heads, and examples in the validation set. A
score of zero indicates a perfect match of the attention levels on overlapping regions (i.e., across

overlapping region between
cameras C1 and C2

Figure 7: Measuring the attention consistency across cameras. The proposed metric computes
the Mean-Squared-Error (MSE) of the attention intensity on overlapping regions between cameras
(as illustrated for two cameras and one latent and one attention head), and averages it over all cam-
eras, latents, heads and scenes.

cameras). Results with this metric, reported in Table 2, show that our ‘Cam. rays’ embedding is 10
times more “consistent” across cameras than the baseline ‘Fourier + Cam. idx’.

Table 2: Impact of ray embedding on cross-camera attention consistency. Cross-camera atten-
tion consistency (measured with proposed MSE metric, see Fig. 6) on nuScene.

Embedding MSE on overlap
2D Fourier + Cam. idx 0.0896
Cam. rays (ours) 0.0068

Additionally, we provide qualitative examples of the ‘Fourier + Cam. idx’ embedding to compare
against our ray embedding in Figure 6. Contrary to the attention yield by our ray embedding, the
one derived from the ‘Fourier + Cam. idx’ embedding is much more spread out and less consistent
across cameras.

E Comparison to PETR encoding

In PETR [14], the embedding of each pixel is computed by sampling its ray given D predefined
depths. The 3D coordinates of the D sampled points along the ray are normalized, concatenated,
processed by an MLP and summed with the visual features. Conceptually, the embedding is a way
to indicate to the network “this pixel can observe these 3D points in the camera frustum space”.

The embedding in PETR differs in that it is limited by the sampling resolution (i.e., the D predefined
depths), as computation and memory footprint increase linearly with respect to D. In contrast, we
showed that our constant-complexity embedding is effective as a 3D positional embedding.

In addition, we include quantitative results to compare PETR embedding against our ray embedding
in Table 3. We trained our model with PETR input embedding in place of ours. The results show
that our ray embedding performs better (+72%).

Table 3: Impact of ray embedding on performance. Vehicle segmentation performance (in IoU)
for vehicle segmentation on nuScenes.

Embedding IoU

PETR [14] 34.8
Cam. rays (ours) 354

F Additional attention qualitative analysis

We also provide additional analysis of attention maps for the multi-camera input shown in Figure 8
with a network using 256 latents and 32 attention heads. As in the main paper, the polar plots
represent the directional attention intensity, showing the directions the network attends the most.
The contribution of each camera is indicated by a color code coherent with Figure 8. Each polar plot
is oriented in an upward direction (i.e., the front of the car points upward).

G Additional qualitative examples

We also provide videos of our segmentation results on complex scenes in various visual conditions
(daylight, rain, night). In these videos, we compare against our two baselines CVT [3] and Lift-
Splat [1]. For a fair comparison, we use our model trained with visibility > 40% against CVT and
> 0% against Lift-Splat.

References

[1] J. Philion and S. Fidler. Lift, splat, shoot: Encoding images from arbitrary camera rigs by
implicitly unprojecting to 3D. In ECCV, 2020.

[2] A. Hu, Z. Murez, N. Mohan, S. Dudas, J. Hawke, V. Badrinarayanan, R. Cipolla, and
A. Kendall. FIERY: Future instance segmentation in bird’s-eye view from surround monocular
cameras. In ICCV, 2021.

[3] B. Zhou and P. Krihenbiihl. Cross-view transformers for real-time map-view semantic seg-
mentation. In CVPR, 2022.

[4] M. Tan and Q. V. Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In ICML, 2019.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR,
2016.

[6] D. Hendrycks and K. Gimpel. Gaussian error linear units (GELUs). arXiv 1606.08415, 2016.

front left :

Figure 8: Six input camera images coming from the 360-degree camera rig of nuScenes. Note small
overlaps between views, e.g., the front of the white truck is both seen in the front-left and front cams.

WY S /]
‘
g™

Figure 9: Input-to-latent attention study — average over latents. These polar plots represent the
directional attention intensity averaged over all the 256 latent vectors for each attention head. When
averaging over latent vectors, we observe that each attention head generally covers all directions.
This suggests that the latent vectors contain most of the directional information and that the whole
scene is attended across the latent. More rarely, an attention head’s polar plot will be directional but
will maintain a level of generality by being symmetrical.

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-
sukhin. Attention is all you need. In NeurIPS, 2017.

[8] A.Jaegle, S. Borgeaud, J.-B. Alayrac, C. Doersch, C. Ionescu, D. Ding, S. Koppula, D. Zoran,
A. Brock, E. Shelhamer, O. J. Henaff, M. Botvinick, A. Zisserman, O. Vinyals, and J. Carreira.
Perceiver 10: A general architecture for structured inputs & outputs. In /CLR, 2022.

[9] W. Yifan, C. Doersch, R. Arandjelovi¢, J. Carreira, and A. Zisserman. Input-level inductive
biases for 3D reconstruction. In CVPR, 2022.

[10] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. End-to-end
object detection with transformers. In ECCV, 2020.

[11] T. Roddick and R. Cipolla. Predicting semantic map representations from images using pyra-
mid occupancy networks. In CVPR, 2020.

[12] B. Pan,J. Sun, H. Y. T. Leung, A. Andonian, and B. Zhou. Cross-view semantic segmentation
for sensing surroundings. In /ROS, 2020.

[13] A. Saha, O. Mendez, C. Russell, and R. Bowden. Enabling spatio-temporal aggregation in
birds-eye-view vehicle estimation. In ICRA, 2021.

[14] Y. Liu, T. Wang, X. Zhang, and J. Sun. Petr: Position embedding transformation for multi-view
3d object detection. arXiv, 2022.

0T = ©

ads for the 32 atten
ion sp
views with the

2§ E ¢

over heads. Thes

3@@@@@@@@@ ©®@@@mu

Figure 11: Input-to-latent attention study — all the attention heads of a latent vector. These
polar plots represent the directional attention intensity of the 32 attention heads for a randomly
chosen latent vector (latent vector #10). As shown in Figure 10, one latent vector approximately
covers half of the scene over its attention heads.

/

ceEEL e vEeSpe

@@@@@@)@@ e ®® e
@@Cﬁ ©O2CQ0O @O
(@ () (@) uf\/ CALIIC) w@@@@ﬁp@@
@@ CrrELErrrc
@@@0@@@@@@&@ l\Qx.w

9“)\)

Figure 12: Input-to-latent attention study — all the latent vectors for an attention head. These
polar plots represent the directional attention intensity of the 256 latent vectors for a randomly
chosen attention head (head #4). As shown in Figure 9, one attention head generally covers the full

scene over the latent vectors.

CE
A
£/ X

f-;a

@
®) (&)
e (@) (@ ® (o ipe® e e
@@ @gpe 2pe@e®@e®@Ppree
Peedw8atteedsede !

P@Peee@®®e®®® G e e

\ ﬁ
\

8!

HJ@ @ﬂﬁb%\/k@@@ a\/\\/\\@fw(
Saspe00a0e8c000e
mbetsspreeanSee
@@@ e@@@ @@@@@)
))m@@@@@@@ (@®®@®@e
LA @@@@@@@@@@@b@

10

	Implementation details
	Attention modules
	Output embedding

	Evaluation details
	Extension to driveable area segmentation task
	A quantitative study of the influence of ray embedding on attention consistency across cameras
	Comparison to PETR encoding
	Additional attention qualitative analysis
	Additional qualitative examples

