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Abstract

Conformal Prediction algorithms estimate the un-
certainty of a prediction model by calibrating its
outputs on labelled data. The same calibration
scheme usually applies to any model and data with-
out modifications. The obtained prediction inter-
vals are valid by construction but could be ineffi-
cient, i.e. unnecessarily big, if the errors are not
uniformly distributed over the input space.
We present a general scheme to localize the inter-
vals by training the calibration process, where the
distance metrics used for calibration are learned
from the data and depend explicitly on the object
attributes. This is equivalent to training a Normal-
izing Flow that acts on the joint distribution of
the prediction errors and the inputs. We apply the
method to the Error-Reweighting model of Lei and
Wasserman [2012]. The new framework allows es-
timating the gap between nominal and empirical
conditional validity.
The approach is compatible with recent locally-
adaptive CP strategies based on reweighting the
calibration samples and applies to any point-
prediction model without retraining.

1 INTRODUCTION

In natural sciences, calibration often refers to comparing
measurements of the same quantity made by new and refer-
ence devices.1 In data science, calibrating a model means

1The International Bureau of Weights and Measurements de-
fines calibration as the "operation that, under specified conditions,
in a first step, establishes a relation between the quantity values
with measurement uncertainties provided by measurement stan-
dards and corresponding indications with associated measurement
uncertainties (of the calibrated instrument or secondary standard)
and, in a second step, uses this information to establish a relation

quantifying the uncertainty of its predictions. Parametric and
non-parametric approaches for calibrating prediction mod-
els have been proposed for decades. Examples of trainable
post hoc calibration approaches are Platt scaling [Platt et al.,
1999], Isotonic regression [Zadrozny and Elkan, 2002], and
Bayesian Binning [Naeini et al., 2015]. In the regression
setup, Y ∈ R, the task is to define an algorithm that trans-
forms a model prediction, f(X) ≈ EY |XY , where X ∈ X
are the attributes of the test object, into a valid Predic-
tion Interval (PI) with target coverage, C ⊆ R such that
Prob(Y ∈ C) ≥ 1−α, (1−α) ∈ (0, 1). Conformal Predic-
tion (CP) algorithms output PIs that are non-asymptotically
valid by construction [Vovk et al., 2005, Shafer and Vovk,
2008]. The properties hold without assumptions on f or the
data generating distribution, PY X . Different CP algorithms,
however, may produce non-equivalent PIs for the same f .
Several efficiency criteria have been proposed to assess their
efficiency [Vovk et al., 2016]. For regression problems, a
straightforward criterion is the average size of the PIs, |C|.
Given f , a typical Conformal Calibration task is to reduce
|C| on specific regions of X where the Prediction Error (PE)
is small while maintaining the overall coverage, i.e. to make
the PIs locally adaptive [Vovk et al., 2020].

For simplicity, assume we have a set of calibration sam-
ples, (X1, Y1), . . . , (XN , YN ), and a test object, (X,Y ),
drawn independently from the same distribution. We use
f , and a conformity function, ψ, to compute a series of
calibration scores, An = ψ(f(Xn), Yn), n = 1, . . . , N .
Intuitively, ψ quantifies the quality of model predictions
by comparing them with the corresponding labels. Confor-
mal PIs are obtained from the sample quantile of the cal-
ibration scores, {An}Nn=1. They are marginal PIs because
coverage is defined in terms of the data joint distribution
Prob(Y ∈ CX) = PXYX1Y1...XNYN

(Y ∈ C), without
conditioning on either the object label or X [Vovk, 2012].
When the PE distribution varies across X , e.g. data are
heteroskedastic, marginal PIs may be inefficient. For ex-
ample, they can be unnecessarily large if X is in a region

for obtaining a measurement result from an indication."

Submitted to the 40th Conference on Uncertainty in Artificial Intelligence (UAI 2024). To be used for reviewing only.



where f(X)− Y is small. An established research stream
aims to improve the adaptability of the PIs [Lei and Wasser-
man, 2014, Vovk, 2012]. Unlike most existing methods, we
address the task by training an X-dependent conformity
function, ψ, without reweighting the calibration scores and
hence breaking the data exchangeability, e.g. as in Lin et al.
[2021], Tibshirani et al. [2019], Guan [2023].

1.1 OUTLINE

Technically, our goal is to approximate object-conditional
PIs. Distribution-free and object-conditionally valid PIs can
not be obtained from finite-size data [Lei and Wasserman,
2012, Vovk, 2012, Foygel Barber et al., 2021]. The strategy
of Lin et al. [2021], Tibshirani et al. [2019], Guan [2023] is
to replace the sample quantile of {An}Nn=1, with the quan-
tile of a reweighted empirical distribution,

∑N
n=1 wnδAn

,
where w = (w1, . . . , wN ) depends on the test attribute
through a given localization function. Finding a localization
function may be as challenging as estimating the underlying
conditional distribution, PA|X . Our approach is conceptu-
ally different. We learn a set of X-dependent conformity
functions, ϕX(A), and use them without reweighting in the
computation of the PIs. Data exchangeability is not broken
because the transformation does not depend on the test ob-
ject. In the transformed space, the PIs are marginally valid
by construction. Local adaptability arises when we map
them back to the label space (by inverting ϕX ). Our starting
point is to interpret ϕX as a Normalizing Flow (NF), i.e. a
coordinate transformation that maps a target distribution,
P , into a target distribution, P ′ [Papamakarios et al., 2021].
The target distribution is the joint distribution of the con-
formity scores and the object attributes, PAX . The target
distribution is a factorized distribution, P ′

ϕXX
= UϕX

PX ,
where UϕX

is the composition between ϕX and an arbitrary
univariate distribution, UB . In the transformed space, the PIs
have constant size but are conditionally valid because the
joint distribution factorizes. To enforce the factorization, we
train ϕX by maximizing the likelihood of the transformed
sample under = UB . We then invert ϕX to compute the PIs
in the label space. The obtained intervals are marginally
valid by construction but are as efficient as the ideal condi-
tional PIs. While, in practice, we can only obtain a non-exact
factorization, the scheme provides explicit error bounds on
the validity of the obtained approximately conditional PIs.

1.2 AN EXAMPLE

Let PX = uniform(X ) be the uniform distribution over
X = [0, 1] and (X1, Y1), . . . , (XN , YN ), (Xtest, Ytest) a
collection of i.i.d. random variables from PXY = PY |XPX
where

PY |X = 1(X < 0.5)N (0, 1) + 1(X > 0.5)N (0, 5) (1)

We assume we have an exact prediction model, i.e. f(X) =
0 for all X ∈ X , and choose the usual regression confor-
mity measure, ψ(f(X), Y ) = |f(X)− Y | = |Y |. We use
f and ψ to form DA = {(An, Xn) = (|Yn|, Xn)}Nn=1. By
definition, DA is also a collection of i.i.d. random variables.
We often refer to the elements of DA as the conformity
scores. Let 1− α be the target confidence level. The corre-
sponding marginal PIs are Cmarginal = [−Q̂A, Q̂A], where
Q̂A is the (1− α)-th sample quantile of DA, i.e. the m∗-th
smallest element of DA, with m∗ = ⌈(1− α)(N + 1)⌉. If
N = 100 and α = 0.05, m∗ = 96. The exchangeability of
DA implies Prob(Ytest ∈ Cmarginal) =

m∗
N+1 . Since f is

constant over X , Cmarginal is also constant over X , i.e. the
PIs have the same size for any test object Xtest.

According to (1), the model PE depends deterministically
on X . The data heteroscedasticity makes the marginal PIs
inefficient (see Figure 1). In particular, Cmarginal are too
large when Xtest < 0.5 and too small when Xtest > 0.5.
Our conformal calibration scheme aims to increase their
efficiency by learning a set of locally adaptive conformity
functions, Φ(A) = {ϕX(A), X ∈ X}. In particular, Φ will
reduce the PIs for X < 0.5 and increase them for X > 0.5.
The coverage guarantees of the marginal PIs remain the
same because the same Φ applies to DA and Xtest, i.e. Φ
does not break the data exchangeability.

Let CΦ denote the marginal PIs obtained through Φ. As-
suming (1), we can compute the exact conditional PIs and
compare them with CΦ and Cmarginal. Let DX<0.5 =
{(A,X) ∈ DA, X < 0.5}, DX>0.5 = {(A,X) ∈
DA, X > 0.5}, and Cconditional = [−Q̂X , Q̂X ], where
Q̂X = 1(X < 0.5)Q̂A|X<0.5 + 1(X > 0.5)Q̂A|X>0.5

and Q̂A|X<0.5 is the (1−α)-th sample quantile of DX<0.5,
i.e. its mX<0.5-th smallest element, and mX<0.5 = ⌈(1−
α)(|DX<0.5|+ 1)⌉ (idem for X > 0.5). In words, the con-
ditional PIs for X < 0.5 and X > 0.5 are the marginal PIs
of the regions [0, 0.5] ⊂ X and [0.5, 1] ⊂ X . Computing
Cmarginal without knowing the ground truth distribution is
unfeasible. Let

Φθ = {ϕX(A) =
A

θ1 + θ2σ(MX))
, X ∈ [0, 1]} (2)

where θ1, θ2 > 0 are free parameters, σ(t) = (1 + e−t)−1,
and M = 30. For any X and θ, ϕX is a monotonic
(and hence invertible) function of A. Φθ is the conformity
function of Papadopoulos et al. [2008] with γ = θ1 and
g2(X) = θ2σ(MX). Let DBΦ = {Bn = ϕXn(An), ϕX ∈
Φ, (An, Xn) ∈ DA}Nn=1. We refer to DBΦ as the trans-
formed calibration-training set. In Figure 2, we compare
a sample of DA and a sample of DBΦθ

for two different
choices of θ. Let Q̂Bθ

be the (1− α)-th (marginal) sample
quantile of DBΦθ

, i.e. Q̂Bθ
= An∗(θ1 + θ2σ(MXn∗))

−1,
with n∗ such that there are m∗ elements of DBΦθ

smaller
than or equal to ϕXn∗

(An∗) .

The exchangeability of B1, . . . , Bn and Btest =
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ϕXtest(Atest) implies Prob(Btest ≤ Q̂Bθ
) = m∗

N+1 .
Equivalently, Q̂Bθ

defines the marginally valid PIs
in the transformed space, [0, Q̂Bθ

] ⊆ R. The
monotonicity of ϕ−1

Xtest
(B) allows us to convert the

transformed PIs back to the original space through
Prob(Btest ≤ Q̂Bθ

) = Prob(Atest ≤ ϕ−1
Xtest

(Q̂Bθ
)) =

Prob(|Ytest| ≤ ϕ−1
Xtest

(Q̂Bθ
)) = Prob(|Ytest| ≤ Q̂Bθ

(θ1+
θ2σ(MXtest))) = Prob(Ytest ∈ CΦ). The chain of equal-
ity shows how the monotonicity of ϕ−1

Xtest
(B) guarantees

that validity of CΦ = [−∆Φ,∆Φ], ∆Φ = Q̂Bθ
(θ1 +

θ2σ(MXtest))). If M → ∞, θ = (1, 5), and Q̂Bθ
is the

(1 − α)-th sample quantile of a collection of |DX<0.5| ∼
|DX>0.5| Gaussian random variables with unit variance,
∆Φ becomes Q̂Z∼N (0,1)(1 + 51(Xtest > 0.5)), i.e. Cθ is
equivalent to Cmarginal.

If PY |X is unknown, we need an optimization strategy
to find θ. In the Locally Reweighted (ER) approach of
Papadopoulos et al. [2008], θ1 is a hyper-parameter and
θ2σ(MX) is a model of the conditional residuals, i.e.
θER2 = argmint

∑
(X,Y )∈D |Y 2 − t2σ2(MX)|2. The re-

sults in Figures 1 and 2 are for θ1 = 0.5. In the proposed
approach, we interpret Φ as an NF acting on (A,X) ∼ PAX
and train it by maximizing the likelihood of the transformed
scores under a target input-independent distribution UB .
Choosing U = N (0, 1), we obtain

uΦ(A) =
exp

(
− 1

2A
2(θ1 + θ2σ(MX))−2

)
√
2π(θ1 + θ2σ(MX))

(3)

where the Jacobian of Φ is added because we evaluate the
density at B = Φ(A) but use samples from A. In this case,
we need to minimize −

∑
(A,X)∈DA

log(uΦ(A)(A,X)) =

−
∑

(A,X)∈DA
log(uΦ(A,X) − const over θ. Figure 1

shows the PIs obtained through the above procedure, Cflow,
in red, and the ER approach, CER, in blue.

2 THEORY

In this section, X is an arbitrary attribute space and
{(Xn, Yn) ∈ X × R}N+1

n=1 is a collection of i.i.d.
random variables from an unknow joint distribution,
PXY = PY |XPX . We often refer to (XN+1, YN+1) as
(Xtest, Ytest). f(Xn) ≈ EYn|Xn

Yn, n = 1, . . . , N + 1 is a
pre-trained point-prediction model.

2.1 QUANTILES

Given a distribution, PZ , let FZ(z) = PZ(Z ≤ z) be the
Cumulative Distribution Function of PZ . The (1 − α)-th
quantile of Z ∼ PZ is

QZ = inf
q
{q : FZ(q) ≥ (1− α)} (4)

When PZ is continuous, FZ is strictly increasing and QZ =
F−1
Z (1−α). The (1−α)-th sample quantile of a collection

0.0 0.2 0.4 0.6 0.8 1.0

15

10

5

0

5

10

15

alpha=0.05
Ytrain

Ycal

Ytest

Cmarginal

Cconditional

CLR

Cflow

Figure 1: Samples and marginal and conditional PIs for the
example of Section 1. CER and Cflow are the (marginal)
PIs obtained through the ER approach of Papadopoulos et al.
[2008] and the proposed method.

of i.i.d. random variables, {Zn ∼ PZ}Nn=1, is the quantile
of the empirical distribution P̂Z = 1

N

∑N
n=1 δZn , i.e.

Q̂Z = inf
q
{q, |{Zn ≤ q}Nn=1| ≥ ⌈(N + 1)(1− α)⌉} (5)

where |S| is the cardinality of S and ⌈s⌉ the smallest integer
greater than or equal to s. Assuming ties occur with proba-
bility 0, i.e. Prob(Zn = Zn′) = 0 for any n ̸= n′, Q̂Z is the
⌈(N + 0)(1− α)⌉-th smallest element of {Zn ∼ PZ}Nn=1.
CP validity is a direct consequence of

Lemma 2.1 (Quantile Lemma Tibshirani et al. [2019])
Let Z1, . . . , ZN , Ztest ∈ R be a collection of i.i.d. random
variables and Q̂Z be the (1 − α)-th sample quantile of
{Zn}Nn=1 defined in (5). If Prob(Zn = Zn′) = 0 for any
n ̸= n′,

Prob
(
Ztest ≤ Q̂Z

)
=

⌈(1− α)(N + 1)⌉
N + 1

(6)

The standard bound, 1 − α ≤ Prob(Ztest ≤ Q̂Z) ≤ 1 −
α+ 1

N+1 , follows from ⌈s⌉− s ≥ 0 and (1−α)(N +1) ≤
⌈(1− α)(N + 1)⌉ ≤ (1− α)(N + 1) + 1. Asymptotically,
Q̂Z is normally distributed around QZ with variance σ2 =
(1−α)α
NpZ(QZ) , where pZ(QZ) is the density of PZ evaluated at
z = QZ , with QZ defined in (4).

2.2 CONFORMITY SCORES

A conformity score is a random variable, A = ψ(f(X), Y ),
that describes the conformity between a prediction, f(X),
and the corresponding label, Y . A standard choice is ψ(s) =
|f(X) − Y |. Let PAX be the joint distribution of the i.i.d.
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Figure 2: Calibration samples of the original and
transformed random variables, A = |Y |, BER =
A(0.5 + θERσ(30X))−1, and Bflow = A(θflow1 +
θflow2σ(30X))−1, where θER2 = argmint EXY |Y 2 −
t2σ2(MX)|2, θflow = argmaxθ EXY log(uΦ(|Y |, X)),
and uΦ(A,X) is defined in (3).

random variables {(An = |f(Xn) − Yn|, Xn)}N+1
n=1 =. In

this case, Lemma 2.1 directly guarantees the validity of the
symmetric PI

C = [f(Xtest)−∆A, f(Xtest) + ∆A] (7)

when Xtest = XN+1, ∆A = Q̂A and Q̂A is the (1− α)-th
sample quantile of {An = |f(Xn)−Yn|}Nn=1. We may also
choose A = ϕ(A), where ϕ is a global monotonic func-
tion of its argument, e.g. ϕ(s) = −s−1 or ϕ(s) = log s. In
that case, we obtain the PIs by inverting ϕ, i.e. ∆ϕ(A) =

ϕ−1(Q̂ϕ(A)), where Q̂ϕ(A) is the (1 − α)-th sample quan-
tile of {ϕ(An)}Nn=1. For example, ∆−A−1 = − 1

Q̂−A−1
or

∆logA = exp(Q̂logA). Assuming ties occur with probabil-
ity 0, Q̂A is the ⌈(1 − α)(N + 1)⌉-th smallest element
of {An}Nn=1. Let An∗ be that element. The (1 − α)-th
sample quantile of the transformed scores, Q̂ϕ(A), is the
⌈(1−α)(N +1)⌉-th smallest element of {ϕ(An)}Nn=1. If ϕ
is monotonic and applies globally to all samples, ϕ(An) <
ϕ(An′) if and only if An < An′ , for any n ̸= n′. Then
Q̂ϕ(A) = ϕ(An∗) and ∆ϕ(A) = ϕ−1(Q̂ϕ(A)) = Q̂A = ∆A,
i.e. the size of the PIs does not depend on ϕ. If ϕ is not
applied globally on {An}Nn=1, e.g. if it depends on the input,
the above is untrue.

2.3 NORMALIZING FLOWS

This work is about finding a non-global transformation Φ =
{ϕX(A), X ∈ X} that changes the PIs to make them locally
adaptive. In what follows, we assume Φ always satisfies

Assumption 2.2 Let A,B ⊆ R. Φ = {ϕX : A → B, X ∈
X} is such that

1. the domain and codomain of ϕX , A and B, are the
same for all X ,

2. ϕX is strictly increasing on A, i.e. JΦ(A,X) =
d
dAϕX(A) > 0 for all (A,X) ∈ A× X .

The assumption on the domain and codomain of ϕX guar-
antees ϕ−1

X (ϕX′(A)) is well defined for any X ̸= X ′. We
avoid overfitting by imposing a smooth functional depen-
dence of Φ on X and A. Since Φ acts on random variables,
we may interpret it as an NF. Let PZ and UZ be two given
distributions. An NF is an invertible coordinate transforma-
tion, ϕ : Z → U , such that

Z ′ = ϕ(Z) ∼ UZ′ , Z = ψ−1(Z ′) ∼ PZ (8)

In our case, Z = (A,X) and Z ′ = (B,X), i.e. we have
ψ(A,X) = (ϕX(A), X). In this case, the Jacobian of ψ is
a (d + 1) × (d + 1) diagonal matrix, Jψ, with all but the
first element on the diagonal equal to one. The invertibil-
ity of ψ is guaranteed by the strict monotonicity of Φ be-
cause det(Jψ(A,X)) =

∏d+1
i=1 Jψ ii(A,X) = JΦ(A,X)

and JΦ(A,X) > 0 for all A and X if Φ satisfies Assump-
tion 2.2. See Papamakarios et al. [2021] for a review of
using NFs in inference tasks.

2.4 VALIDITY

Given an NF, Φ, the marginal PI at Xtest is

CΦ = [f(Xtest)−∆Φ, f(Xtest) + ∆Φ] (9)

∆Φ = ϕ−1
Xtest

(Q̂B) (10)

where Q̂B is the (1 − α)-th sample quantile of {Bn =
ϕXn(An)}Nn=1. In this case, we do not apply the same
monotonic transformation to all samples because, in gen-
eral, ϕXn

̸= ϕXn′ for n ̸= n′. Then A1 < A2 < · · · < AN
does not imply B1 < B2 < · · · < BN , i.e. we may have
An < An′ and ϕXn

(An) > ϕXn′ (An′). If ties occur with
probability 0, the validity of CΦ is guaranteed by

Lemma 2.3 Let Φ satisfy Assumption 2.2 and CΦ be the PI
defined in (9). Then

Prob(Ytest ∈ CΦ) =
⌈(1− α)(N + 1)⌉

N + 1
(11)

While validity is not affected, Φ may still change the ranking
of the calibration samples. This happens because, unlike for
ϕ(A) = −A−1 or ϕ(A) = logA, we apply a different
transformation to each sample. This observation is the core
motivation of this work. Lemma 2.4 shows there exists a
test object for which |CΦ| ≠ |C|, under the further mild
assumption that Φ is not constant.
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Lemma 2.4 LetΦ satisfy Assumption 2.2 and assume there
exists X,X ′ such that ϕX(A) ̸= ϕX′(A) for any A ∈ A.
Then there exists Xtest for which

|CΦ| ≠ |C| (12)

where CΦ and C are the marginal PIs defined in (9) and
(7).

2.5 EXACT NORMALIZING FLOWS

In some cases, marginal PIs are conditionally valid for any
Xtest ∈ X , i.e. are such that

Prob(Ytest ∈ C|Xtest) (13)

with C defined in (7). In general, this is not true and may
happen when PAX has a specific form. For example, when
the data is not heteroscedastic, i.e. when PAX = PAPX
and hence PA|X = PA. The equivalence of marginal and
conditional PIs is proven in

Theorem 2.5 Let PAX = PAPX for any X ∈ X . For any
Xtest ∈ X ,

Prob(Ytest ≤ C|Xtest) =
⌈(N + 1)(1− α)⌉

N + 1
(14)

where C is defined in (7).

Theorem 2.5 is a straightforward consequence of the
Bayesian theorem and Lemma 2.1. We include it here be-
cause it suggests we may make CΦ approximately condi-
tionally valid if Φ is such that (ϕX(A), X) = (B,X) ∼
PBX ≈ PBPX . Interpreting Φ as an NF, we train it by max-
imizing the likelihood of the transformed scores under an
arbitrary target distribution, UB , that does not depend on
the input. As we only have samples from A, we need the
composition between the target distribution and Φ, which
we call UΦ. The optimization problem is

min
Φ
ℓ, ℓ = −EAX log (|JΦ(A,X)|uB(ϕX(A))) (15)

where uB is the (known) density of the target distribution
UB . The Jacobian of the transformation is added because we
evaluate the density atB = Φ(A). Assume there exists a tar-
get distribution, UB , and an NF satisfying Assumption 2.2,
Φ, such that PBX = UBPX if B = Φ(A) for any (A,X).
Under these assumptions, CΦ defined in (9) is conditionally
valid at Xtest, as we show in

Corollary 2.6 Let UB be an arbitrary univariate distri-
bution and Φ = Φ(A) an NF satisfying Assumption 2.2.
If (B,X) = (Φ(A), X) ∼∼ PBX = UBPX for any
(A,X) ∈ A× X ,

Prob(Ytest ∈ CΦ|Xtest) =
⌈(1− α)(N + 1)⌉

N + 1
(16)

with CΦ defined in (9).

Corollary 2.6 follows from Lemma 2.3 and the monotonicity
of Φ. There is no contradiction with the negative result
of Lei and Wasserman [2012], Vovk [2012] because exact
factorization can not be achieved with finite data.

2.6 NON-EXACT NORMALIZING FLOWS

Let Φ̂ be an NF trained by minimizing a finite-sample empir-
ical estimation of the likelihood defined in (15). We should
not expect Φ̂ factorizes PBX exactly. In what follows, we
assume Φ̂ approximates Φ defined in Corollary 2.6. The as-
sumption is technical and used for proving the error bounds
below. More precisely, let ϵ > 0 quantify the discrepancy
between the target distribution, PBX = UBPX , and the
joint distribution of the optimized scores and the data, PB̂X ,
in the Huber sense, i.e.

PB̂X = (1− ϵ)UB̂PX + ϵSB̂X , (17)

where UB does not depend on X and SB̂X is an un-
known joint distribution representing the non-factorized
part of the joint distribution of the transformed scores
and the attributes, PB̂X . In terms of densities, we have
pB̂X = |JΦ̂(A,X)|uΦ̂(A) = (1− ϵ)uB + ϵsB̂X(A), where
uB and sB̂X are the densities of UB , and the error distri-
bution, SB̂X . Theorem 2.7 characterizes the validity and
size of CΦ̂, i.e. the PIs obtained through the inexact NF,
Φ̂, as in (9). In the theorem, we assume Φ and Φ̂ fulfil the
requirements of Assumption 2.2, Φ satisfies the assumption
of Corollary 2.6 and Φ̂ is the minimizer of (15) for a given
target distribution UB . We bound the size and validity of
CΦ̂ in terms of the variation distance between B = Φ(A)

and B̂ = Φ̂(A),

dTV(PB , PB̂) = sup
b

∥pB(b)− pB̂(b)∥ = 2Prob(B ̸= B̂)

(18)

where pZ(z) is the density of PZ and the second equality
follows from the Maximal Coupling Theorem.2 Assume Φ̂
approximates Φ, which obeys the requirements of Corollary
2.6. Let ϵ > 0 be the discrepancy parameter between the
target and the modelled distribution defined in (17).

An NF which achieves an exact factorization would im-
ply PBX = UBPX , i.e. it would fulfil the assumptions of
Corollary 2.6.

Theorem 2.7 Let Φ(A), Φ̂(A) be the functional defined in
Assumption 2.2. Let UB be an arbitrary target distribution.
Assume B = Φ(A) and B̂ = Φ̂(A) obey the Huber expan-
sion (17). Then

Prob
(
Ytest ∈ CΦ̂|Xtest

)
≥ (1− α)(1 +

ϵ

2
)N (19)

≥ 1− α− δ (20)

2See Lindvall [2002] or Ross and Peköz [2023] for an overview
of coupling methods.
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where CΦ̂ is defined as in (9). An less tight additive boun
δ = 1− eN log(1− ϵ

2 ).

Theorem 2.7 connects our work with the non-
exchangeability gaps obtained in Barber et al. [2022]
in a different framework. Using the Bretagnolle-Huber
inequality

dTV(P, P
′) ≤

√
1− e−KL(P,P ′) (21)

Theorem 2.7 may allow an a posteriori estimation of the
validity gap through an empirical estimate of the KL diver-
gence between the NF and the target.

3 IMPLEMENTATION

We compare the ER model and a similar conformity func-
tion trained as described in Lei and Wasserman [2012] and
through the proposed scheme.

3.1 DATA

We generate 4 synthetic data sets by perturbing the output
of a polynomial regression model of order 2 with four types
of heteroskedastic noise, e.g. ϵ ∼ σsynth−cos(X)N (0, 1),
σsynth−cos(X) = 0.1 + 2 cos(π2X)1(X < 0.5). For the
real-data experiments, we use 6 benchmark regression
data sets from the UCI database: the Bike Sharing Data
Set Fanaee-T [2013], bike, the Blog Feedback Data Set
Buza [2014], blog, the Physicochemical Properties of
Protein Tertiary Structure Data Set Rana [2013], CASP,
the Concrete Compressive Strength Data Set Yeh [2007],
concrete, the Communities and Crime Data Set Red-
mond [2009], community, the Energy Efficiency Data
Set Tsanas and Xifara [2012], energy, and the Facebook
Comment Volume Data Set of Singh [2016], facebook_1.
More details are available in Appendixes B.1 and B.2

3.2 MODELS

The base conformity score is A = |f(X) − Y | in all
cases. The obtained PIs are not affected by this choice
because they are invariant under global monotonic trans-
formations. f(X) ≈ EY |XY is a Random Forest model
pre-trained using the scikit-learn optimizer on a sep-
arate proper-training set. ΦER = {ϕX(A) = eA

γ+g2(X)}
is the ER model of Papadopoulos et al. [2008], trained
by minimizing ℓER = EXY |g2(X) − (f(X) − Y )2|2.
ΦER−flow has the same functional form as ΦER but it is
trained as described in Section 2 with UB = Uniform[0, 1]
as target distribution, i.e. uB(B) = 1(0 ≤ B ≤ 1).
ΦERExp = {ϕX(A) = Ae−(γ + g(X)2)} is also trained
by minimizing either the squared distances from the con-
ditional residuals (ERExp) or (15) (ERExp-flow). The

target distribution is the same as for the other models. g is a
fully connected ReLu neural network with 5 hidden layers
of 100 neurons. The data sets are split into a training and
a test set of the same size. We use the training and test set
for training f(X) and Φ and evaluate the PIs. We use the
ADAM gradient descent algorithm of Adam and Lorraine
[2019] to solve all optimization problems. We set γ to 10e−4

in ΦER and ΦERExp.

3.3 RESULTS

To evaluate the PIs, we look at their size, empirical va-
lidity, and approximated input-conditional coverage. Ta-
ble 1 summarizes our numerical results across the 4 syn-
thetic and 6 real data sets. We report the averages and
standard deviations over 5 random train-test splits. ER pro-
duces the PIs with smaller average sizes and ER-flow
the PIs with the best conditional coverage. In the synthetic
experiments, fitting g directly may be the best strategy be-
cause we generate the data using Y ∼ f(X) + g(X)ϵ,
ϵ ∼ N (0, 1), the ER assumptions are ’exact’. The likeli-
hood approach produces better conditional coverage as it
does not penalize the PI average size. On synthetic data,
ERExp underperforms ER, likely because the associated
optimization is unstable. ERExp-flow achieves the best
trade-off between efficiency and conditional coverage on
real data. Such a trade-off between average size and condi-
tional coverage was expected. The average size of the PIs
is often incompatible with extreme local adaptivity. Figure
3 shows the correlation between the PI sizes and the ap-
proximate conditional validity for the real data sets. More
details about the implementation are in Appendix B. The
code for reproducing all numerical simulations is avail-
able in this https://github.com/nicoloRHUL/
ConformalCalibrationTraining.

4 RELATED WORK

Calibration training The literature contains many exam-
ples of calibration optimization in data science [Platt et al.,
1999, Zadrozny and Elkan, 2002, Naeini et al., 2015]. See
Guo et al. [2017] for an introduction and empirical com-
parison of different calibration methods for neural net-
works. Object-dependent conformity measures. In ER
Papadopoulos et al. [2008, 2011], the conformity measure
is the ratio between the PE and a pre-trained model of the
conditional residuals. Section 5 of Romano et al. [2019]
contains a detailed discussion on the limitations of ER.

ER is intuitive and empirically effective but has been poorly
investigated theoretically. Our work justifies it as approx-
imating the unachievable conditional validity [Lei and
Wasserman, 2012, Foygel Barber et al., 2021]. Recent work
about ER includes Vovk et al. [2020], which is a theoret-
ical study of the validity of oracle conformity measures
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synthetic data (α = 0.05)
cover size WSC

basline 0.951(0.026) 4.571(0.967) 0.789(0.199)
ER 0.961(0.016) 2.591(0.493) 0.917(0.142)
ER-flow 0.961(0.031) 5.194(1.406) 0.930(0.094)
ERexp 0.964(0.021) 2.953(0.553) 0.928(0.08)
ERexp-flow 0.953(0.032) 4.764(1.168) 0.937(0.104)

real data (α = 0.05)
val cover WSC

basline 0.949(0.019) 2.253(0.846) 0.857(0.132)
ER 0.944(0.005) 3.072(2.269) 0.970(0.043)
ER-flow 0.966(0.014) 6.603(1.484) 0.976(0.041)
ERexp 0.964(0.015) NA 0.935(0.091)
ERexp-flow 0.961(0.013) 2.467(0.749) 0.968(0.044)

Table 1: Averages and standard deviation of the coverage,
size, and the Worst Slab Coverage (WSC) estimate of the
input-conditional coverage Cauchois et al. [2020] of the PI
obtained by the models over 4 synthetic and 6 real data sets.
The reported averages and standard deviation are computed
over 5 random training-test splits. More details about the
experiments are in Appendix B. One value is NA because
the optimized model produced PIs of unusually large size.

Figure 3: Trade-off between average size and average condi-
tional coverage of the PIs. To compare different experiments,
we use min-max rescaled quantities. The markers represent
the averages over 5 runs for all models and real data sets.
The size of the markers is proportional to the RSS of the
underlying regressor. Table 1 shows aggregate averages and
standard deviations over all experiments.

and Bellotti [2021], where the conformity score is itera-
tively updated to make the PI conditionally valid by min-
imizing an approximate empirical measure of the validity
gap. Similarly to other work on CP localization, Bellotti
[2021] requires estimating the empirical conditional prob-
ability, which is usually unreliable. Besides Papadopoulos
et al. [2008], Bellotti [2020], conformity scores other than
A = |f(X) − Y | have been rarely used. In Romano et al.
[2019], the conformity function is redesigned to mimic the
pinball loss of quantile regression problems. We are unaware
of works where the conformity measure is explicitly opti-
mized. Henceforth, our scheme is orthogonal to all methods
above, except for Papadopoulos et al. [2008]. Papadopoulos
et al. [2008] is an exception because the conformity function
is trained by minimizing EXY |A2 − g2(X)|2. In Section 3,
we show that training g(X) as an NF may produce better
PIs on real-world data. In Anonymous [2023] (to appear
and by one of the authors), a series of trained conformity
functions are tested empirically. Compared to this work,
the learning scheme is not analyzed theoretically and uses
a different learning loss. Approximate conditional valid-
ity. In Lei and Wasserman [2014], Vovk [2012], Lin et al.
[2021], Guan [2023], Deutschmann et al. [2023], locally
adaptive PI are constructed by reweighting the calibration
samples and temporarily breaking data exchangeability. The
weights transform the marginal distribution into an esti-
mate of the object-conditional distribution. Often, comput-
ing the localizing wights requires a density estimation step
based on one or more hyperparameters [Lei and Wasser-
man, 2014, Vovk, 2012, Guan, 2023, Deutschmann et al.,
2023]. Non-exchangeability. Barber et al. [2022] is a study
of CP under data non-exchangeability, with no explicit con-
nections to the local adaptivity problem. In the context of
online CP, Xu and Xie [2023] exploits the bounds of Barber
et al. [2022] for proving the asymptotic convergence of the
estimated PIs to the exact conditional PIs. Theorem 4 in
Guan [2023] guarantees exact conditional coverage for a
calibration-reweight method up to corrections to the esti-
mated PI. The NF setup allows more explicit bounds on
the validity of the actual algorithm outputs (Theorem 2.7 in
Section 2). Similar to Barber et al. [2022] and Guan [2023],
we exploit the similarity between approximate conditional
CP and CP under non-exchangeability. In Einbinder et al.
[2022], a point-prediction model is trained to guarantee
PAX = UPX , where U = Uniform([0, 1]). It is unclear
whether tuning the point-prediction model or the conformity
function produces equivalent PIs. This work is intuitively
close to conformity-aware training, which aims to optimize
the output of a standard CP algorithm by tuning the un-
derlying model [Colombo and Vovk, 2020, Bellotti, 2020,
Stutz et al., 2021, Einbinder et al., 2022]. The two ideas are
compatible and could be implemented simultaneously. We
leave this for future work.
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5 DISCUSSION AND LIMITIATIONS

This is mainly a theoretical and methodological work. We
recognize our numerical simulations are limited, especially
regarding the model complexity. We also miss a full compar-
ison with existing localization approaches. We focus on the
ER conformity function to underline the efficiency of the
proposed learning strategy without bias coming from the def-
inition of more or less suitable model classes. Generalizing
the approach to more complex NF is possible and straight-
forward, provided Φ(A) remains invertible, i.e. monotonic
in A. We leave a more systematic classification and em-
pirical validation to future work. A comparison with other
localization methods goes beyond our scope because calibra-
tion training is orthogonal to many existing strategies, e.g.
algorithms based on reweighting the calibration samples.
The proposed scheme could be used on top of them and help
provide theoretical guarantees. CP-aware retraining of the
prediction model could also be combined with calibration
training.
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Conformal Calibration Training with Normalizing Flows
Supplementary Material

A PROOFS

X is an arbitrary attribute space and {(Xn, Yn) ∈ X × R}N+1
n=1 is a collection of i.i.d. random variables from an unknow

joint distribution, PXY = PY |XPX . We often refer to (XN+1, YN+1) as (Xtest, Ytest). f(Xn) ≈ EYn|Xn
(Yn), n =

1, . . . , N + 1 is a pre-trained point-prediction model. The (1 − α)-th sample quantile of a collection of i.i.d. random
variables, {Zn ∼ PZ}Nn=1, is the quantile of the empirical distribution P̂Z = 1

N

∑N
n=1 δZn

, i.e.

Q̂Z = inf
q
{q, |{Zn ≤ q}Nn=1| ≥ ⌈(N + 1)(1− α)⌉} (22)

where |S| is the cardinality of S and ⌈s⌉ the smallest integer greater than or equal to s.

Proof of Lemma 2.1 . Assume ties occur with probability 0. The definition of Q̂Z in (5) implies that Q̂Z is the
n∗ = ⌈(1− α)(N + 1)⌉-th smallest element of {Zn}Nn=1. Assume the samples have been labelled so that Z1 < Z2 · · · <
ZN−1 < ZN . By assumption, Z1, . . . , Zn, and Ztest are exchangeable. This implies Ztest falls with equal probability in
any of the N + 1 intervals

(−∞, Z1),(Z1, Z2) . . . , (Zn∗−1, Q̂Z),

(Q̂Z , Zn∗+1) . . . (ZN−1, ZN ), (ZN ,∞) (23)

This implies

Prob(Ztest ≤ Q̂Z) =
n∗

N + 1
=

⌈(1− α)(N + 1)⌉
N + 1

(24)

The lemma first appeared in Papadopoulos et al. [2002]. See also Lei and Wasserman [2014], Tibshirani et al. [2019],
Angelopoulos and Bates [2021]. □

A conformity score is a random variable, A = ψ(f(X), Y ), that describes the conformity between a prediction, f(X), and
the corresponding label, Y . A standard choice is ψ(s) = |f(X)− Y |. Let PAX be the joint distribution of the i.i.d. random
variables {(An = |f(Xn) − Yn|, Xn)}N+1

n=1 =. We focus on marginal PIs that are symmetric intervals of R centered in
f(Xtest), i.e.

C = [f(Xtest)−∆A, f(Xtest) + ∆A] (25)

where ∆A = Q̂A and Q̂A is the (1 − α)-th sample quantile of {An = |f(Xn) − Yn|}Nn=1. We consider non-global
transformations Φ = {ϕX(A), X ∈ X} that satisfy (2.2). An NF is an invertible coordinates transformation, ϕ : Z → U ,
such that

Z ′ = ϕ(Z) ∼ UZ′ , Z = ψ−1(Z ′) ∼ PZ (26)

Here, Z = (A,X) and Z ′ = (B,X), i.e. we have ψ(A,X) = (ϕX(A), X). Given an NF, Φ, the marginal PI at Xtest is

CΦ = [f(Xtest)−∆Φ, f(Xtest) + ∆Φ] (27)

∆Φ = ϕ−1
Xtest

(Q̂B) (28)

where Q̂B is the (1− α)-th sample quantile of {Bn = ϕXn(An)}Nn=1. The validity of CΦ is guaranteed by Lemma 2.3

Proof of Lemma 2.3 B1, . . . , BN , Btest are continuous i.i.d. random variable because Φ is deterministic and
A1, . . . , AN , Atest are continuous i.i.d. random variables. When Φ satisfies Assumption 2.2, Prob(An = An′) = 0
for any n ̸= n′ implies Prob(Bn = Bn′) = Prob(An = ϕ−1

Xn
(ϕXn′ (An′)) = 0 for any n ̸= n′. Let Q̂B be the (1− α)-th

sample quantile of {ϕXn
(An)}Nn=1. From Lemma 2.1, Prob(Btest ≤ Q̂B) =

n∗
N+1 , with n∗ = ⌈(1 − α)(N + 1)⌉. Let
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ϕ′X(A) = JΦ(A,X). By Assumption 2.2, ϕ′X(A) > 0. From d
dBϕX(ϕ−1

X (B)) = ϕ′X(ϕ−1
X (B)) d

dBϕ
−1
X (B) = 1, we obtain

d
dBϕ

−1
X (B) =

(
ϕ′X(ϕ−1

X (B))
)−1

> 0, i.e. ϕ−1
Xtest

(B) is a monotonic function of B. Therefore,

Prob
(
Btest ≤ Q̂B

)
(29)

= Prob
(
ϕ−1
Xtest

(Btest) ≤ ϕ−1
Xtest

(Q̂B)
)

(30)

= Prob
(
ϕ−1
Xtest

(ϕXtest
(Atest)) ≤ ϕ−1

Xtest
(Q̂B)

)
(31)

= Prob
(
Atest ≤ ϕ−1

Xtest
(Q̂B)

)
(32)

= Prob
(
|f(Xtest)− Ytest| ≤ ϕ−1

Xtest
(Q̂B)

)
(33)

= Prob (Ytest ∈ CΦ) (34)

□ Lemma 2.4 shows there exists a test object for which |CΦ| ≠ |C|, under the further mild assumption that Φ is not constant.

Proof of Lemma 2.4 Let {Bn = ϕXn
(An)}N+1

n=1 and Atest = AN+1, and Btest = BN+1. By definition of sample
quantile, there exist m∗ and n∗ such that Q̂A = Am∗ and Q̂B̂ = ϕXn∗

(An∗). We may have n∗ = m∗ or n∗ ̸= m∗. If
n∗ = m∗, let Xtest be such that ϕXtest(An∗) ̸≠= ϕXn∗

(An∗). Then

|CΦ̂| = ϕ−1
Xtest

(ϕXm∗
(Am∗) (35)

= ϕ−1
Xtest

(ϕXn∗
(An∗) (36)

̸= An∗ = |C| (37)

If n∗ ̸= m∗, let Xtest = Xm∗. Then

|CΦ̂| = ϕ−1
Xtest

(ϕXm∗
(Am∗) (38)

= ϕ−1
Xm∗

(ϕXm∗
(Am∗)) (39)

= Am∗ (40)
̸= An∗ = |C| (41)

where Am∗ ̸= An∗ because we assume there are no ties. □

The equivalence of marginal and conditional PIs when PAX = PAPX is proven in Theorem 2.5.

Proof of Theorem2.5 Let {A(XN+1)
n ∼ PA|XN+1

}Nn=1 be a collection of i.i.d random variables at XN+1 and Q̂A|Xtest

the sample quantile of {A(XN+1)
n }Nn=1. Assume ties occur with probability zero, i.e. Prob(A(XN+1)

n = A
(XN+1)
n′ ) = 0

for any n ̸= n′. Let C(XN+1) be defined as in (7) with ∆ = Q̂A|XN+1
. By the Bayesian theorem, the assumption on

PAX implies PA|X = PA =
∑
X PAX . Then, for any Xtest, Atest ∼ PA and the claim follows from Lemma 2.1 and

Prob(Atest ≤ Q̂A) = Prob(Ytest ∈ C). □

We train Φ by maximizing the likelihood of B = Φ(A) under the target distribution UB , i.e. by minimizing (15). Given a
target distribution, UB , assume there exists an NF, Φ, that satisfies Assumption 2.2 and is such that PAX = UΦPX for any
X . Under these assumptions, CΦ defined in (9) is conditionally valid at Xtest, as we show in Corollary 2.6.

Proof of Corollary 2.6 The conditional PIs, C(Xtest) such that Prob(Ytest ∈ C(Xtest)|Xtest) = m∗
N+1 , m∗ = ⌈(1 −

α)(N + 1)⌉, can be defined as in (7) with ∆A replaced by ∆A|X = Q̂A|Xtest
, where Q̂A|Xtest is the (1 − α)-th sample

quantile of {A(Xtest)
n ∼ PA|Xtest

}Nn=1. The assumption PAX = PA|XPX = UΦPX implies (A,X) ∼ ϕX(B), X) for any
X . Then

Q̂A|Xtest
= Q̂ϕ−1

Xtest
(B)|Xtest

(42)

= ϕ−1
Xtest

(Q̂B|Xtest
) (43)

= ϕ−1
Xtest

(Q̂B) (44)
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where the first and second equalities hold because ϕ−1
Xtest

is monotonic and applied globally to all samples and PBX =

PB|XPX = UPX , which implies Q̂B|X = Q̂B for any X . The claim is obtained by rewriting Prob(Ytest ∈ Q̂A|Xtest
) as

Prob(Ytest ∈ C(Xtest)|Xtest) =
m∗
N+1 . □

In Theorem 2.7, we use the NF formalism to prove a quantitative bound on the gap between nominal and empirical
conditional validity of the PI obtained from B̂ = Φ̂(A).

Proof of Theorem 2.7. Let {An = |f(Xn)−Yn|}N+1
n=1 be the collection of conformity scores and {Bn = ϕXn

(An), ϕX ∈
Φ}N+1

n=1 and {B̂n = ϕ̂Xn(An), ϕ̂X ∈ Φ̂}N+1
n=1 the collections of conformity scores transformed by Φ and Φ̂. Assumption 2.2

and the assumption of Corollary 2.6 imply

Prob(Ytest ∈ CΦ̂|Xtest) (45)

= Prob(Atest ≤ ϕ̂−1
Xtest

(Q̂B̂)|Xtest) (46)

= Prob(ϕ−1
Xtest

(Btest) ≤ ϕ̂−1
Xtest

(Q̂B̂))|Xtest) (47)

= Prob(Btest ≤ ϕXtest(ϕ̂
−1
Xtest

(Q̂B̂))) (48)

where CΦ and CΦ̂ are defined as in (9). We can drop the conditioning in the last line because, by assumption, Bn ∼ PB|X =
PB for all X . The test and calibration data are not exchangeable. The coverage gap is bounded in terms of the total variation
distance between the distribution of B̃ = ϕXtest

(ϕ̂−1
Xtest

(B̂) and PB , i.e.

dTV(PB , PB̃) = sup
Z

|PB(Z)− PB̃(Z)| (49)

In particular, we use

Prob(Btest ≤ Q̂B̂) = Prob(Btest ≤ Q̂B , {Bn}Nn=1 = {B̂n}Nn=1) (50)

= Prob(Btest ≤ Q̂B)Prob({Bn}Nn=1 = {B̂n}Nn=1) (51)

= Prob(Btest ≤ Q̂B)

N∏
n=1

(
1− Prob(Bn ̸= B̂n)

)
(52)

=
⌈(N + 1)(1− α)⌉

N + 1

(
1− Prob(B1 ̸= B̂1)

)N
(53)

=
⌈(N + 1)(1− α)⌉

N + 1

(
1− 1

2
dTV(PB , PB̃)

)N
(54)

where Q̂B̃ is the sample quantile of

{B̃n = ϕXtest
(ϕ̂−1
Xtest

(B̂n), B̂n = ϕ̂Xn
(An)}Nn=1 (55)

The joint probabilities factorize because the events Btest ≤ Q̂B and {Bn}Nn=1 = {B̂n}Nn=1 are independent. The last
equalities follow from the maximal coupling theorem (for example, see Lindvall [2002], Ross and Peköz [2023]), i.e.

Prob(B ̸= B̂) =
1

2
dTV(PB , PB̃) (56)

Under the assumption PB̂X = (1− ϵ)UB̂PX + ϵSB̂X , we have

dTV(PB , PB̃) = sup
(b,x)

∥uB(b)pX(x)− pB̂(b, x)∥ (57)

= sup
(b,x)

∥uB(b)pX(x)− (1− ϵ)pB(b)pX(x)− ϵsB̂X(b, x)∥ (58)

= ϵ sup
(b,x)

∥pB(b)pX(x)− sB̂X(b, x)∥ (59)

≤ ϵ (60)
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implying

Prob(Btest ≤ Q̂B̂) ≥
⌈(N + 1)(1− α)⌉

N + 1

(
1− ϵ

2

)N
(61)

≥ (1− α)
(
1− ϵ

2

)N
(62)

The additive bound is obtained by defining δ̂ = 1−
(
1− ϵ

2

)N
and using

(1− α)(1− δ̂) ≥ 1− α− δ̂ (63)

□

B MORE ON THE EXPERIMENTS

We run all experiments 5 times with 5 random splits of each data set. The data is split into a training set,Dtrain, a calibration-
training set, Dcal, and a test set, Dtest, with ratio [0.5, 0.25, 0.25]. Let N = |Dtrain|. The point prediction model, f(X) is
the Random Forest model of sklearn.sklearn.ensemble with default settings. We train f by running

Xtrain, ytrain = train
forest = sklearn.ensemble.RandomForestRegressor()
f = forest.fit(Xtrain, np.ravel(ytrain))

where train is the training data set. We use the same data set to train the calibration models. The pre-trained f is used
to compute the base conformity scores and form DA = {An = |f(Xn) − Yn|, (Xn, Yn) ∈ Dcal}Nn=1. We then train all
calibration models on DA Φi, i ∈ {ER, ER− flow, ERExp, ERExp− flow}, where

ΦER = {ϕX(A) =
A

γ + g2(X)
, X ∈ X}, γ = 1e−4 (64)

ΦERExp = {ϕX(A) = Ae−(γ + g2(X)), X ∈ X}, γ = 1e−4 (65)

where g(X) is a fully connected neural network defined in pyTorch as

g = [nn.Linear(in_dim, hidden_dim), nn.ReLU()]
for n in range(num_layers):

g.append(nn.Linear(hidden_dim, hidden_dim))
g.append(nn.ReLU())
g.append(nn.Linear(hidden_dim, 1))
g = OrderedDict([(str(i), v[i]) for i in range(len(v))])

g = nn.Sequential(v)

with hidden_dim and num_layers set to 100 and 5 in all experiments. We append -flow when g is trained by
maximizing the likelihood

ℓ =
∑

(A,X)∈DA

− log ((uB(ϕX(A))JΦ(A,X)) , i ̸= ER (66)

where UB = Uniform([0, 1]). To solve the optimization problem, we use the ADAM gradient descent algorithm Kingma and
Ba [2014] with default parameters and learning rate 1e−4 for all models and all data sets. We avoid data and model-specific
tuning to avoid bias in the comparison. We use the same optimization setup on all synthetic and real-data experiments.
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B.1 SYNTHETIC DATA

The synthetic data sets consist of 1000 samples from the following generative model

X1 ∼ Uniform([−1, 1]), (67)

X = [1, X1, X
2
1 ], (68)

Y = XTw + ϵi, (69)
ϵi = 0.1 + σsynth−i(X)E (70)

E ∼ N (0, 1) (71)

where w ∈ R3 is a randomly generated fixed parameter, i ∈ {cos, squared, inverse, linear}, and

σsynth−cos(X) = 2 cos
(π
2
X1

)
1(X1 < 0.5) (72)

σsynth−squared(X) = 2X2
11(X1 > 0.5) (73)

σsynth−inverse(X) = 2
1

0.1 + |X1|
1(X1 < 0.5) (74)

σsynth−linear(X) = 2|X1|1(X1 > 0.5) (75)

B.2 REAL DATA

We selected the following 6 public benchmark data sets from the UCI database:

• bike, the Bike Sharing Data Set of Fanaee-T [2013], 10886 observations with 18 attributes,

• blog, the Blog Feedback Data Set of Buza [2014], 52397 observations with 280 attributes,

• CASP, the Physicochemical Properties of Protein Tertiary Structure Data Set of Rana [2013], 45730 observations with
9 attributes,

• concrete, the Concrete Compressive Strength Data Set of Yeh [2007], 1030 observations with 8 attributes,

• energy, the Energy Efficiency Data Set of Tsanas and Xifara [2012], 768 observations with 8 attributes, and

• facebook_1, the Facebook Comment Volume Data Set of Singh [2016], 40948 observations with 54 attributes.

B.3 EVALUATION

To evaluate the PIs, we used their average size empirical validity

size = N−1
N∑
n=1

|CϕXtest n
| (76)

cover = N−1
N∑
n=1

1(Ytest n ∈ CϕXtest n
), (77)

(78)

where Q̂B is the sample quantile of the transformed calibration set, {ϕXn
(An)}Nn=1, and the Worst Slab Coverage (WSC)

estimate of the input-conditional coverage Cauchois et al. [2020]. At test time, we randomly split the test data set into two
subsets, Dtest−cal and Dtest−test such that |Dtest−cal| = |Dtest−test|. We use Dtest−cal to calibrate the test models and
Dtest−test to evaluate the PIs. Averages and standard deviations are over 5 random training-test splits.
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