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1. Introduction
PDEs are ubiquitous in diverse domains includ-

ing physics, engineering, biology, finance, com-
puter science, the social sciences, and so on. Writ-
ing code to numerically solve PDEs is typically a
time-consuming, cognitively demanding, and error-
prone manual process, necessitating tedious and
painstaking debugging.
Recent advances in large languagemodels (LLMs)

have created new possibilities for complex applica-
tions. One of the promising avenues is harnessing
LLMs to generate code to solve partial differential
equations (PDEs) [1, 2, 3, 4, 5, 6, 7, 8, 9]. These pi-
oneering studies have focused on widely used soft-
ware, such as OpenFOAM, MATLAB, FEniCS, COM-
SOL, and Dedalus, each of which provides compre-
hensive official documentation.
In contrast, the effectiveness of LLMs in gener-

ating code for specialized or poorly documented
packages remains unclear. A particularly challeng-
ing scenario involves in-house numerical codebases
lacking documentation or inline comments. In such
cases, critical questions arise: Can LLMs still pro-
duce functional code when prompted, and what
level of performance can be expected?
To answer these questions, this study explores

LLM-based code generation in the framework of a
lesser-known numerical library XLB [10], which em-
ploys the lattice Boltzmann method (LBM). We de-
velop a strategy using multiple LLM agents to au-
tomate code-related developments aimed at solving
PDEs, hence termed LLM-PDEveloper. Specifically,
we adopt LLM-PDEveloper to address three repre-
sentative categories of problems: 1) generate code
for a new PDE; 2) generate code for new boundary
conditions of a given PDE; 3) modify the code of a
PDE solver to incorporate new features.

2. Methodology
We briefly outline the workflow of LLM-

PDEveloper as follows. First, the user describes
the mathematical form of the algorithm in a Mark-
down file. Second, using the Markdown-formatted
description, LLM-PDEveloper generates the source
codes for the algorithm in the language of XLB,
including code generation, math verification,
syntax error detection/correction. Third, LLM-
PDEveloper merges the newly generated source
codes into the existing codebase.

3. Tests and evaluation of LLM-PDEveloper
Originally, XLB solves the Navier-Stokes (NS)

equations—the system of PDEs governing the mo-
tion of fluid and serving as the cornerstone of fluid
mechanics. Specifically, the version of XLB adopted
here solves solely incompressible Newtonian flows.
Here, we employ LLM-PDEveloperfor code gen-

eration to extend XLB’s functionality to solve other
PDEs, focusing on the following tasks: 1) gener-
ate a solver for the advection-diffusion (AD) equa-
tion; 2) generate code that implements the bound-
ary conditions for the AD solver; 3) generate a solver
for the advection-diffusion-reaction (ADR) equation;
4) generate a solver that simulates a specific non-
Newtonian (NN) flow.
We have tested LLM-PDEveloper on these tasks

using three LLMs, ‘o1-preview’ (‘o1-preview-2024-09-
12’) and ‘o3-mini’ (‘o3-mini-2025-01-31’) fromOpenAI,
and ‘claude-3-5-sonnet-20241022’ from Anthropic.
For each task, we conduct ten attempts and summa-
rize the success rates in Table 1.

Table 1: Success rate of using LLM-PDEveloper to
generate code for four PDE-related tasks

AD
solver

BCs
for AD
solver

ADR
solver

NN
solver

o1-
preview

8/10 0/10 6/10 10/10

o3-mini 7/10 3/10 7/10 5/10

claude-3-
5-sonnet-
20241022

7/10 0/10 6/10 10/10
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