
AI4X 2025, Singapore, 8–11 July 2025

Using Large LanguageModels to Automate Code Generation for PDE Solvers

HaoyangWu a, Lailai Zhu a

a Department of Mechanical Engineering, National University of Singapore, 117575, Singapore e1135486@u.nus.edu,
lailai_zhu@nus.edu.sg

* Presenting author

1. Introduction
PDEs are ubiquitous in diverse domains includ-

ing physics, engineering, biology, finance, com-
puter science, the social sciences, and so on. Writ-
ing code to numerically solve PDEs is typically a
time-consuming, cognitively demanding, and error-
prone manual process, necessitating tedious and
painstaking debugging.
Recent advances in large languagemodels (LLMs)

have created new possibilities for complex applica-
tions. One of the promising avenues is harnessing
LLMs to generate code to solve partial differential
equations (PDEs) [1, 2, 3, 4, 5, 6, 7, 8, 9]. These pi-
oneering studies have focused on widely used soft-
ware, such as OpenFOAM, MATLAB, FEniCS, COM-
SOL, and Dedalus, each of which provides compre-
hensive official documentation.
In contrast, the effectiveness of LLMs in gener-

ating code for specialized or poorly documented
packages remains unclear. A particularly challeng-
ing scenario involves in-house numerical codebases
lacking documentation or inline comments. In such
cases, critical questions arise: Can LLMs still pro-
duce functional code when prompted, and what
level of performance can be expected?
To answer these questions, this study explores

LLM-based code generation in the framework of a
lesser-known numerical library XLB [10], which em-
ploys the lattice Boltzmann method (LBM). We de-
velop a strategy using multiple LLM agents to au-
tomate code-related developments aimed at solving
PDEs, hence termed LLM-PDEveloper. Specifically,
we adopt LLM-PDEveloper to address three repre-
sentative categories of problems: 1) generate code
for a new PDE; 2) generate code for new boundary
conditions of a given PDE; 3) modify the code of a
PDE solver to incorporate new features.

2. Methodology
We briefly outline the workflow of LLM-

PDEveloper as follows. First, the user describes
the mathematical form of the algorithm in a Mark-
down file. Second, using the Markdown-formatted
description, LLM-PDEveloper generates the source
codes for the algorithm in the language of XLB,
including code generation, math verification,
syntax error detection/correction. Third, LLM-
PDEveloper merges the newly generated source
codes into the existing codebase.

3. Tests and evaluation of LLM-PDEveloper
Originally, XLB solves the Navier-Stokes (NS)

equations—the system of PDEs governing the mo-
tion of fluid and serving as the cornerstone of fluid
mechanics. Specifically, the version of XLB adopted
here solves solely incompressible Newtonian flows.
Here, we employ LLM-PDEveloperfor code gen-

eration to extend XLB’s functionality to solve other
PDEs, focusing on the following tasks: 1) gener-
ate a solver for the advection-diffusion (AD) equa-
tion; 2) generate code that implements the bound-
ary conditions for the AD solver; 3) generate a solver
for the advection-diffusion-reaction (ADR) equation;
4) generate a solver that simulates a specific non-
Newtonian (NN) flow.
We have tested LLM-PDEveloper on these tasks

using three LLMs, ‘o1-preview’ (‘o1-preview-2024-09-
12’) and ‘o3-mini’ (‘o3-mini-2025-01-31’) fromOpenAI,
and ‘claude-3-5-sonnet-20241022’ from Anthropic.
For each task, we conduct ten attempts and summa-
rize the success rates in Table 1.

Table 1: Success rate of using LLM-PDEveloper to
generate code for four PDE-related tasks

AD
solver

BCs
for AD
solver

ADR
solver

NN
solver

o1-
preview

8/10 0/10 6/10 10/10

o3-mini 7/10 3/10 7/10 5/10

claude-3-
5-sonnet-
20241022

7/10 0/10 6/10 10/10

Acknowledgments
We acknowledge the support from the Singapore

Ministry of Education Academic Research Fund Tier
2 (MOE-T2EP50221-0012) grant. We thank the useful
discussions with Miss Zhuoqun Xu and Prof. Chang
Shu. Some of the computation of the work was per-
formed on resources of the National Supercomput-
ing Centre, Singapore (https://www.nscc.sg). The
template is based on the IAC 2024 unofficial tem-
plate.

https://orcid.org/0009-0008-1631-2785
https://orcid.org/0000-0002-3443-0709
mailto:e1135486@u.nus.edu
mailto:lailai_zhu@nus.edu.sg


AI4X 2025, Singapore, 8–11 July 2025

References

[1] A. Kashefi and T. Mukerji. ChatGPT for pro-
gramming numerical methods. Journal of Ma-
chine Learning for Modeling and Computing, 4(2),
2023.

[2] Microsoft Research AI4Science and Mi-
crosoft Azure Quantum. The impact of
large language models on scientific discovery:
a preliminary study using GPT-4. arXiv preprint
arXiv:2311.07361, 2023.

[3] B. Ni and M. J. Buehler. MechAgents: Large
language model multi-agent collaborations can
solve mechanics problems, generate new data,
and integrate knowledge. Extreme Mech. Lett.,
67:102131, 2024.

[4] A.MohamadandM.Kristen. Physics simulation
capabilities of LLMs. Phys. Scr., 99(11):116003,
2024.

[5] D. Kim, T. Kim, Y. Kim, Y. Byun, and T. Yun.
A ChatGPT-MATLAB framework for numerical
modeling in geotechnical engineering applica-
tions. Comput. Geosci., 169:106237, 2024.

[6] Y. Chen, X. Zhu, H. Zhou, and Z. Ren.
MetaOpenFOAM: an LLM-based multi-
agent framework for CFD. arXiv preprint
arXiv:2407.21320, 2024.

[7] C. Tian and Y. Zhang. Optimizing collaboration
of LLM based agents for finite element analysis.
arXiv preprint arXiv:2408.13406, 2024.

[8] N. Mudur, H. Cui, S. Venugopalan, P. Raccuglia,
M. Brenner, and P. Norgaard. FEABench: Eval-
uating language models on real world physics
reasoning ability. In NeurIPS 2024 Workshop on
Open-World Agents.

[9] S. Pandey, R. Xu, W. Wang, and X. Chu. Open-
FOAMGPT: a RAG-augmented LLM agent for
OpenFOAM-based computational fluid dynam-
ics. arXiv preprint arXiv:2501.06327, 2025.

[10] M. Ataei and H. Salehipour. XLB: A differ-
entiable massively parallel lattice Boltzmann
library in Python. Comput. Phys. Commun.,
300:109187, 2024.


	Introduction
	Methodology
	Tests and evaluation of LLM-PDEveloper

