
A Appendix

A.1 Preliminaries

A.1.1 Preliminaries of Cognitive Science

Theories in cognitive science about how concepts are represented includes classical theory, prototype
theory, exemplar theory and knowledge theory [13].

(1) Classical theory The classical theory can traced back to Aristotle. In it, any concept can be
precisely defined.

However, modern cognitive science has shown that concepts are almost impossible to define precisely
in the real world.

(2) Prototype theory In prototype theory, a concept can be represented by a prototype, but how to
give a prototype corresponding to a concept is still a very difficult problem.

(3) Exemplar theory Unlike classical theory and prototype theory, exemplar theory argues that no
definition or prototype can fully encompass the entire concept. Conversely, the representation of a
concept in the human mind is the set of objects in human memory that belong to the concept.

(4) Knowledge theory Knowledge theory holds that concepts are part of our common sense knowl-
edge about the world. Human are unable to learn a concept in isolation from anything else. On the
contrary, the process by which human learn concepts is part of all our understanding of the world
around us.

From the perspective of cognitive science, knowledge theory seems to be the most complete, and a
large number of cognition experimental results can support it. However, knowledge theory is difficult
to implement for designing a purely data-driven learning machine. Therefore, exemplar theory is
chosen to solve the problem of concept representation in this paper. The reason is that it not only has
good self-consistency in cognitive science, but also it can be naturally integrated with the data-driven
machine learning paradigm.

(5) Concept is fuzzy. The number of objects in the real world is far greater than the number of
concepts, so a small number of concepts can never map perfectly onto all objects. At the same
time, objects belonging to the same concept may have certain differences, and objects belonging to
different concepts may also have certain similarities. Therefore, concept must be of fuzziness. See
page 21 of literature [13] for a more detailed discussion.

A.1.2 Preliminaries of Binary Relation

Definition 5 ([32]) Given two sets A, B, a map R : A×B → {0, 1} is called a binary relation from
A to B.

Definition 6 ([32]) Given a set A, a map R : A×A→ {0, 1} is called a binary relation on A.

Definition 7 ([32]) Given a set A and a binary relation R on A, if R satisfies the following three
properties:
(1) Reflexivity: ∀a ∈ A,R((a, a)) = 1,
(2) Symmetry: ∀a, b ∈ A, if R((a, b)) = 1, then R((b, a)) = 1,
(3) Transitivity: ∀a, b, c ∈ A, if R((a, b)) = 1 and R((b, c)) = 1, then R((a, c)) = 1,
then R is called a equivalence relation (ER) on A.

Remark: To unify the description of the full paper, the above definitions are given in a different form
from the literature [32], but they are equivalent mathematically.

Definition 8 ([32]) Given two sets A and P = {P1, P2, · · · , Pm} ,m ≥ 1, if P satisfies the follow-
ing three properties:
(1) ∀Pi ∈ P , Pi 6= φ,
(2) ∪Pi∈P = A,
(3) ∀Pi, Pj ∈ P , if i 6= j, then Pi ∩ Pj = φ,
then P is called a partition on A.
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Definition 9 ([32]) Given a set A and a equivalence relation R on A. ∀a ∈ A, [a]R =
{b|b ∈ A,R ((a, b)) = 1} is called the equivalence class of a derived by R.

Definition 10 Given a set A and a equivalence relation R on A. Obviously, the set A/R =
{[a]R|a ∈ A} is a partition on A, and it is called the partition on A derived by R.

A.1.3 Preliminaries of Fuzzy Set

Definition 11 ([33]) Given a set A, a map µ : A → [0, 1] is called a fuzzy set on A. And ∀a ∈ A,
the µ(a) is called the membership degree of a to the fuzzy set µ.

Definition 12 ([33]) Given two sets A, B, a map F : A×B → [0, 1] is called a binary fuzzy relation
from A to B.

Definition 13 ([33]) Given a set A, a map F : A×A→ [0, 1] is called a binary fuzzy relation on A.

Definition 14 Given a finite set A and a binary fuzzy relation F on A. Without loss of generality, let
A =

{
a1, a2, · · · , a|A|

}
, then the F can be described equivalently as a binary fuzzy relation matrix:

F ∈ [0, 1]|A|×|A|, fij = F ((ai, aj)) ,∀i, j = 1, 2, · · · , |A|.

Obviously, the binary fuzzy relation F on A is a fuzzy set on A’s Cartesian product A×A. As can
be seen from the definition, the binary fuzzy relation is a extension of the binary relation described in
Definition 6.

Definition 15 ([33]) Given a set A and a binary fuzzy relation F on A. If the F satisfies
(1) Reflexivity: ∀a ∈ A,F ((a, a)) = 1,
(2) Symmetry: ∀a, b ∈ A,F ((a, b)) = F ((b, a)),
then it’s called a fuzzy similarity relation (FSR) on A.

Definition 16 ([33]) Given a set A and a fuzzy similarity relation F on A. If the F satisfies
Transitivity: ∀a, b ∈ A,F ((a, b)) ≥ max

c∈A
min [F ((a, c)) ,F ((c, b))],

then it’s called an fuzzy equivalence relation (FER) on A.

As can be seen from the Definition 16, the fuzzy equivalence relation (FER) and the equivalence
relation (ER) described in the Definition 7 are highly correlated. The following theorem clearly
shows the relationship between them.

Definition 17 ([34]) Given a set A and a binary fuzzy relation F on A. ∀λ ∈ [0, 1], the binary
relation

∀a, b ∈ A, F[λ] ((a, b)) = I [F ((a, b)) ≥ λ]

is called the λ-cut relation of F.

Theorem 3 Given a set A and a fuzzy equivalence relation F on A. ∀λ ∈ [0, 1], the λ-cut relation
F[λ] is an equivalence relation on A. (The proof process is straightforward and omitted.)

Definition 18 ([20]) Given a set A and two binary fuzzy relations F and G on A. The product
(composition) binary fuzzy relation of them H = F⊗G is defined as

∀a, b ∈ A, H ((a, b)) = max
c∈A

min [F ((a, c)) ,G ((c, b))] .

Definition 19 Based on the Definition 18, given a finite set A and a binary fuzzy relation F on A,
the power of F can be written as F1 = F, F2 = F⊗ F, F3 = F2 ⊗ F , · · · .
Let F ∈ [0, 1]|A|×|A| be the binary fuzzy relation matrix of F (see Definition 14), then the power of
fuzzy relation matrix F can be written as F1 = F, F2 = F⊗ F, F3 = F2 ⊗ F, · · · .

Definition 20 Given a finite set A, and a binary fuzzy relation F on A. G is the transitive-closure of
F if and only if G satisfies
(1) G is transitive,
(2) F ⊆ G, i.e. ∀a, b ∈ A, F((a, b)) ≤ G((a, b)),
(3) if F ⊆ H and H is transitive, then G ⊆ H.
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In Definition 5.1 of reference [35], a more general definition, P -closure, was given, where P can be
one of many properties.

Theorem 4 Given a set A and a binary fuzzy relation F on A. The transitive-closure of F exists and
is unique. (It is a direct corollary to the Theorem 5.3 of literature [35].)

Theorem 5 Given a finite set A, and a fuzzy similarity relation S on A. The transitive-closure of S
can be obtained by
(1) Compute S20

, S21

, S22

, · · · , by Definition 19, until S2k−1

= S2k

;
(2) Then S2k−1

is the transitive-closure of S and 2k−1 ≤ |A|.
The above process converts a Fuzzy Similarity Relation into a Fuzzy Equivalence Relation and is
abbreviated as T = tFSR2FER(S).
(It is a direct corollary to the Theorem 8.2 of literature [35].)

Remark: Given a finite set A, and a binary fuzzy relation F on it. According to Definition 18, the
time complexity on calculating F ⊗ F is O

(
|A|3

)
. So the time complexity of the tFSR2FER(F) is

O
(
|A|3 log2 |A|

)
according to Theorem 5.

A.2 Related Work

A.2.1 Relationship to Existing Classifiers

So far, dozens of different classifiers have been designed. The literature [1] systematically summarizes
existing classifiers and divides them into 17 families. The 17 families are: (1) Discriminant analysis,
(2) Bayesian, (3) Neural networks, (4) Support vector machines, (5) Decision trees, (6) Rule-based
classifiers, (7) Boosting, (8) Bagging, (9) Stacking, (10) Random forests, (11) Other ensembles, (12)
Generalized linear models, (13) Nearest neighbors, (14) Partial least squares and principal component
regression, (15) Logistic and multinomial regression, (16) Multiple adaptive regression splines, and
(17) Other methods, which contains almost all existing classifiers.

The goal of the existing classifiers is to learn a function f : X → Y , which is an estimation of the
posterior probability p(y|x), ∀x ∈ X , y ∈ Y from the point of view of probability theory. According
to how to estimate the posterior probability, the existing classifiers can be divided as: discriminative
methods, generative methods, and ensemble learning methods.

The discriminative methods model the p(y|x) directly and the typical examples include Support
Vector Machine [36], Decision Tree [37], Deep Neural Network [38] and so on.

The generative methods estimate the p(y|x) indirectly by modeling the p(y, x). And the typical
examples include Naive Bayes [16, 39], Bayes-Network [17] and so on.

The ensemble learning methods obtain the final p(y|x) by integrating multiple base classifiers, where
each base classifier can be discriminative method or generative method. And the typical examples
include AdaBoosting [40], Random forest [41] and so on.

The relationship between existing classifiers and FLM can be discussed from the following aspects.

1. Existing classifiers and FLM solve classification problems from different perspectives.
Given an (X ,Y, ϕ)-classification problem (see Definition 1), the goal of existing classifiers
is to learn the mapping f : X → Y to approximate the unknown target function ϕ. Unlike
it, the goal of FLM is to learn a mapping fFER : X × X → {0, 1} to approximate the
equivalence relation derived by the target function Rϕ (see Definition 21). It is motivated
by that concept is represented on the bias of similarity, a conclusion of cognitive science.
And, it is proved that any classification problem can be solved by the this approach (see
Proposition 1).

2. Most of the existing classifiers and FLM deal with the fuzziness in opposite ways. The
fuzziness is an intrinsic property of concept. However, most of existing classifiers ignore
or even unintentionally eliminate it. Given a (X ,Y, ϕ)-classification problem, the 0-1 loss,
I (f(x) = ϕ(x)), has always been regarded as the ideal infallible loss function. However, it
does not tolerate the fuzziness. In order to simplify the solving process, some surrogate loss
functions with elegant mathematical properties are designed, such as the exponential loss

exp(−ϕ(x)f(x)),
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where Y = {−1,+1},∀x ∈ X , f(x) ∈ R and the cross entropy loss

−
∑

i∈Y
I (ϕ(x) = i) log(f(x)i),

where Y = {1, 2, · · · },∀x ∈ X , f(x) ∈ [0, 1]|Y|,
∑
i∈Y f(x)i = 1, etc. Based on these

loss functions, some classical classifiers are built, such as AdaBoosting [40], Deep Neural
Network [38], etc. However, minimizing these losses indirectly removes the fuzziness. In
contrast, in NN-FLM, a fuzziness permissible loss function (see formula (6)) is designed,
and the fuzziness is deliberately preserved during the learning process.

3. Existing classifiers can be embedded into FLM. FLM is a general framework and almost
all existing classifiers can be embedded into it. It enables existing classifiers designed for
binary-classification problem (e.g. Support Vector Machine [36]) to be directly used for
multi-class classification problems without any modification (see Proposition 1). Different
from the conventional strategies for converting multi-class classification problems into a
series of binary-classification problems such as ‘one-versus-one’ and ‘one-versus-rest’ [42],
the new strategy obtains only one binary-classification problem. That is to say, only one
binary classifier is needed to solve the original multi-class classification problem.

Relationship to Nearest Neighbor Classifier
Nearest Neighbor Classifier (NNC) [43] is a classical family of classifiers that predicts the class label
for a test sample through finding it’s nearest neighbors. To date, there are still studies on improving it
[44]. The differences between the NNC and FLM mainly include:

1. They are different in the choice of similarity (distance). In NNC, a predefined similarity
is usually used. Therefore, performance of NNC depends heavily on the selection of the
similarity, and it is difficult to adaptively handle different tasks. Unlike NNC, in FLM, a
special similarity (FER) is learned from the training data (see formula (1)). This allows
FLM to automatically adapt to different tasks.

2. They represent concept in different ways. In NNC, all samples are stored to represent
every concept in Y . Unlike NNC, in FLM, every concept in Y is represented by the selected
exemplar set (see Definition 4). Although in exemplar theory, how many exemplars are
stored for a concept in human memory is a leftover open question. Obviously, in order to
form representation of concept ‘dog’, human do not remember all the dogs they have ever
seen. What’s more, storing all the training data for prediction is not a sensible approach
from the perspective of time and space complexity, especially when the number of training
samples is large.

Relationship to Existing Fuzzy Classifiers
In literature [21], the fuzzy classifier (FC) is defined as a classifier that uses fuzzy sets or fuzzy
logic in the course of its training or operation. FCs can deal with ambiguity effectively, has strong
interpretability and can easily be fused with the knowledge of experts. According to this definition,
FLM is a kind of FC. The differences between FLM and the existing FCs are discussed as follows.
(In order to be clearer, we take NN-FLM as an example.)

In literature [21], the existing FCs are divided into fuzzy if-then and non if-then fuzzy classifiers.

For fuzzy if-then classifiers, fuzzy sets need to be defined on each feature to construct classification
rules. The number of fuzzy sets and the membership function of each fuzzy set need to be set
manually. When the semantic information of features are unknown, this step is difficult to complete
effectively. In some case, although the semantic information of features are known, it is almost
meaningless to define fuzzy sets on them. For example, in image classification tasks, the feature of
the sample is pixel. Because a single pixel often can not express high-level semantic information, the
fuzzy set defined on a single pixel is often useless for classification. At the same time, defining fuzzy
sets on each feature also faces efficiency problem. Assuming that the sample is image with 256× 256
pixels and only 3 fuzzy sets are defined on each pixels. Then there are 3× 256× 256 fuzzy sets to be
processed and (256× 256)3 rules will be generated, which brings a huge computational burden to
training and test of classifiers.

Different from fuzzy if-then classifiers, firstly, the design of NN-FLM does not rely semantic
information of features. Secondly, thanks to the excellent feature extraction ability of deep neural
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network, NN-FLM can effectively extract useful features for classification from low-level semantic
features. Thirdly, by skillfully designing the optimization model, NN-FLM can effectively complete
training and prediction. Therefore, NN-FLM is suitable for learning from large-scale data.

Non if-then fuzzy classifiers mainly include fuzzy k-nearest neighbor (FKNN) and fuzzy-prototype
(FPC) classifiers. FKNN is an extension of KNN and uses the distances to the neighbors as well
as their soft labels for predicting. Unlike FKNN, FPC uses the nearest class prototype instead of
the nearest training sample to predict. Among these methods, the distance between samples, the
construction of class prototype, and the soft labels all directly affect the performance. All these
depend on manual construction, so it is difficult to give a reasonable design when there is a lack of
domain experts.

Unlike FKNN and FPC, NN-FLM takes similarity learning as the core goal. With the excellent feature
extraction ability and well-designed loss, the adaptive similarity learning is realized. Meanwhile, the
exemplar selection method can automatically select samples from training set without the participation
of human experts.

In conclusion, the NN-FLM is more suitable for data-driven learning tasks.

A.2.2 Relationship to Distance Metric Learning

The goal of the distance metric learning [22, 23, 24] is to learn a task specific distance function,

d : Rd × Rd → R+, (10)

to improve the performance of the model on the corresponding task. Unlike it, the goal of FLM is to
learn an FER (see formula (1)), fFER : Rd × Rd → [0, 1] to solve original (X ,Y, ϕ)-classification
problem. In fact, let

dFER : Rd × Rd → [0, 1] , dFER (xi, xj) = 1− fFER (xi, xj) , ∀xi, xj ∈ X ⊆ Rd. (11)

Then dFER can also be viewed as a distance function on Rd.

The differences between formula (10) and (11) include:

1. The dFER is a distance metric on Rd (i.e. dFER satisfies the basic properties of the distance
metric: nonnegativity, identity of indiscernibles, symmetry, and triangle inequality, see The-
orem 2.3 of literature [34]) while d doesn’t have to be a distance metric on Rd. For example,

the Mahalanobis-like distance, d (xi, xj) =

√
(xi − xj)

T M (xi − xj), is commonly used,
where M ∈ Rd×d be the learnable parameter. Usually, M is a positive semi-definite matrix,
which will not guarantee that the d satisfies the identity of indiscernibles.

2. Further, dFER is a normalized isosceles distance (see Definition 2.18 and Proposition 2.13
of literature [34]). In addition to the basic properties of the distance metric, it also satisfies
two other properties:
(a) dFER is normalized, i.e. ∀xi, xj ∈ X , 0 ≤ dFER (xi, xj) ≤ 1,
(b) dFER is isosceles, i.e. ∀xi, xj , xk ∈ X , the triangle composed by dFER (xi, xj),

dFER (xi, xk) and dFER (xj , xk) is an isosceles triangle, and its congruent legs are the
longest side.

The first property is derived from the definition of the binary fuzzy relation (see Definition
13 in Appendix A.1.3), and the second one is derived from the transitivity of FER (see
Definition 16 in Appendix A.1.3). These two properties are crucial for classification
problem, because the target function of the (X ,Y, ϕ)-classification problem is transitive
(see Definition 21). Unfortunately, distance metric learning ignores these two crucial
properties, so it can not capture the nature of classification.

A.2.3 Relationship to Siamese Network

Siamese network [25, 26, 27] is a widely used neural network that computes the similarity between
two objects. Siamese network consists of two identical neural networks to learning the hidden
representation of an input vector. These two neural networks work parallelly in tandem and compare
their outputs at the end.
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Essentially, siamese network can be viewed as a special kind of distance metric learning method.
Therefore, the relationship between siamese network and FLM is the same as the relationship between
distance metric learning and FLM, which will not be repeated here.

A.2.4 Relationship to Relation Network Based Methods

Recently, methods based on ‘relation’ network [28, 29, 30] have been proposed to solve the few-shot
learning problem. The differences between these methods and FLM include:

1. The methods in the above literatures are designed for few-shot learning problems, while
FLM is designed for general classification problems (see Definition 1). FLM can directly
deal with few-shot learning problems almost without adjustment.

2. In the above literatures, the term ‘relation’ is only an intuitive expression, and there is no
clear mathematical definition. In contrast, this paper adopts binary relation in classical set
theory (see Definition 6 in Appendix A.1.2) and binary fuzzy relation (see Definition 13 in
Appendix A.1.3) in fuzzy set theory. The structure of classification problems is studied with
these tools and the equivalence between ER and classification problems is demonstrated
(see Proposition 1).

3. In the above literatures, the relation network can be formally written as: r : X ×X → [0, 1].
According to the theoretical system adopted in this paper, its mathematical meaning should
be that r is a binary fuzzy relation on X (see Definition 13 in Appendix A.1.3). And there
is no special requirement for r, such as reflexivity, symmetry, transitivity, etc. In contrast,
the core component of FLM is fFER : X × X → [0, 1], where fFER is an FER on X (see
Definition 16 in Appendix A.1.3).

4. In the above literatures, the relation network is only used to calculate the relation score
between the support samples (or the mean of support samples) and the query samples
during the training process. It ignores the relation score between the support samples and
the relation score between the query samples. The supervised information contained in
these sample pairs is important for training classifiers. Especially in learning tasks such as
few-shot learning, there are only a very small number of labeled samples. In contrast, in
FLM, the sample pair composed of any two training samples must participate in the training
process (see formula (8)), so as to ensure that a high-quality FER is learned.

A.3 Proofs

A.3.1 The Proof of Proposition 1

First, two useful definitions and a lemma are given as follows.

Definition 21 Given a (X ,Y, ϕ)-classification problem, the binary relation (see Definition 6 in
Appendix A.1.2) derived by the unknown target function ϕ is defined as

∀xi, xj ∈ X ,Rϕ ((xi, xj)) = I (ϕ (xi) = ϕ (xj)) . (12)

Obviously, Rϕ is a equivalence relation (ER) on X (see Definition 7 in Appendix A.1.2).

Definition 22 Given a (X ,Y, ϕ)-classification problem, finding the Rϕ is defined as the (X ,Y, ϕ)-
ER problem.

Lemma 1 The (X ,Y, ϕ)-classification problem is equivalent to the (X ,Y, ϕ)-ER problem, i.e. if
one problem is solved, then the other problem will also be solved.

Proof

The proof consists two parts.

(1) If the (X ,Y, ϕ)-classification problem is solved, then the (X ,Y, ϕ)-ER problem will also be
solved.

If the (X ,Y, ϕ)-classification problem is solved, then ∀x ∈ X , the true class label ϕ(x) is known.
Then according to the formula (12), the Rϕ, the binary relation derived by the target function ϕ, can
be obtained directly. That is to say, the (X ,Y, ϕ)-ER problem is solved.
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(2) If the (X ,Y, ϕ)-ER problem is solved, then the (X ,Y, ϕ)-classification problem will also be
solved.

If the (X ,Y, ϕ)-ER problem is solved, i.e. Rϕ is known, then the X/Rϕ =
{

[x]Rϕ
|x ∈ X

}
=

{Xi|i = 1, 2, · · · , |Y|}, the partition on X derived by Rϕ, can be obtained by Definition 9, 10. Then,
one can obtained the target function ϕ: ∀x ∈ X , ϕ(x) = ci, if x ∈ Xi ∈ X/Rϕ. That is to say,
∀x ∈ X , the ϕ(x) is found, i.e. the (X ,Y, ϕ)-classification problem is solved.

Combining (1) and (2), the lemma is proved. �
Based on the above conclusion, the proof of the Proposition 1 is given as follows.

Proof

The target function ϕ† of the adjoint
(
X × X , {0, 1}, ϕ†

)
-classification problem is equivalent to Rϕ,

the binary relation derived by the target function of (X ,Y, ϕ)-classification problem, because of

∀x1, x2 ∈ X , Rϕ ((x1, x2)) = I [ϕ(x1) = ϕ(x2)] = ϕ† ((x1, x2)) .

That is to say, the adjoint
(
X × X , {0, 1}, ϕ†

)
-classification problem is equivalent to the (X ,Y, ϕ)-

ER problem.

According to Lemma 1, one can obtained that the adjoint
(
X × X , {0, 1}, ϕ†

)
-classification problem

is equivalent to the original (X ,Y, ϕ)-classification problem. �

A.3.2 The Proof of Theorem 1

Proof

Reduction to absurdity.

For (x1, y1), (x2, y2) ∈ Dtrain and y1 6= y2, let ([x1; x1], 1), ([x2; x2], 1), ([x1; x2], 0), and
([x2; x1], 0) be 4 composite labeled samples obtained by formula (3).

Assume that these four new sample are linearly separable, i.e. ∃w ∈ R2d, b ∈ R, such that

[w1; w2]T [x1; x1] + b > 0, (13a)

[w1; w2]T [x2; x2] + b > 0, (13b)

[w1; w2]T [x1; x2] + b < 0, (13c)

[w1; w2]T [x2; x1] + b < 0, (13d)

where [w1; w2] = w, and w1,w2 ∈ Rd.

From formula (13a) and (13b), we have

(w1 + w2)T x1 + b > 0, (14a)

(w1 + w2)T x2 + b > 0. (14b)

Further, we have
(w1 + w2)T (x1 + x2) + 2b > 0. (15)

From formula (13c) and (13d), we have

wT1 x1 + wT2 x2 + b < 0, (16a)

wT1 x2 + wT2 x1 + b < 0. (16b)

Further, we have
(w1 + w2)T (x1 + x2) + 2b < 0. (17)

There is a contradiction between formula (15) and (17), so the assumption is false, i.e. these 4
composite labeled samples obtained by formula (3) are not linearly separable.

So the
(
R2d, {0, 1}, ϕ†

)
-classification problem with the samples defined as formula (3) is not linearly

separable. �
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A.3.3 The Proof of Theorem 2

First, a useful definition and a lemma are given as follows.

Definition 23 Given a finite set A and a binary fuzzy relation matrix R on it, ∀λ ∈ [0, 1] the tuple(
A,R(λ)

)
is called as the λ-strictly-cut graph, where, A is the set of the nodes of the graph and

λ-strictly-cut relation matrix, R(λ) ∈ {0, 1}|A|×|A|, ∀i, j = 1, 2, · · · , |A|, r(λ)
ij = I (rij > λ), is the

adjacency matrix of the graph.
Obviously, if R is symmetric, then ∀λ ∈ [0, 1], the strictly-cut graph

(
A,R(λ)

)
is undirected graph.

Lemma 2 Given a finite set A and a fuzzy similarity relation matrix S on A, then ∀l = 1, 2, 3, · · · ,
∀i, j = 1, 2, · · · , |A|, and ∀λ ∈ [0, 1], slij > λ if and only if ∃ path 〈ai, · · · , aj〉 in graph(
A,S(λ)

)
and the length of it is l. Where slij is entry in the ith row and the jth column of matrix Sl,

and Sl is the the l-th power of S (see Definition 19).

Proof

By mathematical induction.

(1) When l = 1, ∀i, j = 1, 2, · · · , |A|, and ∀λ ∈ [0, 1],

s1
ij > λ⇔ sij > λ⇔ s

(λ)
ij = 1⇔ ∃ path 〈ai, aj〉 in graph

(
A,S(λ)

)
and the length of it is 1.

(2) When l = 2, ∀i, j = 1, 2, · · · , |A|, and ∀λ ∈ [0, 1],

s2
ij > λ ⇔ max

k=1,2,··· ,|A|
min [sik, skj ] > λ

⇔ ∃ k ∈ {1, 2, · · · , |A|} ,min [sik, skj ] > λ
⇔ ∃ k ∈ {1, 2, · · · , |A|} , sik > λ ∧ skj > λ

⇔ ∃ path 〈ai, ak, aj〉 in graph
(
A,S(λ)

)
and the length of it is 2.

(3) When l = L− 1, L > 3, assuming that ∀i, j = 1, 2, · · · , |A|, and ∀λ ∈ [0, 1],

sL−1
ij > λ⇔ ∃ path

〈
ai, ap2 , ap3 , · · · , apL−1

, aj
〉

in graph
(
A,S(λ)

)
and the length of it is L−1.

(4) When l = L,L > 3,∀i, j = 1, 2, · · · , |A|, and ∀λ ∈ [0, 1],

sLij > λ ⇔ max
k=1,2,··· ,|A|

min
[
sL−1
ik , skj

]
> λ

⇔ ∃ k ∈ {k = 1, 2, · · · , |A|} ,min
[
sL−1
ik , skj

]
> λ

⇔ ∃ k ∈ {k = 1, 2, · · · , |A|} , sL−1
ik > λ ∧ skj > λ

⇔ ∃ k ∈ {k = 1, 2, · · · , |A|} ,
∃ path

〈
ai, ap2 , ap3 , · · · , apL−1

, ak
〉

in graph
(
A,S(λ)

)
∧

∃ edge 〈ak, aj〉 in graph
(
A,S(λ)

)

⇔ ∃ path
〈
ai, ap2 , ap3 , · · · , apL−1

, ak, aj
〉

in graph
(
A,S(λ)

)
and the length of it is L.

Combining (1)-(4), the lemma is proved. �
Based on the above conclusion, the proof of Theorem 2 is given as follows.

Proof

The proof consists two parts.

(1) ∀p, q = 1, 2, · · · , n, yp = yq ,
if
∑n
i=1

∑n
j=1 Lα,β (sij , yi, yj) = 0, then Lα,β (tpq, yp, yq) = 0.

∵
∑n
i=1

∑n
j=1 Lα,β (sij , yi, yj) = 0

∴ Lα,β (spq, yi, yj) = max{β − sij , 0} = 0
∴ spq ≥ β.
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And
∵ T is the transitive-closure of S
∴ tpq ≥ spq (see Definition 20)

∴ tpq ≥ spq ≥ β
∴ Lα,β (tpq, yp, yq) = max{β − tij , 0} = 0.

(2) ∀p, q = 1, 2, · · · , n, yp 6= yq ,
if
∑n
i=1

∑n
j=1 Lα,β (sij , yi, yj) = 0, then Lα,β (tpq, yp, yq) = 0.

Reduction to absurdity.

Let Xtrain = {xi| (xi, yi) ∈ Dtrain} be the set of training samples and let
(
Xtrain,S(α)

)
be the

corresponding α-strictly-cut graph.

Assume that ∃p, q = 1, 2, · · · , n, yp 6= yq , such that Lα,β (tpq, yp, yq) > 0.

∵ Lα,β (tpq, yp, yq) = max{tpq − α, 0} > 0
∴ tpq > α.

According to Theorem 5, T can be written as the power of S. Without loss of generality, let T = SK .
Then we have tpq = sKpq > α.

According to Lemma 2, we have

sKpq > α ⇔ ∃ path 〈xp, xr2 , xr3 , · · · , xrK , xq〉with length K in graph
(
Xtrain,S(α)

)

⇔ ∃ xp, xr2 , xr3 , · · · , xrK , xq ∈ Xtrain,
such that spr2 > α, sr2r3 > α, · · · , srK−1rK > α, srKq > α.

∵ yp 6= yq
∴ ∃ (p∗, q∗) ∈ {(p, r2) , (r2, r3) , · · · , (rK−1, rK) , (rK , q)}, such that yp∗ 6= yq∗
∴ Lα,β (sp∗q∗ , yp∗ , yq∗) = max{sp∗q∗ − α, 0} > 0
∴
∑n
i=1

∑n
j=1 Lα,β (sij , yi, yj) ≥ Lα,β (sp∗q∗ , yp∗ , yq∗) = max{sp∗q∗ − α, 0} > 0

It contradicts to the known condition.

Combining (1) and (2), we have

∑n
i=1

∑n
j=1 Lα,β (tij , yi, yj) =

∑n
i=1

∑n
j=1,yi=yj

Lα,β (tij , yi, yj)

+
∑n
i=1

∑n
j=1,yi 6=yj Lα,β (tij , yi, yj)

= 0 + 0
= 0

,

i.e. the theorem is proved. �

A.4 Experiment Details

A.4.1 Experiment Details of Section 4.1

(1) Data set The MNIST handwritten digit data set [31], one of the most basic data sets used to test
performance learning algorithm, is chosen to demonstrate how FLM works. It has a training set of
60,000 samples, and a test set of 10,000 samples, and each sample is a gray image of a handwritten
digits. There are a total of 10 concepts, i.e. 0, 1, · · · , 9.

(2) Settings of NN-FLM
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1. The feature extraction network (see formula (4)) is a 5-layer convolutional network 2. It can
be formally described as follows

h(1) = ReLU (BN (Conv (x; K1) ; w1,b1))

h(2) = ReLU
(

BN
(

Conv
(

h(1); K2

)
; w2,b2

))

h(3) = ReLU
(

BN
(

Conv
(

h(2); K3

)
; w3,b3

))

h(4) = ReLU
(

BN
(

Conv
(

h(3); K4

)
; w4,b4

))

h(5) = Softmax
(

BN
(

Linear
(

h(4); K5

)
; w5,b5

))

,

where Θ = { K1 ∈ R48×1×7×7, w1 ∈ R48, b1 ∈ R48, K2 ∈ R96×48×7×7, w2 ∈ R96,
b2 ∈ R96, K3 ∈ R144×96×7×7, w3 ∈ R144, b3 ∈ R144, K4 ∈ R192×144×7×7, w4 ∈ R192,
b4 ∈ R192, K5 ∈ R10×3072, w5 ∈ R10, b5 ∈ R10 } is the set of the learnable parameters.

2. For the loss (8), α = 0.2, β = 0.8 is set to control the degree of the fuzziness.

3. The number of exemplars of every class (see Definition 4), nexe, is set to 5.

4. A regularization term R (Θ) is added into the loss (8) to control the complexity of the
model,

R (Θ) =
γ

npara

5∑

i=1

‖Ki‖2F + ‖wi‖22 + ‖bi‖22,

where npara = (48× 1× 7× 7 + 48 + 48) + (96× 48× 7× 7 + 96 + 96) + (144× 96×
7× 7 + 144 + 144) + (192× 144× 7× 7 + 192 + 192) + (10× 3072 + 10 + 10) is the
number of learnable parameters and γ = 0.1 is the trade-off parameter.

5. The stochastic gradient descent method Adam [45] optimizer are used to train the model. The
size of the batch is set to 2048. We stopped iterating until the loss values of 10 consecutive
epochs do not change significantly.

(3) Supplementary analysis of experimental results

The top-1, top-2, and top-3 accuracy of NN-FLM are 99.69%, 99.95%, and 99.98%, respectively.

It should be pointed out that the accuracy obtained in the experiment is slightly lower than the current
state-of-the-ar on MNIST data3. On the one hand, the goal of this experiment is to illustrate the
working mechanism of NN-FLM, rather than pursuing higher accuracy. In most of the state-of-the-art
methods, strategies (such as designing specific neural network structure, data augmentation, and
ensemble learning, etc) are used to achieve higher accuracy. These strategies can be embedded in
NN-FLM for higher accuracy. On the other hand, when the accuracy reaches a certain level, pursuing
higher accuracy is not only meaningless, but will lead to other problems. Suppose there is a classifier
that predicts the ’correct’ labels for all the images in Figure 3c. When it is applied to a field where
the cost of misclassification is extremely high (e.g. the medical field), a serious consequences may be
caused. In this case, it would be wiser to leave the fuzzy images to human as NN-FLM does.

A.4.2 Experiment Details of Section 4.2

(1) Data sets A total of 121 data sets are used in the experiments. In these data sets, the number
of samples varies from 10 (trains) to 130,064 (miniboone), the number of features varies from 3
(haberman-survival) to 262 (arrhythmia), and the number of classes varies from 2 (a total of 54 data
sets) to 100 (plant-texture, plant-margin, and plant-shape). More information about these data sets
can be found in Table 1, 2 of the literature [1]. For the convenience of discussion, each data set is
given a unique ID, see Table 2.

(2) Training-test split In order to ensure the reproducibility of the experiments and the fairness of
the comparisons, in literature [1], all methods are subjected to the same 4-fold cross validation on
every data set. This experiment also used the same training-test split on all the 121 data sets. The

2The network structure design comes from https://github.com/ansh941/MnistSimpleCNN
3See the leaderboard at https://paperswithcode.com/sota/image-classification-on-mnist
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whole 121 data sets and partitions are available from: http://persoal.citius.usc.es/manuel.
fernandez.delgado/papers/jmlr/data.tar.gz.

(3) Comparison methods and settings A total of 179 classifiers from these 17 families are used as
comparison methods (see Table 3). The names and implementation details of these 179 classifiers
can be found in Section 2.2 of literature [1].

(4) Settings of NN-FLM In this experiment, the implementation details of NN-FLM are as follows.

1. The feature extraction network (see formula (4)) is a 3-layer full connected network. It can
be formally described as follows

h(x; Θ) = softmax {LeakyReLU [LeakyReLU (xW1 + b1) W2 + b2] W3 + b3} ,
where Θ =

{
W1 ∈ Rd×128 , b1 ∈ R128, W2 ∈ R128×64, b2 ∈ R64, W3 ∈ R64×32,

b3 ∈ R32 } is the set of the learnable parameters and d is the number of the features of the
data set.

2. For the loss (8), α = 0.2, β = 0.8 is set to control the degree of the fuzziness for all the
experiments.

3. The number of exemplars of every concept (see Definition 4), nexe, is set to 5 for all the
experiments. If the number of training samples in the concept is less than 5, then all the
training samples are selected as exemplars.

4. For all the experiments, a regularization termR (Θ) is added into the loss (8) to control the
complexity of the model,

R (Θ) =
γ

npara

3∑

i=1

‖Wi‖2F + ‖bi‖22,

where npara = d× 128 + 128 + 128× 64 + 64 + 64× 32 + 32 is the number of learnable
parameters and γ = 0.1 is the trade-off parameter.

5. For all the experiments, the stochastic gradient descent method Adam [45] optimizer are
used to train the model. The size of the batch is set to min(4096, n), where n is the number
of the training samples. We stopped iterating until the loss values of 10 consecutive epochs
do not change significantly.

(5) Experimental results The results of the 179 comparison methods on the 121 data set are avail-
able from: http://persoal.citius.usc.es/manuel.fernandez.delgado/papers/jmlr/
results.txt.

The average accuracy of NN-FLM on 4-fold cross validations are recorded in Table 4. Limited by
space, it is impractical to list the accuracy of the 179 comparison methods on 121 data sets. Therefore,
the top-10 methods with the smallest average rank on the 121 data sets are picked for comparison,
and their accuracies are recorded in Table 4.

Table 4: The prediction accuracy (%) of the top-10 methods among 180 methods on 121 data sets,
with the rank of the method among the 10 methods (up right).

ID NN-
FLM parRF-t rf-t svm-C rforest-

R
svm

Poly-t C5.0-t
svm

Radial
Cost-t

elm-
kernel-

m
avNNet-t

1 80.51 74.9 75.3 77.3 74.2 77.4 77.9 80.1 77.5 79.5
2 78.21 73.1 75.5 75.0 71.2 73.1 74.8 74.8 74.6 73.4
3 98.01 96.6 97.0 96.1 97.0 96.9 96.7 95.8 96.1 96.9
4 83.21 80.9 80.8 81.1 80.5 78.3 79.4 79.3 82.7 77.8
5 99.61 98.3 98.6 99.0 97.5 96.1 98.7 99.2 98.1 95.3
6 57.51 55.1 54.0 55.6 52.4 55.9 54.7 55.1 55.9 56.4
7 88.51 87.5 86.8 86.2 88.4 86.7 86.5 85.5 86.6 87.0
8 100.01 80.3 78.9 78.3 81.2 77.5 79.9 78.7 73.6 77.5
9 88.31 84.7 84.0 86.4 83.3 85.5 87.1 82.5 75.0 81.0
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Continuation of Table 4

ID NN-
FLM parRF-t rf-t svm-C rforest-

R
svm

Poly-t C5.0-t
svm

Radial
Cost-t

elm-
kernel-

m
avNNet-t

10 91.01 88.0 88.0 88.0 85.0 88.0 88.0 90.0 84.0 88.0
11 78.31 67.7 69.6 74.0 71.4 74.2 72.9 75.2 72.7 76.1
12 65.71 59.4 59.7 58.6 57.6 59.1 56.1 58.4 58.6 59.7
13 54.21 41.4 35.8 35.5 41.1 44.8 40.0 45.5 42.7 43.1
14 45.01 37.4 32.5 31.5 35.0 36.5 38.0 32.0 31.5 38.1
15 90.21 82.6 83.2 85.9 81.4 82.5 85.7 85.2 84.0 83.9
16 82.81 55.3 54.1 53.6 55.1 55.3 49.3 52.5 70.3 66.7
17 88.51 28.6 28.7 28.9 28.8 28.8 30.8 28.9 21.4 82.2
18 96.01 93.2 92.9 94.9 93.5 92.3 94.6 95.5 94.0 92.6
19 75.31 71.7 72.8 72.4 72.2 73.6 71.3 71.8 74.5 71.7
20 94.51 90.4 89.8 93.4 91.9 90.8 87.0 88.3 90.2 90.6
21 91.91 61.1 61.1 51.9 61.1 55.6 72.2 64.1 66.0 78.2
22 68.51 65.7 65.7 65.3 66.2 66.9 62.5 65.5 62.3 66.4
23 96.71 53.7 53.7 53.2 53.7 67.6 53.9 48.6 62.5 60.4
24 94.21 92.8 92.1 92.3 92.4 92.4 92.0 92.2 94.0 93.0
25 95.81 92.5 92.0 95.1 92.1 93.5 93.0 94.1 94.4 94.2
26 99.01 97.0 97.4 97.2 97.4 98.0 81.6 97.4 98.7 93.7
27 95.31 89.2 90.8 93.4 88.8 91.3 90.8 93.3 94.4 90.3
28 99.71 95.5 95.6 97.6 95.5 97.6 96.1 97.7 97.8 89.9
29 93.31 84.0 84.9 79.8 84.6 86.8 86.8 85.9 88.5 86.8
30 86.01 74.8 71.0 72.1 71.2 69.9 69.8 70.0 65.4 67.0
31 80.51 65.1 70.9 80.4 65.2 75.0 71.8 69.6 71.7 71.7
32 94.01 88.2 86.3 80.0 86.5 87.3 86.3 89.2 88.0 90.3
33 73.91 71.4 72.5 72.8 66.3 71.4 71.4 71.4 72.8 71.4
34 75.01 61.2 68.9 70.5 70.5 71.1 71.1 71.1 72.7 68.9
35 54.31 49.4 48.5 47.3 50.3 46.1 45.8 47.3 52.7 46.1
36 93.11 89.6 90.2 88.6 90.7 89.4 58.8 88.0 90.4 85.6
37 81.61 55.1 55.1 55.1 55.1 55.1 57.8 55.1 58.3 59.9
38 69.51 67.7 67.8 68.2 67.4 67.8 67.5 67.8 67.3 67.8
39 89.91 83.0 83.0 88.1 85.7 85.6 81.1 84.1 86.9 85.6
40 85.91 75.8 76.4 84.7 75.4 85.1 76.2 84.2 84.8 82.6
41 66.91 62.1 62.2 48.0 59.2 56.9 57.7 55.0 47.4 60.3
42 88.31 85.2 84.5 85.4 82.4 86.1 85.2 86.5 86.7 86.1
43 88.01 86.4 85.1 83.8 84.6 85.5 84.2 83.9 82.5 86.8
44 79.81 71.7 68.8 68.3 77.9 69.1 70.0 74.5 70.2 69.8
45 63.21 62.5 62.1 60.8 61.5 63.0 61.4 62.1 61.2 62.3
46 90.41 82.7 84.2 85.6 84.1 87.5 80.8 87.0 90.41 81.7
47 86.61 82.3 83.0 86.0 83.1 83.7 81.3 84.7 82.5 83.3
48 95.81 83.3 87.3 83.3 83.3 88.1 87.5 83.3 91.7 87.5
49 75.01 60.0 62.5 62.5 53.1 56.2 59.0 44.6 37.5 52.4
50 89.21 87.9 85.2 87.2 87.2 85.1 85.1 85.9 87.2 81.8
51 93.71 89.9 88.7 87.8 87.6 92.0 92.4 93.71 87.8 92.2
52 86.81 81.4 81.9 86.0 80.9 85.1 81.0 85.5 86.81 85.3
53 99.71 98.3 98.7 99.5 98.8 99.0 97.8 99.5 99.2 98.7
54 100.01 66.7 87.5 81.2 87.5 81.2 48.3 100.01 93.8 75.0
55 93.41 92.1 92.3 90.2 89.5 90.5 91.7 92.2 90.8 91.4
56 83.91 80.9 82.6 82.5 81.9 83.4 83.6 82.1 81.0 83.7
57 93.31 88.7 90.6 86.5 92.3 85.1 86.9 81.1 86.5 82.9
58 85.72 81.6 81.1 84.1 77.9 82.9 80.2 83.3 86.01 84.4
59 75.02 64.9 66.8 76.01 72.1 58.1 62.8 60.8 64.4 62.1
60 78.51 77.1 77.1 76.8 77.9 76.9 75.9 77.6 78.1 74.6
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Continuation of Table 4

ID NN-
FLM parRF-t rf-t svm-C rforest-

R
svm

Poly-t C5.0-t
svm

Radial
Cost-t

elm-
kernel-

m
avNNet-t

61 100.01 98.9 98.9 98.3 98.9 98.3 98.3 98.9 100.01 98.9
62 99.01 98.1 96.1 98.0 95.0 94.2 95.1 92.3 96.0 93.9
63 98.11 96.8 97.0 97.0 95.8 97.9 96.0 98.11 96.1 97.5
64 100.01 91.7 87.5 50.0 87.5 75.0 79.2 62.5 87.5 87.5
65 98.92 85.3 84.8 99.01 86.5 91.8 84.0 96.6 91.8 93.8
66 89.02 87.2 86.6 86.3 88.1 87.5 83.6 86.3 89.61 86.6
67 88.12 82.5 84.7 88.61 79.7 82.5 80.6 86.1 84.7 73.6
68 92.51 92.0 92.0 92.0 92.0 92.0 92.0 92.0 91.4 71.7
69 97.11 94.3 93.4 95.7 94.7 93.8 92.9 93.4 95.2 96.2
70 88.11 12.0 52.0 64.0 52.0 52.0 8.0 48.0 76.0 60.0
71 76.41 68.4 70.2 71.1 69.7 71.4 70.7 71.4 72.8 72.2
72 93.32 93.81 −− −− −− −− 93.81 −− −− 92.2
73 99.62 97.7 97.8 99.4 97.8 99.62 98.7 99.5 99.81 98.6
74 90.22 89.9 90.0 90.0 90.51 89.5 90.0 89.8 89.6 89.6
75 97.33 97.81 97.52 95.6 93.9 87.8 96.4 96.6 91.7 90.2
76 97.93 97.8 98.21 96.7 97.9 96.3 98.12 96.5 97.3 95.0
77 98.71 96.7 96.0 96.6 96.7 98.0 95.3 94.0 98.6 97.3
78 66.32 65.1 64.7 66.0 64.9 65.9 64.5 66.51 66.1 67.4
79 99.83 99.1 99.2 100.01 99.0 99.0 98.6 99.6 99.92 98.3
80 90.35 91.03 90.84 91.91 91.03 89.8 89.8 90.8 91.32 86.9
81 66.04 69.01 69.01 64.0 68.92 61.1 68.13 63.4 61.6 61.4
82 86.24 87.41 87.52 −− 85.2 −− 90.41 −− −− 77.8
83 94.85 95.13 95.04 93.8 95.22 93.5 95.41 93.4 93.3 94.3
84 94.45 94.1 93.7 95.84 94.5 95.92 90.5 95.53 96.41 83.7
85 97.21 97.1 97.1 97.21 97.1 97.1 97.21 97.1 96.8 97.1
86 99.43 99.43 99.52 98.9 98.6 99.52 99.61 99.2 99.52 99.43

87 77.25 79.02 78.63 76.1 78.54 76.2 80.41 75.8 75.9 73.2
88 82.36 86.22 87.21 83.1 85.33 −− 74.9 −− 85.0 32.9
89 73.04 77.41 76.12 72.3 75.23 70.6 71.9 65.5 71.5 63.5
90 74.05 78.01 75.73 68.9 77.82 70.2 74.24 70.6 69.3 66.3
91 81.05 83.43 84.52 84.52 83.14 −− 77.0 −− 85.71 31.9
92 97.82 97.82 97.82 96.7 98.11 97.5 96.7 98.11 96.7 98.11

93 95.38 96.4 96.5 97.41 96.73 96.4 95.7 96.82 −− 64.6
94 85.94 88.12 88.12 84.4 86.63 83.1 88.51 84.3 83.6 79.7
95 78.31 76.6 76.3 78.31 76.4 78.0 76.4 77.2 78.1 77.1
96 97.92 97.2 97.3 97.8 97.5 98.01 96.8 97.8 97.92 97.8
97 87.26 88.03 88.12 87.7 88.31 86.7 87.7 87.3 −− 86.9
98 93.44 94.32 94.13 91.9 94.71 92.6 94.71 93.1 92.7 91.9
99 95.14 94.0 94.0 97.02 96.03 97.02 89.0 96.03 97.02 98.01

100 86.73 85.7 85.6 86.5 84.9 87.11 84.2 86.82 86.6 87.11

101 99.54 99.73 99.82 99.73 98.1 −− 100.01 −− 99.4 93.8
102 98.13 96.6 96.7 98.61 95.8 98.1 97.0 98.61 98.52 90.2
103 62.26 63.9 64.1 72.21 64.93 −− 57.8 −− 71.72 31.1
104 85.14 86.12 86.21 85.0 86.12 84.9 85.63 85.0 −− 85.1
105 86.34 92.91 85.73 85.73 85.73 64.3 89.32 85.73 85.73 42.9
106 86.35 85.7 85.8 86.73 86.92 86.6 84.9 86.6 87.01 86.2
107 98.35 99.43 99.43 100.01 98.7 99.82 93.1 99.82 100.01 82.0
108 97.03 97.51 97.42 96.7 97.42 96.6 97.42 96.4 96.3 96.7
109 98.42 98.91 98.91 96.5 98.91 96.6 93.4 97.1 94.9 98.42

110 87.32 88.21 88.21 86.8 88.21 88.21 76.5 88.21 88.21 85.3
111 60.15 63.02 63.02 60.8 63.71 59.8 61.3 60.5 61.63 59.3
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Continuation of Table 4

ID NN-
FLM parRF-t rf-t svm-C rforest-

R
svm

Poly-t C5.0-t
svm

Radial
Cost-t

elm-
kernel-

m
avNNet-t

112 78.73 79.11 78.92 78.5 77.5 78.3 77.4 78.92 78.0 78.6
113 100.01 100.01 100.01 100.01 100.01 100.01 100.01 100.01 100.01 100.01

114 99.83 100.01 100.01 99.92 100.01 99.83 95.5 99.83 −− 99.6
115 59.16 68.62 68.03 64.4 69.11 56.3 66.2 59.0 65.6 55.9
116 60.45 70.11 69.12 46.4 67.73 53.1 65.0 51.0 51.0 52.6
117 63.37 86.43 86.52 82.6 70.5 51.7 88.81 67.9 −− 33.7
118 92.75 99.63 99.72 92.2 99.4 91.6 99.91 92.5 92.3 85.7
119 100.01 100.01 100.01 100.01 100.01 100.01 100.01 100.01 100.01 100.01

120 88.65 95.23 95.71 86.8 95.42 85.9 94.9 87.0 85.3 86.4
121 100.01 100.01 100.01 100.01 100.01 100.01 100.01 100.01 100.01 100.01

Mean 86.51 82.02 81.63 80.4 81.2 77.1 80.6 77.3 77.2 79.4

−−: The classifier made an error on the corresponding data set (see Section 3.1 of literature [1]).

(6) The 12 small sample data sets To verify the performance of NN-FLM on small sample classifi-
cation problem, we selected 12 data sets with small number of samples. And the basic information of
these data sets is shown in Table 5.
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Table 2: The ID of 121 data sets

ID Data set ID Data set ID Data set
1 blood 41 teaching 81 wine-quality-red
2 breast-cancer 42 vertebral-column-2clases 82 connect-4
3 breast-cancer-wisc 43 vertebral-column-3clases 83 spambase
4 breast-cancer-wisc-prog 44 breast-tissue 84 semeion
5 car 45 congressional-voting 85 ozone

6 contrac 46 conn-bench-sonar-mines-
rocks 86 chess-krvkp

7 credit-approval 47 heart-hungarian 87 steel-plates
8 cylinder-bands 48 lenses 88 plant-margin
9 echocardiogram 49 lung-cancer 89 arrhythmia
10 fertility 50 lymphography 90 glass
11 haberman-survival 51 musk-1 91 plant-texture

12 heart-cleveland 52 oocytes-trisopterus-states-
2f 92 dermatology

13 heart-switzerland 53 synthetic-control 93 letter

14 heart-va 54 balloons 94 cardiotocography-
10clases

15 hepatitis 55 energy-y2 95 pima
16 hill-valley 56 mammographic 96 twonorm
17 image-segmentation 57 molec-biol-promoter 97 magic

18 ionosphere 58 oocytes-merluccius-
nucleus-4d 98 cardiotocography-3clases

19 led-display 59 pittsburg-bridges-TYPE 99 annealing
20 low-res-spect 60 statlog-german-credit 100 waveform
21 monks-1 61 wine 101 nursery
22 monks-2 62 zoo 102 ringnorm
23 monks-3 63 breast-cancer-wisc-diag 103 plant-shape

24 oocytes-merluccius-states-
2f 64 trains 104 adult

25 oocytes-trisopterus-states-
5b 65 balance-scale 105 hayes-roth

26 optical 66 ecoli 106 waveform-noise

27 parkinsons 67 libras 107 conn-bench-vowel-
deterding

28 pendigits 68 spectf 108 page-blocks

29 pittsburg-bridges-
MATERIAL 69 seeds 109 thyroid

30 pittsburg-bridges-REL-L 70 audiology-std 110 horse-colic
31 pittsburg-bridges-SPAN 71 ilpd-indian-liver 111 yeast
32 pittsburg-bridges-T-OR-D 72 miniboone 112 titanic
33 planning 73 musk-2 113 mushroom
34 post-operative 74 bank 114 statlog-shuttle
35 primary-tumor 75 energy-y1 115 wine-quality-white
36 soybean 76 statlog-image 116 flags
37 spect 77 iris 117 chess-krvk
38 statlog-australian-credit 78 abalone 118 wall-following
39 statlog-heart 79 tic-tac-toe 119 acute-nephritis
40 statlog-vehicle 80 statlog-landsat 120 molec-biol-splice

121 acute-inflammation
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Table 3: The 179 comparison classifiers from 17 families

ID Family # Classifiers

F1 Discriminant analysis 20
F2 Bayesian approaches 6
F3 Neural networks 21
F4 Support vector machines 10
F5 Decision trees 14
F6 Rule-based methods 12
F7 Boosting 20
F8 Bagging 24
F9 Stacking 2
F10 Random forests 8
F11 Other ensembles 11
F12 Generalized Linear Models 5
F13 Nearest neighbor methods 5
F14 Partial least squares and principal component regression 6
F15 Logistic and multinomial regression 3
F16 Multivariate adaptive regression splines 2
F17 Other Methods 10

Sum 179

Table 5: The 12 small sample data sets

ID Data set # samples # classes # training samples per class

S1 trains 10 2 3.75
S2 lenses 24 3 6.00
S3 balloons 16 2 6.00
S4 audiology-std 171 18 7.13
S5 lung-cancer 32 3 8.00
S6 zoo 101 7 10.82
S7 plant-margin 1600 100 12.00
S8 plant-texture 1600 100 12.00
S9 plant-shape 1600 100 12.00
S10 soybean 307 18 12.79
S11 pittsburg-bridges-TYPE 105 6 13.13
S12 breast-tissue 106 6 13.25

# training samples per class = 3
4 × (# samples ÷ # classes), because the 4

fold cross validation is used in this experiments.
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