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ABSTRACT

Denoisers play a central role in many applications, from noise suppression in low-
grade imaging sensors, to empowering score-based generative models. The latter
category of methods makes use of Tweedie’s formula, which links the posterior
mean in Gaussian denoising (i.e., the minimum MSE denoiser) with the score of
the data distribution. Here, we derive a fundamental relation between the higher-
order central moments of the posterior distribution, and the higher-order deriva-
tives of the posterior mean. We harness this result for uncertainty quantification of
pre-trained denoisers. Particularly, we show how to efficiently compute the prin-
cipal components of the posterior distribution for any desired region of an image,
as well as to approximate the full marginal distribution along those (or any other)
one-dimensional directions. Our method is fast and memory-efficient, as it does
not explicitly compute or store the high-order moment tensors and it requires no
training or fine tuning of the denoiser. Code and examples are available on the
project website.

1 INTRODUCTION

Denoisers serve as key ingredients in solving a wide range of tasks. Indeed, along with their tradi-
tional use for noise suppression (Aharon et al., 2006; Buades et al., 2005; Dabov et al., 2007; Krull
et al., 2019; Liang et al., 2021; Portilla et al., 2003; Roth & Black, 2009; Rudin et al., 1992; Zhang
et al., 2017a; 2021), the last decade has seen a steady increase in their use for solving other tasks.
For example, the plug-and-play method (Venkatakrishnan et al., 2013) demonstrated how a denoiser
can be used in an iterative manner to solve arbitrary inverse problems (e.g., deblurring, inapinting).
This approach was extended by many, and has led to state-of-the-art results on various restoration
tasks (Brifman et al., 2016; Romano et al., 2017; Tirer & Giryes, 2018; Zhang et al., 2017b). Sim-
ilarly, the denoising score-matching work (Vincent, 2011) showed how a denoiser can be used for
constructing a generative model. This approach was later improved (Song & Ermon, 2019), and
highly related ideas (originating from (Sohl-Dickstein et al., 2015)) served as the basis for diffusion
models (Ho et al., 2020), which now achieve state-of-the-art results on image generation.

Many of the uses of denoisers rely on Tweedie’s formula (often attributed to Robbins (1956), Miya-
sawa et al. (1961), Stein (1981), and Efron (2011)) which connects the MSE-optimal denoiser for
white Gaussian noise, with the score function (the gradient of the log-probability w.r.t the observa-
tions) of the data distribution. The MSE-optimal denoiser corresponds to the posterior mean of the
clean signal conditioned on the noisy signal. Therefore, Tweedie’s formula in fact links between
the first posterior moment and the score of the data. A similar relation holds between the second
posterior moment (i.e., the posterior covariance) and the second-order score (i.e., the Hessian of the
log-probability w.r.t the observations) (Gribonval, 2011), which is in turn associated with the deriva-
tive (i.e., Jacobian) of the posterior moment. Recent works used this relation to quantify uncertainty
in denoising (Meng et al., 2021), as well as to improve score-based generative models (Dockhorn
et al., 2022; Lu et al., 2022; Meng et al., 2021; Mou et al., 2021; Sabanis & Zhang, 2019).

In this paper we derive a relation between higher-order posterior central moments and higher-order
derivatives of the posterior mean in Gaussian denoising. Our result provides a simple mechanism
that, given the MSE-optimal denoiser function and its derivatives at some input, allows determining
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the entire posterior distribution of clean signals for that particular noisy input (under mild condi-
tions). Additionally, we prove that a similar result holds for the posterior distribution of the projec-
tion of the denoised output onto a one-dimensional direction.

We leverage our results for uncertainty quantification in Gaussian denoising by employing a pre-
trained denoiser. Specifically, we show how our results allow computing the top eigenvectors of
the posterior covariance (i.e., the posterior principal components) for any desired region of the
image. We further use our results for approximating the entire posterior distribution along each
posterior principal direction. As we show, this provides valuable information on the uncertainty in
the restoration. Our approach uses only forward passes through the pre-trained denoiser and is thus
advantageous over previous uncertainty quantification methods. In particular, it is training-free, fast,
memory-efficient, and applicable to high-resolution images. We illustrate our approach with several
pre-trained denoisers on multiple domains, showing its practical benefit in uncertainty visualization.

2 RELATED WORK

Many works studied theoretical properties of MSE-optimal denoisers for signals contaminated by
additive white Gaussian noise. Perhaps the most well-known result is Tweedie’s formula (Efron,
2011; Miyasawa et al., 1961; Robbins, 1956; Stein, 1981), which connects the MSE-optimal de-
noiser with the score function of noisy signals. Another interesting property, shown by Gribonval
(2011), is that the MSE-optimal denoiser can be interpreted as a maximum-a-posteriori (MAP) es-
timator, but with a possibly different prior. The work most closely related to ours is that of Meng
et al. (2021), who studied the estimation of high-order scores. Specifically, they derived a rela-
tion between the high-order posterior non-central moments in a Gaussian denoising task, and the
high-order scores of the distribution of noisy signals. They discussed how these relations can be
used for learning high-order scores of the data distribution. But due to the large memory cost of
storing high-order moment tensors, and the associated computational cost during training and in-
ference, they trained only second-order score models and only on small images (up to 32 × 32).
They used these models for predicting the posterior covariance in denoising tasks, as well as for
improving the mixing speed of Langevin dynamics sampling. Their result is based on a recursive
relation, which they derived, between the high-order derivatives of the posterior mean and the high-
order non-central moments of the posterior distribution in Gaussian denoising. Specifically, they
showed that the non-central posterior moments m1,m2,m3, . . ., admit a recursion of the form
mk+1 = f(mk,∇mk,m1).

In many settings, central moments are rather preferred over their non-central counterparts. Indeed,
they are more numerically stable and relate more intuitively to uncertainty quantification (being di-
rectly linked to variance, skewness, kurtosis, etc.). Unfortunately, the result of (Meng et al., 2021)
does not trivially translate into a useful relation for central moments. Specifically, one could use
the fact that the kth central moment, µk, can be expressed in terms of {mj}ki=1, and that each mj

can be written in terms of {µi}ji=1. But naively substituting these relations into the recursion of
Meng et al. (2021) leads to an expression for µk that includes all lower-order central-moments and
their high-order derivatives. Here, we manage to prove a very simple recursive form for the central
moments, which takes the form µk+1 = f(µk,∇µk,µ2). Another key contribution, which we
present beyond the framework studied by Meng et al. (2021), relates to marginal posterior distribu-
tions along arbitrary cross-sections. Specifically, we prove that the central posterior moments of any
low-dimensional projection of the signal, also satisfy a similar recursion. Importantly, we show how
these relations can serve as very powerful tools for uncertainty quantification in denoising tasks.

Uncertainty quantification has drawn significant attention in the context of image restoration. Many
works focused on per-pixel uncertainty prediction (Angelopoulos et al., 2022; Gal & Ghahramani,
2016; Horwitz & Hoshen, 2022; Meng et al., 2021; Oala et al., 2020), which neglects correlations
between the uncertainties of different pixels in the restored image. Recently, several works forayed
into more meaningful notions of uncertainty, which allow to reason about semantic variations (Kutiel
et al., 2023; Sankaranarayanan et al., 2022). For example, a concurrent work by Nehme et al. (2023)
presented a method for learning the posterior principal components of arbitrary inverse problems.
However, all existing methods either require a pre-trained generative model with a disentangled
latent space (e.g., StyleGAN (Karras et al., 2020) for face images) or, like many of their per-pixel
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counterparts, require training. Here we present a training-free, computationally efficient, method
that only requires access to a pre-trained denoiser.

3 MAIN THEORETICAL RESULT

We now present our main theoretical result, starting with scalar denoising and then extending the
discussion to the multivariate setting. The scalar case serves two purposes. First, it provides intu-
ition. But more importantly, the formulae for moments of orders higher than three are different for
the univariate and multivariate settings, and therefore the two cases require separate treatment.

3.1 THE UNIVARIATE CASE

Consider the univariate denoising problem corresponding to the observation model
y = x + n, (1)

where x is a scalar random variable with probability density function px and the noise n ∼ N (0, σ2)
is statistically independent of x. The goal in denoising is to provide a prediction x̂ of x, which is a
function of the measurement y. It is well known that the predictor minimizing the MSE, E[(x− x̂)2],
is the posterior mean of x given y. Specifically, given a particular measurement y = y, the MSE-
optimal estimate is the first moment of the posterior density px|y(·|y), which we denote by

µ1(y) = E[x|y = y]. (2)

While optimal in the MSE sense, the posterior mean provides very partial knowledge on the possible
values that x could take given that y = y. More information is encoded in higher-order moments
of the posterior. For example, the posterior variance provides a measure of uncertainty about the
MSE-optimal prediction, the posterior third moment provides knowledge about the skewness of the
posterior distribution, and the posterior fourth moment can already reveal a bimodal behavior.

Let us denote the higher-order posterior central moments by
µk(y) = E

[
(x− µ1(y))k

∣∣ y = y
]
, k ≥ 2. (3)

Our key result is that knowing the posterior mean function µ1(·) and its derivatives at y can be used
to recursively compute all higher-order posterior central moments at y (see proof in App. A).
Theorem 1 (Posterior moments in univariate denoising). In the scalar denoising setting of (1), the
high-order posterior central moments of x given y satisfy the recursion

µ2(y) = σ2 µ′
1(y),

µ3(y) = σ2 µ′
2(y),

µk+1(y) = σ2 µ′
k(y) + kµk−1(y)µ2(y), k ≥ 3. (4)

Thus, µk+1(y) is uniquely determined by µ1(y), µ
′
1(y), µ

′′
1(y), . . . , µ

(k)
1 (y).

Figure 1 illustrates this result via a simple example. Here, the distribution of x is a mixture of two
Gaussians. The left pane depicts the posterior density px|y(·|·) as well as the posterior mean function
µ1(·). We focus on the measurement y = y∗, shown as a vertical dashed line, for which the posterior
px|y(·|y∗) is bimodal (right pane). This property cannot be deduced by merely examining the MSE-
optimal estimate µ1(y

∗). However, this information does exist in the derivatives of µ1(·) at y∗. To
demonstrate this, we numerically differentiated µ1(·) at y∗, used the first three derivatives to extract
the first four posterior moments using Theorem 1, and computed the maximum entropy distribution
that matches those moments (Botev & Kroese, 2011). As can be seen, this already provides a good
approximation of the general shape of the posterior (dashed red line).

Theorem 1 has several immediate implications. First, it is well known that if the moments do not
grow too fast, then they uniquely determine the underlying distribution (Lin, 2017). This is the case
e.g., for distributions with a compact support and is thus relevant to images, whose pixel values
typically lie in [0, 1]. For such settings, Theorem 1 implies that knowing the posterior mean at the
neighborhood of some point y, allows determining the entire posterior distribution for that point.
A second interesting observation, is that Theorem 1 can be evoked to show that the posterior is
Gaussian whenever all high-order derivatives of µ1(·) vanish (see proof in App. F).

Corollary 1. Assume that µ(k)
1 (y∗) = 0 for all k > 1. Then the posterior px|y(·|y∗) is Gaussian.
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Figure 1: Recovering posteriors in univariate denoising. The left pane shows the posterior distri-
bution px|y(·|·) and the posterior mean function µ1(·) for the scalar Gaussian denoising task (1). On
the right we plot the posterior distribution of x given that y = y∗, along with an estimate of that dis-
tribution, which we obtain by analyzing the denoiser function µ1(·) at the vicinity of y∗. Specifically,
this estimate corresponds to the maximum entropy distribution that matches the first four moments,
which are obtained from Theorem 1 by numerically approximating µ′

1(y
∗), µ′′

1(y
∗), µ′′′

1 (y∗).

3.2 THE MULTIVARIATE CASE

We now move on to treat the multivariate denoising problem. Here x is a random vector taking
values in Rd, the noise n ∼ N (0, σ2Id) is a white multivariate Gaussian vector that is statistically
independent of x, and the noisy observation is

y = x+ n. (5)

As in the scalar setting, given a noisy measurement y = y, we are interested in the posterior distri-
bution px|y(·|y). The MSE-optimal denoiser is, again, the first-order moment of this distribution,

µ1(y) = E[x |y = y], (6)

which is a d dimensional vector. The second-order central moment is the posterior covariance

µ2(y) = Cov(x |y = y), (7)

which is a d× d matrix whose (i1, i2) entry is given by

[µ2(y)]i1,i2 = E [(xi1 − [µ1(y)]i1) (xi2 − [µ1(y)]i2) |y = y] . (8)

For any k ≥ 3, the posterior kth-order central moment is a d × · · · × d array with k indices (a kth
order tensor), whose component at multi-index (i1, . . . , ik) is given by

[µk(y)]i1,...,ik = E [(xi1 − [µ1(y)]i1) · · · (xik − [µ1(y)]ik) |y = y] . (9)

As we now show, similarly to the scalar case, having access to the MSE-optimal denoiser and its
derivatives, allows to recursively compute all higher order posterior moments (see proof in App. B).
Theorem 2 (Posterior moments in multivariate denoising). Consider the multivariate denoising
setting of (5) with dimension d ≥ 2. For any k ≥ 1 and any k+1 indices i1, . . . , ik+1 ∈ {1, . . . , d},
the high-order posterior central moments of x given y satisfy the recursion

[µ2(y)]i1,i2 = σ2 ∂[µ1(y)]i1
∂yi2

,

[µ3(y)]i1,i2,i3 = σ2 ∂[µ2(y)]i1,i2
∂yi3

,

[µk+1(y)]i1,...,ik+1
= σ2 ∂[µk(y)]i1,...,ik

∂yik+1

+

k∑
j=1

[µk−1(y)]ℓj [µ2(y)]ij ,ik+1
, k ≥ 3, (10)

where ℓj ≜ (i1, . . . , ij−1, ij+1 . . . , ik). Thus, µk+1(y) is uniquely determined by µ1(y) and by the
derivatives up to order k of its elements with respect to the elements of the vector y.

Note that the first line in (10) can be compactly written as

µ2(y) = σ2 ∂µ1(y)

∂y
, (11)
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Algorithm 1 Efficient computation of posterior principal components
Input: N (number of PCs), K (number of iterations), µ1(·) (MSE-optimal denoiser), y (noisy
input), σ2 (noise variance), c≪ 1 (linear approx. constant)

1: Initialize {v(i)
0 }Ni=1 ← N (0, σ2I)

2: for k ← 1 to K do
3: for i← 1 to N do
4: v

(i)
k ← 1

c

(
µ1(y + cv

(i)
k−1)− µ1(y)

)
5: Q,R← QR DECOMPOSITION([v(1)

k · · · v
(N)
k ])

6: [v
(1)
k · · · v

(N)
k ]← Q

7: v(i) ← v
(i)
K

8: λ(i) ← σ2

c ∥µ1(y + cv
(i)
K−1)− µ1(y)∥

where ∂µ1(y)
∂y denotes the Jacobian of µ1 at y. This suggests that, in principle, the posterior co-

variance of an MSE-optimal denoiser could be extracted by computing the Jacobian of the model
using e.g., automatic differentiation. However, in settings involving high-resolution images, even
storing this Jacobian is impractical. In Sec. 4.1, we show how the top eigenvectors of µ2(y) (i.e.,
the posterior principal components) can be computed without having to ever store µ2(y) in memory.

Moments of order greater than two pose an even bigger challenge, as they correspond to higher-
order tensors. In fact, even if they could somehow be computed, it is not clear how they would be
visualized in order to communicate the uncertainty of the prediction to a user. A practical solution
could be to visualize the posterior distribution of the projection of x onto some meaningful one-
dimensional space. For example, one might be interested in the posterior distribution of x projected
onto one of the principal components of the posterior covariance. The question, however, is how to
obtain the posterior moments of the projection of x onto a deterministic d-dimensional vector v.

Let us denote the first posterior moment of v⊤x (i.e., its posterior mean) by µv
1 (y). This moment is

given by the projection of the denoiser’s output onto v,

µv
1 (y) = E

[
v⊤x

∣∣y = y
]
= v⊤E [x|y = y] = v⊤µ1(y). (12)

Similarly, let us denote the kth order posterior central moment of v⊤x by

µv
k(y) = E

[(
v⊤x− v⊤µ1(y)

)k∣∣∣y = y
]
, k ≥ 2. (13)

As we show next, the scalar-valued functions {µv
k(y)}∞k=1 satisfy a recursion similar to (4) (see

proof in App. C). In Sec. 5, we use this result for uncertainty visualization.
Theorem 3 (Directional posterior moments in multivariate denoising). Let v be a deterministic
d-dimensional vector. Then the posterior central moments of v⊤x are given by the recursion

µv
2 (y) = σ2Dvµ

v
1 (y),

µv
3 (y) = σ2Dvµ

v
2 (y),

µv
k+1(y) = σ2Dvµ

v
k(y) + kµv

k−1(y)µ
v
2 (y), k ≥ 3. (14)

Here Dvf(y) denotes the directional derivative of a function f : Rd → R in direction v at y.

4 APPLICATION TO UNCERTAINTY VISUALIZATION

We now discuss the applicability of our results in the context of uncertainty visualization. We
start with efficient computation of posterior principal components (PCs), and then illustrate the
approximation of marginal densities along those directions.

4.1 EFFICIENT COMPUTATION OF POSTERIOR PRINCIPAL COMPONENTS

The top eigenvectors of the posterior covariance, µ2(y), capture the main modes of variation around
the MSE-optimal prediction. Thus, as we illustrate below, they reveal meaningful information re-
garding the uncertainty of the restoration. Had we had access to the matrix µ2(y), computing these
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𝝁1(𝒚) +3 𝜆𝑖𝒗𝑖−3 𝜆𝑖𝒗𝑖
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Figure 2: Computing posterior principal components for a pre-trained face denoising model.
For each noisy image y, we depict one of the posterior PCs obtained with Alg. 1. To the right of that
PC, we show the denoiser’s output, µ1(y), and its perturbation along that PC. As can be seen, this
visualization captures the denoiser’s uncertainty along semantically meaningful directions, such as
the color of the moustache, the thickness of the lips, and the extent to which the mouth is open.

top eigenvectors could be done using the subspace iteration method (Arbenz, 2016; Saad, 2011).
This technique maintains a set ofN vectors, which are repeatedly multiplied by µ2(y) and orthonor-
malized using the QR decomposition. Unfortunately, storing the full covariance matrix is commonly
impractical. To circumvent the need for doing so, we recall from (11) that µ2(y) corresponds to the
Jacobian of the denoiser µ1(y). Thus, every iteration of the subspace method corresponds to a
Jacobian-vector product. For neural denoisers, such products can be calculated using automatic dif-
ferentiation (Dockhorn et al., 2022). However, this requires computing a backward pass through the
model in each iteration, which can become computationally demanding for large images1. Instead,
we propose to use the linear approximation

∂µ1(y)

∂y
v ≈ µ1(y + cv)− µ1(y)

c
, (15)

which holds for any v ∈ Rd when c ∈ R is sufficiently small. This allows applying the subspace
iteration using only forward passes through the denoiser, as summarized in Alg. 1. As we show in
App. H, this approximation has a negligible effect on the calculated eigenvectors, but leads e.g., to a
6× reduction in memory footprint for a 80×92 patch with the SwinIR denoiser (Liang et al., 2021).
We note that to compute the PCs for a user-chosen region of interest, all that is required is to mask
out all entries of v outside that region in each iteration.

Figure 2 illustrates this technique in the context of denoising of face images contaminated by white
Gaussian noise with standard deviation σ = 122. We use the denoiser from (Baranchuk et al.,
2022), which was trained as part of a DDPM model (Ho et al., 2020) on the FFHQ dataset (Karras
et al., 2019). Note that here we use it as a plain denoiser (as used within a single timestep of the

1Note that backward passes for whole images are also often avoided during training of neural denoisers.
Indeed, typical training procedures use limited-sized crops.
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Figure 3: Computing marginals along principal components. On the left, we show the prior px as
a heatmap, a noisy sample y (red), the corresponding MSE-optimal estimate µ1(y) (black), and the
two principal axes, computed using Alg. 1. Here, we used the closed form for µ1(y). The second
pane shows the marginal posterior distribution along the first principal component, computed both
using our proposed procedure (dashed red), and by using the closed-form solution (solid blue). On
the right we show the same experiment, but with a simple neural network trained on data samples.

DDPM). We showcase examples from the CelebAMask-HQ dataset (Lee et al., 2020). As can be
seen, different posterior principal components typically capture uncertainty in different localized
regions of the image. Note that this approach can be applied to any region-of-interest within the
image, chosen by the user at test time. This is in contrast to a model that is trained to predict a low-
rank approximation of the covariance, as in (Meng et al., 2021). Such a model is inherently limited
to the specific input size on which it was trained, and cannot be manipulated at test time to produce
eigenvectors corresponding to some user-chosen region (cropping a patch from an eigenvector is not
equivalent to computing the eigenvector of the corresponding patch in the image). In App. K we
report quantitative comparisons to the naive baseline of estimating the PCs using a posterior sampler,
and quantitatively evaluate the accuracy of the eigenvalues predicted by our method.

4.2 ESTIMATION OF MARGINAL DISTRIBUTIONS ALONG CHOSEN DIRECTIONS

A more fine-grained characterization of the posterior can be achieved by using higher-order moments
along the principal directions. These can be calculated using Theorem 3, through (high-order) nu-
merical differentiation of the one-dimensional function f(α) = v⊤µ1(y + αv) at α = 0. Once
we obtain all moments up to some order, we compute the probability distribution with maximum
entropy that fits those moments. In practice, we compute derivatives up to third order, which allows
us to obtain all moments up to order four.

Figure 3 illustrates this approach on a two-dimensional Gaussian mixture example with a noise level
of σ = 2. On the left, we show a heatmap corresponding to px(·), as well as a noisy input y (red
point) and its corresponding MSE-optimal estimate (black point). The two axes of the ellipse are
the posterior principal components computed using Alg. 1 using numerical differentiation of the
closed-form expression of the denoiser (see App. E). The bottom plot on the second pane shows the
function f(α) corresponding to the largest eigenvector. We numerically computed its derivatives
up to order three at α = 0 (black point), from which we estimated the moments up to order four
according to Theorem 3. The top plot on that pane shows the ground-truth posterior distribution
of v⊤

1 x, along with the maximum entropy distribution computed from the moments. The right half
of the figure shows the same experiment only with a neural network that was trained on pairs of
noisy (pink) samples and their clean (blue) counterparts. This denoiser comprises 5 layers with
(100, 200, 200, 100) hidden features and SiLU (Hendrycks & Gimpel, 2016) activation units. We
trained the network using Adam (Kingma & Ba, 2015) for 300 epochs, with a learning rate of 0.005.

Figure 4 illustrates the approach on a handwritten digit from the MNIST (LeCun, 1998) dataset.
Here, we train and use a simple CNN with 10 layers of 64 channels, separated by ReLU activation
layers followed by batch normalization layers. As can be seen, fitting the maximum entropy distri-
bution reveals more than just the main modes of variation, as it also reveals the likelihood of each
reconstruction along that direction. It is instructive to note that although the two extreme reconstruc-
tions, µ1(y)±

√
λ3v3, look realistic, they are not probable given the noisy observation. This is the
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Figure 4: Uncertainty quantification for denoising a handwritten digit. The first three PCs
corresponding to the noisy image are shown on the left. On the right, images along the third PC,
marked in blue, are shown, together with the marginal posterior distribution we estimated for that
direction. The two modes of the possible restoration, corresponding to the digits 4 and 9, can clearly
be seen as peaks in the marginal posterior distribution, whereas the MSE-optimal restoration in the
middle is obviously less likely.

reason their corresponding estimated posterior density is nearly zero. In App. K, we quantitatively
validate the advantage of using higher-order moments for estimating the marginal distribution.

Our theoretical analysis applies to non-blind denoising, in which σ is known. However, we empiri-
cally show in Sec. 5 and Fig. 5 that using an estimated σ is also sufficient for obtaining qualitatively
plausible results. This can either be obtained from a noise estimation method (Chen et al., 2015) or
even from the naive estimate σ̂2 = 1

d∥µ1(y)− y∥2, where µ1(y) is the output of a blind denoiser.
Here we use the latter. We further discuss the impact of using an estimated σ in App. I.

5 EXPERIMENTS

We conduct experiments with our proposed approach for uncertainty visualization and marginal
posterior distribution estimation on additional real data in multiple domains using different models.

We showcase our method on the MNIST dataset, natural images, human faces, and on images from
the microscopy domain. For natural images, we use SwinIR (Liang et al., 2021) that was pre-trained
on 800 DIV2K (Agustsson & Timofte, 2017) images, 2650 Flickr2k (Lim et al., 2017) images, 400
BSD500 (Arbelaez et al., 2010) images and 4,744 WED (Ma et al., 2016) images, with patch sizes
128 × 128 and window size 8 × 8. We experiment with two SwinIR models, trained separately
for noise levels σ = {25, 50}, and showcase examples on test images from the CBSD68 (Martin
et al., 2001) and Kodak (Franzen, 1999) datasets. For the medical and microscopy domain we use
Noise2Void (Krull et al., 2019), trained and tested for blind-denoising on the FMD dataset (Zhang
et al., 2019) in the unsupervised manner described by Krull et al. (2020). The FMD dataset was
collected using real microscopy imaging, and as such its noise is most probably not precisely white
nor Gaussian, and the noise level is unknown in essence (the ground truth images are considered as
the average of 50 burst images). Accordingly, N2V is a blind-denoiser, and we have no access to the
“real” σ, therefore, for this dataset we used an estimated σ in our method, as described in Sec. 4.2.

Examples for the different domains can be seen in Figs. 2, 4, and 5. As can be seen, in all cases,
our approach captures interesting uncertainty directions. For natural images, those include cracks,
wrinkles, eye colors, stripe shapes, etc. In the biological domain, visualizations reveal uncertainty
in the size and morphology of cells, as well as in the (in)existence of septums. Those constitute
important geometric features in cellular analysis. More examples can be found in App. L.

One limitation of the proposed method is that it relies on high-order numerical differentiation. As
this approximation can be unstable with low-precision computation, we use double precision during
the forward pass of the networks. Another method that can be used to mitigate this is to fit a low
degree polynomial to f(α) = v⊤µ1(y + αv) around the point of derivation, α = 0, and then
use the smooth polynomial fit for the high-order derivatives calculation. Empirically we found the
polynomial fitting to also be sensitive, highly-dependant on the choice of the polynomial degree and
the fitted range. This caused bad fits even for the simple two-component GMM example, whereas
the numerical derivatives approximations worked better.
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Figure 5: Uncertainty quantification for natural image denoising using SwinIR (top) and mi-
croscopy image denoising using N2V (bottom). In each row, the first three PCs corresponding
to the noisy image are shown on the left, and one is marked in blue. On the right, images along
the marked PC are shown above the marginal posterior distribution estimated for this direction. The
PCs show the uncertainty along meaningful directions, such as the existence of cracks on an old vase
and changes in the tiger’s stripes, as well as the sizes of cells and the existence of septum, which
constitute important geometric features in cellular analysis.

6 CONCLUSION

Denoisers constitute fundamental ingredients in a variety of problems. In this paper we derived a
relation in the denoising problem between higher-order derivatives of the posterior mean to higher-
order posterior central moments. These results were then used in the application of uncertainty
visualisation of pre-trained denoisers. Specifically, we proposed a method for efficiently computing
the principal components of the posterior distribution, in any chosen region of an image. Addition-
ally, we presented a scheme to use higher-order moments to estimate the full marginal distribution
along any one-dimensional direction. Finally, we demonstrated our method on multiple denoisers
across different domains. Our method allows examining semantic directions of uncertainty by using
only pre-trained denoisers, in a fast and memory-efficient way. While the theoretical basis of our
method applies only to additive white Gaussian noise, we show empirically that our method provides
qualitatively satisfactory results also in blind denoising on real-world microscopy data.
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REPRODUCIBILITY STATEMENT

As part of the ongoing effort to make the field of deep learning more reproducible and open, we pub-
lish our code at https://hilamanor.github.io/GaussianDenoisingPosterior/.
The repository includes scripts to regenerate all figures. Researchers that want to re-implement the
code from scratch can use Alg. 1 and our published code as guidelines. In addition, we provide full
and detailed proofs for all claims in the paper in Appendices A, B, C, E, and F of the supplementary
material. Finally, we provide in Appendix D a translation from our notation to the notation of Meng
et al. (2021) to allow future researchers to use both methods conveniently.

ETHICS STATEMENT

In many scientific and medical domains, signals are contaminated by noise, and deep learning based
denoising models have emerged as popular tools for restoring such low-fidelity data. However, de-
noising problems are inherently ill-posed. Therefore, a system that presents users with only a single
restored signal, may mislead the data-analyst, researcher, or physician into making flawed decisions.
To avoid such situations, it is of utmost importance for systems to also report and conveniently vi-
sualize the uncertainties in their predictions. Such systems would be much more trustworthy and
interpretable, and will thus support making credible deductions and decisions. The method we pre-
sented in this paper, can help visualize the uncertainty in a denoiser’s prediction, by allowing users
to explore the dominant modes of possible variations around that prediction, accompanied by their
likelihood (given the noisy measurements). Such interactive denoising systems, would allow users
to take into consideration other, and sometimes even more likely possibilities than e.g., the minimum
MSE reconstruction that is often reported as a single solution.
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SUPPLEMENTARY MATERIAL

A PROOF OF THEOREM 1

We start with the case k ≥ 2 (bottom two lines in (4)). In this case, the conditional moment µk(y)
can be expressed using Bayes’ formula as

µk(y) = E
[
(x− µ1(y))k

∣∣ y = y
]

=

∫
(x− µ1(y))

kpx|y(x|y)dx

=

∫
(x− µ1(y))

kpy|x(y|x)px(x)dx

py(y)

=
(2πσ2)−

1
2

∫
(x− µ1(y))

k exp{− 1
2σ2 (y − x)2}px(x)dx

py(y)
. (S1)

Denoting the numerator by q(y) ≜ (2πσ2)−
1
2

∫
(x− µ1(y))

k exp{− 1
2σ2 (y − x)2}px(x)dx, we can

write the derivative of µk(y) as

µ′
k(y) =

q′(y)py(y)− q(y)p′y(y)
p2y(y)

=
q′(y)

py(y)
− q(y)

py(y)

p′y(y)

py(y)

=
q′(y)

py(y)
− µk(y)

p′y(y)

py(y)

=
q′(y)

py(y)
− µk(y)

d log py(y)

dy

=
q′(y)

py(y)
− 1

σ2
µk(y)(µ1(y)− y), (S2)

where we used the fact that d log py(y)
dy = 1

σ2 (µ1(y) − y) (see e.g., (Efron, 2011; Miyasawa et al.,
1961; Stein, 1981)). The first term in this expression is given by

q′(y)

py(y)
=

(2πσ2)−
1
2

∫
d
dy

[
(x− µ1(y))

k exp{− 1
2σ2 (y − x)2}

]
px(x)dx

py(y)

=
(2πσ2)−

1
2

∫ (
−k(x− µ1(y))

k−1µ′
1(y)− (x− µ1(y))

k 1
σ2 (y − x)

)
exp{− 1

2σ2 (y − x)2}px(x)dx

py(y)

=

∫ (
−k(x− µ1(y))

k−1µ′
1(y)− (x− µ1(y))

k 1
σ2 (y − x)

)
py|x(y|x)px(x)dx

py(y)

=

∫ (
−k(x− µ1(y))

k−1µ′
1(y)− (x− µ1(y))

k 1

σ2
(y − x)

)
px|y(x|y)dx

= E
[
−k(x− µ1(y))k−1µ′

1(y)− (x− µ1(y))k
1

σ2
(y− x)

∣∣∣∣ y = y

]
. (S3)

To allow unified treatment of the cases k = 2 and k > 2, let us denote

ψk(y) ≜ E
[
(x− µ1(y))k

∣∣ y = y
]
=

{
0 k = 1,

µk(y) k ≥ 2.
(S4)
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We therefore have
q′(y)

py(y)
= −kψk−1(y)µ

′
1(y)−

1

σ2
ψk(y)y +

1

σ2
E
[
(x− µ1(y))kx

∣∣ y = y
]

= −kψk−1(y)µ
′
1(y)−

1

σ2
ψk(y)y +

1

σ2
E[(x− µ1(y))k(x− µ1(y) + µ1(y)) | y = y]

= −kψk−1(y)µ
′
1(y)−

1

σ2
ψk(y)y +

1

σ2
(ψk+1(y) + ψk(y)µ1(y))

= −kψk−1(y)µ
′
1(y) +

1

σ2
ψk+1(y) +

1

σ2
ψk(y) (µ1(y)− y) . (S5)

Substituting this back into (S2), we obtain that

µ′
k(y) = −kψk−1(y)µ

′
1(y) +

1

σ2
ψk+1(y) +

1

σ2
ψk(y) (µ1(y)− y)−

1

σ2
µk(y) (µ1(y)− y)

= −kψk−1(y)µ
′
1(y) +

1

σ2
ψk+1(y), (S6)

where we used the fact that ψk(y) = µk(y) for all k ≥ 2. Now, for k = 2 this equation reads

µ′
2(y) =

1

σ2
µ3(y), (S7)

and for k ≥ 3, it reads

µ′
k(y) = −kµk−1(y)µ

′
1(y) +

1

σ2
µk+1(y). (S8)

We thus have that
µ3(y) = σ2µ′

2(y),

µk+1(y) = σ2µ′
k(y) + kσ2µk−1(y)µ

′
1(y), k ≥ 3. (S9)

Note that an equivalent expression for the last line is obtained by replacing σ2µ′
1(y) with µ2(y), as

we prove below. This completes the proof for k ≥ 2.

The case k = 1 can be treated similarly. Here,
µ1(y) = E[x | y = y]

=
(2πσ2)−

1
2

∫
x exp{− 1

2σ2 (y − x)2}px(x)dx

py(y)
, (S10)

so that we define q(y) ≜ (2πσ2)−
1
2

∫
x exp{− 1

2σ2 (y − x)2}px(x)dx. We thus have

q′(y)

py(y)
=

(2πσ2)−
1
2

∫
d
dy

[
x exp{− 1

2σ2 (y − x)2}
]
px(x)dx

py(y)

=
(2πσ2)−

1
2

∫
1
σ2 (x− y) exp{− 1

2σ2 (y − x)2}px(x)dx

py(y)

=
1

σ2
E[x(x− y) | y = y]

=
1

σ2

(
E[x2 | y = y]− µ1(y)y

)
. (S11)

Therefore,

µ′
1(y) =

q′(y)

py(y)
− 1

σ2
µ1(y)(µ1(y)− y)

=
1

σ2

(
E[x2 | y = y]− µ1(y)y

)
− 1

σ2
µ1(y)(µ1(y)− y)

=
1

σ2

(
E[x2 | y = y]− µ2

1(y)
)

=
1

σ2

(
E[x2 | y = y]− E[x | y = y]2

)
=

1

σ2
µ2(y), (S12)
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which demonstrates that

µ2(y) = σ2µ′
1(y). (S13)

This completes the proof for k = 1.

B PROOF OF THEOREM 2

We begin with the case k = 1 (first line in (10)), by directly deriving the matrix form (11). Using
Bayes’ formula, the posterior mean µ1(y) can be expressed as

µ1(y) = E[x|y = y]

=

∫
Rd

xpx|y(x|y)dx

=

∫
Rd xpy|x(y|x)px(x)dx

py(y)

=

1

(2πσ2)
d
2

∫
Rd x exp{− 1

2σ2 ∥y − x∥2}px(x)dx

py(y)
. (S14)

Therefore, denoting the numerator by q(y) ≜ 1

(2πσ2)
d
2

∫
Rd x exp{− 1

2σ2 ∥y−x∥2}px(x)dx, we can

write the Jacobian of µ1 at y as

∂µ(y)

∂y
=

∂q(y)
∂y py(y)− q(y) (∇py(y))⊤

p2y(y)

=

∂q(y)
∂y

py(y)
− q(y)

py(y)

(∇py(y))⊤
py(y)

=

∂q(y)
∂y

py(y)
− µ1(y)

(∇py(y))⊤
py(y)

=

∂q(y)
∂y

py(y)
− µ1(y) (∇ log py(y))

⊤

=

∂q(y)
∂y

py(y)
− 1

σ2
µ1(y)

(
µ1(y)

⊤ − y⊤) . (S15)

Here, ∂q(y)
∂y ∈ Rd×d denotes the Jacobian of q : Rd → Rd at y, and we used the fact that

∇ log py(y) =
1
σ2 (µ1(y)− y) (Efron, 2011; Miyasawa et al., 1961; Stein, 1981). The first term in

(S15) can be further simplified as

∂q(y)
∂y

py(y)
=

1

(2πσ2)
d
2

∫
Rd x exp{− 1

2σ2 ∥y − x∥2} 1
σ2 (x− y)⊤px(x)dx

py(y)

=

∫
Rd

1
σ2x(x− y)⊤py|x(x|y)px(x)dx

py(y)

=

∫
Rd

1

σ2
x(x− y)⊤px|y(x|y)dx

=
1

σ2

(
E[xx⊤|y = y]− E[x|y = y]y⊤)

=
1

σ2

(
E[xx⊤|y = y]− µ1(y)y

⊤) . (S16)
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Substituting (S16) back into (S15), we obtain

∂µ1(y)

∂y
=

1

σ2

(
E[xx⊤|y = y]− µ1(y)y

⊤)− 1

σ2
µ1(y)

(
µ1(y)

⊤ − y⊤)
=

1

σ2

(
E[xx⊤|y = y]− µ1(y)µ1(y)

⊤)
=

1

σ2

(
E[xx⊤|y = y]− E[x|y = y]E[x|y = y]⊤

)
=

1

σ2
Cov(x|y = y)

=
1

σ2
µ2(y). (S17)

This completes the proof for k = 1.

We now move on to the cases k = 2 and k ≥ 3 (second and third lines in (10)). Element (i1, . . . , ik)
of the posterior kth order central moment can be expressed as

[µk(y)]i1,...,ik = E
[
(xi1 − [µ1(y)]i1) · · · (xik − [µ1(y)]ik)

∣∣y = y
]

=

1

(2πσ2)
d
2

∫
Rd (xi1 − [µ1(y)]i1) · · · (xik − [µ1(y)]ik) exp{− 1

2σ2 ∥y − x∥2}px(x)dx

py(y)

=
q(y)

py(y)
, (S18)

where q(y) ≜ 1

(2πσ2)
d
2

∫
Rd (xi1 − [µ1(y)]i1) · · · (xik − [µ1(y)]ik) exp{− 1

2σ2 ∥y − x∥2}px(x)dx.

Therefore, for any ik+1 ∈ {1, . . . , d}, the derivative of [µk(y)]i1,...,ik with respect to yik+1
is given

by

∂[µk(y)]i1,...,ik
∂yik+1

=

∂q(y)
∂yik+1

py(y)− q(y) ∂py(y)
∂yik+1

p2y(y)

=

∂q(y)
∂yik+1

py(y)
− q(y)

py(y)

∂py(y)
∂yik+1

py(y)

=

∂q(y)
∂yik+1

py(y)
− [µk(y)]i1,...,ik

∂ log py(y)

∂yik+1

=

∂q(y)
∂yik+1

py(y)
− 1

σ2
[µk(y)]i1,...,ik

(
[µ1(y)]ik+1

− yik+1

)
, (S19)

where in the last line we used the fact that ∇ log py(y) =
1
σ2 (µ1(y)− y) (Efron, 2011; Miyasawa

et al., 1961; Stein, 1981). The first term here can be written as

∂q(y)
∂yik+1

py(y)
=

1

(2πσ2)
d
2

∫
∂

∂yik+1

[
(xi1 − [µ1(y)]i1) · · · (xik − [µ1(y)]ik) exp{− 1

2σ2 ∥y − x∥2}
]
px(x)dx

py(y)

=

∫
−∂[µ1(y)]i1

∂yik+1
(xi2 − [µ1(y)]i2) · · · (xik − [µ1(y)]ik) exp{− 1

2σ2 ∥y − x∥2}px(x)dx

(2πσ2)
d
2 py(y)

+ · · ·

+

∫
− (xi1 − [µ1(y)]i1) · · ·

(
xik−1

− [µ1(y)]ik−1

) ∂[µ1(y)]ik
∂yik+1

exp{− 1
2σ2 ∥y − x∥2}px(x)dx

(2πσ2)
d
2 py(y)

+

∫
(xi1 − [µ1(y)]i1) · · · (xik − [µ1(y)]ik)

1
σ2

(
xik+1

− yik+1

)
exp{− 1

2σ2 ∥y − x∥2}px(x)dx
(2πσ2)

d
2 py(y)

.

(S20)
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Let us treat the cases k = 2 and k ≥ 3 separately. When k = 2, the above expres-
sion contains precisely three terms, but the first two vanish. Indeed, the first term reduces to
−∂[µ1(y)]i1

∂yi3
E[xi2 − [µ1(y)]i2 |y = y] = −∂[µ1(y)]i1

∂yi3
([µ1(y)]i2 − [µ1(y)]i2) = 0 and the sec-

ond term to −∂[µ1(y)]i2
∂yi3

E[xi1 − [µ1(y)]i1 |y = y] = −∂[µ1(y)]i1
∂yi2

([µ1(y)]i1 − [µ1(y)]i1) = 0.
Therefore, when k = 2 we are left only with the last term, which simplifies to

∂q(y)
∂yi3

py(y)
=

1

σ2
E
[
(xi1 − [µ1(y)]i1) (xi2 − [µ1(y)]i2) (xi3 − yi3)

∣∣y = y
]

=
1

σ2
E
[
(xi1 − [µ1(y)]i1) (xi2 − [µ1(y)]i2)xi3

∣∣y = y
]
− 1

σ2
[µ2(y)]i1,i2yi3

=
1

σ2
E
[
(xi1 − [µ1(y)]i1) (xi2 − [µ1(y)]i2) (xi3 − [µ1(y)]i3 + [µ1(y)]i3)

∣∣y = y
]

− 1

σ2
[µ2(y)]i1,i2yi3

=
1

σ2
[µ3(y)]i1,i2,i3 +

1

σ2
[µ2(y)]i1,i2 [µ1(y)]i3 −

1

σ2
[µ2(y)]i1,i2yi3 (S21)

Substituting this back into (S19), we obtain
∂[µk(y)]i1,i2
∂yik+1

=
1

σ2
[µ3(y)]i1,i2,i3 +

1

σ2
[µ2(y)]i1,i2 [µ1(y)]i3 −

1

σ2
[µ2(y)]i1,i2yi3

− 1

σ2
[µ2(y)]i1,i2

(
[µ1(y)]i3 − yi3

)
=

1

σ2
[µ3(y)]i1,i2,i3 . (S22)

This demonstrates that

[µ3(y)]i1,i2,i3 = σ2 ∂[µk(y)]i1,i2
∂yik+1

, (S23)

which completes the proof for k = 2.

When k ≥ 3, none of the terms in (S20) vanish, and the expression reads
∂q(y)
∂yik+1

py(y)
= −

(
[µk−1(y)]i2,...,ik

∂[µ1(y)]i1
∂yik+1

+ · · ·+ [µk−1(y)]i1,...,ik−1

∂[µ1(y)]ik
∂yik+1

)
− 1

σ2
[µk(y)]i1,...,ik yik+1

+
1

σ2
E
[
(xi1 − [µ1(y)]i1) · · · (xik − [µ1(y)]ik)xik+1

∣∣y = y
]

= −
d∑

j=1

[µk−1(y)]ℓj
∂[µ1(y)]ij
∂yik+1

− 1

σ2
[µk(y)]i1,...,ik yik+1

+
1

σ2
E
[
(xi1 − [µ1(y)]i1) · · · (xik − [µ1(y)]ik)

(
xik+1

− [µ1(y)]ik+1
+ [µ1(y)]ik+1

) ∣∣y = y
]

= −
k∑

j=1

[µk−1(y)]ℓj
∂[µ1(y)]ij
∂yik+1

− 1

σ2
[µk(y)]i1,...,ik yik+1

+
1

σ2
[µk+1(y)]i1,...,ik+1

+
1

σ2
[µk(y)]i1,...,ik [µ1(y)]ik+1

= −
k∑

j=1

[µk−1(y)]ℓj
∂[µ1(y)]ij
∂yik+1

+
1

σ2
[µk+1(y)]i1,...,ik+1

+
1

σ2
[µk(y)]i1,...,ik

(
[µ1(y)]ik+1

− yik+1

)
, (S24)

where we used the definition ℓj ≜ (i1, . . . , ij−1, ij+1 . . . , ik). Substituting this expression back into
(S19), we obtain

∂[µk(y)]i1,...,ik
∂yik+1

= −
k∑

j=1

[µk−1(y)]ℓj
∂[µ1(y)]ij
∂yik+1

+
1

σ2
[µk+1(y)]i1,...,ik+1

. (S25)
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This demonstrates that

[µk+1(y)]i1,...,ik+1
= σ2 ∂[µk(y)]i1,...,ik

∂yik+1

+ σ2
k∑

j=1

[µk−1(y)]ℓj
∂[µ1(y)]ij
∂yik+1

= σ2 ∂[µk(y)]i1,...,ik
∂yik+1

+

k∑
j=1

[µk−1(y)]ℓj [µ2(y)]ij ,ik+1
, (S26)

where we used (S17). This completes the proof for k ≥ 3.

C PROOF OF THEOREM 3

We will use the fact that for any k ≥ 1, the posterior kth order central moment of v⊤x can be written
explicitly by expanding brackets as

E
[(
v⊤(x− µ1(y))

)k∣∣∣y = y
]
= E

( d∑
i=1

vi [x− µ1(y)]i

)k
∣∣∣∣∣∣y = y


=

d∑
i1=1

· · ·
d∑

ik=1

vi1 . . .vikE [(xi1 − [µ1(y)]i1) . . . (xi1 − [µ1(y)]ik)|y = y]

=

d∑
i1=1

· · ·
d∑

ik=1

vi1 . . .vik [µk(y)]i1,...,ik . (S27)

Let us start with the second moment. From (S27), it is given by

µv
2 (y) =

d∑
i1=1

d∑
i2=1

vi1vi2 [µ2(y)]i1,i2

= v⊤µ2(y)v

= σ2v⊤ ∂µ1(y)

∂y
v

= σ2∇y

(
v⊤µ1(y)

)⊤
v

= σ2Dv

(
v⊤µ1(y)

)
= σ2Dvµ

v
1 (y). (S28)

This proves the first line of (14).

Next, we derive the third moment. From (S27), it is given by

µv
3 (y) =

d∑
i1=1

d∑
i2=1

d∑
i3=1

vi1vi2vi3 [µ3(y)]i1,i2,i3

= σ2
d∑

i1=1

d∑
i2=1

d∑
i3=1

vi1vi2vi3

∂[µ2(y)]i1,i2
∂yi3

= σ2
d∑

i3=1

vi3

∂
(
v⊤µ2(y)v

)
∂yi3

= σ2v⊤∇y

(
v⊤µ2(y)v

)
= σ2Dv

(
v⊤µ2(y)v

)
= σ2Dvµ

v
2 (y), (S29)

where in the last line we used (S28). This proves the second line of (14).
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Finally, we derive the (k + 1)th moment for any k ≥ 3. From (S27), it is given by

µv
k+1(y) =

d∑
i1=1

· · ·
d∑

ik+1=1

vi1 . . .vik+1
[µk+1(y)]i1,...,ik+1

=

d∑
i1=1

· · ·
d∑

ik+1=1

vi1 . . .vik+1

σ2 ∂[µk(y)]i1,...,ik
∂yik+1

+

k∑
j=1

[µk−1(y)]ℓj [µ2(y)]ij ,ik+1


= σ2

d∑
ik+1=1

vik+1

∂

∂yik+1

(
d∑

i1=1

· · ·
d∑

ik=1

vi1 . . .vik [µk(y)]i1,...,ik

)
+

k∑
j=1

 d∑
i1=1

· · ·
d∑

ij−1=1

d∑
ij+1=1

· · ·
d∑

ik+1=1

vi1 . . .vij−1
vij+1

. . .vik [µk−1(y)]ℓj

d∑
ij=1

d∑
ik+1=1

vjvik+1
[µ2(y)]ij ,ik+1


= σ2

d∑
ik+1=1

vik+1

∂µv
k(y)

∂yik+1

+

k∑
j=1

µv
k−1(y)µ

v
2 (y)

= σ2v⊤∇yµ
v
k(y) + kµv

k−1(y)µ
v
2 (y)

= σ2Dvµ
v
k(y) + kµv

k−1(y)µ
v
2 (y), (S30)

where in the second line we used (10). This completes the proof of the third line of (14).

D RELATED WORK: ESTIMATION OF HIGHER ORDER SCORES BY DENOISING

The work most related to ours is that of Meng et al. (2021). Here, we present their results while
translating to our notation. Given a probability density py over Rd, they define the kth order score
sk(y) as the tensor whose entry at multi-index (i1, i2, ..., ik) is

[sk(y)]i1,i2,...,ik ≜
∂k

∂yi1∂yi2 . . . ∂yik

log py(y), (S31)

for every i1, . . . , ik ∈ {1, . . . , d}k. Using our notation, and under the assumption (5) that y is a
noisy version of x ∼ px, the denoising score matching method estimates the first-order score s1(y),
which is simply the gradient of the log-probability, ∇y log py(y). This is done by using Tweedie’s
formula, which links s1 with the first posterior moment (the MSE-optimal denoiser) as

µ1(y) = E[x|y = y] = y + σ2s1(y). (S32)

As noted by Meng et al. (2021), a similar relation links the second-order score with the second
posterior moment (i.e., the posterior covariance) as

µ2(y) = Cov(x|y = y) = σ4s2(y) + σ2I. (S33)

Note from (S31) that s2(y) is the Hessian of the log-probability, ∇2
y log py(y), or equivalently the

Jacobian of the gradient of the log probability, ∂
∂y∇y log py(y). And since we have from (S32) that

∇y log py(y) =
1
σ2 (µ1(y)− y), Eq. (S33) can be equivalently written as

[µ2(y)]i1,i2 = σ4 ∂

∂yi2

[
µ1(y)− y

σ2

]
i1

+ σ2I = σ2 ∂[µ1(y)]i1
∂yi2

. (S34)

This illustrates that the second-order formula of Meng et al. (2021) is equivalent to (10).

Moving on to higher-order moments, following our notations, Lemma 1 of Meng et al. (2021) states
that

E[⊗k+1x|y = y] = σ2 ∂

∂y
E[⊗kx|y = y]+σ2E[⊗kx|y = y]⊗

(
s1(y) +

y

σ2

)
, ∀k ≥ 1, (S35)
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where ⊗k+1x ∈ Rdk

denotes k-fold tensor multiplication. This lemma is used in Theorem 3 of
Meng et al. (2021), to derive a recursion relating higher-order moments and scores. Substitut-
ing (S32), this relation can be written as

E[⊗k+1x|y = y] = σ2 ∂

∂y
E[⊗kx|y = y] + E[⊗kx|y = y]⊗ µ1(y), ∀k ≥ 1. (S36)

Denoting the non-central posterior moment of order k by mk(y), Eq. (S36) can be written com-
pactly as

mk+1(y) = σ2 ∂

∂y
mk(y) +mk(y)⊗ µ1(y), ∀k ≥ 1. (S37)

Writing out the elements of mk+1(y) explicitly, this relation reads

[mk+1(y)]i1,...,ik+1
= σ2 ∂[mk(y)]i1,...,ik

∂yik+1

+ [mk(y)]i1,...,ik [µ1(y)]ik+1
, ∀k ≥ 1. (S38)

It is interesting to compare this expression with the recursion for the central moments in Theorem 2.
We see that the non-central moments satisfy a sort of one-step recursion (if we disregard the depen-
dence on µ1), in the sense that mk+1 depends only on mk. In contrast, as can be seen in Theorem 2,
the central moments satisfy a sort of two-step recursion (if we disregard the dependence on µ2), in
the sense that µk+1(y) depends on both µk(y) and µk−1(y).

E POSTERIOR DISTRIBUTION FOR A GAUSSIAN MIXTURE PRIOR

In Fig. 1 and Fig. 3, we demonstrated our approach on one-dimensional and two-dimensional Gaus-
sian mixtures, respectively. In both cases, we showed plots of the marginal posterior distribution in
the direction of the first posterior principal component, as well as the posterior mean for a particular
noisy input sample. Those simulations relied on the closed-form expressions of the posterior dis-
tribution and the marginal posterior distribution along some direction for a Gaussian mixture prior.
In addition, Fig. 1 and Fig. 3 also contain the maximum entropy distribution estimated using our
method, which uses the numerical derivatives of the posterior mean. Here as well we used the nu-
merical derivatives of the posterior mean function, which we computed in closed-from. We now
present these closed-form expressions for completeness.

Suppose px is a mixture of L Gaussians,

px(x) =

L∑
ℓ=1

πℓN (x;mℓ,Σℓ). (S39)

Let c be a random variable taking values in {1, . . . , L} with probabilities π1, . . . , πL. Then we can
think of x as drawn from the ℓth Gaussian conditioned on the event that c = ℓ. Therefore,

px|y(x|y) =
L∑

ℓ=1

px|y,c(x|y, ℓ)pc|y(ℓ|y)

=

L∑
ℓ=1

px|y,c(x|y, ℓ)
py|c(y|ℓ)pc(ℓ)

py(y)

=

L∑
ℓ=1

N (x; m̄ℓ, Σ̄ℓ)
ρℓπℓ∑L

ℓ′=1 ρℓ′πℓ′
, (S40)

where we denoted

ρi = N (y;mi,Σi + σ2I),

m̄i = Σi(Σi + σ2I)−1(y −mi) +mi,

Σ̄i = Σi − Σi(Σi + σ2I)−1Σi. (S41)
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As for the marginal posterior distribution along some direction v, it is easy to show that

pv⊤x|y(α|y) =
L∑

ℓ=1

pv⊤x|y,c(α|y, ℓ)pc|y(ℓ|y)

=

L∑
ℓ=1

pv⊤x|y,c(α|y, ℓ)
py|c(y|ℓ)pc(ℓ)

py(y)

=

L∑
ℓ=1

N (α;v⊤m̄ℓ,v
⊤Σ̄ℓv)

ρℓπℓ∑L
ℓ′=1 ρℓ′πℓ′

. (S42)

F PROOF OF COROLLARY 1

We start by reminding the reader of (4) :

µ2(y) = σ2 µ′
1(y),

µ3(y) = σ2 µ′
2(y),

µk+1(y) = σ2 µ′
k(y) + kµk−1(y)µ2(y), k ≥ 3.

We will prove by complete induction that

µ
(m)
k = 0 for all k ≥ 2 and m ≥ 1. (S43)

Base Note that since for any m ≥ 2 we have µ(m)
1 (y∗) = 0, for any m ≥ 1 we have

µ
(m)
2 (y∗) = σ2µ

(m+1)
1 (y∗)

= 0

µ
(m)
3 (y∗) = σ2µ

(m+1)
2 (y∗)

= σ4µ
(m+2)
1 (y∗)

= 0

µ
(m)
4 (y∗) = σ2µ

(m+1)
3 (y∗) + 3

∂m

∂ym
(
µ2
2(y)

)∣∣∣∣
y=y∗

(1)
= σ2µ

(m+1)
3 (y∗) + 3

m∑
l=0

(
m

l

)
µ
(m−l)
2 (y∗)µ

(l)
2 (y∗)

= σ2µ
(m+1)
3 (y∗) + 3

(
µ
(m)
2 (y∗)µ2(y

∗) + · · ·+ µ2(y
∗)µ

(m)
2 (y∗)

)
= σ2µ

(m+1)
3 (y∗)

= 0, (S44)

where (1) results from the general Leibniz rule.

Induction Assume that µ(m)
n (y∗) = 0 for all 4 ≤ n < k + 1 and m ≥ 1. Then,

µ
(m)
k+1(y

∗) =
∂m

∂ym
(
σ2 µ′

k(y) + kµk−1(y)µ2(y)
)∣∣∣∣

y=y∗

= σ2 µ
(m+1)
k (y∗) + k

∂m

∂ym
(µk−1(y)µ2(y))

∣∣∣∣
y=y∗

(1)
= σ2 µ

(m+1)
k (y∗) + k

m∑
l=0

(
m

l

)
µ
(m−l)
k−1 (y∗)µ

(l)
2 (y∗)

= σ2 µ
(m+1)
k (y∗) + kµ

(m)
k−1(y

∗)µ2(y
∗) + ...+ kµk−1(y

∗)µ
(m)
2 (y∗)

(2)
= 0, (S45)
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where for (1) the general Leibniz rule was used again, and in (2) we used our induction assumption.
This concludes the induction.

Using (S43) we therefore obtain for all k ≥ 3 that

µk+1(y
∗) = kµk−1(y

∗)µ2(y
∗),

= k(k − 2)µ2
2(y

∗)µk−3(y
∗)

= k(k − 2)(k − 4)µ3
2(y

∗)µk−5(y
∗)

= ...

=

{
k!!µ

k+1
2

2 (y∗) k is odd,
0 k is even.

(S46)

Since µ3(y
∗) = σ2µ2(y

∗) = 0 as well, the posterior moments are the same as those of a Gaussian
distribution. Indeed, the central moments of a random variable z ∼ N (E[z], σ2) are given by

E[(z− E[z])d] =
{
σd(d− 1)!! d is even,
0 d is odd.

(S47)

To conclude the proof, all that remains to show is moment-determinacy (i.e., that the sequence of
moments uniquely determines the distribution). This is the case, since the moments of a Gaussian
distribution are trivially verified to satisfy e.g., Condition (h6) of (Lin, 2017). This implies that the
posterior is moment-determinate, and is Gaussian.

G EXPERIMENTAL DETAILS

Algorithm 1 requires three hyper-parameters as input. The first is the small constant c, which is used
for the linear approximation in (15). The second is N , which is the number of principal components
we seek. The last is K, which is the number of iterations to preform. In all our experiments we
used c = 10−5 and N = 3. For the N2V experiments we used K = 100 while for the rest we used
K = 50.

Figure S1 depicts the convergence of the subspace iteration method for two different domains. For
each noisy image and patch for which we find the principal components (marked in red), the plot
to the right shows the convergence of the first N = 3 principal components. Specifically, for each
principal component vi, we calculate its inner product with the same principal component in the
previous iteration. As the graph shows, K = 50 iterations suffice for convergence.

H THE IMPACT OF THE JACOBIAN-VECTOR DOT-PRODUCT LINEAR
APPROXIMATION

As described in Sec 4.1, Alg. 1 calls for calculating the Jacobian-vector dot-product of the denoiser.
While for neural denoisers this calculation can be done via automatic differentiation, we propose
using a linear approximation instead (See Eq. (15)). This can reduce the computational burden,
while retaining high-accuracy in the computed eigenvectors. For example, in an experiment using
SwinIR and σ = 50, the cosine similarity between the principal components computed with the
approximation and those computed with automatic differentiation typically reaches around 0.97 at
the 50th iteration. However, in terms of computational burden, the differences can sometimes be
dramatic. For example, with the SwinIR model, when calculating one eigenvector for a patch of size
80× 92, the memory footprint using automatic differentiation reaches 12GB, while using the linear
approximation method it only reaches 2GB. These differences will increase for running on larger
images. A visual comparison of the resulting principal component can be found in Fig. S2.

I THE IMPACT OF ESTIMATING σ

Our theoretical analysis is developed for non-blind denoising, and accordingly, most of our exper-
iments conform to this setting. These include the experiments on faces (Fig. 2 and Fig. S7), on
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Figure S1: Convergence of the subspace iteration method. In each row one noisy image is shown
with a red patch marking the region for which the posterior principal components are calculated. To
the right, we plot for each of the first 3 principal components the inner product between the principal
component in consecutive iterations. As the graph shows, K = 50 iterations suffice to guarantee
convergence in those domains.

MNIST digits (Fig. 4), on natural images (top part of Fig. 5, S5 and S6), and the toy problem of
Fig. 3. Namely, in all those experiments the noise level σ was assumed known.

Nevertheless, we show empirically that our method can also work well in the blind setting. This
is the case in the real microscopy images (bottom part of Fig. 5). In this experiment, we estimated
σ using the naive formula σ̂2 = 1

d∥µ1(y) − y∥2, where µ1(y) is the (blind) N2V denoiser. It is
certainly possible to employ more advanced noise-level estimation methods in order to obtain an
even more accurate estimate for σ. Indeed, noise-level estimation, particularly for white Gaussian
noise, has been heavily researched, and as of today state-of-the-art methods reach very-high pre-
cision (Chen et al., 2015; Khmag et al., 2018; Kokil & Pratap, 2021; Liu & Lin, 2012; Liu et al.,
2013). For example, when the real σ equals 10, the error in estimating sigma is around 0.05 (see e.g.,
Chen et al. (2015)). However, we find that even with the naive method described above, we get quite
accurate results. Particularly, the impact of small inaccuracies in σ on our uncertainty estimation
turn out to be very small. To illustrate this, we applied our method with a SwinIR model that was
trained for σ = 50, on images with noise levels of σ = 47.5, 52.5. This accounts for 5% errors in
σ, that are significantly higher than typical 0.5% errors of good noise level estimation techniques.
Despite the inaccuracies in σ, the eigenvectors produced using our method are quite similar, as can
be seen in Fig. S3.

J USE IN NON-GAUSSIAN SETTINGS

In Sec. 5 we empirically show our method provides sensible results also on real microscopy images
(bottom part of Fig. 5), where the noise model is not known. In this setting, the noise distribution in
each pixel is likely close to Poisson-Gaussian, the noise level is unknown, and it is not even clear if
the noise is completely white. However, the theory developed in this paper holds only for the non-
blind Gaussian denoising case. We therefore aim to provide here intuition as to why our method can
still find meaningful results for blind Gaussian denoising.

Suppose that the observation model is
y = x+ σn, (S48)

25



Published as a conference paper at ICLR 2024

Using Linear Approximation Using Backpropegation

Figure S2: The impact of the linear approximation on the calculated principal component. The
first principal component calculated with SwinIR and σ = 50, using the linear approximation in
Eq. (15), and using automatic differentiation (Backpropegation). Both methods achieve similar re-
sults, with a cosine similarity of 0.96 over 50 iterations. However, the linear approximation methods
uses drastically less memory.
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Figure S3: The effect of small inaccuracies in σ on uncertainty estimation. The first principal
component calculated using SwinIR, for an assumed σ = 50, for three different actual noise levels
in the image.
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where x is a random vector taking values in Rd, the noise n ∼ N (0, Id) is a multivariate Gaussian
vector that is statistically independent of x, and the noise level σ is a random variable sampled from
some distribution pσ. The noise level is unknown to the denoiser (all that is known is the distribution
of noise levels pσ).

In this case, the Jacobian of the MSE-optimal denoiser is given by
∂µ1(y)

∂y
=
∂E[x|y = y]

∂y
=

=
∂

∂y
E [E[x|y = y,σ = σ]|y = y] =

= E
[
∂

∂y
E[x|y = y,σ = σ]

∣∣∣∣y = y

]
=

= E
[
Cov(x|y = y,σ)

σ2

∣∣∣∣y = y

]
, (S49)

where we used the law of total expectation in the second line, and Theorem 2 in the last line. Namely,
instead of Cov(x|y)

σ2 , which we had in the Gaussian setting, here the Jacobian reveals the mean of the
posterior covariance divided by σ2, where the mean is taken over all possible noise levels σ. This
matrix is a linear combination of the posterior covariances corresponding to different noise levels,
so that it captures some notion of spread about the posterior mean, similarly to the regular posterior
covariance that arises in the non-blind setting. Thus, intuitively, we expect that the top eigenvectors
of this matrix capture meaningful uncertainty directions, similarly to the non-blind setting.

K VALIDATION OF THE PREDICTED PRINCIPAL COMPONENTS

It is impossible to directly measure the quality of our estimated posterior PCs, since denoising
datasets contain only one clean image x for each noisy image y. This single x is just one sample
from the posterior px|y and therefore it cannot be used to extract a ground-truth posterior covariance
matrix or ground-truth PCs to compare against. To validate our method beyond the controlled toy-
experiment of Fig. 3, in which the ground-truth posterior distribution was known analytically and
thus so were the PCs, here we provide the two following experiments.

First, we employ the use of a diffusion-based posterior sampler for inverse-problems to generate
many posterior samples for a noisy image y. The posterior principal components can then by ex-
tracted by performing PCA on those samples. We note that this approach is impractical for real-
world applications because of its very high computational cost, and is brought here only for eval-
uating our method against some baseline. Indeed, when using a diffusion-based posterior sampler,
each sample requires many neural function evaluations (NFEs) to generate, and many samples are
needed for obtaining accurate PCs. This is while our method can faithfully extract each posterior
PC with only 10 NFEs, as shown in the convergence graphs in Fig. S1.

For each noisy image, we generated many posterior samples using DDNM (Wang et al., 2023) and
used them to calculate the PCs of the posterior. As can be seen in Fig. S4, as the number of posterior
samples increases, the PCs estimated using this baseline become cleaner and more similar to our
PCs. However, even with 500 samples, the PCs of this baseline do not seem to have fully converged,
and generating 500 posterior samples using DDNM requires 50,000 NFEs. Therefore, for extracting
e.g., 5 PCs, our method is roughly 1000× faster than this naive approach.

We further supply quantitative results in Tab. 1, over 100 randomly selected images from CelebA-
19 Baranchuk et al. (2022), a subset of CelebAMask-HQtest Lee et al. (2020). First, the empirical
mean of the samples generated by the posterior samples should theoretically approximate the pos-
terior mean, which is the MSE-optimal restoration. As we verify, this estimate is indeed very close
to our denoiser’s output, and they both achieve practically the same RMSE to the ground-truth im-
ages. Second, we compare the PCs of our method to those generated by the suggested baseline
by measuring the norm of the error after projecting it onto these PCs. The larger this norm, the
larger the portion of the error that these PCs account for. Mathematically, this measure is defined as
∥V T (x− µ1(y))∥22, where V is a matrix containing the PCs as columns. We compute the ratio of
this norm relative to the measured MSE, and find that the mean of this measure for both methods is
also very close.
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Figure S4: Comparison to PCs computed by applying SVD on different numbers of posterior
samples. The posterior samples were produced using DDNM Wang et al. (2023). In the second
column to the right, we rotate the produced PCs to best match our estimated PCs, while constraining
them to remain orthonormal (using Procrustes analysis). The fact that the rotated PCs are quite
similar to our PCs, shows that both sets of PCs span similar subspaces. However, as can be seen,
our PCs are more disentangled within that subspace.

Table 1: Quantitative evaluation of the estimated PCs.
RMSE(x,µ1(y)) ↓ ∥V T (x− µ1(y))∥22/MSE(x,µ1(y)) ↑

Baseline 4.026 · 10−2 7.767 · 10−3

Ours 4.022 · 10−2 7.638 · 10−3

Finally, we verify the predicted eigenvalues by comparing the projected test error over the first PC,
vT
1 (x − µ1(y)), to the predicted 1st eigenvalue λ1. The average of the ratio between those two

quantities should theoretically be 1. For the same 100 randomly sampled face images, we found
that the average of this ratio is 1.03. We also verified the predicted eigenvalues by calculating the
ratio for the natural images domain. For this, we randomly selected 100 natural images from the
CBSD (Martin et al., 2001), Kodak (Franzen, 1999) and McMaster (Zhang et al., 2011) datasets, and
applied our algorithm using SwinIR (Liang et al., 2021). For each image we calculated the PCs on
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Table 2: Quantitative evaluation of the estimated marginal posterior distributions.
Face images NLL ↓ Natural Images NLL ↓

Moments 1 & 2 1.83 0.05
Moments 1 – 4 1.81 0.03
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Figure S5: Additional examples on natural images using SwinIR (Liang et al., 2021). In each
row, one of the first three PCs corresponding to the noisy image is shown on the left. On the right,
images along the PC are shown above the marginal posterior distribution estimated for this direction.
The principal components reveal uncertainty in delicate parts of the wall-painting, such as the thin
rays of the sun, or the existence of mullions in the windows.

a 100 × 100 sized patch, located randomly within the image. For these images, the ratio computed
was 0.93.

In addition, to quantitatively verify that the marginal posterior distributions we estimate along the
PCs are accurate, we measure the negative log likelihood (NLL) of the ground-truth images projected
onto those directions (lower is better). We compared this to the NLL of a Gaussian distribution
defined by only the first two estimated moments. Tab. 2 provides the results for the same 100
randomly selected face images and natural images. In both cases, the NLL of our estimation is
lower.

L ADDITIONAL RESULTS

Figures S5 and S6 provide additional results on test images from the McMaster (Zhang et al., 2011)
dataset and images from ImageNet (Deng et al., 2009). In the supplementary material we attach a
video showing more examples on face images, demonstrating different semantic principal compo-
nents.
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Figure S6: Additional examples on natural images using SwinIR (Liang et al., 2021). In each
row, the first three PCs corresponding to the noisy image are shown on the left, and one is marked in
blue. On the right, images along the marked PC are shown above the marginal posterior distribution
estimated for this direction. The principal components catch semantic directions such as the pattern
on the owl’s feathers, the embroidery pattern, or the length of the Axolotl’s gills.

L.1 POLYNOMIAL FITTING EXAMPLES

As discussed briefly in Sec. 5, we experimented with fitting a polynomial to the function f(α) =
v⊤µ1(y + αv), and using the derivatives of the polynomial at α = 0 instead of using numerical
derivatives of f(α) itself at α = 0. Here, we provide the results of an experiment where we fit a
polynomial of degree six over the range

[
−
√
λi,
√
λi
]

for the ith principal component. As can be
seen in Fig. S7, the marginal distribution estimates are quite smooth. Presumably, these posterior
estimates are smoother than the true posterior, as the low degree polynomial smooths the directional
posterior mean function.
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Figure S7: Additional examples on face images, using a polynomial fit marginal distribution
estimate. In each row, the first three PCs corresponding to the noisy image are shown on the left,
and one is marked in blue. On the right, images along the marked PC are shown above the marginal
posterior distribution estimated for this direction. The principal components highlight meaningful
uncertainty, such as eyes shape or the existence of wrinkles. Note as an example in the first row
how the optimal-MSE restoration is the mean of the more probable mode, depicting no hair on the
forehead, and the distribution’s tail, yielding the less-probable semi-translucent hair.
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