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A MBRL Preliminaries1

We frame the model-based reinforcement learning (MBRL) problem as a two-player (human ego2

driver, assistive agent ego driver) partially-observable Markov decision process (POMDP) defined3

by the tuple M = ⟨X κ,Aκ, T κ,Rκ, γ⟩κ=H,A, where, for agent κ ∈ {H,A} (for the human, and AI4

agent, respectively), X κ denotes the imagined states of the world,Aκ denotes the agent’s (continuous5

or discrete) actions, T κ : X κ ×Aκ 7→ [0, 1] is the transition probability,Rκ : X κ ×Aκ ×X κ 7→ R6

is a reward function, and γ ∈ [0, 1] is a discount factor. We aim to train both agents such that they7

maximize their expected returns Rκ = E
[∑T

t=1 r
κ
t

]
.8

Crucially, in the semi-cooperative shared control setting, each reward rκt is factored into sub-9

components, with both sharing the same task (driving) rewards, but where rHt contains an additional10

term for a human’s objective, and rAt contains additional terms to weaken its contribution in relation11

to the human’s and enforces alignment to the human.12

B Human Subject Data Collection13

We briefly discuss a study conducted for gathering human subject behavior data in the racing domain14

we use in the paper. The purpose of the study was to gather qualitative and statistical data on15

individuals’ behavior and objectives in a racing context, and to use that to inform what criteria16

are important for building models of human objectives. We recruited 48 participants to drive a17

simulator with the hairpin and straightaway segments of the two-mile track, the same domains for the18

computational results in this paper. The scenarios were chosen so as to present overtake opportunities19

in portions of the track of varying levels of difficulty, while keeping the overall task short enough to20

ensure there is a rich interaction between the ego and opponent. Participants completed a series of21

warm-up trials in each domain, with three trials devoted to the straightaway segment and eight trials22

in the hairpin segment, each featuring different opponents of varying difficulty (fixed trajectories) to23

race against. Again, these were the same trajectories used in our domains.24

At the conclusion of each trial, participants answered the question: “Did you attempt to pass the other25

vehicle?” on an iPad. We also gathered, from trajectory data, whether or not the participant actually26

completed an overtake without collisions or spin-outs. These results are reported in Table B.1. We27

conclude that even in a simulated setting, there were a lower number of actual overtakes that occurred28

than were attempted. This suggests that there is room to assist those wishing to overtake, but unable29

to do so.30
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Figure B.1: Consistency of overtake versus non-overtakes.

Table B.1: Number and percentage of overtakes occurred and attempted. Note the diversity in intent
and in overtaking-difficulty for the subjects, motivating the need for assistive shared autonomy.

Overtake occurred? Frequency Percentage Overtake attempted? Frequency Percentage

“No” 178 30.07 “No” 65 11.02
“Yes” 414 69.93 “Yes” 525 88.98

Figure B.2: Consistency of left-handed versus right-handed overtakes.

We consider additional statistics, including statistics on left- and right-hand passing, as well as31

collisions with the other vehicle or objects, and spin-outs. We include these results in Table B.2. We32

note that there is a nearly-equal number of overtakes on the right versus left. On an individual level,33

we ran chi-square tests of test for given probabilities to look for side preferences. We found that34

only 6 of the 48 participants showed a statistically significant (p < .05) passing side bias, with two35

participants having a bias for the right side and four participants having a bias for the left side B.2.36

We also note that participants were, in general, imperfect in their driving, with nearly 50% of trials37

having a collision and 8% having at least one spin-out.38

C Human Objectives39

In this section, we discuss the reward terms used to generate the explicit decision-making tendencies40

of the fictitious human drivers, via rHt = rtaskt + ryt . Each use the task-specific reward terms outlined41



Table B.2: Other effects. Percentages are percent of trials with the listed event.

Observed event Percentage

Left-handed overtakes 50.82%
Right-handed overtakes 49.18%
Collisions 48.66%
Spin-outs 8.36%

in (1), in combination with objective-specific rewards. Many of the task rewards are borrowed42

from [1]. We focus here on the human objective term ryt .43

Pass We adopt a dense reward that provides a penalty when the vehicle is behind the opponent44

vehicle, and a reward bonus when in front of that vehicle, up to a threshold, to incentivize passing.45

That is,46

ryt = cpass (∆st −∆st−1) I ((slow ≤ ∆st ≤ shigh) ∨ (slow ≤ ∆st−1 ≤ shigh))

Where I(·) is the indicator function, and ∆st is the difference in longitudinal positions, relative to47

track coordinates, between the ego and opponent vehicles, ∆st = segot − soppt . We take the scalar48

cpass = 10. In other words, if the difference between segot (the ego position) and soppt (the opponent49

position) is between slow and shigh, the passing reward is equal to 10 ∗ (segot − soppt ). This means50

there is a high positive reward for getting far ahead of the opponent, and a high negative reward for51

falling behind the opponent. For both the pass reward, we set shigh = −slow = 800, which ensures52

that the pass reward is active for the entire trial. Note that we do not impose a progress reward with53

the pass objective.54

Stay-Behind Due to the non-symmetry of the problem, the stay-behind reward cannot be the55

complement of the pass reward (otherwise, the stay-behind agent would drive backwards to get away56

from the opponent). Because the task reward does not consider making progress, we add that here to57

the human-specific reward. The stay-behind reward is then:58

ryt = rprogt + cstay (∆st −∆st−1) I ((slow ≤ ∆st ≤ shigh) ∨ (slow ≤ ∆st−1 ≤ shigh))

Where cstay = −2, and we impose a progress reward similar to [1], i.e., rprogt = segot − segot−1, with59

segot being the ego’s longitudinal position in track coordinates. For the stay-behind reward, we set60

shigh = −slow = 50. In practice, this means that the stay-behind agent is encouraged to make61

progress along the track (rprog), but to stay at least 50 meters behind the opponent.62

Both the left- and right-biased passing agents are passing agents with an additional reward term that63

encourages a bias to the left or right. Note that these additional treatments do not guarantee passing64

on one side or the other.65

Left-Biased We adopt a reward bonus for driving on the opponent’s left; i.e.66

ryt = (∆st −∆st−1) I ((slow ≤ ∆st ≤ shigh) ∨ (slow ≤ ∆st−1 ≤ shigh)) + (∆et + cmargin)

where ∆et is the difference in lateral positions of the two vehicles, in the track coordinate frame; i.e.67

∆et = eegot − eoppt , and cmargin is a margin (which we set to cmargin = 0.3).68

Right-Biased Right-biased reward is the complement of the left-biased reward:69

ryt = (∆st −∆st−1) I ((slow ≤ ∆st ≤ shigh) ∨ (slow ≤ ∆st−1 ≤ shigh))− (∆et + cmargin)

D Additional Model Details70

We provide a summary of the DREAM2ASSIST training procedure in Algorithm 1. The procedure is71

split into two phases: the first is a human population generation phase in which we use the rewards72

in Sec. C to generate a population of humans included in the tuple ⟨WH
i ,ΠH

i ⟩ of world models and73

policies, respectively, and the expert human models denoted by the tuple ⟨W ∗
i , π

∗
i ⟩ for each human74

objective yi. The second phase entails drawing from samples of ⟨{yj}Nj=0, {WH
j }Nj=0, {ΠH

j }Nj=0⟩75

using fictitious co-play (FCP) [2] in order to train the assistant’s world model WA and policy πA. At76

runtime, both the trained policy πA and world model WA are executed, with WA being additionally77

useful as a means to interpret the decisions made by πA; e.g. the intent estimate ŷAt , the estimated78

reward r̂At or the latent variables ẑt.79



Algorithm 1 DREAM2ASSIST using FCP

Given: diverse intents, yi ∈ {1, 2, . . . ,M}
Given: reward functions for each intent y
for yi, i ∈ {1, 2, . . . ,M} do ▷ Generate human population

Initialize πH
i , WH

i
while not converged do

Sample an opponent policy πopp from Πopp

Initialize x0, with t = 0
while not done do

Perform gradient step; update πH
i , WH

i

Sample action aH
i,t from πH

i

Step the environment with action aH
i,t and aopp

t ∼ πopp

Shape rewards according to ith agent reward
t← t+ 1

end while
Append checkpoint ⟨WH

i , πH
i ⟩ to ⟨WH

i ,ΠH
i ⟩

end while
Append final ⟨W ∗

i , π
∗
i ⟩ to ⟨WH

i ,ΠH
i ⟩

end for
Freeze agents and world models {WH

j }Nj=0, {ΠH
j }Nj=0

Initialize πA, WA

while not converged do ▷ Train assistant agent
Sample intent i from ⟨{yi}Mi=0⟩
Sample checkpoint j for intent yi from ⟨{WH

j }Nj=0, {ΠH
j }Nj=0⟩

Sample an opponent policy πopp from Πopp

Initialize x0, with t = 0
while not done do

Perform gradient step; update πA, WA using ground truth label yi
Sample action aA

t from πA(x), aH
t from πH

j (xt)

Step the environment using shared action aH
t + aA

t and aopp
t ∼ πopp

Evaluate intent ŷAt using WA

Shape rewards as per (6), using r∗(ŷAt ) from W ∗
j , a∗

t (ŷ
A) ∼ π∗

ŷA
t
(xt)

t← t+ 1
end while

end while

Table C.1: Training Hyperparameters.

Hyperparameter Value Hyperparameter Value

Encoder / decoder MLP layers 2 Steps 2e6
Encoder / decoder MLP units 512 Batch size 16
Predictor head layers 2 Batch length 64
Predictor head units 512 Training ratio 512
Discount factor 0.997 Model learning rate 1e-4
Discount λ 0.95 Value learning rate 3e-5
Imagined horizon 15 Actor learning rate 3e-5
Actor entropy 3e-4 Dataset max size 1e6
Dynamics hidden units 512 # Steps between evaluations 1e4
Dynamics discrete dimension 32 # Episodes to evaluate 10



Figure D.1: Changes in various metrics in the hairpin scenario when adding assistance to various
imperfect (1–5) and near-perfect (6–11) humans tending to pass, averaged over four random seeds.
Due to the fact that BeTAIL uses its own internal human model, we compare only one instance /
human, as denoted by the red line.

Figure D.2: Absolute metrics in the hairpin scenario evaluated for the unassisted imperfect (1–5)
and near-perfect (6–11) humans tending to pass, averaged over four random seeds. 1-σ error bars are
shown.

D.1 Training Hyperparameters and Environment Specifics80

We provide the DREAM2ASSIST hyperparameters in Table C.1. We train using the Adam optimizer81

for 2× 106 steps.82

The CARLA simulator is used for our environment, and is executed with step size of 0.1 sec. We83

terminate episodes if: (a) the ego collides with the opponent or other collidable objects (e.g. static84

barriers), (b) the ego vehicle veers too far off course, or (c) a predefined finish line is reached. The85

map used is a geospatially-calibrated representation of the Thunderhill Raceway in Willows, CA.86



Figure D.3: Changes in various metrics in the hairpin scenario when adding assistance to various
imperfect (1–5) and near-perfect (6–11) humans tending to stay, averaged over four random seeds.
Due to the fact that BeTAIL uses its own internal human model, we compare only one instance /
human, as denoted by the red line.

Figure D.4: Absolute metrics in the hairpin scenario evaluated for the unassisted imperfect (1–5)
and near-perfect (6–11) humans tending to stay, averaged over four random seeds. 1-σ error bars are
shown.

E Additional Experimental Results87

E.1 Performance across Different Humans88

We provide a more complete comparison of the results, showing additional metrics in an evaluation89

that extends Fig. 3 from imperfect to near-perfect humans (1–11, ordered according to unassisted90

track progress performance) for DREAMER, DREAMER-AIL, BETAIL, and DREAM2ASSIST.91

We show these results in Figs. D.1–D.4. Note that the additional fictitious humans (6–11) achieve92

nearly-identical baseline performance across all metrics, as indicated by Figs. D.2 and D.4. Hence,93

the changes across humans 6–11 in Figs. D.1 and D.3 are likewise similar.94

From Fig. D.1, we observe that DREAM2ASSIST, when applied to the imperfect pass humans (1–5)95

generally yield improvements in progress, collisions, and speed, with a slight overall decrease in96

reward, and an overall moderate intervention level compared to the baselines. For humans 6–10,97



Table E.1: Improvement over unassisted humans for the pass–stay humans on straightaway and
hairpin experiments, with statistics aggregated across four random seeds. Blue indicates improvement
over unassisted humans, bold is best.

Pass (top) / Stay (bottom)

Hairpin Straightaway
Progress (m) ↑ Return ↑ Collisions ↓ Interventions ↓ Speed (m/s) ↑ Progress (m) ↑ Return ↑ Collisions ↓ Interventions ↓ Speed (m/s) ↑

DREAMER
-11.3± 13.6 0.5± 2.9 -0.1± 0.2 0.2 ± 0.2 0.1 ± 1.1 -0.7± 4.6 -0.1± 0.9 0.0± 0.1 0.1 ± 0.0 -0.4 ± 1.9
-21.1± 68.6 0.3± 0.4 0.0± 0.0 0.1 ± 0.0 2.9 ± 1.6 -6.1± 17.5 0.0± 0.1 0.1± 0.2 0.1 ± 0.0 0.3 ± 0.5

DREAMER-AIL -28.9± 46.2 -5.7± 7.3 -0.3± 0.2 1.0 ± 0.2 1.4 ± 4.4 -116.6± 58.7 -9.7± 4.2 -0.4± 0.3 1.4 ± 0.0 -21.2 ± 10.6
-216.6± 145.6 -1.7± 0.4 0.1± 0.2 0.9 ± 0.1 5.4 ± 2.4 -52.5± 45.9 -1.6± 0.2 -0.1± 0.1 1.4 ± 0.0 -1.2 ± 1.1

DREAM2ASSIST
71.8± 43.9 -1.2± 3.3 -0.2± 0.2 0.7 ± 0.1 0.5 ± 1.4 6.0± 9.1 -0.4± 1.4 -0.1± 0.1 0.3 ± 0.0 -1.2 ± 1.9
60.5± 49.7 0.8± 0.4 0.1 ± 0.1 0.4 ± 0.0 7.1 ± 2.4 57.8± 36.4 -0.1± 0.2 0.1 ± 0.1 0.4 ± 0.1 1.7 ± 1.0

DREAM2ASSIST+a 25.2 ± 11.0 -2.1 ± 7.4 -0.3 ± 0.2 0.7 ± 0.2 0.8 ± 4.9 6.9 ± 9.9 -5.6 ± 2.4 -0.1 ± 0.2 0.8 ± 0.2 -14.8 ± 7.7
24.3 ± 66.6 0.2 ± 0.6 0.0 ± 0.4 0.7 ± 0.0 5.1 ± 3.0 9.2 ± 7.8 -6.6 ± 0.7 0.1 ± 0.1 0.9 ± 0.1 0.4 ± 0.2

DREAM2ASSIST+a−r -79.0 ± 53.2 -13.5 ± 3.9 -0.5 ± 0.6 0.6 ± 0.0 -6.1 ± 5.6 -9.0 ± 20.2 -2.9 ± 1.0 0.0 ± 0.1 0.3 ± 0.3 -0.7 ± 1.2
-281.9 ± 68.7 -2.5 ± 0.5 -0.1 ± 0.1 0.7 ± 0.0 -1.4 ± 2.3 10.4 ± 38.3 -1.0 ± 0.1 0.1 ± 0.3 0.8 ± 0.2 1.8 ± 0.5

progress, reward, collisions, and speed are all negatively impacted, hinting at room for improvement98

in handling near-perfect humans. Similar trends for imperfect humans (1–5) tending to stay can be99

seen in Fig. D.3, where all metrics except collision see improvement. For near-perfect humans (6–11),100

the results generally indicate marginal improvement across all metrics, except collision.101

We also complement Table 1 with additional metrics, including the magnitude of intervention, and102

speed, both averaged over time. In Tables E.1 and E.2, we compare Dreamer, DREAM2ASSIST, and103

DREAM2ASSIST-AIL, and further include results for a variant of DREAM2ASSIST with the action-104

based reward term in (6) using αr = αa = 1, which we call DREAM2ASSIST+a, as well as a variant105

of DREAM2ASSIST with the action-based reward term and no reward, i.e. αa = 1, αr = 0, which106

we call DREAM2ASSIST+a−r. For the pass vs. stay case in Table E.1, DREAM2ASSIST achieves107

best performance in 5 categories, while improving over unassisted humans in 10 categories. The108

performance of DREAM2ASSIST+a and DREAM2ASSIST+a−r were mixed. DREAM2ASSIST+a109

was able to improve over unassisted humans, but with generally lower progress than DREAM2ASSIST,110

while DREAM2ASSIST+a−r almost completely hindered the human’s progress, due to the fact that111

the reward term no longer explicitly captures the dense progress sub-reward, and are not implicitly112

reflected in the actions of the optimal human. In E.2, we see similar trends, with DREAM2ASSIST113

outperforming baseline approaches in 5 categories, and performing better than unassisted humans114

in 8 categories. DREAM2ASSIST+a−r is unable to make progress, and DREAM2ASSIST+a also115

reveals lower progress than the DREAM2ASSIST in the hairpin and straightaway domains.116

E.2 Intent Classification Performance117

We next probe the performance of the intent classification. F1 scores achieved on training data yields118

high performance, as shown in Table E.3.119

We provide two example time traces to illustrate stability of inferring the human’s intent by the120

assistant’s world model in Figs. E.2 and E.3.121

To uncover whether intent inference is due to world model training, we evaluate the t-SNE embeddings122

of the logits of the assistant’s discrete latent state ẑA
t . We see that in the Dreamer case, t-SNE is123

unable to find strong separations between the ground truth intent classes without intent inference124

in the latents, while in DREAM2ASSIST, there is a stronger separation, and the ground truth intent125

classes are more strongly clustered in the embedding space, allowing intent to be inferred with much126

higher accuracy.127

Table E.2: Improvement over unassisted humans for the left–right humans on straightaway and
hairpin experiments, with statistics aggregated across four random seeds. Blue indicates improvement
over unassisted humans, bold is best.

Left (top) / Right (bottom)

Hairpin Straightaway
Progress (m) ↑ Return ↑ Collisions ↓ Interventions ↓ Speed (m/s) ↑ Progress (m) ↑ Return ↑ Collisions ↓ Interventions ↓ Speed (m/s) ↑

DREAMER
21.8± 28.7 -2.0± 2.2 0.1± 0.1 0.14 ± 0.1 0.4 ± 1.2 10.8± 7.3 -0.6± 0.3 0.0± 0.1 0.2 ± 0.0 6.0 ± 7.0
10.0± 17.9 -1.3± 1.8 0.0± 0.1 0.2 ± 0.1 0.1 ± 1.5 -1.1± 6.2 0.2± 1.2 0.0± 0.1 0.1 ± 0.0 0.9 ± 1.0

DREAMER-AIL -144.0± 89.9 -7.1± 6.6 -0.4± 0.2 1.2 ± 0.1 -14.4 ± 9.5 -134.4± 13.0 -2.5± 0.9 -0.5± 0.1 1.4 ± 0.0 -11.4 ± 7.8
-119.1± 79.9 -4.5± 17.3 -0.4± 0.3 1.3 ± 0.0 -15.2 ± 5.6 -126.3± 53.2 -13.4± 7.0 -0.5± 0.2 1.4 ± 0.0 -23.1 ± 5.1

DREAM2ASSIST
54.8± 60.4 1.4± 5.2 0.0± 0.1 0.8 ± 0.1 -0.6 ± 6.0 5.0± 5.0 0.1± 0.5 0.0± 0.1 0.6 ± 0.1 -0.1 ± 1.2
27.2± 23.1 2.2± 2.3 -0.2± 0.2 0.8 ± 0.1 3.2 ± 4.7 -1.1± 31.9 -2.8± 2.4 0.2± 0.2 0.8 ± 0.1 -2.1 ± 4.3

DREAM2ASSIST+a 9.3 ± 32.0 3.2 ± 4.3 -0.1 ± 0.1 0.9 ± 0.1 2.9 ± 5.8 -18.3 ± 12.9 0.2 ± 1.7 -0.2 ± 0.2 0.9 ± 0.1 -4.9 ± 5.3
-61.2 ± 40.5 -0.2 ± 2.1 -0.2 ± 0.3 0.9 ± 0.1 -1.4 ± 3.1 -8.2 ± 35.6 -5.2 ± 5.4 -0.1 ± 0.2 1.0 ± 0.0 -14.0 ± 6.0

DREAM2ASSIST+a−r -147.3 ± 93.0 -24.2 ± 13.1 -0.4 ± 0.2 0.5 ± 0.1 -9.6 ± 7.7 6.9 ± 4.1 0.3 ± 1.5 0.0 ± 0.1 0.4 ± 0.1 5.2 ± 3.9
-179.9 ± 104.2 -22.2 ± 16.3 -0.4 ± 0.4 0.6 ± 0.1 -10.7 ± 6.8 -3.2 ± 12.6 -0.0 ± 3.0 0.1 ± 0.2 0.1 ± 0.0 -0.1 ± 1.7



Table E.3: F1-Scores over the training set.

Pass vs. Stay Hairpin Pass vs. Stay Straightaway Left vs. Right Hairpin Left vs. Right Straightaway

0.99 ± 0.006 1.00 ± 0.000 0.95 ± 0.00 0.98 ± 0.00

(a) Dreamer

(b) DREAM2ASSIST

Figure E.1: t-SNE embeddings of ẑA
t for: (a) the non-intent-aware world model of Dreamer versus

(b) the intent-supervised world model of DREAM2ASSIST. The consistency of the clusterings present
in the DREAM2ASSIST world model states indicates that the world model has learned to identify the
human’s intent.

E.3 Learning Curves128

We provide learning curves for the DREAMER, DREAM2ASSIST and DREAM2ASSIST+a assistance129

schemes in the two domains across all the human objectives in Fig. E.4. We compare these across130

track progress, and observe a general trend of stability in training.131

E.4 Visuals of Assistance132

We show, in Fig. E.6, CARLA and bird’s-eye-view snapshots of driving with assistance, and compare133

that to a human without assistance in Fig. E.5.134



Intent: Stay

Intent: Pass
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Assistant provides high-magnitude acceleration to 
nudge to driver into an overtake when they are close.

Figure E.2: Time traces in the hairpin scenario showing the intent inference (denoted by background
color), along with ego-opponent distance, speed, and DREAM2ASSIST steering and acceleration
modifications for a human tending to pass. Notice that DREAM2ASSIST maintains an accurate
estimate of the driver’s intent, and provides a high-magnitude acceleration intervention to assist as
the ego begins to overtake the opponent.

Intent: Stay

Intent: Pass

Relative Distance of Ego to Opp (m)

Ego Speed (mph)

Steering Intervention (x50)

Acceleration Intervention (x50)

Time (s)

0 10 20 30

-125

-100

-75

-50

-25

0

25

Intervention over time for a stay-behind agent

40

50

Figure E.3: Time traces in the hairpin scenario showing the intent inference (denoted by background
color), along with ego-opponent distance, speed, and DREAM2ASSIST steering and acceleration
modifications for a human tending to stay.



(a) Pass–Stay Humans in the Hairpin Domain (b) Pass–Stay Humans in the Straightaway Domain

(c) Left–Right Humans in the Hairpin Domain. (d) Left–Right Humans in the Straightaway Domain.

Figure E.4: Learning curves for each domain, averaged over four random seeds.



Figure E.5: Example of a time sequence of an imperfect passing human driving in the hairpin
domain.

Figure E.6: Example of a time sequence of DREAM2ASSIST assistance to help an imperfect passing
human in the hairpin domain.
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R. Douglas, D. Whitehead, P. Dürr, P. Stone, M. Spranger, and H. Kitano. Outracing champion139

Gran Turismo drivers with deep reinforcement learning. Nature, 602(7896):223–228, Feb. 2022.140

[2] D. Strouse, K. McKee, M. Botvinick, E. Hughes, and R. Everett. Collaborating with humans141

without human data. Advances in Neural Information Processing Systems, 34:14502–14515,142

2021.143


	MBRL Preliminaries
	Human Subject Data Collection
	Human Objectives
	Additional Model Details
	Training Hyperparameters and Environment Specifics

	Additional Experimental Results
	Performance across Different Humans
	Intent Classification Performance
	Learning Curves
	Visuals of Assistance


