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Appendix:
Dreaming to Assist: Learning to Align with Human Objectives for
Shared Control in High-Speed Racing
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A MBRL Preliminaries

We frame the model-based reinforcement learning (MBRL) problem as a two-player (human ego
driver, assistive agent ego driver) partially-observable Markov decision process (POMDP) defined
by the tuple M = (X%, A%, T* R*, ~v)=H:A where, for agent & € {H, A} (for the human, and Al
agent, respectively), X' denotes the imagined states of the world, A" denotes the agent’s (continuous
or discrete) actions, 7" : X'* x A" — [0, 1] is the transition probability, R" : X" x A" x X* — R
is a reward function, and «y € [0, 1] is a discount factor. We aim to train both agents such that they

maximize their expected returns R = E [Zthl r,’f] .

Crucially, in the semi-cooperative shared control setting, each reward rf is factored into sub-
components, with both sharing the same task (driving) rewards, but where 77 contains an additional
term for a human’s objective, and r,;“ contains additional terms to weaken its contribution in relation

to the human’s and enforces alignment to the human.

B Human Subject Data Collection

We briefly discuss a study conducted for gathering human subject behavior data in the racing domain
we use in the paper. The purpose of the study was to gather qualitative and statistical data on
individuals’ behavior and objectives in a racing context, and to use that to inform what criteria
are important for building models of human objectives. We recruited 48 participants to drive a
simulator with the hairpin and straightaway segments of the two-mile track, the same domains for the
computational results in this paper. The scenarios were chosen so as to present overtake opportunities
in portions of the track of varying levels of difficulty, while keeping the overall task short enough to
ensure there is a rich interaction between the ego and opponent. Participants completed a series of
warm-up trials in each domain, with three trials devoted to the straightaway segment and eight trials
in the hairpin segment, each featuring different opponents of varying difficulty (fixed trajectories) to
race against. Again, these were the same trajectories used in our domains.

At the conclusion of each trial, participants answered the question: “Did you attempt to pass the other
vehicle?” on an iPad. We also gathered, from trajectory data, whether or not the participant actually
completed an overtake without collisions or spin-outs. These results are reported in Table B.1. We
conclude that even in a simulated setting, there were a lower number of actual overtakes that occurred
than were attempted. This suggests that there is room to assist those wishing to overtake, but unable
to do so.

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.
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Figure B.1: Consistency of overtake versus non-overtakes.

Table B.1: Number and percentage of overtakes occurred and attempted. Note the diversity in intent
and in overtaking-difficulty for the subjects, motivating the need for assistive shared autonomy.

Overtake occurred?  Frequency Percentage | Overtake attempted? Frequency —Percentage

“No” 178 30.07 “No” 65 11.02
“Yes” 414 69.93 “Yes” 525 88.98
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Figure B.2: Consistency of left-handed versus right-handed overtakes.

We consider additional statistics, including statistics on left- and right-hand passing, as well as
collisions with the other vehicle or objects, and spin-outs. We include these results in Table B.2. We
note that there is a nearly-equal number of overtakes on the right versus left. On an individual level,
we ran chi-square tests of test for given probabilities to look for side preferences. We found that
only 6 of the 48 participants showed a statistically significant (p < .05) passing side bias, with two
participants having a bias for the right side and four participants having a bias for the left side B.2.
We also note that participants were, in general, imperfect in their driving, with nearly 50% of trials
having a collision and 8% having at least one spin-out.

C Human Objectives

In this section, we discuss the reward terms used to generate the explicit decision-making tendencies

of the fictitious human drivers, via 7 = r{%** 4/ Each use the task-specific reward terms outlined
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Table B.2: Other effects. Percentages are percent of trials with the listed event.

Observed event Percentage

Left-handed overtakes 50.82%
Right-handed overtakes 49.18%
Collisions 48.66%
Spin-outs 8.36%

in (1), in combination with objective-specific rewards. Many of the task rewards are borrowed
from [1]. We focus here on the human objective term r'i’ .

Pass We adopt a dense reward that provides a penalty when the vehicle is behind the opponent
vehicle, and a reward bonus when in front of that vehicle, up to a threshold, to incentivize passing.
That is,

7';,/ = Cpass (Ast - ASt—l) I ((Slow < Asy < Shigh) \ (Slow <Asiq < Shigh))

Where I(-) is the indicator function, and As; is the difference in longitudinal positions, relative to
track coordinates, between the ego and opponent vehicles, As; = s;77 — 777, We take the scalar
Cpass = 10. In other words, if the difference between s;7° (the ego position) and s;*” (the opponent
position) is between $;0,, and spqp, the passing reward is equal to 10 * (s;9° — s;¥”). This means
there is a high positive reward for getting far ahead of the opponent, and a high negative reward for
falling behind the opponent. For both the pass reward, we set sp;gn = — 5100w = 800, which ensures
that the pass reward is active for the entire trial. Note that we do not impose a progress reward with

the pass objective.

Stay-Behind Due to the non-symmetry of the problem, the stay-behind reward cannot be the
complement of the pass reward (otherwise, the stay-behind agent would drive backwards to get away
from the opponent). Because the task reward does not consider making progress, we add that here to
the human-specific reward. The stay-behind reward is then:

7‘;/ = Tfrog + Cstay (Ast - AS1‘,—1) I ((Slow S ASt S Shigh) \ (Slow S ASt—l S Shigh))

Where ¢4, = —2, and we impose a progress reward similar to [1], i.e., 7% = s79° — 5799, with
577° being the ego’s longitudinal position in track coordinates. For the stay-behind reward, we set
Shigh = —Slow = 90. In practice, this means that the stay-behind agent is encouraged to make

progress along the track (r?7°9), but to stay at least 50 meters behind the opponent.

Both the left- and right-biased passing agents are passing agents with an additional reward term that
encourages a bias to the left or right. Note that these additional treatments do not guarantee passing
on one side or the other.

Left-Biased We adopt a reward bonus for driving on the opponent’s left; i.e.

7~i’ = (Ast — Ast—l) H((Slow < ASt < Shigh) Vv (Slow < Ast—l < Shigh)) + (Aet + Cmargin)
where Ae; is the difference in lateral positions of the two vehicles, in the track coordinate frame; i.e.
Aey = ;9 — €/?, and ¢pargin 18 @ margin (which we set to Crargin = 0.3).
Right-Biased Right-biased reward is the complement of the left-biased reward:

T‘i/ = (Ast - Astfl) I ((slow < ASt < Shigh) V (slow < A8t71 < Shigh)) - (Aet + Cma'r‘gin)

D Additional Model Details

We provide a summary of the DREAM2ASSIST training procedure in Algorithm 1. The procedure is
split into two phases: the first is a human population generation phase in which we use the rewards
in Sec. C to generate a population of humans included in the tuple W/ TI#) of world models and
policies, respectively, and the expert human models denoted by the tuple (W}, ) for each human
objective y;. The second phase entails drawing from samples of ({y;}1_,, {W/} 1L, {TT}0C )
using fictitious co-play (FCP) [2] in order to train the assistant’s world model W4 and policy 7. At
runtime, both the trained policy 74 and world model W4 are executed, with W being additionally
useful as a means to interpret the decisions made by 7#; e.g. the intent estimate Q{‘, the estimated
reward 7! or the latent variables 2;.



Algorithm 1 DREAM2ASSIST using FCP

Given: diverse intents, y; € {1,2,..., M}
Given: reward functions for each intent y
for y;,i € {1,2,...,M} do > Generate human population
Initialize 72, WH
while not converged do
Sample an opponent policy 7y, from I,
Initialize xg, witht = 0
while not done do
Perform gradient step; update 77, WH
Sample action a/’; from 7/

Step the environment with action a;”, and a;"" ~ PP
Shape rewards according to ith agent reward
t—t+1
end while
Append checkpoint (W, ) to (WH TIH)
end while
Append final (W}, 7}) to (W T1H)
end for
Freeze agents and world models {W;"} 7", {TI}}
Initialize 74, W4
while not converged do > Train assistant agent
Sample intent i from ({y; }2,)
Sample checkpoint j for intent y; from ({W/7}IL o, {TIFF 1)
Sample an opponent policy 7y, from I,
Initialize xo, with t = 0
while not done do
Perform gradient step; update 7, W4 using ground truth label y;
Sample action a* from 74 (z), al’ from ﬂ']H ()
Step the environment using shared action a!’ + a{* and a{?? ~ 7P
Evaluate intent gjf using W4 N

Shape rewards as per (6), using r* (§;{*) from W, a; (%) ~ moa ()

t—t+1
end while
end while
Table C.1: Training Hyperparameters.
Hyperparameter Value | Hyperparameter Value
Encoder / decoder MLP layers 2 Steps 2e6
Encoder / decoder MLP units 512 Batch size 16
Predictor head layers 2 Batch length 64
Predictor head units 512 Training ratio 512
Discount factor 0.997 | Model learning rate le-4
Discount A 0.95 Value learning rate 3e-5
Imagined horizon 15 Actor learning rate 3e-5
Actor entropy 3e-4 | Dataset max size le6
Dynamics hidden units 512 # Steps between evaluations le4
Dynamics discrete dimension 32 # Episodes to evaluate 10
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Figure D.1: Changes in various metrics in the hairpin scenario when adding assistance to various
imperfect (1-5) and near-perfect (6—11) humans tending to pass, averaged over four random seeds.
Due to the fact that BeTAIL uses its own internal human model, we compare only one instance /
human, as denoted by the red line.
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Figure D.2: Absolute metrics in the hairpin scenario evaluated for the unassisted imperfect (1-5)
and near-perfect (6—11) humans tending to pass, averaged over four random seeds. 1-o error bars are
shown.

D.1 Training Hyperparameters and Environment Specifics

We provide the DREAM2 ASSIST hyperparameters in Table C.1. We train using the Adam optimizer
for 2 x 10° steps.

The CARLA simulator is used for our environment, and is executed with step size of 0.1 sec. We
terminate episodes if: (a) the ego collides with the opponent or other collidable objects (e.g. static
barriers), (b) the ego vehicle veers too far off course, or (c) a predefined finish line is reached. The
map used is a geospatially-calibrated representation of the Thunderhill Raceway in Willows, CA.
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E Additional Experimental Results

E.1 Performance across Different Humans

We provide a more complete comparison of the results, showing additional metrics in an evaluation
that extends Fig. 3 from imperfect to near-perfect humans (1-11, ordered according to unassisted
track progress performance) for DREAMER, DREAMER-AIL, BETAIL, and DREAM2ASSIST.
We show these results in Figs. D.1-D.4. Note that the additional fictitious humans (6—11) achieve
nearly-identical baseline performance across all metrics, as indicated by Figs. D.2 and D.4. Hence,
the changes across humans 6-11 in Figs. D.1 and D.3 are likewise similar.

From Fig. D.1, we observe that DREAM2 ASSIST, when applied to the imperfect pass humans (1-5)
generally yield improvements in progress, collisions, and speed, with a slight overall decrease in
reward, and an overall moderate intervention level compared to the baselines. For humans 6-10,
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Table E.1: Improvement over unassisted humans for the pass—stay humans on straightaway and
hairpin experiments, with statistics aggregated across four random seeds. Blue indicates improvement
over unassisted humans, bold is best.

| Pass (top) / Stay (bottom)

Hairpin Straightaway
Progress (m) 1 Return Collisions | Interventions | ~ Speed (m/s) T | Progress (m) T Returnt  Collisions | Interventions | Speed (m/s) 1
DREAMER -11.3+£13.6 0.5+29 -0.1£0.2 02+02 0.1£1.1 -0.7+£ 4.6 -0.1+£0.9  0.0£0.1 0.14+0.0 -0.4+19
-21.1+£ 68.6 0.3+ 04 0.0+ 0.0 0.14+0.0 294 1.6 -6.1£ 17.5 0.0+0.1  0.1+02 0.14+0.0 03405
DREAMER-AIL -28.9446.2 -57+£7.3 -0.3£0.2 1.0£02 1444 -116.6+ 587  -9.7+42 | 0.4+ 0.3 1.4£00 -21.2+10.6
-216.6+145.6 -1.70.4 0.1+ 0.2 09+0.1 54+24 -52.5+£ 459 -1.6£02  -0.1£0.1 1.4 4+ 0.0 -2+ 11
DREAM2ASSIST 71.8+43.9 -12+£3.3 -02£02  07+£0.1 05+ 1.4 6.0+£9.1 -04+£14 | -0.1£0.1 03400 -12+£19
60.5+ 49.7 0.8+ 0.4 0.140.1 0.4 40.0 71424 57.84 36.4 -0.1£0.2  0.1+£0.1 04 40.1 1.7+1.0
DREAM2ASSIST+a 252+ 11.0 -21+74 -03+£02 07402 0.8+49 6.9 +9.9 -5.6+24 [ -0.1£0.2 08+0.2 -14.8 +£7.7
oo 24.3 £ 66.6 02+0.6 0.0+ 0.4 0.740.0 51430 92478 -6.6+£0.7 0.1+£0.1 0.940.1 04402
DREAM2ASSIST+a—r -79.0 +53.2 -13.5+39 [ -05£06 | 0.6+0.0 -6.1£5.6 | -9.0+20.2 29+£1.0 00+£0.1 03403 -0.7+£12
h ; -281.9 £68.7 -25+0.5 -0.1 £ 0.1 0.7 +£ 0.0 -14+£23 10.4 + 383 -1.0£0.1 0.14+03 08+02 1.8+0.5

progress, reward, collisions, and speed are all negatively impacted, hinting at room for improvement
in handling near-perfect humans. Similar trends for imperfect humans (1-5) tending to stay can be
seen in Fig. D.3, where all metrics except collision see improvement. For near-perfect humans (6-11),
the results generally indicate marginal improvement across all metrics, except collision.

We also complement Table 1 with additional metrics, including the magnitude of intervention, and
speed, both averaged over time. In Tables E.1 and E.2, we compare Dreamer, DREAM2ASSIST, and
DREAM2ASSIST-AIL, and further include results for a variant of DREAM2ASSIST with the action-
based reward term in (6) using a,, = a, = 1, which we call DREAM2ASSIST+a, as well as a variant
of DREAM2ASSIST with the action-based reward term and no reward, i.e. o, = 1, o, = 0, which
we call DREAM2ASSIST+a—r. For the pass vs. stay case in Table E.1, DREAM2ASSIST achieves
best performance in 5 categories, while improving over unassisted humans in 10 categories. The
performance of DREAM2ASSIST+a and DREAM2ASSIST+a—r were mixed. DREAM2ASSIST+a
was able to improve over unassisted humans, but with generally lower progress than DREAM2 ASSIST,
while DREAM2ASSIST+a—r almost completely hindered the human’s progress, due to the fact that
the reward term no longer explicitly captures the dense progress sub-reward, and are not implicitly
reflected in the actions of the optimal human. In E.2, we see similar trends, with DREAM2ASSIST
outperforming baseline approaches in 5 categories, and performing better than unassisted humans
in 8 categories. DREAM2ASSIST+a—r is unable to make progress, and DREAM2ASSIST+a also
reveals lower progress than the DREAM2ASSIST in the hairpin and straightaway domains.

E.2 Intent Classification Performance

We next probe the performance of the intent classification. F; scores achieved on training data yields
high performance, as shown in Table E.3.

We provide two example time traces to illustrate stability of inferring the human’s intent by the
assistant’s world model in Figs. E.2 and E.3.

To uncover whether intent inference is due to world model training, we evaluate the t-SNE embeddings
of the logits of the assistant’s discrete latent state fzf. We see that in the Dreamer case, t-SNE is
unable to find strong separations between the ground truth intent classes without intent inference
in the latents, while in DREAM2 ASSIST, there is a stronger separation, and the ground truth intent
classes are more strongly clustered in the embedding space, allowing intent to be inferred with much
higher accuracy.

Table E.2: Improvement over unassisted humans for the left—right humans on straightaway and
hairpin experiments, with statistics aggregated across four random seeds. Blue indicates improvement
over unassisted humans, bold is best.

| Left (top) / Right (bottom)

Hairpin Straightaway
Progress (m) T Return 1 Collisions |  Interventions |  Speed (m/s) t | Progress (m) 7 Return t Collisions |  Interventions | ~ Speed (m/s)
DREAMER 21.84+28.7 -2.0+£22 0.1+ 0.1 0.14 £0.1 04412 10.8+ 7.3 -0.6+ 0.3 0.0+ 0.1 02400 6.0 +£7.0
: 10.0£ 17.9 -1.3+ 1.8 0.0 0.1 0.2+0.1 0.1+15 -11+6.2 02£12  0.0+0.1 0.1£0.0 0.9+1.0
DREAMER-AIL -144.0+ 89.9 -7.1+ 6.6 -0.4+ 0.2 1.2£0.1 -144+95 -134.4+ 13.0 -2.5£0.9 -0.5+£ 0.1 1.4+£0.0 -11.4+£7.8
-119.1+79.9 -4.5+17.3 -0.4+ 0.3 1.3£0.0 -152+5.6 -126.3+ 53.2 -13.4+7.0 | -0.5+0.2 1.4 +0.0 -23.1+£5.1
DREAM2ASSIST 54.84 60.4 14£52 0.0+ 0.1 0.8+0.1 -0.6 + 6.0 50£5.0 0.1£05  0.0%=0.1 0.6 £0.1 -0.1+£12
: h 27.2+231 22+23 -02+0.2 0.8 £0.1 32+47 -1.1+ 319 -28+24 02+0.2 08 +£0.1 -2.1+£43
D 5 A SQTS 9.3 432.0 32443 -0.1£0.1 0901 29+58 -183 £ 129 02£17 -02+£02 09+0.1 -49+£53
REAM2ASSIST+a
-61.2£40.5 02+2.1 -02+£03 0901 -l4+31 -82+35.6 -52+54  014£02 1.0+£00 -14.0 £ 6.0
-147.3 £ 93.0 -242+13.1 04402 05+0.1 -9.6+7.7 6.9+4.1 03+£15 00+0.1 0.440.1 52+39

DREAMRASSISTHOT | 19991 1040 2224163  -04£04  06+0.1 107+£68 | -32+126  -00+£30 0.1+02  01+0.0 0.1+ 17
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Table E.3: F;-Scores over the training set.

Pass vs. Stay Hairpin  Pass vs. Stay Straightaway  Left vs. Right Hairpin  Left vs. Right Straightaway
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Figure E.1: t-SNE embeddings of 2? for: (a) the non-intent-aware world model of Dreamer versus
(b) the intent-supervised world model of DREAM2ASSIST. The consistency of the clusterings present
in the DREAM2ASSIST world model states indicates that the world model has learned to identify the
human’s intent.

E.3 Learning Curves

We provide learning curves for the DREAMER, DREAM2ASSIST and DREAM2A SSIST+-a assistance
schemes in the two domains across all the human objectives in Fig. E.4. We compare these across
track progress, and observe a general trend of stability in training.

E.4 Visuals of Assistance

We show, in Fig. E.6, CARLA and bird’s-eye-view snapshots of driving with assistance, and compare
that to a human without assistance in Fig. E.5.
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Figure E.2: Time traces in the hairpin scenario showing the intent inference (denoted by background
color), along with ego-opponent distance, speed, and DREAM2ASSIST steering and acceleration
modifications for a human tending to pass. Notice that DREAM2ASSIST maintains an accurate
estimate of the driver’s intent, and provides a high-magnitude acceleration intervention to assist as
the ego begins to overtake the opponent.
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Figure E.3: Time traces in the hairpin scenario showing the intent inference (denoted by background
color), along with ego-opponent distance, speed, and DREAM2ASSIST steering and acceleration
modifications for a human tending to stay.
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Figure E.4: Learning curves for each domain, averaged over four random seeds.
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Figure E.5: Example of a time sequence of an imperfect passing human driving in the hairpin
domain.

Assistant helps with
steering and braking to
avoid a collision

Assistant gives a
steering nudge to help
the driver pass

Assistant gives an
acceleration boost to
help avoid collisions

Figure E.6: Example of a time sequence of DREAM2 ASSIST assistance to help an imperfect passing
human in the hairpin domain.
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