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ABSTRACT

Most robust aggregators for distributed or federated learning assume that adver-
sarial clients are the minority in the system. In contrast, this paper considers
the majority adversary setting. We first show that a filtering method using a few
trusted clients can defend against many standard attacks. However, a new attack
called Mimic-Shift can circumvent simple filtering. To this end, we develop a
re-weighting strategy that identifies and down-weights the potential adversaries
under the majority adversary regime. We show that our aggregator converges to
a neighborhood around the optimum under the Mimic-Shift attack. Empirical re-
sults further show that our aggregator achieves negligible accuracy loss with a
majority of adversarial clients, outperforming strong baselines.

1 INTRODUCTION

Federated learning (FL) is a leading framework for collaboratively training a machine learning (ML)
model over local datasets. The decentralized nature of FL systems has raised concerns about vul-
nerability – as adversaries can connect to an FL system like other benign users and corrupt the ML
model while evading detection by standard means (Kairouz et al., 2021). To this end, there is grow-
ing literature on the adversarial robustness of FL (Blanchard et al., 2017; Chen et al., 2018; Xie et al.,
2019b; Rajput et al., 2019b; Xie et al., 2020; Karimireddy et al., 2021a; 2022; He et al., 2022b), par-
ticularly where adversaries can upload malicious updates. Most existing defenses assume that the
adversarial clients are the minority in the system (Blanchard et al., 2017; Chen et al., 2018; Rajput
et al., 2019b; Karimireddy et al., 2021a; He et al., 2022b). However, in a federated scenario, the
decentralized nature means that it is relatively straightforward for the adversary to be the majority
and thus break existing defenses. We call such an adversary the “majority adversary”.

Our work joins a growing literature on robustness with majority adversaries, e.g., Xie et al. (2019b;
2020), motivated by noted practical vulnerabilities. Although Shejwalkar et al. (2021) argue that
the number of registered clients in a production system (e.g., GBoard) may be too large for the
adversary to compromise a majority of them, they neglect the client availability issue in FL. In
particular, Kairouz et al. (2021) suggests that, at any given time, only a subset (< 1%) of clients are
available for the server. Such a low client availability allows the adversary to become the majority
and overwhelm the server utilizing compromised networked devices (e.g., IoT devices) in a similar
way as the common distributed denial-of-service (DDoS) attack (Specht & Lee, 2003; Bonguet &
Bellaı̈che, 2017). Some other settings such as crowd-sourced training (Ryabinin & Gusev, 2020)
(a.k.a. volunteer computing) are perhaps even more vulnerable to majority adversaries because the
crowd-sourcing systems do not implement access control – allowing the adversary to connect an
arbitrary number of clients as volunteers.

We consider the adversarial robustness of federated learning against a class of attacks where an ad-
versary aims to decrease the accuracy of the trained ML model by uploading malicious updates. In
particular, we are interested in Mimic-type attacks (Karimireddy et al., 2022), as is discussed later
in this section. A key assumption in our setup is the existence of a few trusted clients, e.g., with
secure hardware support. We call these trusted clients “reference clients”. In practice, the number of
reference clients could be as small as two in each round. Similar approaches have been considered in
existing works (Xie et al., 2019b; 2020). One option for secure hardware is the trusted execution en-
vironment (TEE) (Pinto & Santos, 2019), which guarantees that the program is not Byzantine. TEE
is so far commercialized (e.g., on Google Pixel (GoogleBlog), Apple iPhone (AppleSupport), Sam-
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sung phones (SamsungDeveloper)). Recent works (Mo et al., 2021) bring TEE support to federated
learning systems.

We propose a combination of defenses – filtering and projection-based re-weighting. Our first de-
fense is a filtering method that constructs a spherical accept region and excludes the updates outside
it. The center of the accept region is an average update from a few trusted clients with secure hard-
ware support. The radius of the accept region is the sample variance of reference updates times a
scaling factor. Although the filtering method is effective against several standard attacks (e.g., sign
flipping attack, Gaussian attack), this filtering is easy to circumvent.

Building on the recently proposed Mimic attack (Karimireddy et al., 2022), shown to break many
existing defenses, we develop an improved attack method called Mimic-Shift. Mimic-Shift clients
send malicious updates which slightly shift away from benign updates and mislead the aggregated
updates away from the expected update. The slight shift makes Mimic-Shift hard to detect, and the
calibrated shifting direction can corrupt the aggregated model. To perform the Mimic-Shift attack,
we consider a man-in-the-middle (MITM) adversary capable of intercepting the message between
the clients and the server. Computer security researchers have extensively studied the MITM adver-
sary, but existing encryption solutions can be too expensive for resource-constrained client devices.
For example, the AES (advanced encryption standard) encryption only has a throughput of around
50 MB/s even with a powerful desktop CPU (Gleeson et al., 2014). With a 1 GB moderate size neural
network, the encryption takes more than 20 seconds on the client-side, draining the computational
resources and increasing the client dropout rate.

Our second defense is a projection-based re-weighting method to deal with the Mimic-Shift attack
under a majority adversary regime. The main idea is to measure the influence of each update on
the aggregated update, then down-weight the updates with high influence. Specifically, we compute
the scalar projection of the aggregated update on each client’s update. The intuition is that the
majority adversarial clients can significantly mislead the aggregated update, resulting in a large
scalar projection. Note that the filtering and re-weighting methods complement each other because
the re-weighting defense does not deal with the aforementioned standard attacks, as is discussed in
Section 4.

We further provide some theoretical analysis of our methods under the Mimic-Shift attack. First,
false-positives in filtering can eliminate a benign update and perturb the aggregated update. Regard-
ing this concern, we show that the false positive rate decreases quickly w.r.t. the number of reference
clients and the scaling factor of the accept radius, suggesting that our filtering method can work with
a few reference clients and a conservative scaling factor. For the re-weighting phase, the probability
of malicious updates having larger scalar projections than benign updates increases as the adversary
takes more shares in a system, complementing existing results (He et al., 2022b) that guarantee more
robustness as the share of the adversary decreases. Additionally, we discuss the performance of our
method under a conventional minority adversary setting. Finally, we show that, in a convex setting,
our method converges with a rate of O( 1√

T
) to a neighborhood of the optimum. Our contributions

are summarized as follows:

• We develop the Mimic-Shift attack and show that Mimic-Shift circumvents many defense
methods in federated learning.

• We develop a two-stage defense using filtering and re-weighting to defend against a broad
class of attacks.

• We theoretically analyze our strategy and outline conditions under which it helps.

Empirical results on FEMNIST (Caldas et al., 2018), CelebA (Liu et al., 2015) and Shakespeare
(McMahan et al., 2017) datasets show that our aggregator recovers a near-optimal model under
a majority adversary setting with Mimic-Shift attack, outperforming existing methods by a large
margin. Also, our method only loses up to 2.4% accuracy under conventional minority adversary
settings. Additional empirical results demonstrate that our method is robust to a broad class of
attacks, including standard Gaussian and sign-flipping attacks as well as an improved Mimic-Shift-
Var attack.
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2 RELATED WORK

Many existing works on Byzantine robust machine learning assume the adversary is the minority in
the system, based on clustering (Blanchard et al., 2017), median (Yin et al., 2018), voting (Bernstein
et al., 2019), bucketing (Karimireddy et al., 2022), and robust estimation (Data & Diggavi, 2021).
However, these methods can fail once the adversary becomes the majority. A few papers (Xie et al.,
2019b; 2020) leverage a validation dataset to improve Byzantine tolerance to arbitrary numbers of
adversarial clients but constructing a global validation dataset in a federated scenario with local
private datasets is infeasible. Other redundancy-based methods with more robustness guarantees
do not apply to federated learning because they assume a centralized setting with control over the
data allocation on each node (Chen et al., 2018; Rajput et al., 2019a). Recently, a clipping-based
method (Karimireddy et al., 2021b; He et al., 2022b) showed success against minority adversary in
a federated learning setting. Although it is relatively straightforward to combine the clipping with
our reference clients, we find that the training is unstable, as is discussed in Section 6.

Our paper focuses on model poisoning attacks, which aim to decrease the accuracy of the trained ML
model by uploading malicious updates (He et al., 2022b). Other attacks, including data poisoning
(Steinhardt et al., 2017; Wang et al., 2021) and backdoor (Wang et al., 2020; Xie et al., 2021),
are beyond the scope of this work. We focus only on training the centralized model. Additional
considerations such as personalization are known to be handled effectively using robust centralized
training, followed by local fine-tuning Li et al. (2021), thus are beyond the scope of this paper.

3 PROBLEM SETUP

We assume a federated learning system where N benign clients collaboratively train a ML model
f : X −→ Y with d-dimensional parameter ζ coordinated by a server. The N benign clients include
NR reference (trusted) clients. There are N ′ adversarial clients who aim to corrupt the ML model
during training. The ith, i ∈ [1, ..., N + N ′], client has ni data samples, being benign for i ∈
[1, ..., N ] or being adversarial for i ∈ [N + 1, ..., N + N ′]. The federated learning is conducted
in T rounds. In round t ∈ [1, ..., T ], the server broadcasts a model parameterized by ζt−1 to each
client. We omit the subscript t while focusing on one round. Then, the ith client optimizes ζt−1

with their local data samples and report ζt,i to the server. We define pseudo-gradient gt,i = ζt−1 −
ζt,i being the difference between the locally optimized model and the broadcasted model from the
previous round. Note, for simplicity, that we will often use the term ”gradient” to refer to the
updates. Once all the gradients are reported in, the server aggregates the gradients and produce
a new model with parameters ζt using the following rule: ζt = ζt−1 −

∑N+N ′

i=1
ni∑N+N′

i=1 ni

gt,i.

Our goal is to minimize a risk function over the benign clients: F (ζ) =
∑N

i=1
ni∑N
i=1 ni

Fi(ζ) =∑N
i=1

ni∑N
i=1 ni

EDi [ℓ(f(x; ζ), y)], where ℓ : R× Y −→ R is a loss function.

3.1 THREAT MODEL

Following the standard practice (Blanchard et al., 2017), we consider an omniscient man-in-the-
middle (MITM) adversary that knows gi,∀i ∈ {1, ..., N} and can tell which clients are reference
users, e.g., by observing the device identifier in the message. An omniscient adversary helps explore
the limits of the defense. However, an omniscient adversary is not mandatory for our Mimic-Shift
attack, which can work with partial information as Section 6 will show. The MITM adversary also
owns a majority of clients in a system and adopts an attack from the Mimic family (Karimireddy
et al., 2022). Specifically, we assume the following Mimic-Shift attack.

Mimic-Shift At each round, the MITM adversary first intercepts the gradients from benign clients.
Then the adversary computes the average reference gradient ḡR =

∑NR

i=1
nRi∑NR
i=1 nRi

· gRi from the

reference users indexed by Ri and the average benign gradient ḡ =
∑N

i=1
ni∑N
i=1 ni

·gi from all benign

users, including the reference users. Then, all the adversarial clients report g′ = ḡR + (ḡR − ḡ) to
the server.

The Mimic-Shift attack is effective because it tries to push the aggregated gradient away from the
expected gradient. The reason is that ḡ is estimated with more clients and data samples. A simple
concentration argument suffices to show that ḡ will be closer to E[ḡ] than ḡR with high probability,
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resulting in a ḡR − ḡ pointing away from E[ḡ]. Empirical results in Section 6 show that Mimic-Shift
decreases the accuracy twice as much as Mimic (Karimireddy et al., 2022), which sets g′ = gi for
an i ∈ {1, ..., N}.

The Mimic-Shift attack is also difficult to detect because the malicious g′ has the same distance to the
reference ḡR as the benign ḡ. We will see how this property lets Mimic-Shift bypass distance-based
defenses in Section 6.

4 METHOD

Our robust aggregator has two phases, filtering and re-weighting. The filtering phase, applied first,
excludes the gradients outside the accept region defined by the reference gradients, defending against
standard attacks. Then, the re-weighting phase further down-weights the potential malicious gradi-
ents within the accepting region of the filtering phase, targeting the Mimic-Shift attack.

4.1 PHASE 1: FILTERING

In the filtering phase (Algorithm 1), we first compute the sample mean of reference gradient mR =∑NR

i=1
1

NR
·gRi , making a guess of where the good gradients might be. Next, we set mR as the center

of a spherical accept region. Then, we compute the sample variance of the reference gradients,

sR =
∑NR

i=1 ∥gRi
−mR∥

NR−1 . The sample variance sR is further scaled up by a tunable hyper-parameter
c. The product c · sR is the radius of the spherical accept region. Finally, we remove all the updates
outside the spherical accept region. This filtering is effective against attacks that do not know where
the expected gradient is (e.g., Gaussian attack) or do not carefully calibrate the adversarial gradient
(e.g., sign flipping attack), as is shown in Section 6.

Algorithm 1 Filtering.

Input:
A set of reference gradients, {gRi | i ∈ {1, ..., NR}};
A set of reported gradients, {gi | i ∈ {1, ..., N +N ′}};
A hyper-parameter c;

Aggregator:
1: Compute the sample mean of reference gradients, mR :=

∑NR

i=1
1

NR
· gRi

;

2: Compute the sample variance of reference gradients, sR :=
∑NR

i=1 ∥gRi
−mR∥

NR−1 ;
3: return {gi | i ∈ {1, ..., N +N ′} ∧ ∥gi −mR∥ ≤ c · sR};

4.2 PHASE 2: RE-WEIGHTING

Suppose a majority adversary misleads the aggregated gradient. In that case, the malicious gradients
likely have a stronger influence on the aggregated gradient compared to benign gradients. Here, we
measure the influence via scalar projections.

The re-weighting defense is outlined in Algorithm 2. The scaling weights are designed to augment
benign gradients and down-weight adversarial updates. This is implemented using a monotonic
re-scaling 1 of the scalar projection between the aggregate and the gradients (step 4). The mono-
tonic re-scaling amplifies the difference between the scalar projections, making large projections
larger. Therefore, the potential malicious gradients would be down-weighted more. However, the
monotonic re-scaling may also lead to an over-up-weighting on certain benign gradients, which are
far from ḡ∗. such up-weighting leads to instability in the training process. Thus, we also include
a clipping operator (step 6). The clipping addresses the over-up-weighting issue by specifying a
bound.

An additional benefit of using the power function and clipping is that they prompt a set of uni-
form weights on benign gradients, stabilizing the training. If we set k to be sufficiently large such
that the maximum si is greater than NF · (

∑NF

i=1 si − maxi∈{1,...,NF } si), we have si = τ,∀i ̸=
1In the description and experiments, we use a power function. Optimizing the choice of monotonic re-

scaling is left for future work.
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argmaxi∈{1,...,NF } si. In practice, we set k to 10 and τ to 0.6. Both hyper-parameters generalize
well to the three datasets in our experiments.

Note that the filtering phase complements the re-weighting phase because standard attacks can cor-
rupt the scalar projections via uploading 0 or flipping the sign. For a class of inner product-based
attacks (Xie et al., 2019a), an additional clipping operator that prevent the scalar projection si from
being negative can help.

Algorithm 2 Re-weighting.

Input:
A set of filtered gradients, i.e., the results of Algorithm 1, {gi | i ∈ {1, ..., NF }};
Two hyper-parameters k and τ ;

Aggregator:
1: Compute the aggregated gradients of all users, ḡ∗ :=

∑NF

i=1
ni∑NF
i=1 ni

gi;

2: Compute a scalar projection of ḡ∗ on each gi, si := ḡ∗·gi
∥gi∥ ;

3: Normalize the vector s = [s1, ..., sNF
] such that ∥s∥1 = NF ;

4: Take the kth power of each si, s := [sk1 , ..., s
k
NF

];
5: Normalize the vector s = [s1, ..., sNF

] such that ∥s∥1 = NF ;
6: Clip the values smaller than τ in s, si := max(si, τ),∀i ∈ {1, ..., NF };
7: Normalize the vector s = [s1, ..., sNF

] such that ∥s∥1 = NF ;
8: Re-weight each gi using si, gi := gi

si
,∀i ∈ {1, ..., NF };

9: return ḡj :=
∑NF

i=1
ni∑NF
i=1 ni

gi;

5 THEORETICAL ANALYSIS

We first show that the probability of not filtering out a benign gradient increases at a rate of
O(1 − 1

N2
R
) w.r.t. the number of reference clients NR and O

(
(1 − 1

c2 )
2
)

w.r.t. the scaling fac-
tor c in the accept radius. Then, we discuss conditions for the probability of down-weighting the
malicious gradients to increase as the adversary owns more clients in the system. Additional discus-
sion considers how our strategy may still help even if the aforementioned conditions do not hold,
providing insights to certain of empirical results. Finally, we study the convergence of our method
under a convex setting. Before proceeding, we outline some additional assumptions.

To simplify tedious notation, we assume all users have the same number of samples because the
difference in sample size can be merged into the difference between gradients.
Assumption 1. Uniform sample size:

ni = nj ,∀i ̸= j. (1)

Assumption 2. The gradients follow a hierarchical distribution in all rounds:

Stage 1 : µi ∼ P (µ), σi ∼ P (σ),∀i ∈ {1, ..., N},
Stage 2 : gi ∼ N (µi, σi; γ

+),∀i ∈ {1, ..., N},
(2)

where Stage 1 is a distribution where the random variable µ has finite expected value E[µ] and finite
non-zero variance Var[µ]. Stage 2 is truncated isotropic Gaussian distribution with a truncation
threshold γ+ on the L2 norm.
Assumption 3. The variance of gradients is bounded:

σi ≤ σ+,∀i ∈ {0, 1, ..., N}. (3)

Assumption 4. The sample variance of reference gradients is greater than 0:

0 < s−R ≤ sR. (4)

Assumption 5. The L2 norm of expected and estimated gradients is bounded:

0 < γ− ≤ ∥µi∥ ≤ γ+,∀i ∈ {0, 1, ..., N},
0 < γ− ≤ ∥gi∥ ≤ γ+,∀i ∈ {0, 1, ..., N}.

(5)
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(a) Case 1. (b) Case 2. (c) Case 3.

Figure 1: Three cases with different hyper-parameters c. The red dot is E[µ] and the blue dot is µ̄R.
The solid circle represents the accept region with radius c ·sR. The dash circle and dash dot circle(s)
are two spherical contours around E[µ]. Condition c ≥ 2 · ∥E[µ]−µ̄∥

sR
holds in Case 1, where all the

points outside the accept region are more than c·sR
2 away from E[µ]. In Case 2 and Case 3, there are

points between the two contours that have the same distance to E[µ] but are not always inside accept
region.

5.1 FILTERING (STAGE 1)

The filtering phase removes all the gradients that are more than c ·sR away from the reference mR in
terms of Euclidean distance. However, the data distribution Di may vary across clients in a federated
learning setting. Such non-i.i.d.ness increases the risk of filtering out a benign gradient. We start
our analysis by considering the expected gradients:
Lemma 6. Suppose there are NR reference clients among N clients, and the sample variance of
gradients is sR, under Assumption 2, let c ≥ 2 · ∥E[µ]−µ̄∥

sR
. Then, for any i ∈ [1, ..., N ], with

probability at most 4·Var[µ]2

c2·s2R
, we have ∥µi − µ̄R∥ ≥ c · sR, where µ̄R =

∑R
i=1

1
NR

· µRi
.

Remark 7. Condition c ≥ 2 · ∥E[µ]−µ̄∥
Var[µ] guarantees that all µis outside the accept region are at least

c·sR
2 away from E[µ], as Figure 1 shows, enabling concentration argument. Otherwise, bounding

the probability of µi appears outside the accept region is hard without additional assumptions on
P (µ).

Lemma 6 suggests that the probability of filtering out a benign gradients decreases at a rate of
O( 1

c2 ). The following lemma further shows the probability of violating the assumed condition
c ≥ 2 · ∥E[µ]−µ̄∥

sR
decreases at a rate of O( 1

N2
R
).

Lemma 8. With Assumptions 2 and 5, for a fixed accept radius c · sR, with probability at most
4·Var[µ]2

N2
R·c2·s2R

, we have c ≤ 2 · ∥E[µ]−µ̄∥
sR

.

The following theorem combines and extends the result on expected gradients to estimated gradients.

Theorem 9. Under Assumptions 2 and 3, with probability at least 1
(2·σ+·

√
2π)d

· (1− 4·Var[µ]2

c2·s2R
) · (1−

4·Var[µ]2

N2
R·c2·s2R

), we have ∥gi −mR∥ ≤ c · sR.

Theorem 9 shows that the risk of filtering out a benign gradient decreases quickly w.r.t. c and NR,
enabling our strategy of using a small number of reference clients and a conservative c.

5.2 RE-WEIGHTING (STAGE 2)

Suppose the adversary adopts the Mimic-Shift attack and bypasses the filtering defense. We would
like to figure out the probability of assigning a higher scalar projection to the malicious gradient g′
than a benign gradient gi, i ∈ {1, ..., N}.
Theorem 10. Suppose all the gradients pass the filtering phase. Let the aggregated gradient be

ḡ∗ = w · ḡ + w′ · g′, where (w,w′) =

( ∑N
i=1 ni∑N+N′

i=1 ni

,
∑N+N′

i=N+1 ni∑N+N′
i=1 ni

)
. Let θ be the angle between ḡ and
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(a) 2 · θ∗ ≤ θ case. (b) General case.

Figure 2: Two cases where the adversary mislead the aggregated gradient ḡ∗ by different degree. ḡ
is benign. g′′ is a mirror of malicious g′ w.r.t. ḡ∗, along which the scalar projection equals to s′.

g′, θ∗ be the angle between ḡ∗ and g′. Assume w
w′ ≤ ∥g′∥−cos θ

2 ·∥ḡ∥
∥ḡ∥−cos θ

2 ·∥g′∥ such that θ∗ ≤ θ − θ∗. Then,

under Assumptions 1- 5, let γ−
θ∗ = ∥γ−∥ · tanh(θ − 2 · θ∗), with probability at least 1

(2·σ+·
√
2π)d

·∫ γ−
θ∗

α=0−

(
1− Var[µ]

α2

)
·
(
1− Var[µ]

(γ−
θ∗−α)2

)
dα, we have s′ ≥ si,∀i ∈ {1, ..., N}.

Theorem 10 suggests that if 2 · θ∗ ≤ θ, the probability of down-weighting malicious gradients more
than benign gradients (i.e., s′ > si) increases as the adversary owns more clients and samples in a
system (i.e. w′ ↑). The main idea is: the minimum amount of deviation between gi and ḡ for having
si > s′ increases as w′ increases because w′ ↑⇝ θ∗ ↓. This specific deviation is shown in Figure
2a as the dark dash line with length at least ∥γ−∥ · tanh(θ − 2 · θ∗). Then, applying concentration
arguments yields the result.

5.2.1 ADDITIONAL DISCUSSION

Theorem 10 only deals with the case where ḡ∗ has a smaller angle with g′ than ḡ. However, in
practice, we find that our method also achieves a decent accuracy even the condition 2 · θ∗ ≤ θ does
not hold. To gain some insight, suppose there is a probability density function f of benign gradients.
Then, the probability of having si > s′,∀i ∈ {1, ..., N} equals the integral of f over a cone, which
is defined by spinning g′ around ḡ∗ as Figure 2b shows. In a federated scenario, the estimated gi
concentrates around its own µi, which is not necessarily close to ḡ or µ̄, resulting in a small integral
of f over the aforementioned cone.

5.3 CONVERGENCE ANALYSIS

So far, our analysis has focused on the robustness of one update. The following extends the single
step analysis to a convergence analysis. Before showing the theorem, we present a lemma that
quantifies the impact of false-positive filtering.
Lemma 11. Suppose F : N×Rd −→ N×{0, 1} is a filtering function, let mask M = F(g1, ..., gN ),
N ′

F = 1 − ∥M∥1, ĝ = 1
∥M∥1

·
∑N

i=1 Mi · gi, and δ = ĝ − ḡ. Then, with Assumption 5, we have

∥δ∥ ≤ 2·N ′
F

N · γ+.

In the following theorem, we use assumed conditions to ease the reading. Later , we shall connect
the assumed conditions to Theorems 9 and 10 and further support the assumed conditions with
empirical results in Appendix C.
Theorem 12. Suppose the malicious gradient g′t is filtered out with probability 0, ∀t ∈ {1, ..., T},
and down-weighted by s′t ≥ 1. Assume at most N ′

F benign gradient are filtered out at each iteration.
Define an aggregated gradient ḡ∗t = w · ĝt + w′ · g′

t

s′t
= w · (µ̄t + δt + ϵt) + w′ · g′

t

s′t
, where ĝt and

δt follow the definitions in Lemma 11, ϵt ∼ 1
N ·

∑N
i=1 N (0, σt,i) as Assumption 2 shows. Let ζ ∈ Z

be the model parameter, ζ∗ be the optimum, and ζ̄ = 1
T

∑T
t=1 ζt. Assume supζ∈Z∥ζ∥ ≤ D and

F : Z −→ R is convex. Let C = w · 2·N
′
F

N ·γ+2
+2 ·w ·γ+2

+w′ ·γ+2, C ′ = 2 ·w ·C+C2+w ·γ+,
and ηt =

D√
T ·C′ , under Assumptions 2 and 5, we have:

E[F (ζ̄)]− F (ζ∗) ≤ (4 · C ′ + 1) ·D
2 · w ·

√
T

+
2 ·D
T

·
T∑

t=1

(
∥δt∥+

w′

w · s′t
· ∥g′t∥+ ∥ϵt∥

)
. (6)

7



Under review as a conference paper at ICLR 2023

The convergence analysis shows that our method converges to a neighborhood around the optimum,
whose size shrinks with fewer false-positive filtering (Theorem 9) and more down-weighting (tuning
k and τ in Algorithm 2) with higher probability (Theorem 10) on the malicious gradients. Converg-
ing to a neighborhood is common in previous noisy gradient descent studies (Wang et al., 2021;
He et al., 2022a). Our result also suggests scaling up the learning rate as the adversary owns more
clients. In practice, this scaling is handled by our re-weighting phase where the benign gradients are
down-weighted by scalars less than 1.

6 EXPERIMENTS

We first compare the Mimic-Shift attack with the Mimic attack, showing that Mimic-Shift is more
effective and the improved effectiveness remains with a non-omniscient adversary (Mimic-Shift-
Par). Then, we evaluate our defense strategy against the Mimic-Shift attack where our strategy
outperforms strong baselines.

Additional Results Appendix C provides more results. We evaluate our defense via a non-
omniscient Mimic-Shift-Par attack, an improved Mimic-Shift-Var attack as well as other standard
attacks (e.g., Gaussian and sign-flipping). There are also additional experiment with fewer clients
and various attack strengths, plots of the re-weighting vector s as well as convergence, and studies
on defense hyper-parameters.

6.1 SETUP

We use three datasets, FEMNIST (FM) (Caldas et al., 2018), CelebA (CA) (Liu et al., 2015), and
Shakespeare (SS) (McMahan et al., 2017), with realistic non-i.i.d. partitions (Caldas et al., 2018)
implemented in the FedML library (He et al., 2020). The number of benign clients ranges from 143
to 500. We select 2 reference clients and 28 other benign clients at each round. The number of
adversarial clients is adjusted accordingly. We report the detailed setup in Appendix B, including
various hyper-parameters.

We employ seven baselines, including federated averaging (FedAvg) (McMahan et al., 2017), feder-
ated averaging with reference clients (Ref), coordinate-wise median (CM) (Yin et al., 2018), FLTrust
(Cao et al., 2021), Krum (Blanchard et al., 2017), Krum with bucketing (Krum-B) (Karimireddy
et al., 2022), self-centered clipping with reference clients (CClip-R) (Karimireddy et al., 2022; He
et al., 2022b), Zeno′ (Xie et al., 2019b), and FLTrust (Appendix C.1) (Cao et al., 2021). Appendix
B lists the details of these baselines. The ”Oracle” aggregator operates with benign gradients and
serves as a reference. Five attacks are considered in our experiments, including Mimic-Shift-Var,
particularly designed as a strong attack for our proposed defense.

Gaussian Draw a random update g′i from an isotropic Gaussian distribution N (0, 200).

Sign-flipping Flip the sign of the estimated gradient g′i = −gi and report g′i to the server.

Mimic-Shift Report g′ = ḡR + (ḡR − ḡ) to the server, as is shown in Section 3.1.

Mimic-Shift-Par Randomly eavesdrop 20% clients per round and draw two clients as reference.

Mimic-Shift-Var Mirror the local update using ḡR and report g′i = ḡR + (ḡR − ḡi) to the server.

6.2 MIMIC-TYPE ATTACK COMPARISON

Table 1 shows the accuracy of FedAvg aggregator under Mimic and Mimic-Shift attack. Here, the
adversary owns 80% of the system, and the Mimic adversary mimics the first client in the system.
Mimic-Shift attack constantly outperforms Mimic and is 116% more effective on average. Such
advantages are preserved under a non-omniscient adversary.
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Table 1: Accuracy of FedAvg Aggregator under Attack with 80% Adversary

Attack Method FEMNIST CelebA Shakespeare Avg. Decrease

No Attack .861 ± .001 (.000↓) .869 ± .001 (.000↓) .364 ± .001 (.000↓) .000↓
Mimic .693 ± .001 (.168↓) .816 ± .001 (.053↓) .345 ± .001 (.019↓) .078↓
Mimic-Shift .621 ± .001 (.240↓) .797 ± .001 (.072↓) .169 ± .001 (.195↓) .169↓
Mimic-Shift-Par .663 ± .001 (.198↓) .812 ± .001 (.054↓) .182 ± .001 (.182↓) .145↓

Note: Variance is rounded up.

6.3 DEFENSE AGAINST MIMIC-SHIFT ATTACK

This experiment considers three settings where the adversary owns 0% - 80% of a system. The
hyper-parameters of each aggregator are selected based on the 80% adversary setting and directly
applied to the other settings. Table 2 shows the accuracy of our strategy and baselines under the
Mimic-Shift attack.

Under a majority adversary setting, our method outperforms all the baselines by a large margin.
The reason is that the median-based (CM) method picks the malicious gradient once the adversary
becomes the majority. Clustering-based (Krum and Krum-B) methods suffers from a similar issue.
Other reference client-assisted distance-based re-weighting strategy (CClip-R) and filtering strategy
(Zeno′) is not effective because Mimic-Shift carefully calibrates the malicious gradients so that they
are as close to the reference gradients as the benign gradients. Using only reference clients (Ref)
outperforms existing robust aggregators but suffers from low client utilization.

We also find that our proposed defense yields the best accuracy under a minority adversary setting, as
discussed in Section 5.2.1. Under a no adversary setting, our strategy weights the benign gradients
nearly uniformly without interfering with the training. Our method occasionally outperforms the
oracle. We hypothesize that the improved results can come from the up-weighting of the under-
represented clients (Li et al., 2020), whose influence score is small.

Table 2: Accuracy of Aggregators Under Mimic-Shift Attack

Adv % Data Oracle Ours FedAvg Ref CM Krum Krum-B CClip-R Zeno′

80%

FM .861 .840 .621 .761 .535 .554 .525 .562 .527
CA .870 .877 .797 .820 .782 .787 .865 .792 .805
SS .364 .360 .169 .236 .189 .186 .183 .160 .194
Avg .698 .692 .529 .606 .502 .509 .525 .505 .509

40%

FM .861 .871 .797 .761 .815 .537 .603 .583 .533
CA .870 .893 .862 .820 .857 .836 .858 .839 .845
SS .364 .340 .291 .236 .210 .089 .202 .243 .191
Avg .698 .701 .650 .606 .627 .487 .554 .555 .523

00%

FM .861 .864 .861 .761 .801 .727 .842 .760 .751
CA .870 .879 .870 .820 .865 .856 .863 .862 .860
SS .364 .357 .364 .236 .217 .189 .307 .266 .258
Avg .698 .700 .698 .606 .628 .591 .671 .629 .623

Note: The numbers are average accuracy over three runs.

7 CONCLUSION AND FUTURE WORK

This paper shows two methods for improving the adversarial robustness of federated learning under
a majority adversary regime. Empirical results in various settings and against a broad class of attacks
demonstrate the proposed methods’ effectiveness. Additional theoretical analysis is conducted under
the Mimic-Shift attack regime, showing conditions under which the proposed method helps. Further
exploring the limitations of learning with majority adversaries is a good next step.
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A PROOFS

A.1 FILTERING (STAGE 1)

Lemma 6. Suppose there are NR reference clients among N clients, and the sample variance of
gradients is sR, under Assumption 2, let c ≥ 2 · ∥E[µ]−µ̄∥

sR
. Then, for any i ∈ [1, ..., N ], , with

probability at most 4·Var[µ]2

c2·s2R
, we have ∥µi − µ̄R∥ ≥ c · sR, where µ̄R =

∑R
i=1

1
NR

· µRi
.

Proof. Since c ≥ 2 · ∥E[µ]−µ̄∥
sR

, we have:

P
[
∥µi − µ̄R∥ ≥ c · sR

]
≤ P

[
∥µi − E[µ]∥ ≥ c · sR

2

]
(7)

With Chebyshev’s inequality, we have:

P
[
∥µi − E[µ]∥ ≥ c · sR

2

]
≤ 4 ·Var[µ]2

c2 · s2R
. (8)

Lemma 8. With Assumptions 2 and 5, for a fixed accept radius c · sR, with probability at most
4·Var[µ]2

N2
R·c2·s2R

, we have c ≤ 2 · ∥E[µ]−µ̄∥
sR

.

Proof. With Chebyshev’s inequality, we have:

P
[
∥E[µ]− µ̄∥ ≥ c · sR

2

]
≤ 4 ·Var[µ̄]2

c2 · s2R
=

4 ·Var[µ]2

N2
R · c2 · s2R

(9)

Theorem 9. Under Assumptions 2 and 3, with probability at least 1
(2·σ+·

√
2π)d

· (1− 4·Var[µ]2

c2·s2R
) · (1−

4·Var[µ]2

N2
R·c2·s2R

), we have ∥gi −mR∥ ≤ c · sR.

Proof. With Assumption 2, we have gi = µi + ϵi, where ϵi ∼ N (0, σi).

Let ϵ̄R =
∑NR

i=1
1

NR
· ϵRi , with Assumption 1, we have:

∥gi −mR∥ = ∥µi + ϵi − µ̄R − ϵ̄R∥. (10)

Then, we derive a lower bound:

P
[
∥gi −mR∥ ≤ c · sR

]
≥ P

[
∥µi − µ̄R∥ ≤ c · sR

]
× P

[
∥ϵi − ϵ̄R∥ = 0

]
(11)

Since ϵi,∀i ∈ [1, ..., N ] are samples from zero-mean Gaussian distributions, we have:

P
[
∥ϵi − ϵ̄R∥ = 0

]
≥ 1(

2 · σ+ ·
√
2π

)d
. (12)

With Lemma 6, we have:

P
[
∥µi − µ̄R∥ ≤ c · sR

]
≥ 1− 4 ·Var[µ]2

c2 · s2R
. (13)

Plugging Equations equation 12 and equation 13 to Equation equation 11, we have: .

P
[
∥gi −mR∥ ≤ c · sR

]
≥ 1

(2 · σ+ ·
√
2π)d

· (1− 4 ·Var[µ]2

c2 · s2R
) (14)

Then, with Lemma 8, with a given c and NR, we have:

P
[
c ≥ 2 · ∥E[µ]− µ̄∥

sR

]
= P

[
∥E[µ]− µ̄∥ ≤ c · sR

2

]
≥ 1− 4 ·Var[µ]2

N2
R · c2 · s2R

(15)

Combining Equations equation 14 and equation 15 completes the proof.

14



Under review as a conference paper at ICLR 2023

A.2 RE-WEIGHTING (STAGE 2)

Theorem 10. Suppose all the gradients pass the filtering phase. Let the aggregated gradient be

ḡ∗ = w · ḡ + w′ · g′, where (w,w′) = (
∑N

i=1 ni∑N+N′
i=1 ni

,
∑N+N′

i=N+1 ni∑N+N′
i=1 ni

). Let θ be the angle between ḡ and

g′, θ∗ be the angle between ḡ∗ and g′. Assume w
w′ ≤ ∥g′∥−cos θ

2 ·∥ḡ∥
∥ḡ∥−cos θ

2 ·∥g′∥ such that θ∗ ≤ θ − θ∗. Then,

under Assumptions 1- 5, let γ−
θ∗ = ∥γ−∥ · tanh(θ − 2 · θ∗), with probability at least 1

(2·σ+·
√
2π)d

·∫ γ−
θ∗

α=0−

(
1− Var[µ]

α2

)
·
(
1− Var[µ]

(γ−
θ∗−α)2

)
dα, we have s′ ≥ si,∀i ∈ {1, ..., N}.

Proof. With θ∗ ≤ θ − θ∗, if s′ ≥ si, we have ∥gi − ḡ∥ ≤ ∥ḡ∥ · tanh(θ − 2 · θ∗). With Assumption
2, we have gi = µi + ϵi, where ϵi ∼ N (0, σi). Let ϵ̄ =

∑N
i=1

1
N · ϵi, with Assumption 1, we have:

P
[
s′ ≥ si

]
= P

[
∥gi − ḡ∥ ≤ ∥ḡ∥ · tanh(θ − 2 · θ∗)

]
≥ P

[
∥gi − ḡ∥ ≤ ∥γ−∥ · tanh(θ − 2 · θ∗)

]
≥ P

[
∥µi − µ̄∥ ≤ ∥γ−∥ · tanh(θ − 2 · θ∗)

]
× E[∥ϵi − ϵ̄∥ = 0]

≥ P
[
∥µi − E[µ]∥+ ∥E[µ]− µ̄∥ ≤ ∥γ−∥ · tanh(θ − 2 · θ∗)

]
× E[∥ϵi − ϵ̄∥ = 0]

(16)

Introducing an auxiliary variable α, we have:

P
[
∥µi − E[µ]∥+ ∥E[µ]− µ̄∥ ≤ ∥γ−∥ · tanh(θ − 2 · θ∗)

]
= P

[
∥µi − E[µ]∥ ≤ α

]
× P

[
∥E[µ]− µ̄∥ ≤ ∥γ−∥ · tanh(θ − 2 · θ∗)− α

] (17)

With Chebyshev’s inequality, we have:

P
[
∥µi − E[µ]∥ ≤ α

]
≥ 1− Var[µ]

α2
,

P
[
∥E[µ]− µ̄∥ ≤ ∥γ−∥ · tanh(θ − 2 · θ∗)− α

]
≥ 1− Var[µ](

∥γ−∥ · tanh(θ − 2 · θ∗)− α
)2 ,

(18)

With Assumption 2, we have:

E[∥ϵi − ϵ̄∥ = 0] =
N + 1

σ+ ·
√
2π

(19)

Under Assumption 5, combine Equations equation 16 - equation 19 and integrate α over (0, ∥γ−∥ ·
tanh(θ − 2 · θ∗)]:

P
[
s′ > si

]
≥ N + 1

σ+ ·
√
2π

·
∫ ∥γ−∥·tanh(θ−2·θ∗)

α=0−

(
1− Var[µ]

α2

)
·
(
1− Var[µ](

∥γ−∥ · tanh(θ − 2 · θ∗)− α
)2

)
dα.

(20)
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A.3 CONVERGENCE

Lemma 11. Suppose F : N×Rd −→ N×{0, 1} is a filtering function, let mask M = F(g1, ..., gN ),
N ′

F = N − ∥M∥1, ĝ = 1
∥M∥1

·
∑N

i=1 Mi · gi, and δ = ĝ − ḡ. Then, with Assumption 5, we have

∥δ∥ ≤ 2·N ′
F

N · γ+.

Proof. With Assumption 5, we have:

∥δ∥ = ∥ĝ − ḡ∥ = ∥ 1

∥M∥1
·

N∑
i=1

Mi · gi −
1

N

N∑
i=1

gi∥

= ∥ 1

∥M∥1
·

N∑
i=1

Mi · gi −
( 1

N
·

N∑
i=1

Mi · gi +
1

N
·

N∑
i=1

(1−Mi) · gi
)
∥

≤ ∥ 1

∥M∥1
·

N∑
i=1

Mi · gi −
1

N
·

N∑
i=1

Mi · gi∥+ ∥ 1

N
·

N∑
i=1

(1−Mi) · gi∥

=
N − ∥M∥1
∥M∥1 ·N

∥
N∑
i=1

Mi · gi∥+
1

N
· ∥

N∑
i=1

(1−Mi) · gi∥

≤ N ′
F

N
γ+ +

N ′
F

N
γ+ =

2 ·N ′
F

N
γ+

(21)

Theorem 12. Suppose the malicious gradient g′t is filtered out with probability 0, ∀t ∈ {1, ..., T},
and down-weighted by s′t ≥ 1. Assume at most N ′

F benign gradient are filtered out at each iteration.
Define an aggregated gradient ḡ∗t = w · ĝt + w′ · g′

t

s′t
= w · (µ̄t + δt + ϵt) + w′ · g′

t

s′t
, where ĝt and

δt follow the definitions in Lemma 11, ϵt ∼ 1
N ·

∑N
i=1 N (0, σt,i) as Assumption 2 shows. Let ζ ∈ Z

be the model parameter, ζ∗ be the optimum, and ζ̄ = 1
T

∑T
t=1 ζt. Assume supζ∈Z∥ζ∥ ≤ D and

F : Z −→ R is convex. Let C = w · 2·N
′
F

N ·γ+2
+2 ·w ·γ+2

+w′ ·γ+2, C ′ = 2 ·w ·C+C2+w ·γ+,
and ηt =

D√
T ·C′ , under Assumptions 2 and 5, we have:

E[F (ζ̄)]− F (ζ∗) ≤ (4 · C ′ + 1) ·D
2 · w ·

√
T

+
2 ·D
T

·
T∑

t=1

(
∥δt∥+

w′

w · s′t
· ∥g′t∥+ ∥ϵt∥

)
. (22)

Proof. With the convexity assumption on F :

E[F (ζ̄)]− F (ζ∗) = E[F (
1

T

T∑
t=1

ζt)]− F (ζ∗)

≤ E[
1

T

T∑
t=1

F (ζt)]− F (ζ∗)

=
1

T

T∑
t=1

[E[F (ζt)]− F (ζ∗)]

≤ 1

T

T∑
t=1

E[⟨µ̄t, ζt − ζ∗⟩].

(23)

Then, we derive an upper bound of E[⟨µ̄t, ζt − ζ∗⟩]. With Assumption 2 and Lemma 11, by the
definition of ḡ∗t = w · ĝt + w′

s′t
· g′t = w · (µ̄t + δt + ϵt) +

w′

s′t
· g′t, we have:
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Lt+1 : = E[∥ζt+1 − ζ∗∥2]
= E[∥ζt − ηt · ḡ∗t − ζ∗∥2]
= E[∥ζt − ζ∗∥2]− 2 · ηt · E[⟨ḡ∗t , ζt − ζ∗⟩] + η2t · E[∥ḡ∗t ∥2]

= Lt − 2 · ηt · E[⟨w · (µ̄t + δt + ϵt) +
w′

s′t
· g′t, ζt − ζ∗⟩]

+ η2t · E[∥w · (µ̄t + δt + ϵt) +
w′

s′t
· g′t∥2]

≤ Lt − 2 · ηt · E[⟨w · µ̄t, ζt − ζ∗⟩]− 2 · ηt · E[⟨w · (δt + ϵt) +
w′

s′t
· g′t, ζt − ζ∗⟩]

+ η2t · E[∥w · (µ̄t + δt + ϵt) +
w′

s′t
· g′t∥2]

≤ Lt − 2 · ηt · E[⟨w · µ̄t, ζt − ζ∗⟩]− 2 · ηt · E[∥w · (δt + ϵt) +
w′

s′t
· g′t∥ · ∥ζt − ζ∗∥]

+ η2t ·
(
E[∥w · µ̄t∥2] + 2 · ⟨E[w · µ̄t], w · (δt + ϵt) +

w′

s′t
· g′t⟩+ ∥w · (δt + ϵt) +

w′

s′t
· g′t∥2]

)
≤ Lt − 2 · ηt · E[⟨w · µ̄t, ζt − ζ∗⟩] + 4 · ηt ·D · ∥w · (δt + ϵt) +

w′

s′t
· g′t∥

+ η2t ·
(
w2 · γ+2

+ 2 · w · γ+ · ∥w · (δt + ϵt) +
w′

s′t
· g′t∥+ ∥w · (δt + ϵt) +

w′

s′t
· g′t∥2]

)
≤ Lt − 2 · w · ηt · E[⟨µ̄t, ζt − ζ∗⟩] + (4 · ηt ·D + 2 · w · η2t · γ+) · ∥w · (δt + ϵt) +

w′

s′t
· g′t∥

+ η2t · ∥w · (δt + ϵt) +
w′

s′t
· g′t∥2 + w · η2t · γ+2

.

(24)

Move E[⟨µ̄t, ζt − ζ∗⟩] to the left-hand-side:

E[⟨µ̄t, ζt − ζ∗⟩] ≤ Lt − Lt+1

2 · w · ηt
+ (

2 ·D
w

+ ηt · γ+) · ∥w · (δt + ϵt) +
w′

s′t
· g′t∥

+
ηt

2 · w
· ∥w · (δt + ϵt) +

w′

s′t
· g′t∥2 +

ηt
2

· γ+.

(25)
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Average over T iterations:

1

T

T∑
t=1

E[⟨µ̄t, ζt − ζ∗⟩] ≤
T∑

t=1

Lt − Lt+1

2 · w · ηt · T
+

2 ·D
w · T

·
T∑

t=1

∥w · (δt + ϵt) +
w′

s′t
· g′t∥

+
γ+

T
·

T∑
t=1

ηt · ∥w · (δt + ϵt) +
w′

s′t
· g′t∥

+
1

2 · w · T
·

T∑
t=1

ηt · ∥w · (δt + ϵt) +
w′

s′t
· g′t∥2 +

γ+

2 · T
·

T∑
t=1

ηt

≤
T∑

t=1

Lt − Lt+1

2 · w · ηt · T
+

2 ·D
T

·
T∑

t=1

(
∥δt∥+ ∥ϵt∥+

w′

w · s′t
· ∥g′t∥

)
+

w · 2·N ′
F

N · γ+2
+ 2 · w · γ+2

+ w′ · γ+2

T
·

T∑
t=1

ηt

+

∑T
t=1 ηt · (w · 2·N ′

F

N · γ+2
+ 2 · w · γ+2

+ w′ · γ+2
)2

2 · w · T

+
γ+

2 · T
·

T∑
t=1

ηt.

(26)

To simplify the notation, we use the condition s′t ≥ 1 in the second inequality of Equation equa-
tion 26 such that ∥w′

s′t
· g′t∥ ≤ w′ · γ+. Let C = w · 2·N ′

F

N · γ+2
+ 2 · w · γ+2

+ w′ · γ+2, we
have:

1

T

T∑
t=1

E[⟨µ̄t, ζt − ζ∗⟩] ≤
T∑

t=1

Lt − Lt+1

2 · w · ηt · T
+

2 ·D
T

·
T∑

t=1

(
∥δt∥+ ∥ϵt∥+

w′

w · st
· ∥g′t∥

)
+

C

T
·

T∑
t=1

ηt +
C2

2 · w · T
·

T∑
t=1

ηt +
γ+

2 · T
·

T∑
t=1

ηt

≤
T∑

t=1

Lt − Lt+1

2 · w · ηt · T
+

2 ·D
T

·
T∑

t=1

(
∥δt∥+ ∥ϵt∥+

w′

w · st
· ∥g′t∥

)
+

2 · w · C + C2 + w · γ+

2 · w · T

T∑
t=1

ηt.

(27)
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Let C ′ = 2 · w · C + C2 + w · γ+ and ηt =
D√
T ·C′ , we further have:

1

T

T∑
t=1

E[⟨µ̄t, ζt − ζ∗⟩] ≤
T∑

t=1

Lt − Lt+1

2 · w · ηt · T
+

2 ·D
T

·
T∑

t=1

(
∥δt∥+ ∥ϵt∥+

w′

w · st
· ∥g′t∥

)
+

C ′

2 · w · T

T∑
t=1

ηt

≤ L1 − Lt+1

2 · w · D√
T ·C′ · T

+
2 ·D
T

·
T∑

t=1

(
∥δt∥+ ∥ϵt∥+

w′

w · st
· ∥g′t∥

)
+

C ′

2 · w · T

T∑
t=1

D√
T · C ′

≤ 4 ·D2

2 · w · D√
T ·C′ · T

+
D

2 · w ·
√
T

+
2 ·D
T

·
T∑

t=1

(
∥δt∥+ ∥ϵt∥+

w′

w · st
· ∥g′t∥

)
≤ (4 · C ′ + 1) ·D

2 · w ·
√
T

+
2 ·D
T

·
T∑

t=1

(
∥δt∥+ ∥ϵt∥+

w′

w · st
· ∥g′t∥

)
.

(28)

Combining Equations equation 23 and equation 28 completes the proof:

E[F (ζ̄)]− F (ζ∗) ≤ (4 · C ′ + 1) ·D
2 · w ·

√
T

+
2 ·D
T

·
T∑

t=1

(
∥δt∥+

w′

w · s′t
· ∥g′t∥+ ∥ϵt∥

)
. (29)

B EXPERIMENTAL SETUP

This section details our setup for datasets (B.1), hyper-parameters (B.2), baselines (B.3), and attacks
(B.4).

B.1 DATASETS, TASKS, PARTITIONS, AND MODELS

FEMNIST The FEMNIST dataset includes images of 62 hand-written characters from different
writers, formulating a 62-way image classification task. We consider a natural non-i.i.d. data parti-
tion where 205 clients represent 205 writers. The model for the FEMNIST dataset is a convolutional
neural network (CNN) with two convolutional layers and two linear layers.

CelebA The CelebA dataset contains face images of celebrities. Here, a binary classification task
is predicting whether the celebrity is smiling or not. We adopt a natural non-i.i.d. partition where
each client represents a different set of celebrities, with 500 clients in total. We use a CNN with two
convolutional layers and two linear layers on the CelebA dataset.

Shakespeare The Shakespeare dataset comprises Shakespeare’s plays. We investigate a next-
character prediction task and a natural non-i.i.d. partition where each speaking role in the plays is
associated with a different client. There are 143 clients in total. The model on Shapespeare dataset
is a recurrent neural network (RNN) with one long short-term memory (LSTM) layer and one linear
layer.

B.2 HYPER-PARAMETERS

Table 3 summarizes the hyper-parameters. The reference clients and other benign clients are sam-
pled separately from disjoint sets of clients using the same sampling rate.

19



Under review as a conference paper at ICLR 2023

Table 3: Hyper-parameters

Hyper-parameters FEMNIST CelebA Shakespeare

Optimizer SGD Adam SGD
Learning Rate 0.1 0.0001 3.0
Batch Size 20 32 10
Local Epoch 1 1 1
Communication Round 200 100 200
Number of Benign Clients per Round 30 30 30
Number of Reference Clients per Round 2 2 2
c 1.0 3.0 1.0
k 10 10 10
τ 0.6 0.6 0.6

B.3 BASELINES

Coordinate-wise Median (CM) CM aggregator computes the median of the reported gradients
{gi | i ∈ {1, ..., N +N ′}}.

Krum Krum aggregator identifies a set of gradients that are close to each other. Specifically, for
the ith gradient, Krum assign a score si =

∑
i−→j ∥gi − gj∥, where i −→ j denotes gj belongs to the

N − 2 closest gradients to gi. Then, we select and aggregate the top 0.2 · (N +N ′) gradients with
the highest scores, following the Multi-Krum variant (Blanchard et al., 2017).

Krum with Bucketing (Krum-B) Bucketing improves a few existing defenses under a federated
learning scenario, including Krum. Here, we first randomly partition the gradients to N

2 buckets
(Karimireddy et al., 2022). Then, we average the gradients within each bucket and produce a set
of bucketed gradients. The bucketed gradients will be subsequently fed into robust aggregators like
Krum.

Self-centered Clipping with Reference Users (CClip-R) Self-centered clipping weights each
gradient based on its distance to a guess of the true gradient. Here, we let the guess be the aggregated
reference gradient ḡ∗R :=

∑NR

i=1
nRi∑NR
i=1 nRi

gRi
. With ḡ∗R, we compute a score for each gi: si =

min(1, 10
∥gi−ḡ∗

R∥ ). The scores are normalized such that the sum equals to N . The CClip-R aggregator

follows a aggregation rule: ḡ∗ = ḡ∗R +
∑N

i=1
ni∑N
i=1 ni

· si · (gi − ḡ∗R).

Zeno′ Zeno′ is a variant of Zeno (Xie et al., 2019b) for federated learning. Instead of evaluating
the update from each client on a validation dataset, we compute the inner product of each update
with the aggregated reference gradient, which can be considered a first-order approximation of Zeno.
Then, we select and aggregate the top 0.2 · (N +N ′) gradients with the highest inner products.

FLTrust FLTrust is similar to Zeno′ but uses cosine-similarity between each update and the ag-
gregated reference gradient to weight each client.

B.4 ATTACK SETUP

B.4.1 MIMIC-SHIFT ATTACK

For CM, Krum, Krum-B, and Zeno′ aggregators, we adopt N ′ adversarial client such that N ′

N equals
the percentage of a system that the adversary owns. Each adversarial client has 1

N

∑N
i=1 ni samples.

For our method and CClip-R, since the re-weighting factor is the same across all the adversarial
clients, we use one adversarial client with n′ samples, where n′

n′+
∑N

i=1 ni
equals the percentage of a

system that the adversary owns, to speed up the computation.
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B.4.2 MIMIC-SHIFT-VAR ATTACK AND SIGN-FLIPPING ATTACK

For these two attacks, we let N ′ = N and the ith adversarial client has ni samples, where n′
i

n′
i+ni

equals the percentage of a system that the adversary owns.

B.4.3 GAUSSIAN ATTACK

We adopt N ′ adversarial client such that N ′

N equals the percentage of a system that the adversary
owns.. Each adversarial client has 1

N

∑N
i=1 ni samples.

C EXPERIMENT DETAILS

This section shows additional experimental results, including (1) the accuracy of FLTrust (Cao et al.,
2021) (C.1), (2) defense against Mimic-Shift-Par, Mimic-Shift-Var, and standard attacks (C.2, C.3,
C.4) (3) the accuracy of our method with weaker adversaries (C.8), (4) the accuracy of our method
with fewer clients (C.9), (5) the distribution of the re-weighting factor s under Mimic-Shift and
Mimic-Shift-Var attacks (C.10, C.11), (6) convergence plots under the Mimic-Shift attack (C.12),
and (7) ablation studies on hyper-parameters c, NR, and k (C.13, C.14).

C.1 FLTRUST

FLTrust (Cao et al., 2021) uses the cosine similarity between each gradient and the reference gradient
to weight the clients. Then, negative similarities are clipped by a ReLU function. Mimic-type
attacks do not incur much difference between the malicious and benign gradients, making FLTrust
less effective.

Table 4: Accuracy of Aggregators under Mimic-Shift with 80% Adversary

Attack Method FEMNIST CelebA Shakespeare

Ours .840 ± .001 .877 ± .001 .360 ± .001

FLTrust .579 ± .001 .595 ± .001 .089 ± .001

FedAvg .621 ± .001 .797 ± .001 .169 ± .001

Note: Variance is rounded up.

C.2 DEFENSE AGAINST MIMIC-SHIFT-PAR ATTACKS

An Mimic-Shift-Par adversary can intercept the message from 20% clients. Under our setup, the
adversary eavesdrops 6 out of 30 clients at each round and select two of them as reference clients.
Table 5 summarizes the results.

Table 5: Accuracy of Aggregators under Mimic-Shift-Par with 80% Adversary

Attack Method FEMNIST CelebA Shakespeare

FedAvg .663 ± .001 .812 ± .001 .182 ± .001

Ours .833 ± .001 .860 ± .001 .348 ± .001

Ref .761 ± .001 .820 ± .001 .236 ± .001

Krum .394 ± .001 .819 ± .001 .204 ± .001

FLTrust .614 ± .001 .842 ± .001 .186 ± .001

Note: Variance is rounded up.

C.3 DEFENSE AGAINST MIMIC-SHIFT-VAR ATTACK

We further test our strategy with the Mimic-Shift-Var attack, which improves Mimic-Shift by adding
variance to the malicious gradients. Table 6 shows the accuracy of our aggregator and two high-
accuracy aggregators from Table 2. Although our method is less robust against the Mimic-Shift-Var
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attack, only Ref performs on par with ours on one of the datasets. On average, our strategy achieves
the lowest accuracy decrease. The re-weighting vector s is plotted in Appendix C.11. Due to
hardware limits, we reduce the number of benign client at each round to 13 on CelebA dataset, as is
discussed in Appendix B.

Table 6: Accuracy of Aggregators under Mimic-Shift-Var Attack with 80% Adversary

Aggregator FEMNIST CelebA Shakespeare Avg. Decrease

Oracle .861 ± .001 (.000↓) .875 ± .001 (.000↓) .364 ± .001 (.000↓) .000↓
FedAvg .621 ± .001 (.240↓) .859 ± .001 (.016↓) .169 ± .001 (.195↓) .150↓
Ref .761 ± .001 (.100↓) .820 ± .001 (.055↓) .236 ± .001 (.128↓) .095↓
Ours .792 ± .001 (.069↓) .888 ± .001 (-.013↓) .233 ± .001 (.131↓) .062↓

Note: Variance is rounded up.

C.4 DEFENSE AGAINST STANDARD ATTACKS

Table 7 shows that un-calibrated attacks like the Gaussian attack and the sign-flipping attack can not
pass our filtering phase.

Table 7: Accuracy of Our Strategy under Standard Attacks with 80% Adversary

Attack Method FEMNIST CelebA Shakespeare Average

No Attack .864 ± .001 .876 ± .001 .364 ± .001 .705
Gaussian .859 ± .001 .871 ± .001 .357 ± .001 .698
Sign-flipping .863 ± .001 .873 ± .001 .353 ± .001 .699

Note: Variance is rounded up.

Table 8 shows the success rate of Gaussian and sign-flipping attacks. The success rate is measured
by the percentage of malicious gradients that circumvent our filtering phase across all rounds. For
the Gaussian attack, our filtering phase removes all the randomly sampled malicious gradients. For
the sign-flipping attack, the malicious gradients occasionally bypass our filtering phase. However,
the sporadic malicious gradients are insufficient to decrease the accuracy of the ML model.

Table 8: Success Rate of Standard Attacks with 80% Adversary

Attack FEMNIST CelebA Shakespeare

Gaussian .000 ± .000 .000 ± .000 .000 ± .000

Sign-flipping .008 ± .018 .000 ± .000 .036 ± .040

C.5 DEFENSE AGAINST LOCAL MODEL POISONING ATTACKS

We evaluate our defense against 80% adversaries that perform local model poisoning attacks (Fang
et al., 2020). Table 9 shows that our aggregator is robust and only loses up to 2.7% accuracy com-
pared to the oracle. Specifically, we let malicious updates be the point in the accept region that
maximizes the sign-weighted deviation objective (Equation in (Fang et al., 2020)). Note that we
need to assume adversaries know the defense parameter c to circumvent the filtering phase. In con-
trast, our Mimic-Shift attack does not require any knowledge about the defense parameters (i.e., k
and c).

C.6 DEFENSE AGAINST 20% ADVERSARIES

We conduct additional evaluations of our defense against 20% adversaries with Mimic-Shift attacks.
Table 10 shows that our approach remains effective on the FEMNIST and CelebA datasets.
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Table 9: Accuracy of Aggregators under Local Model Poisoning with 80% Adversary

Aggregators FEMNIST CelebA Shakespeare

Oracle .861 ± .001 .875 ± .001 .364 ± .001

FedAvg .604 ± .001 .802 ± .002 .179 ± .001

Ours .838 ± .002 .871 ± .001 .337 ± .002

Note: Variance is rounded up.

Table 10: Accuracy of Aggregators under Mimic-Shift with 20% Adversary

Attack Method FEMNIST CelebA Shakespeare

Oracle .861 ± .001 .875 ± .001 .364 ± .001

FedAvg .846 ± .001 .872 ± .001 .355 ± .001

Ours .863 ± .001 .873 ± .001 .286 ± .002

Note: Variance is rounded up.

C.7 ABLATION STUDY OF FILTERING AND RE-WEIGHTING PHASES

We evaluate the filtering phase against Mimic-Shift attacks and the re-weighting phase against Gaus-
sian attacks. Results in Table 11 showing that a combination of filtering and re-weighting phases are
necessary.

Table 11: Accuracy of Aggregators under Attacks with 80% Adversary

Aggregators Attack FEMNIST

Filtering Only Mimic-Shift .621 ± .001

Ours Mimic-Shift .840 ± .001

Re-weighting Only Gaussian .009 ± .001

Ours Gaussian .859 ± .001

Re-weighting Only Sign-flipping .003 ± .001

Ours Sign-flipping .863 ± .001

Note: Variance is rounded up.

C.8 VARYING ADVERSARIAL RATIO AND ATTACK STRENGTH OF MIMIC-SHIFT

We test the robustness of our method against weaker attacks, complementing our analysis on strong
majority adversary attacks. Specifically, we consider varying the adversarial ratio (the percentage of
a adversary in a system) and the shift ratio (a factor on the shift distance of Mimic-Shift attack). For
example, if the shift ratio is 0.5, the adversarial clients report g′ = ḡR +0.5 · (ḡR − ḡ) to the server.
A 80% adversary is employed for the shift ratio experiment.

From Figure 3, we can see that a minority adversary may decrease the accuracy of our method but
only by a small amount (< 2%). Also, the accuracy slightly decreases (< 3%) as the adversarial
increases from 40% to 80% or the shift ratio increases. The reason is that we use the same set
of hyper-parameters, which down-weights the malicious gradient by the same magnitude. This
accuracy decrease can be fixed by increasing k and lowering τ such that the malicious gradients are
down-weighted more.

C.9 DEFENDING FEWER CLIENTS

We test the negative impact of false-positive filtering by reducing the total number of clients to 10.
We find that false positive filtering happens occasionally, and no client is consistently filtered out.
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(a) Varying the % of Adversary (b) Varying % of the Shift Distance

Figure 3: Accuracy of our method with weaker adversaries on FEMNIST dataset.

(a) FEMNIST, 0% (b) FEMNIST, 40% (c) FEMNIST, 80%

(d) CelebA, 0% (e) CelebA, 40% (f) CelebA, 80%

(g) Shakespeare, 0% (h) Shakespeare, 40% (i) Shakespeare, 80%

Figure 4: Re-weighting factor s distribution with 0%, 40%, and 80% Mimic-Shift adversaries.
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Table 12: Accuracy of Aggregators under Mimic-Shift with 60% Adversary and 10 Clients

Attack Method FEMNIST CelebA Shakespeare

Oracle .857 ± .001 .883 ± .001 .334 ± .001

FedAvg .763 ± .001 .830 ± .001 .229 ± .002

Ours .848 ± .001 .872 ± .001 .313 ± .001

Note: Variance is rounded up.

C.10 VISUALIZING RE-WEIGHTING VECTOR s UNDER MIMIC-SHIFT ATTACK

Figure 4 shows the distribution of re-weighting factors s for benign and adversarial clients. The
larger the factor, the more the corresponding gradient is down-weighted. The factor for adversarial
clients increases and becomes more concentrated as the adversary owns more shares in a system,
suggesting that our method is more robust against the majority adversary.

C.11 VISUALIZING RE-WEIGHTING VECTOR UNDER MIMIC-SHIFT-VAR ATTACK

(a) FEMNIST (b) CelebA (c) Shakespeare

Figure 5: Re-weighting factor s distribution under Mimic-Shift-Var attack with 80% adversaries.

Figure 5 shows the distribution of re-weighting factors for benign clients and adversarial clients
under Mimic-Shift-Var attack with an 80% adversary. Although the distribution of re-weighting
factors for adversarial clients is closer to those of benign clients, compared to the Mimic-Shift
attack setting, re-weighting factors for adversarial clients are still larger. The large re-weighting
factors down-weight the malicious gradients and reduce the effectiveness of the Mimic-Shift-Var
attack.

C.12 CONVERGENCE PLOTS UNDER MIMIC-SHIFT ATTACK

(a) FEMNIST (b) CelebA (c) Shakespeare

Figure 6: Convergence plots of our method with 0%, 40%, and 80% Mimic-Shift adversaries.

Figure 6 shows the convergence plots of our method under Mimic-Shift attack. The convergence
rates under three settings, 0% adversary, 40% adversary, and 80% adversary, are similar, supporting
our convergence analysis in Section 5.3.
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Table 13: False-positive Rate in Filtering Phase with Different c

c FEMNIST

0.2 1.000 ± .000

0.4 0.911 ± .067

0.6 0.322 ± .335

0.8 0.038 ± .142

1.0 0.018 ± .096

c CelebA Shakespeare

1.0 1.000 ± .000 0.052 ± .050

1.5 0.869 ± .217 0.058 ± .069

2.0 0.531 ± .394 0.009 ± .086

2.5 0.113 ± .199 0.054 ± .055

3.0 0.024 ± .080 0.052 ± .054

Table 14: False-positive Rate in Filtering Phase with Different NR

NR FEMNIST CelebA Shakespeare

2 .605 ± .316 .702 ± .254 .048 ± .041

4 .432 ± .264 .076 ± .098 .038 ± .040

6 .279 ± .181 .049 ± .113 .026 ± .030

C.13 IMPACT OF c AND NR ON FALSE-POSITIVE FILTERING

This experiment evaluates the false-positive rate in the filtering phase exclusively, without using any
adversary. Tables 13 and 14 show that the false-positive rate in the filtering phase decreases fast as
the constant c increases and the number of reference users NR increases, supporting our analysis in
Section 5.1. Note that if the false-positive rate is already low (e.g., the experiment on Shakespeare
dataset), further increasing c may not be helpful.

C.14 IMPACT OF k ON RE-WEIGHTING VECTOR

Figure 7: The distribution of re-weighting factor s for malicious gradients.

Figure 7 shows that increasing the hyper-parameter k increases the re-weighting factor s for mali-
cious gradients from an 80% Mimic-Shift adversary.

C.15 IMPACT OF REFERENCE CLIENT NUMBERS IN MIMIC-SHIFT

We evaluate Mimic-Shift attacks with varying numbers of reference clients, showing that our attack
is effective with different hyper-parameter configurations. Table 15 demonstrates the effectiveness
of the Mimic-Shift attack, which decreases the accuracy from 0.861 to 0.621 - 0.685. Note that
Mimic-shift attacks are more effective with fewer reference clients. The reason is that Mimic-Shift
mirrors a less biased average update ḡ from all sampled clients using a more biased average update
ḡR from reference clients. Here, the more biased an update is, the further away it is from the true
expectation. The more biased the average reference update ḡR is, the more biased the mirroring
result is.
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Theorem 13 further proves that the probability upper bound of the average reference update ḡR being
more biased than the average update ḡ decreases w.r.t. the number of reference clients NR. Such a
result suggests that it is necessary to use fewer reference clients in Mimic-Shift.

Table 15: Accuracies of FedAvg Aggregators under Mimic-Shift Attacks with 80% Adversaries

Number of Reference Clients per Round FEMNIST

2 .621 ± .001

4 .653 ± .001

8 .667 ± .001

12 .685 ± .001

Theorem 13. Under Assumptions 1 - 3, let the average reference gradient ḡR =
∑NR

i=1
1

NR
· gRi ,

where Ri indexes reference clients, and the average benign gradient ḡ =
∑N

i=1
1
N · gi. E[µ] is

the expected gradient across benign clients and α is an auxiliary variable. ⋄ denotes
∫∞
α=0

P
[
∥ḡ −

E[µ]∥ = α
]
(Var[µ]+σ+)2

α2 , which is a constant because the distribution of ḡ is fixed within a round.

With probability at most ⋄
N2

R
, we have ∥ḡR − E[µ]∥ ≥ ∥ḡ − E[µ]∥.

Proof. We first derive the variance of ḡR in two steps. First, ḡR is the average of NR updates.
Therefore, we have the variance of the corresponding µR in State 1 of the hierarchical distribution
in Assumption 2:

Var[µR] =
1

N2
R

Var[µ]. (30)

Then, in Stage 2, the gradient estimation process on each client adds variance to each µi and samples
gi. Since the variance of gi is upper bounded by σ+, we have

Var[ḡR] ≤
1

N2
R

(Var[µ] + σ+). (31)

Then, introducing an auxiliary variable α, with Chebyschev’s inequality, we have:

P
[
∥ḡR − E[µ]∥ ≥ ∥ḡ − E[µ]∥

]
=

∫ ∞

α=0

P
[
∥ḡR − E[µ]∥ ≥ α

]
P
[
∥ḡ − E[µ]∥ = α

]
≤

∫ ∞

α=0

P
[
∥ḡ − E[µ]∥ = α

] (Var[µ] + σ+)2

N2
Rα

2

=
1

N2
R

∫ ∞

α=0

P
[
∥ḡ − E[µ]∥ = α

] (Var[µ] + σ+)2

α2
,

(32)

where
∫∞
α=0

P
[
∥ḡ − E[µ]∥ = α

]
(Var[µ]+σ+)2

α2 is a constant because the distribution of ḡ is fixed
within a round.

C.16 EMPIRICAL EVALUATION OF GRADIENT ANGLES

We empirically explore conditions under which the 2θ∗ ≤ θ case and the general cases in Figure 2
happen on the FEMNIST dataset. Our experiments include 10%, 20%, 30%, 40%, 50%, 60%, 70%,
and 80% adversaries. We find that the 2θ∗ ≤ θ case happens with 30% - 80% adversaries and the
general case happens with 10% - 20% adversaries.
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