
Under review as a conference paper at ICLR 2022

LEARNING STOCHASTIC SHORTEST PATH WITH LIN-
EAR FUNCTION APPROXIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the stochastic shortest path (SSP) problem in reinforcement learning with
linear function approximation, where the transition kernel is represented as a linear
mixture of unknown models. We call this class of SSP problems as linear mixture
SSP. We propose a novel algorithm for learning the linear mixture SSP, which can
attain a Õ(dB1.5

?

√
K/cmin) regret. Here K is the number of episodes, d is the

dimension of the feature mapping in the mixture model, B? bounds the expected
cumulative cost of the optimal policy, and cmin > 0 is the lower bound of the cost
function. Our algorithm also applies to the case when cmin = 0, where a Õ(K2/3)
regret is guaranteed. To the best of our knowledge, this is the first algorithm with a
sublinear regret guarantee for learning linear mixture SSP. In complement to the
regret upper bounds, we also prove a lower bound of Ω(dB?

√
K), which nearly

matches our upper bound.

1 INTRODUCTION

The Stochastic Shortest Path (SSP) model refers to a type of reinforcement learning (RL) problems
where an agent repeatedly interacts with a stochastic environment and aims to reach some specific
goal state while minimizing the cumulative cost. Compared with other popular RL settings such
as episodic and infinite-horizon Markov Decision Processes (MDPs), the horizon length in SSP
is random, varies across different policies, and can potentially be infinite because the interaction
only stops when arriving at the goal state. Therefore, the SSP model includes both episodic and
infinite-horizon MDPs as special cases, and is comparably more general and of broader applicability.
In particular, many goal-oriented real-world problems fit better into the SSP model, such as navigation
and GO game (Andrychowicz et al., 2017; Nasiriany et al., 2019).
In recent years, there emerges a line of works on developing efficient algorithms and the corresponding
analyses for learning SSP. Most of them consider the episodic setting, where the interaction between
the agent and the environment proceeds in K episodes (Cohen et al., 2020; Tarbouriech et al., 2020a).
For tabular SSP models where the sizes of the action and state space are finite, Cohen et al. (2021)
developed a finite-horizon reduction algorithm that achieves the minimax regret Õ(B?

√
SAK),

where B? is the largest expected cost of the optimal policy starting from any state, S is the number of
states andA is the number of actions. In a similar setting, Tarbouriech et al. (2021b) proposed the first
algorithm that is minimax optimal, parameter-free and horizon-free at the same time. However, the
algorithms mentioned above only apply to tabular SSP problems where the state and action space are
small. In order to deal with SSP problems with large state and action spaces, function approximation
techniques (Yang & Wang, 2019; Jin et al., 2020; Jia et al., 2020; Zhou et al., 2021b; Wang et al.,
2020b;a) are needed.
Following the recent line of work on model-based reinforcement learning with linear function
approximation (Modi et al., 2020; Jia et al., 2020; Ayoub et al., 2020; Zhou et al., 2021b), we consider
a linear mixture SSP model, which extends the tabular SSP. More specifically, we assume that
the transition probability is parametrized by P(s′|s, a) = 〈φ(s′|s, a),θ∗〉 for all triplet (s, a, s′) ∈
S ×A× S, where S is the state space and A is the action space. Here we assume that φ ∈ Rd is a
known ternary feature mapping, and θ∗ ∈ Rd is an unknown model parameter vector that needs to be
learned. Such a setting has been previously studied for episodic MDPs (Modi et al., 2020; Jia et al.,
2020; Ayoub et al., 2020; Cai et al., 2020) and infinite-horizon discounted MDPs (Zhou et al., 2021b).
Nevertheless, algorithms developed in these works do not apply to SSP since the horizon length is
random as mentioned above.

1

Under review as a conference paper at ICLR 2022

To tackle the challenge of varying horizon length, we propose a model-based optimistic algorithm
with linear function approximation, dubbed LEVIS, for learning the linear mixture SSP. At the core
of our algorithm are a confidence set of the model parameters and a specially designed Extended
Value Iteration (EVI) subroutine for computing the optimistic estimate of the value function, which
together guarantee that the algorithm will reach the goal state in every episode. Compared with the
EVI subroutine developed for infinite-horizon discounted MDPs (Zhou et al., 2021b), we introduce
a shrinking factor q ≈ 1/t in our EVI with t being the cumulative number of time steps, which
guarantees the convergence of EVI. To compensate for the bias introduced by this shrinking factor,
our algorithm performs lazy policy update, which is triggered by the doubling of the time interval
between two policy updates or the doubling of the determinant of the covariance matrix. With all
these algorithmic designs, our algorithm is guaranteed to achieve a Õ(dB1.5

?

√
K/cmin) regret when

cmin > 0. To the best of our knowledge, this is the first algorithm that enjoys a sublinear regret for
linear mixture SSP.
It is worth noting that a recent work by Vial et al. (2021) studied a different linear SSP model
that is similar to linear MDPs (Yang & Wang, 2019; Jin et al., 2020), where both the underlying
transition probability and cost function are linear in a known d-dimensional feature mapping ψ ∈ Rd,
i.e., P(s′|s, a) = 〈ψ(s, a),µ(s)〉 and c(s, a) = 〈ψ(s, a),θ〉, and µ(·) and θ are unknown. They
proposed an algorithm with linear function approximation, which achieves Õ(

√
B3
?d

3K/cmin) regret.
The linear SSP model is different from our model, and we refer the interested readers to Ayoub et al.
(2020); Zhou et al. (2021b) for a detailed comparison between these two assumptions. Besides the
model difference, Vial et al. (2021) further assumed the feature mapping to be orthonormal in order
to obtain the Õ(

√
K) regret. We do not need such restrictive assumptions on the feature mapping,

thus our algorithm provably works for more general cases.
Our contributions are summarized as follows:
• We propose to study a linear mixture SSP model, and devise a novel algorithm, dubbed Lower

confidence Extended Value Iteration for SSP (LEVIS), for learning SSP with linear function
approximation.

• We prove that LEVIS achieves a regret of order Õ(B1.5
? d

√
K/cmin) when cmin > 0 and the agent

has an order-accurate estimate B ≥ B?1. For the general case where cmin = 0, our algorithm can
achieve Õ(K2/3) regret guarantee by using a cost perturbation trick (Tarbouriech et al., 2021b).

• We prove that for linear mixture SSP, the regret of any learning algorithms is at least Ω(dB?
√
K).

This suggests that when cmin > 0, our algorithm is optimal with regard to the dimension of the
feature mapping d and number of episodes K.

Notation We use lower case letters to denote scalars, and use lower and upper case bold face letters
to denote vectors and matrices respectively. For any positive integer n, we denote by [n] the set
{1, . . . , n}. For a vector x ∈ Rd , we denote by ‖x‖1 the Manhattan norm and denote by ‖x‖2 the
Euclidean norm. For a vector x ∈ Rd and matrix Σ ∈ Rd×d, we define ‖x‖Σ =

√
x>Σx. For two

sequences {an} and {bn}, we write an = O(bn) if there exists an absolute constant C such that
an ≤ Cbn. We use Õ(·) to hide the logarithmic factors.

2 RELATED WORK

Online learning in SSP SSP problems can be dated back to (Bertsekas & Tsitsiklis, 1991; Bertsekas
& Yu, 2013; Bertsekas, 2012), but it is until recently that the regret minimization in online learning
of SSP has been studied. In the tabular case, Tarbouriech et al. (2020a) proposed the first algorithm
achieving a Õ(D3/2S

√
AK/cmin) regret where D is the diameter of SSP2. The regret was further

improved to Õ(B?S
√
AK) by Rosenberg et al. (2020); Cohen et al. (2020), with an extra

√
S

factor compared with the Ω(B?
√
SAK) lower bound (Rosenberg et al., 2020). More recently, the

Õ(B?
√
SAK) minimax optimal regret were obtained by Cohen et al. (2021) and Tarbouriech et al.

(2020b) independently using different approaches. Specifically, Cohen et al. (2021) reduced SSP
to a finite-horizon MDP with a large terminal cost assuming B? is known; while Tarbouriech et al.
(2021b) avoid such requirement by adaptively estimating B? with a doubling trick, together with

1We say B is an order-accurate estimate of B∗, if there exists some unknown constant κ ≥ 1 such that
B? ≤ B ≤ κB?.

2The diameter of an SSP is defined as the longest possible shortest path from any initial state to the goal state.

2

Under review as a conference paper at ICLR 2022

a value iteration sub-routine ensuring the optimistic estimate of the value function. Our proposed
method shares a similar spirit with the latter approach, but for learning SSP with linear function
approximation.
The above algorithms are all model-based. Very recently, Chen et al. (2021a) developed the first model-
free algorithm for SSP which achieves the minimax optimal regret when the minimum cost among
all state-action pairs cmin is strictly positive. Their method is motivated by the UCB-ADVANTAGE
algorithm (Zhang et al., 2020). For other settings of SSP, (Rosenberg & Mansour, 2020; Chen &
Luo, 2021; Chen et al., 2021b) studied the case of adversarial costs. Also, the pioneering work by
(Bertsekas & Tsitsiklis, 1991) studied the pure planning problem in SSP where the agent has full
knowledge of all the model parameters, and is followed by a series of works (Bonet, 2007; Kolobov
et al., 2011; Bertsekas & Yu, 2013; Guillot & Stauffer, 2020). On the other hand, Tarbouriech
et al. (2021a) studied the sample complexity of SSP assuming the access to a generative model.
Jafarnia-Jahromi et al. (2021) proposed the first posterior sampling algorithm for SSP. Multi-goal
SSP have also been studied by Lim & Auer (2012); Tarbouriech et al. (2020b).
Linear function approximation Linear MDP is one of the most widely studied models for RL with
linear function approximation, which assumes both the transition probability and reward functions are
linear functions of a known feature mapping (Yang & Wang, 2019; Jin et al., 2020). Representative
work in this direction include Du et al. (2019); Zanette et al. (2020); Wang et al. (2020a); He et al.
(2021), to mention a few.
Another popular model for RL with linear function approximation is the so-called linear mixture
MDP/linear kernel MDP (Yang & Wang, 2020; Modi et al., 2020; Jia et al., 2020; Ayoub et al., 2020;
Cai et al., 2020; Zhou et al., 2021b;a). For the finite-horizon setting, Jia et al. (2020) proposed a
UCRL-VTR algorithm that achieves a Õ(d

√
H3T) regret bound. Zhou et al. (2021a) further improve

the result by proposing a UCRL-VTR+ algorithm that attains the nearly minimax optimal regret
Õ(dH

√
T) based on a novel Bernstein-type concentration inequality. For the discounted infinite

horizon setting, Zhou et al. (2021b) proposed a UCLK algorithm with a Õ(d
√
T/(1−γ)2) regret, and

also give a Õ(d
√
T/(1− γ)1.5) lower bound. The lower bound is later matched up to logarithmic

factors by the UCLK+ algorithm (Zhou et al., 2021a). The SSP model studied in this paper can be
seen as an extension of linear mixture MDPs.

3 PRELIMINARIES

Stochastic Shortest Path An SSP instance is an MDP M := {S,A,P, c, sinit, g}, where S and A
are the finite state space and action space respectively. Here sinit denotes the initial state and g ∈ S is
the goal state. We denote the cost function by c : S ×A → [0, 1], where c(s, a) is the immediate cost
of taking action a at state s. The goal state g incurs zero cost, i.e., c(g, a) = 0 for all a ∈ A. For any
(s′, s, a) ∈ S × A × S, P(s′|s, a) is the probability to transition to s′ given the current state s and
action a being taken. The goal state g is an absorbing state, i.e., P(g|g, a) = 1 for all action a ∈ A.
Linear mixture SSP In this work, we assume the transition probability function P to be a linear
mixture of some basis kernels (Modi et al., 2020; Ayoub et al., 2020; Zhou et al., 2021a).

Assumption 3.1. Suppose the feature mapping φ : S ×A× S → Rd is known and pregiven. There
exists an unknown vector θ∗ ∈ Rd with ‖θ∗‖2 ≤

√
d such that P(s′|s, a) = 〈φ(s′|s, a),θ∗〉 for any

state-action-state triplet (s, a, s′) ∈ S ×A×S . Moreover, for any bounded function V : S → [0, B],
it holds that ‖φV (s, a)‖2 ≤ B

√
d for all (s, a) ∈ S×A, where φV (s, a) :=

∑
s′∈S φ(s′|s, a)V (s′).

For simplicity, for any function V : S → R, we denote PV (s, a) =
∑
s′ P(s′|s, a)V (s′) for all

(s, a) ∈ S ×A. Therefore, under Assumption 3.1, we have

PV (s, a) =
∑
s′∈S

P(s′|s, a)V (s′) =
∑
s′∈S
〈φ(s′|s, a),θ∗〉V (s′) = 〈φV (s, a),θ∗〉.

Proper policies A stationary and deterministic policy is a mapping π : S → A such that the action
π(s) is taken given the current state s. We denote by Tπ(s) the expected time that it takes by
following π to reach the goal state g starting from s. We say a policy π is proper if Tπ(s) <∞ for
any s ∈ S (otherwise it is improper). We denote by Πproper the set of all stationary, deterministic and
proper policies. We assume that Πproper is non-empty, which is the common assumption in previous
works on online learning of SSP (Rosenberg et al., 2020; Rosenberg & Mansour, 2020; Cohen et al.,
2021; Tarbouriech et al., 2021b; Jafarnia-Jahromi et al., 2021; Chen et al., 2021a).

3

Under review as a conference paper at ICLR 2022

Assumption 3.2. The set of all stationary, deterministic and proper policies is non-empty, i.e.,
Πproper 6= ∅.
Remark 3.3. The above assumption is weaker than Assumption 1 in Vial et al. (2021) which requires
that all stationary policies are proper.
For any policy π, we define the cost-to-go function (a.k.a., value function) as

V π(s) := lim
T→+∞

E

[
T∑
t=1

c(st, π(st))

∣∣∣∣∣s1 = s

]
, where st+1 ∼ P

(
· |st, π(st)

)
.

V π(s) can possibly be infinite if π is improper. The action-value function of policy π is defined as

Qπ(s, a) := lim
T→∞

E

[
c(s1, a1) +

T∑
t=2

c(st, π(st))

∣∣∣∣∣s1 = s, a1 = a

]
,

where s2 ∼ P(·|s1, a1) and st+1 ∼ P(·|st, π(st)) for all t ≥ 2. Since c(·, ·) ∈ [0, 1], for any proper
policy π ∈ Πproper, V π and Qπ are both bounded functions.

Bellman optimality For any function V : S → R, we define the optimal Bellman operator L as
LV (s) := min

a∈A
{c(s, a) + PV (s, a)}. (3.1)

Intuitively speaking, we want to learn the optimal policy π? such that V ?(·) := V π
?

(·) is the unique
solution to the Bellman optimality equation V = LV and π? minimizes the value function V π(s)
component-wise over all policies. It is known that, in order for such π? to exist, one sufficient
condition is Assumption 3.2 together with an extra condition that any improper policy π has at
least one infinite-value state, i.e., for any π /∈ Πproper, there exists some s ∈ S s.t. V π(s) = +∞
(Bertsekas & Tsitsiklis, 1991; Bertsekas & Yu, 2013; Tarbouriech et al., 2021b). Note that this
additional condition is satisfied in the case of strictly positive cost , where for any state s 6= g and
a ∈ A, it holds that c(s, a) ≥ cmin. To deal with the case of general cost function, one can adopt the
cost perturbation trick (Tarbouriech et al., 2021b) and consider a modified problem with cost function
cρ(s, a) := max{c(s, a), ρ} for some ρ > 0. This will introduce an additional cost of order O(ρT)
to the regret of the original problem, where T is the total number of steps. Therefore, the second
condition can be avoided, and we can assume the existence of π?.
Throughout the paper, we denote by B? the upper bound of the optimal value function V ?, i.e.,
B? := maxs∈S V

?(s). Also, we define T? := maxs∈S T
π?

(s), which is finite under Assumption 3.2.
Since the cost is bounded by 1, we have B? ≤ T? < +∞. Without loss of generality, we assume that
B? ≥ 1. Furthermore, we denote the corresponding optimal action-value function by Q? := Qπ

?

which satisfies the following Bellman equation for all (s, a) ∈ S ×A:
Q?(s, a) = c(s, a) + PV ?(s, a), V ?(s) = min

a∈A
Q?(s, a). (3.2)

Learning objective Under Assumption 3.1, we assume c to be known for the ease of presentation.
We study the episodic setting where each episode starts from a fixed initial state sinit and ends only if
the agent reaches the goal state g. Given the total number of episodes, K, the objective of the agent
is to minimize the regret over K episodes defined as

RK :=

K∑
k=1

Ik∑
i=1

ck,i −K · V ?(sinit), (3.3)

where Ik is the length of the k-th episode and ck,i = c(sk,i, ak,i) is the cost triggered at the i-th step
during the k-th episode. Note that RK might be infinite if some episode never ends.

4 ALGORITHMS

In this section, we propose a model-based algorithm named LEVIS, as displayed in Algorithm 1.
LEVIS is inspired by the UCLK-type of algorithms originally designed for discounted linear mixture
MDPs (Zhou et al., 2021a;b). Our algorithm takes a multi-epoch form, where each episode is divided
into epochs of different lengths (Jaksch et al., 2010; Lattimore & Hutter, 2012). Within each epoch,
the agent executes the greedy policy induced by some optimistic estimator of the optimal Q-function.
The switch between any two epochs is triggered by a doubling criterion, and then the estimated
Q-function is updated through an Extend Value Iteration (EVI) sub-routine (Algorithm 2). We now
give a detailed description of Algorithm 1.

4

Under review as a conference paper at ICLR 2022

Algorithm 1 LEVIS
1: Input: regularization parameter λ, confidence radius {βt}, cost perturbation ρ ∈ [0, 1], an

estimate B ≥ B?
2: Initialize: set t ← 1, j ← 0, t0 = 0, Σ0 ← λI, b0 ← 0, Q0(s, ·), V0(s) ← 1 ∀s 6= g and 0

otherwise
3: for k = 1, . . . ,K do
4: Set st = sinit
5: while st 6= g do
6: Take action at = argmina∈AQj(st, a), receive cost ct = c(st, at) and next state st+1 ∼

P(·|st, at)
7: Set Σt ← Σt−1 + φVj

(st, at)φVj
(st, at)

>

8: Set bt ← bt−1 + φVj
(st, at)Vj(st+1)

9: if det(Σt) ≥ 2 det(Σtj) or t ≥ 2tj then
10: Set j ← j + 1
11: Set tj ← t, εj ← 1

tj

12: θ̂j ← Σ−1
t bt

13: Set confidence set Cj ←
{
θ : ‖Σ1/2

tj (θ − θ̂j)‖2 ≤ βtj
}

14: Set Qj(·, ·)← EVI(Cj , εj , 1
tj
, ρ)

15: Set Vj(·)← mina∈AQj(·, a)
16: end if
17: Set t← t+ 1
18: end while
19: end for

Algorithm 2 EVI
1: Input: confidence set C, error parameter ε, transition bonus q, cost perturbation ρ ∈ [0, 1]
2: Initialize: i← 0, and Q(0)(·, ·), V (0)(·) = 0, and V (−1)(·) = +∞
3: Set Q(·, ·)← Q(0)(·, ·)
4: if C ∩ B 6= φ then
5: while ‖V (i) − V (i−1)‖∞ ≥ ε do
6:

Q(i+1)(·, ·)← cρ(·, ·) + (1− q) · min
θ∈C∩B

〈θ,φV (i)(·, ·)〉 (4.1)

V (i+1)(·)← min
a∈A

Q(i+1)(·, a) (4.2)

7: Set i← i+ 1
8: end while
9: Q(·, ·)← Q(i+1)(·, ·)

10: end if
11: Output: Q(·, ·)

In Algorithm 1, we maintain two global indices. Index t represents the total number of steps, and
index j tracks the number of calls to the EVI sub-routine, where the output of EVI is an updated
optimistic estimator of the optimal action-value function. Each episode starts from a fixed initial state
sinit (Line 4), ends when the goal state g is reached (Line 5) and is decomposed into epochs indexed
by the global index j. Within epoch j, the agent repeatedly executes the policy induced by the current
estimation Qj of the action-value function (Line 6) and updates Σt and bt (Lines 7 and 8). The
current epoch ends when the either criterion in Line 9 is triggered, and the EVI subroutine performs
an optimistic planning to update the action-value function estimator (Lines 10 to 15).

Update criteria As mentioned before, Algorithm 1 runs in epochs indexed by j, and one epoch ends
when either of the two update criteria is triggered (Line 9). The first updating criterion is satisfied once
the determinant of Σt is doubled compared to the determinant at the end of the previous epoch. This

5

Under review as a conference paper at ICLR 2022

is called lazy policy update that has been used in the linear bandits and RL literature (Abbasi-Yadkori
et al., 2011; Zhou et al., 2021b), which reflects the diminishing return of learning the underlying
transition. One intuition behind the determinant doubling criterion is that the determinant can be
viewed as a surrogate measure of the exploration in the feature space. Thus, one only updates the
policy when there is enough exploration being made since last update. Moreover, this update criterion
reduces the computational cost as the total number of epochs would be bounded by O(log T). Here
T denotes the total number of steps through all K episodes. The doubling visitation criterion used in
tabular SSP (Jafarnia-Jahromi et al., 2021; Tarbouriech et al., 2021b) can be viewed as a special case
of this doubling determinant-based criterion.

However, the above criterion alone cannot guarantee finite length for each epoch as we do not
have that ‖φV (·, ·)‖ is bounded from below, which holds for tabular SSP naturally since at most
|S||A|maxs∈S,a∈A n(s, a) steps suffice to double n(s, a) for at least a pair of s, a by the pigeonhole
principle. To address this problem, we show that we only need to add an extra triggering criterion:
t ≥ 2tj . It turns out that despite of being extremely simple this criterion endows the algorithm with
several nice properties. First, together with the EVI error parameter εj = 1/tj , we can bound the
cumulative error from value iterations in epoch j by a constant, i.e., (2tj − tj) · εj = 1. Second, it
will not increase the total number of epochs since the time step doubling can happen at mostO(log T)
times, which is consistent with the first criterion. These two properties together allow us to bound the
total error from value iteration by O(log T). Finally, this criterion is fairly easy to implement and has
negligible time and space complexity.

Optimistic planning The optimism of Algorithm 1 is realized by the construction of the confidence
set Cj (Line 11), which is fed into the EVI subroutine. We now describe the construction of the
Q-function estimator in the EVI sub-routine (Algorithm 2). EVI requires the access to a confidence
ellipsoid Cj that contains the true model parameter θ∗ with high probability (Line 13). Here we
construct the confidence set Cj centered at the minimizer of the ridge regression problem with a
confidence radius parameter βt (Line 13). Since not every θ ∈ Cj defines a valid transition probability
function, we further take the intersection between Cj and a constraint set B defined as follows

B := {θ : ∀(s, a), 〈φ(·|s, a),θ〉 is a probability distribution and 〈φ(s′|g, a),θ〉 = 1{s′ = g}} .

Then Cj ∩ B is still a confidence set containing the true model parameter θ∗ with high probability as
θ∗ ∈ B. Algorithm 2 requires two additional inputs: optimality gap εj and discount factor q. The use
of εj is standard, but this discount factor is the key to ensuring convergence of EVI.

Specifically, (4.1) in Algorithm 2 repeatedly conducts one-step value iteration by applying the best
possible Bellman operator to the set Cj ∩ B. This is motivated by the Bellman optimality equation in
(3.2), and uses minθ∈C∩B〈θ,φV (i)〉 as an optimistic estimate for PV ∗. However, using this estimate
alone cannot guarantee the convergence of EVI because 〈·,φV (i)〉 is not a contractive map, which
holds for free in the discounted setting (Jaksch et al., 2010; Zhou et al., 2021b), but not in SSP.
More specifically, in the EVI algorithm for the discounted setting (e.g., Algorithm 2 in (Zhou et al.,
2021b)), there is an intrinsic discount factor 0 < γ < 1, which ensures that the Bellman operator is a
contraction. As a result, the value iteration converges in a finite number of iterations. However, the
Bellman equation of SSP does not have a discount factor. To address this issue, in (4.1), we introduce
an extra 1− q discount factor to ensure the contraction property. Although this causes an additional
bias to the estimated transition probability function, we can alleviate it by choosing q properly. In
particular, for each epoch j we set q = 1/tj (Line 14), and as will be shown, this bias will only
introduce an additive term of order O(log T) in the final regret bound.

Besides the convergence guarantee, the 1− q factor also brings an additional benefit that it biases
the estimated transition kernel towards the goal state g, further encouraging optimism. Similar
design can also be found in the VISGO value iteration algorithm used by Tarbouriech et al. (2021b).
The intuition behind such a design is to ensure the existence of proper policies under the estimated
transition probability function. As a result, the output of the value iteration, which solves V = L̃V
approximately for the Bellman operator L̃ induced by the estimated transition, can induce a greedy
policy that is proper under the estimated transition.

Regarding the implementation of LEVIS, note that the main computational overhead is from EVI,
where within each inner iteration we need to solve an optimization problem. Fortunately, the loss
function is strongly convex, thus it can be efficiently solved by many convex optimization algorithms.

6

Under review as a conference paper at ICLR 2022

5 MAIN RESULTS

In this section, we present the main theoretical results for Algorithm 1. We provide regret upper
bounds for both positive cost functions and general cost functions, followed by a lower bound.

5.1 UPPER BOUNDS: POSITIVE COST FUNCTIONS

We first consider a special case where the cost is strictly positive (except for the goal state g).
Assumption 5.1. There exists an unknown constant cmin ∈ (0, 1) such that c(s, a) ≥ cmin for all
s ∈ S \ {g} and a ∈ A .
Let T be the total number of steps in Algorithm 1, then the above assumption allows us to lower
bound the total cumulative cost after the K episodes by cmin · T . Note that this provides a relation
between the deterministic K and the random quantity T . To simplify the expression, we assume the
agent has access toB, an order-accurate estimate ofB? satisfyingB? ≤ B ≤ κB? for some unknown
constant κ ≥ 1. Similar assumptions have also been imposed in previous works (Tarbouriech et al.,
2021b; Vial et al., 2021).
Theorem 5.2. Under Assumptions 3.1, 3.2 and 5.1, for any δ > 0, let ρ = 0 and βt =

B
√
d log (4(t2 + t3B2/λ)/δ)+

√
λd for all t ≥ 1, whereB ≥ B? and λ ≥ 1. Then with probability

at least 1− δ, the regret of Algorithm 1 satisfies

RK = O
(
B1.5d

√
K/cmin · log2

(
KBd

cminδ

)
+
B2d2

cmin
log2

(
KBd

cminδ

))
. (5.1)

If B = O(B?), Algorithm 1 attains an Õ(B?
1.5d

√
K/cmin) regret. The dominating term in (5.1)

has an dependency on 1/cmin. For the tabular SSP, Cohen et al. (2021); Jafarnia-Jahromi et al.
(2021); Tarbouriech et al. (2021b) avoid such dependency by using a Bernstein-type confidence
set. However, it remains an open question whether a similar result can be achieved under the linear
function approximation setting.
Remark 5.3. If we set the parameter δ in Theorem 5.2 as δ = 1/K and define the high probability
event Ω as Theorem 5.2 holds. Then, for the expected regret, we have

E[RK] ≤ E
[
RK |Ω

]
Pr[Ω] +KPr[Ω̄]

= O
(
B1.5d

√
K/cmin · log2

(
KBd

cmin

)
+
B2d2

cmin
log2

(
KBd

cmin

))
,

which implies an Õ(B?
1.5d

√
K/cmin) expected regret.

5.2 UPPER BOUND: GENERAL COST FUNCTIONS

When Assumption 5.1 does not hold, an Õ(K2/3) regret can be achieved by running Algorithm 1
with ρ = K−1/3.
Theorem 5.4. Under Assumptions 3.1 and 3.2, for any δ > 0, let ρ = K−1/3 and βt =

B
√
d log (4(t2 + t3B2/λ)/δ)+

√
λd for all t ≥ 1, whereB ≥ B? and λ ≥ 1. Then with probability

at least 1− δ, the regret of Algorithm 1 satisfies
RK = O

(
B̃1.5dK2/3 · χ+ T?K

2/3 + B̃2d2K1/3 · χ
)
,

where B̃ = B + T?/K
1/3 and χ = log2

(
(B + T?)Kd/δ

)
.

In Theorem 5.4, the regret depends on B̃ instead of B. Note that B̃ is approximately equal to B?
when K = Ω(T 3

?) and B = O(B?). Here T? is defined in Section 3 as the maximum expected time
it takes for the optimal policy to reach the goal state starting from any state.
The cost perturbation ρ is a common trick to deal with the case of general cost functions in the
SSP literature (Tarbouriech et al., 2020a; Cohen et al., 2020; Tarbouriech et al., 2021b). Similar
to Tarbouriech et al. (2020a), the term c−1

min is multiplicative with K in our regret bound given by
Theorem 5.2. As a result, the perturbation can only give an Õ(K2/3) regret in the case of general
cost functions. Similarly, the regret bound of learning linear SSP (Vial et al., 2021) also has a
multiplicative c−1

min. Some later work on tabular SSP (Cohen et al., 2020; Tarbouriech et al., 2021b)
has shown that it is possible to make the term c−1

min additive instead of multiplication, which improves
the regret to Õ(K1/2) for general cost functions. How to get an additive c−1

min term in the linear
function approximation setting is an interesting future direction.

7

Under review as a conference paper at ICLR 2022

For the choice of the other parameters in Algorithm 1, by Theorems 5.2 and 5.4, we can set λ = 1
in both the positive and general cost cases. For the upper bound B ≥ B?, note that assuming a
known B is common in existing SSP literature (Cohen et al., 2021; Vial et al., 2021). Although it is
possible to deal with an unknown B in the tabular SSP with a doubling trick (Rosenberg et al., 2020;
Tarbouriech et al., 2021b), it remains an open question for SSP with linear function approximation.

5.3 LOWER BOUND

We also provide a hardness result for learning linear mixture SSP by proving the lower bound for the
expected regret suffered by any deterministic learning algorithms.
Theorem 5.5. Under Assumption 3.1, suppose d ≥ 2, B? ≥ 2 and K > (d− 1)2/212. Then for any
possibly non-stationary history-dependent policy π, there exists a linear mixture SSP instance with
parameter θ∗ such that

Eπ,θ∗ [RK] ≥ dB?
√
K

1024
. (5.2)

Remark 5.6. The expectation in (5.2) is over the trajectories induced by executing the policy π in
the SSP environment parameterized by θ∗. Note that here we allow the policy π to be non-stationary
and history-dependent. This is equivalent to assuming a deterministic learning algorithm, which is
sufficient for establishing a lower bound (Cohen et al., 2020).
Remark 5.7. Our instance for the lower bound can be also adapted to a linear SSP instance (Vial
et al., 2021), which yields a Ω(dB?

√
K) lower bound. (See Remark E.1 for a detailed discussion.)

6 PROOF SKETCH OF THE MAIN RESULTS

In this section, we give a proof sketch of the main results in Section 5. Due to space limit, we defer
the proof of the lemmas to the appendix.

6.1 PROOF OF THEOREM 5.2

In this subsection, we prove Theorem 5.2, which gives the regret upper bound of Algorithm 1 for
positive cost functions. The proof relies on the following intermediate result.
Theorem 6.1. Under Assumption 3.1 and 3.2, for any δ > 0, let ρ = 0 and βt =

B
√
d log (4(t2 + t3B2/λ)/δ) +

√
λd for some B ≥ B? where λ ≥ 1 and ρ = 0. Then with

probability at least 1− δ, the regret of Algorithm 1 satisfies

RK ≤ 6βT

√
dT log

(
1 +

TB2
?

λ

)
+ 7dB? log

(
T +

T 2B2
?d

λ

)
,

where T is the total number of steps.
Remark 6.2. Theorem 6.1 gives an Õ(

√
T) regret upper bound with respect to the total number

of steps T . However, for SSP problems, the horizon of each episode is unknown and T can be far
greater than K. Thus, Theorem 6.1 is not satisfactory due to its dependence on T . To deal with this
problem, we further prove Theorem 5.2, which translates the dependence on T into the dependence
on K but has a worse dependence on the dimension d and other logarithmic factors.
Theorem 6.1 applies to the general cost function with ρ set to 0. Note that the regret upper bound
depends on the total number of time steps T , which is random. To replace the T -dependence by the
K-dependence, it suffices to show that T = Õ(K). As mentioned in Section 5.1, this can be easily
derived under Assumption 5.1. We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. The total cost in K episodes is upper bound by RK + KB? and is lower
bounded by T · cmin. Together with Theorem 6.1, with probability at least 1− δ, we have

T · cmin ≤ 6βT

√
dT log

(
1 +

TB2
?

λ

)
+ 7dB? log

(
T +

T 2B2
?d

λ

)
+KB?.

Solving the above inequality for the total number of steps T , we obtain that

T = O
(

log2

(
1

δ

)
·
(
KB?
cmin

+
B2d2

c2min

))
.

Plugging this into Theorem 6.1 yields the desired result.
Note that for the general cost functions, by simply picking ρ = K−1/3 the result immediately follows
from the case of positive costs, which is summarized in Theorem 5.4.

8

Under review as a conference paper at ICLR 2022

6.2 PROOF SKETCH OF THEOREM 6.1

The main steps in proving Theorem 6.1 include an analysis of EVI and a regret decomposition. The
complete proof can be found in Appendix D.

Analysis of EVI. By the algorithmic design we elaborated in Section 4, EVI guarantees optimism
and finite-time convergence, which is summarized in Lemma 6.3 below.

Lemma 6.3. Let ρ = 0 and βt = B
√
d log (4(t2 + t3B2/λ)/δ) +

√
λd for all t ≥ 1, where

B ≥ B?. Then with probability at least 1− δ/2, for all j ≥ 1, EVI converges in finite time and the
following holds

θ∗ ∈ Cj ∩ B , 0 ≤ Qj(·, ·) ≤ Q?(·, ·) , and 0 ≤ Vj(·) ≤ V ?(·) .
Note that in Lemma 6.3 the optimism only holds for the EVI output, i.e., Vj for any j ≥ 1. The
initialization V0 in Line 2 of the main Algorithm 1 does not necessarily satisfy the optimism since it is
possible that V ?(s) < 1 for some s. Still, such an initialization guarantees ‖V0‖∞ = 1 ≤ B?, which
is crucial for establishing the optimism for j ≥ 1. The proof of Lemma 6.3 is given in Appendix F.1.

Regret Decomposition. In our analysis, instead of dealing with (3.3) directly, we first implicitly
decompose the times steps into intervals, which are indexed by m = 1, . . . ,M in Lemma 6.4 below.
The basic idea here is to decompose all the time steps into disjoint intervals of which the end points
are either the end of an episode or the time steps when the EVI subroutine is triggered 3. The purpose
of such a regret decomposition is to guarantee that within each interval the optimistic action-value
function remains the same, so the induced policy. This is a necessary and common requirement
and can be found in the case of discounted infinite horizon MDPs (Zhou et al., 2021b). Similar
decomposition trick has also been used in existing works on SSP (Rosenberg et al., 2020; Rosenberg
& Mansour, 2020; Tarbouriech et al., 2021b).

Lemma 6.4. Assume the event in Lemma 6.3 holds, then we have the following upper bound for the
regret defined in (3.3) 4:

R(M) ≤
∑M
m=1

∑Hm

h=1

[
cm,h + PVj(m)(sm,h, am,h)− Vj(m)(sm,h)

]︸ ︷︷ ︸
E1

+
∑M
m=1

∑Hm

h=1

[
Vj(m)(sm,h+1)− PVj(m)(sm,h, am,h)

]︸ ︷︷ ︸
E2

+ 2dB? log

(
1 +

TB2
?d

λ

)
+ 2B? log(T) + 2.

(6.1)

Bounding E1 and E2 We bound the terms E1 and E2 separately. Note that E2 is the sum
of a martingale difference sequence, and can be bounded by O(

√
T log(T/δ)) using standard

concentration. Bounding E1 is more technical and it requires almost all the properties of our
algorithmic design. In detail, we need to show that every time when EVI is triggered, it can output an
optimistic action-value function estimator with high probability (by Lemma 6.3). Second, we need
to bound the total difference between the estimated functions and the optimal action-value function.
This follows from the elliptical potential lemma and the determinant-based doubling criterion. Third,
we need to bound the length of the epochs (i.e., the number of time steps between two EVIs), which
is achieved by the time-step doubling criterion as explained in Section 4.

7 CONCLUSIONS

In this paper, we proposed a novel algorithm for linear mixture SSP and proved its regret upper
and lower bounds. For future work, there are several important directions. First, there is a B0.5

?
gap between the current upper and lower bounds. We believe this gap can be closed by using a
Bernstein-type of confidence set (Zhou et al., 2021a). Second, it remains open to prove a Õ(

√
K)

regret bound for linear mixture SSPs for general cost functions when cmin = 0.

3The interval decomposition is indexed by m in Lemma 6.4. It is implicit and only for the purpose of
analysis. This is different from the epoch decomposition, which is explicit and indexed by j in Algorithm 1. The
difference is that an epoch ends when EVI is triggered, while an interval ends when either EVI is triggered or
the goal state g is reached (i.e., an episode ends).

4R(M) is the same as RK . We use a different notation to emphasize the interval decomposition.

9

Under review as a conference paper at ICLR 2022

ETHICS STATEMENT

We don’t see any potential ethical issues in our work.

REFERENCES

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
bandits. Advances in neural information processing systems, 24:2312–2320, 2011.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. arXiv
preprint arXiv:1707.01495, 2017.

Alex Ayoub, Zeyu Jia, Csaba Szepesvari, Mengdi Wang, and Lin Yang. Model-based reinforcement
learning with value-targeted regression. In International Conference on Machine Learning, pp.
463–474. PMLR, 2020.

Dimitri Bertsekas. Dynamic programming and optimal control: Volume I, volume 1. Athena scientific,
2012.

Dimitri P Bertsekas and John N Tsitsiklis. An analysis of stochastic shortest path problems. Mathe-
matics of Operations Research, 16(3):580–595, 1991.

Dimitri P Bertsekas and Huizhen Yu. Stochastic shortest path problems under weak conditions. Lab.
for Information and Decision Systems Report LIDS-P-2909, MIT, 2013.

Blai Bonet. On the speed of convergence of value iteration on stochastic shortest-path problems.
Mathematics of Operations Research, 32(2):365–373, 2007.

Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy optimiza-
tion. In International Conference on Machine Learning, pp. 1283–1294. PMLR, 2020.

Liyu Chen and Haipeng Luo. Finding the stochastic shortest path with low regret: The adversarial
cost and unknown transition case. arXiv preprint arXiv:2102.05284, 2021.

Liyu Chen, Mehdi Jafarnia-Jahromi, Rahul Jain, and Haipeng Luo. Implicit finite-horizon approxima-
tion and efficient optimal algorithms for stochastic shortest path. arXiv preprint arXiv:2106.08377,
2021a.

Liyu Chen, Haipeng Luo, and Chen-Yu Wei. Minimax regret for stochastic shortest path with
adversarial costs and known transition. In Conference on Learning Theory, pp. 1180–1215. PMLR,
2021b.

Alon Cohen, Haim Kaplan, Yishay Mansour, and Aviv Rosenberg. Near-optimal regret bounds for
stochastic shortest path. arXiv preprint arXiv:2002.09869, 2020.

Alon Cohen, Yonathan Efroni, Yishay Mansour, and Aviv Rosenberg. Minimax regret for stochastic
shortest path. arXiv preprint arXiv:2103.13056, 2021.

Simon S Du, Sham M Kakade, Ruosong Wang, and Lin F Yang. Is a good representation sufficient for
sample efficient reinforcement learning? In International Conference on Learning Representations,
2019.

Matthieu Guillot and Gautier Stauffer. The stochastic shortest path problem: a polyhedral combina-
torics perspective. European Journal of Operational Research, 285(1):148–158, 2020.

Jiafan He, Dongruo Zhou, and Quanquan Gu. Logarithmic regret for reinforcement learning with
linear function approximation. In International Conference on Machine Learning, pp. 4171–4180.
PMLR, 2021.

Mehdi Jafarnia-Jahromi, Liyu Chen, Rahul Jain, and Haipeng Luo. Online learning for stochastic
shortest path model via posterior sampling. arXiv preprint arXiv:2106.05335, 2021.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(4), 2010.

10

Under review as a conference paper at ICLR 2022

Zeyu Jia, Lin Yang, Csaba Szepesvari, and Mengdi Wang. Model-based reinforcement learning with
value-targeted regression. In Learning for Dynamics and Control, pp. 666–686. PMLR, 2020.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pp. 2137–2143.
PMLR, 2020.

Andrey Kolobov, Mausam Mausam, Daniel S Weld, and Hector Geffner. Heuristic search for
generalized stochastic shortest path mdps. In Twenty-First International Conference on Automated
Planning and Scheduling, 2011.

Tor Lattimore and Marcus Hutter. Pac bounds for discounted mdps. In International Conference on
Algorithmic Learning Theory, pp. 320–334. Springer, 2012.

Shiau Hong Lim and Peter Auer. Autonomous exploration for navigating in mdps. In Conference on
Learning Theory, pp. 40–1. JMLR Workshop and Conference Proceedings, 2012.

Aditya Modi, Nan Jiang, Ambuj Tewari, and Satinder Singh. Sample complexity of reinforcement
learning using linearly combined model ensembles. In International Conference on Artificial
Intelligence and Statistics, pp. 2010–2020. PMLR, 2020.

Soroush Nasiriany, Vitchyr H Pong, Steven Lin, and Sergey Levine. Planning with goal-conditioned
policies. arXiv preprint arXiv:1911.08453, 2019.

Aviv Rosenberg and Yishay Mansour. Stochastic shortest path with adversarially changing costs.
arXiv preprint arXiv:2006.11561, 2020.

Aviv Rosenberg, Alon Cohen, Yishay Mansour, and Haim Kaplan. Near-optimal regret bounds for
stochastic shortest path. In International Conference on Machine Learning, pp. 8210–8219. PMLR,
2020.

Jean Tarbouriech, Evrard Garcelon, Michal Valko, Matteo Pirotta, and Alessandro Lazaric. No-regret
exploration in goal-oriented reinforcement learning. In International Conference on Machine
Learning, pp. 9428–9437. PMLR, 2020a.

Jean Tarbouriech, Matteo Pirotta, Michal Valko, and Alessandro Lazaric. Improved sample complexity
for incremental autonomous exploration in mdps. In NeurIPS, 2020b.

Jean Tarbouriech, Matteo Pirotta, Michal Valko, and Alessandro Lazaric. Sample complexity bounds
for stochastic shortest path with a generative model. In Algorithmic Learning Theory, pp. 1157–
1178. PMLR, 2021a.

Jean Tarbouriech, Runlong Zhou, Simon S Du, Matteo Pirotta, Michal Valko, and Alessandro Lazaric.
Stochastic shortest path: Minimax, parameter-free and towards horizon-free regret. arXiv preprint
arXiv:2104.11186, 2021b.

Daniel Vial, Advait Parulekar, Sanjay Shakkottai, and R Srikant. Regret bounds for stochastic shortest
path problems with linear function approximation. arXiv preprint arXiv:2105.01593, 2021.

Ruosong Wang, Russ R Salakhutdinov, and Lin Yang. Reinforcement learning with general value
function approximation: Provably efficient approach via bounded eluder dimension. Advances in
Neural Information Processing Systems, 33, 2020a.

Yining Wang, Ruosong Wang, Simon Shaolei Du, and Akshay Krishnamurthy. Optimism in rein-
forcement learning with generalized linear function approximation. In International Conference
on Learning Representations, 2020b.

Lin Yang and Mengdi Wang. Sample-optimal parametric q-learning using linearly additive features.
In International Conference on Machine Learning, pp. 6995–7004. PMLR, 2019.

Lin Yang and Mengdi Wang. Reinforcement learning in feature space: Matrix bandit, kernels, and
regret bound. In International Conference on Machine Learning, pp. 10746–10756. PMLR, 2020.

11

Under review as a conference paper at ICLR 2022

Andrea Zanette, David Brandfonbrener, Emma Brunskill, Matteo Pirotta, and Alessandro Lazaric.
Frequentist regret bounds for randomized least-squares value iteration. In International Conference
on Artificial Intelligence and Statistics, pp. 1954–1964. PMLR, 2020.

Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Almost optimal model-free reinforcement learningvia
reference-advantage decomposition. Advances in Neural Information Processing Systems, 33,
2020.

Dongruo Zhou, Quanquan Gu, and Csaba Szepesvari. Nearly minimax optimal reinforcement learning
for linear mixture markov decision processes. In Conference on Learning Theory. PMLR, 2021a.

Dongruo Zhou, Jiafan He, and Quanquan Gu. Provably efficient reinforcement learning for discounted
mdps with feature mapping. In International Conference on Machine Learning, pp. 12793–12802.
PMLR, 2021b.

12

Under review as a conference paper at ICLR 2022

A ADDITIONAL DISCUSSIONS

A.1 DISCUSSION ON THE LINEAR MIXTURE MDPS

The linear mixture MDP (Modi et al., 2020; Ayoub et al., 2020; Zhou et al., 2021b) is a commonly
considered model for linear function approximation, where one assumes the transition probability
function P to be a linear mixture of some basis kernels. The linear mixture MDP covers several
important MDP models studied in the literature. We briefly discuss them here.

Example A.1 (Tabular MDPs). For a tabular MDP M(S,A, γ, r,P) with |S|, |A| ≤ ∞, the tran-
sition probability kernel can be represented by |S|2|A| unknown parameters. The tabular MDP is
a special case of linear mixture MDPs with the feature mapping φ(s′|s, a) = e(s,a,s′) ∈ Rd and
parameter vector θ = [P(s′|s, a)] ∈ Rd, where d = |S|2|A| and e(s,a,s′) denotes the corresponding
natural basis in the d-dimensional Euclidean space.

Example A.2 (Linear combination of base models, Modi et al. 2020). For an MDP M(S,A, γ, r,P),
suppose there existm base transition probability kernels {pi(s′|s, a)}mi=1, a feature mappingψ(s, a) :

S × A → ∆d′ where ∆d′ is a (d′ − 1)-dimensional simplex, and an unknown matrix W ∈
Rm×d′ ∈ [0, 1]m×d

′
such that P(s′|s, a) =

∑m
k=1[Wψ(s, a)]kpk(s′|s, a). Then it is a special case

of linear mixture MDPs with feature mapping φ(s′|s, a) = vec(p(s′|s, a)ψ(s, a)>) ∈ Rd and
parameter vector θ = vec(W) ∈ Rd where d = md′, vec(·) is the vectorization operator, and
p(s′|s, a) = [pk(s′|s, a)] ∈ Rm.

Example A.3 (linear-factored MDP, Yang & Wang 2019). For an MDP M(S,A, γ, r,P), suppose
that there exist feature mappings ψ1(s, a) : S ×A → Rd1 satisfying ‖ψ1(s, a)‖2 ≤

√
d1, ψ2(s′) :

S → R satisfying for any V : S → [0, R], ‖
∑
s V (s)ψ2(s)‖2 ≤ R and an unknown matrix

M ∈ Rd1×d2 satisfying ‖M‖F ≤
√
d1 such that P(s′|s, a) = ψ1(s, a)>Mψ2(s′). Then it is a

special case of linear mixture MDPs with feature mapping φ(s′|s, a) = vec
(
ψ2(s′)ψ1(s, a)>

)
∈ Rd

and parameter vector θ = vec(M) ∈ Rd, where d = d1d2.

For more discussions, please refer to, for example, Section 2 in Ayoub et al. (2020), or Section 3 in
Zhou et al. (2021b).

A.2 EXTENSION TO BERNSTEIN-TYPE ALGORITHMS

We believe it is possible to design a Bernstein-type algorithm to further improve the dependence on
B from Õ(B1.5) to Õ(B), which is near-optimal according to the lower bound given by Theorem
5.5. Our belief is based on the following facts and analogy.

First, for the tabular SSP, previous work has shown that the near-optimal dependence on B is
achievable by using Bernstein-type algorithms. For example, Algorithm 2 in Rosenberg et al. (2020)
and Algorithm 1 in Tarbouriech et al. (2021b) are both Bernstein-type algorithms for tabular SSPs,
which rely on the Bernstein-type bonus for exploration.

Second, for finite-horizon linear mixture MDPs, a Bernstein-type algorithm, UCRL-VTR+, proposed
in Zhou et al. (2021b) achievesO(H) dependence, where H is the horizon length. The key technique
in their paper is to construct another linear estimator to estimate the variance of the value functions
under the transition probability. Given this variance estimator, one can then use weighted ridge
regression to estimate the transitional kernel parameter. Since B∗ in SSPs can be viewed as a
counterpart of H in finite-horizon MDPs, we think a similar result is achievable for the SSP problem
by extending our algorithm in a way similar to that in Zhou et al. (2021b).

From another perspective, since at a high level our algorithmic design is more similar to the that of
discounted MDPs than finite-horizon MDPs, one can also refer to the Bernstein-type algorithms for
the discounted MDPs. For example, the UCLK+ algorithm proposed in Zhou et al. (2021b) provably
achieves a near-optimal regret for discounted MDPs by using the weighted linear regression technique.
Notably, UCLK+ uses a version of EVI algorithm along with a Bernstein-type confidence set.

Due to the above reason, we think an extension to the Bernstein-type algorithm for linear mixture
SSPs is possible. We leave it as a future work.

13

Under review as a conference paper at ICLR 2022

0 10000 20000 30000 40000
K

0

20000

40000

60000

80000

Re
gr

et

LEVIS
optimal
random

(a) Cumulative regret RK versus K.

0 50 100 150 200
K

2

0

2

4

6

8

10

Re
gr

et
/K

LEVIS
optimal
random

(b) Average regret versus
√
K.

Figure 1: Cumulative regret and average regret of implementing Algorithm 1 on the hard SSP instance
described in Appendix B with λ = 1, ρ = 0 and failing probability 0.01. The curve is the average of
20 trials. Colored areas indicate empirical [10%,90%] confidence intervals.

B NUMERICAL SIMULATIONS

In this section, we present some results from numerical simulations, which corroborate our theory.
We construct an SSP instance based on the hard example used in the proof of the lower bound.
Specifically, we have the action space A = {−1, 1}d−1 with |A| = 2d−1. The state space is
S = {sinit, g}. We choose δ,∆ and B? such that δ + ∆ = 1/B? and δ > ∆. The true model
parameter θ∗ is given by

θ∗ =

[
∆

d− 1
, · · · , ∆

d− 1
, 1

]>
∈ Rd.

The feature mapping is defined as

φ(sinit|sinit,a) = [−a, 1− δ]>,
φ(sinit|g,a) = 0,

φ(g|sinit,a) = [a, δ]>,

φ(g|g,a) = [0d−1, 1]>.

Here we use a instead of a to emphasize that the action is vector-valued. One can verify that this is
indeed a linear mixture SSP with the following transition function:

P(sinit|sinit,a) = 1− δ − 〈a,θ〉,
P(g|sinit,a) = δ + 〈a,θ〉,
P(g|g,a) = 1,

P(sinit|g,a) = 0,

for all a ∈ A. For more details about this SSP instance, please refer to Appendix E. Note that this is
a very hard SSP instance since it is difficult to distinguish between different actions, as we will later
show in the proof of the lower bound.

The experimental results are shown in Fig. 1. We compare the performance of LEVIS with that
of the optimal policy and the random policy. Here the optimal policy always chooses a = 1d−1 to
maximize the probability of reaching g from sinit by the construction of the SSP, and the random
policy picks a ∈ A uniformly at random. In Fig. 1a, we plot the cumulative regret RK versus K. It
is evident that LEVIS has a sublinear regret, as opposed to the linear regret of the random policy. In
Fig. 1b, we plot the average reward versus

√
K, verifying the Õ(

√
K) regret of LEVIS. The results

match our theoretical findings.

C PROOF OF REGRET DECOMPOSITION

In this section, we prove the regret decomposition given by Lemma 6.4.

14

Under review as a conference paper at ICLR 2022

Proof of Lemma 6.4. We first explain the details of the interval decomposition. The first interval
begin at t = 1, and an interval ends once either one of the two conditions is met: (1) the EVI
sub-routine is triggered (i.e., either the determinant of the covariance matrix or the time index is
doubled); (2) the goal state g is reached, i.e., the current episode ends. We remark that this interval
decomposition is only implicit since it is not implemented by the algorithm explicitly. Note that by
the two conditions described above, each interval has bounded length almost surely. Indeed, even if
the goal state is never reached or the determinant is never doubled due to φV having small norm, the
time step only requires the number of iterations to be doubled.

We index the intervals by m = 1, 2, · · · , and denote by M as the total number of intervals, which is
possibly infinite. The length of the m-th interval is denoted by Hm. With a slight abuse of notation,
we denote the trajectory for the m-th interval as (sm,1, am,1, · · · , sm,Hm

, am,Hm
, sm,Hm+1), where

we have sm,Hm+1 = g if interval m ends with condition (2) being met, and sm,Hm+1 = sm+1,1

otherwise. We denote by M(M) ⊆ [M] the set of intervals which are the first interval of their
corresponding episodes. We define the mapping j(·), such that for each m ∈ [M], j(m) the index of
the value function estimate which is used in the m-th interval.

Now let’s see how the regret can be expressed under the interval decomposition introduced above.
The regret can be written as

R(M) ≤
M∑
m=1

Hm∑
h=1

cm,h −
∑

m∈M(M)

Vj(m)(sinit) + 1

≤
M∑
m=1

Hm∑
h=1

cm,h +

M∑
m=1

(
Hm∑
h=1

Vj(m)(sm,h+1)− Vj(m)(sm,h)

)

+ 1 + 1 + 2dB? log

(
1 +

TB2
?d

λ

)
+ 2B? log(T)

=

M∑
m=1

Hm∑
h=1

[
cm,h + PVj(m)(sm,h, am,h)− Vj(m)(sm,h)

]
︸ ︷︷ ︸

E1

+

M∑
m=1

Hm∑
h=1

[
Vj(m)(sm,h+1)− PVj(m)(sm,h, am,h)

]
︸ ︷︷ ︸

E2

+ 2dB? log

(
1 +

TB2
?d

λ

)
+ 2B? log(T) + 2. (C.1)

The first inequality in the above holds because of the optimism of Vj for j ≥ 1. Here please note that,
since V0 is not the output of EVI, optimism does not necessarily hold for V0. Therefore, we simply
add 1 at the RHS of the first inequality by the fact that |V0| ≤ 1 and the first interval has length equal
to 1 according to the time step doubling updating criterion.

The second inequality in the above is given by Lemma C.2 below, which is proved by first bounding
the total number of calls to EVI (see Lemma C.1).

The following lemma shows that the total calls to EVI in the implementation of Algorithm 1 can be
bounded. It turns out that our design of the update condition (i.e. Line 9 in Algorithm 1) is crucial
to our regret analysis. Importantly, the determinant doubling criterion alone is not enough, and the
novel time step doubling trick is necessary.

Lemma C.1. Conditioned on the event in Lemma 6.3, the total number of calls to EVI is bounded
by J ≤ 2d log

(
1 +

TB2
?d
λ

)
+ 2 log(T).

Proof of Lemma C.1. By Line 9 we have J = J1 + J2 where J1 is the total number of times that
the determinant is doubled and J2 is the total number of times that the time step is doubled. First

15

Under review as a conference paper at ICLR 2022

we bound J1. Note that V0 is from the initialization instead of the output of EVI and it holds that
V0 ≤ B?. By Line 7 of Algorithm 1 and the initialization Σ0 = λI, we have

‖ΣT ‖2 =

∥∥∥∥∥∥λI +

J∑
j=0

tj+1∑
t=tj+1

φVj
(st, at)φVj

(st, at)
>

∥∥∥∥∥∥
2

≤ λ+

J∑
j=0

tj+1∑
t=tj+1

‖φVj
(st, at)‖22

≤ λ+ TB2
?d,

where the first inequality is by the triangle inequality and the second inequality holds by Assumption
3.1 and Vj ≤ B? for all j ≥ 0 under the event of Lemma 6.3. We then have that det(ΣT) ≤
(λ+ TB2

?d)d. It follows that(
λ+ TB2

?d
)d ≥ 2J1 · det (Σ0) = 2J1 · λd,

by the determinant-doubling trigger condition. From the above inequality we conclude that

J1 ≤ 2d log

(
1 +

TB2
?d

λ

)
.

To bound J2, note that t0 = 1 and thus 2J2 ≤ T , which immediately gives J2 ≤ log2(T) ≤ 2 log(T).
Altogether we conclude that

J ≤ 2d log

(
1 +

TB2
?d

λ

)
+ 2 log(T).

The following Lemma C.2 is used to get the second inequality in (C.1).

Lemma C.2. Conditioned on the event in Lemma 6.3, for the interval decomposition, the following
holds

M∑
m=1

(
Hm∑
h=1

Vj(m)(sm,h)− Vj(m)(sm,h+1)

)
−

∑
m∈M(M)

Vj(m)(sinit)

≤ 1 + 2dB? log

(
1 +

TB2
?d

λ

)
+ 2B? log(T).

Proof of Lemma C.2. The proof resembles that of Lemma 31 in Tarbouriech et al. (2021b). We first
consider the first term in the LHS. Rearrange the summation and we have

M∑
m=1

(
Hm∑
h=1

Vj(m)(sm,h)− Vj(m)(sm,h+1)

)

=

M∑
m=1

Vj(m)(sm,1)− Vj(m)(sm,Hm+1)

=

M−1∑
m=1

(
Vj(m+1)(sm+1,1)− Vj(m)(sm,Hm+1)

)
+

M−1∑
m=1

(
Vj(m)(sm,1)− Vj(m+1)(sm+1,1)

)
+ Vj(M)(sM,1)− Vj(M)(sM,HM+1).

Note that second sum in the above equation is a telescoping sum. Thus we have

M∑
m=1

(
Hm∑
h=1

Vj(m)(sm,h)− Vj(m)(sm,h+1)

)

16

Under review as a conference paper at ICLR 2022

=

M−1∑
m=1

(
Vj(m+1)(sm+1,1)− Vj(m)(sm,Hm+1)

)
+ Vj(1)(s1,1)− Vj(M)(sM,1)

+ Vj(M)(sM,1)− Vj(M)(sM,HM+1)

=

M−1∑
m=1

(
Vj(m+1)(sm+1,1)− Vj(m)(sm,Hm+1)

)
+ Vj(1)(s1,1)− Vj(M)(sM,HM+1)

≤
M−1∑
m=1

(
Vj(m+1)(sm+1,1)− Vj(m)(sm,Hm+1)

)
+ Vj(1)(s1,1), (C.2)

where the inequality holds because Vj(·) is non-negative for all j.

We now consider the term Vj(m+1)(sm+1,1)− Vj(m)(sm,Hm+1). Note that by the interval decompo-
sition, interval m ends if and only if either of the two conditions are met. If interval m ends because
goal is reached, then we have

Vj(m+1)(sm+1,1)− Vj(m)(sm,Hm+1) = Vj(m+1)(sinit)− Vj(m)(g) = Vj(m+1)(sinit).

If it ends because the EVI sub-routine is triggered, then the value function estimator is updated by
EVI and j(m) 6= j(m+1). In such case we simply apply the trivial upper bound Vj(m+1)(sm+1,1)−
Vj(m)(sm,Hm+1) ≤ maxj ‖Vj‖∞. By Lemma C.1, this happens at most J ≤ 2d log

(
1 +

TB2
?d
λ

)
+

2 log(T) times. Therefore, we can further bound the RHS of (C.2) as

M∑
m=1

(
Hm∑
h=1

Vj(m)(sm,h)− Vj(m)(sm,h+1)

)

≤
M−1∑
m=1

Vj(m+1)(sinit) · 1{m+ 1 ∈M(M)}+ Vj(1)(s1,1) +

[
2d log

(
1 +

TB2
?d

λ

)
+ 2 log(T)

]
·max

j
‖Vj‖∞

≤
∑

m∈M(M)

Vj(m)(sinit) + V0(sinit) + 2dB? log

(
1 +

TB2
?d

λ

)
+ 2B? log(T)

≤
∑

m∈M(M)

Vj(m)(sinit) + 1 + 2dB? log

(
1 +

TB2
?d

λ

)
+ 2B? log(T),

where the second inequality is by ‖Vj‖∞ ≤ B? and the last step is by the initialization ‖V0‖∞ ≤ 1.

D PROOF OF THEOREM 6.1

In this section we finish the proof of the key result Theorem 6.1 by bounding the terms in the regret
decomposition in Lemma 6.4.

D.1 BOUNDING E1

Lemma D.1. Assume the event of Lemma 6.3 holds. Then we have
M∑
m=1

Hm∑
h=1

[
cm,h + PVj(m)(sm,h, am,h)− Vj(m)(sm,h)

]
≤ 4βT

√
2Td · log (1 +B2

?T/λ) + 5dB?

[
log

(
1 +

TB2
?d

λ

)
+ log(T)

]
+ 4.

Proof of Lemma D.1. By Line 6 and 15 in the algorithm, for any m and h, we have

Vj(m)(sm,h) = min
a∈A

Qj(m)(sm,h, a) = Qj(m)(sm,h, am,h).

17

Under review as a conference paper at ICLR 2022

Therefore E1 can be rewrite as

E1 =

M∑
m=1

Hm∑
h=1

[
cm,h + PVj(m)(sm,h, am,h)−Qj(m)(sm,h, am,h)

]
. (D.1)

Denote byM0(M) the set of m such that j(m) ≥ 1, i.e.,M0(M) = {m ≤M : j(m) ≥ 1}. Then
we see thatM0(M) is the collection of intervals such that Qj(m) is the output of EVI instead of
the initialization Q0. Fix arbitrary m ∈M0(M) and h. Since Qj(m) is the output of EVI, we have
Qj(m) = Q(l) for some l, i.e., the l-th iteration in EVI, and thus Vj(m)(·) = mina∈AQ

(l)(·, a) =

V (l)(·). By the design of EVI, we have

Q(l)(sm,h, am,h)

= cm,h + (1− q) · min
θ∈Cj(m)∩B

〈θ,φV (l−1)(sm,h, am,h)〉

= cm,h + (1− q) · 〈θm,h,φV (l−1)(sm,h, am,h)〉
= cm,h + (1− q) · 〈θm,h,φV (l)(sm,h, am,h)〉+ (1− q) · 〈θm,h, [φV (l−1) − φV (l)] (sm,h, am,h)〉,

where θm,h = argminθ∈Cj∩B〈θ,φV (l−1)(sm,h, am,h)〉 and its existence is guaranteed under the
event of Lemma 6.3. Define Pm,h as the transition kernel parametrized by θm,h, i.e.,

Pm,h(·|·, ·) = 〈φ(·|·, ·),θm,h〉.

Then from above we have

Q(l)(sm,h, am,h)

= cm,h + (1− q) · 〈θm,h,φV (l)(sm,h, am,h)〉+ (1− q) · Pm,h
[
V (l−1) − V (l)

]
(sm,h, am,h)

≥ cm,h + (1− q) · Pm,hV (l)(sm,h, am,h)− (1− q) · 1

tj(m)
,

where the inequality is by the EVI terminal condition that ‖V (l) − V (l−1)‖∞ ≤ εj = 1/tj(m).
Therefore we have

Qj(m)(sm,h, am,h) ≥ cm,h + (1− q) · Pm,hVj(m)(sm,h, am,h)− (1− q) · 1

tj(m)
,

and it follows that

cm,h + PVj(m)(sm,h, am,h)−Qj(m)(sm,h, am,h)

≤ PVj(m)(sm,h, am,h)− (1− q) · Pm,hVj(m)(sm,h, am,h) + (1− q) · 1

tj(m)

= [P− Pm,h]Vj(m)(sm,h, am,h) + qPm,hVj(m)(sm,h, am,h) + (1− q) · 1

tj(m)

≤ [P− Pm,h]Vj(m)(sm,h, am,h) +
B?
tj(m)

+ (1− q) · 1

tj(m)

= 〈θ∗ − θm,h,φVj(m)
(sm,h, am,h)〉+

B? + 1− q
tj(m)

,

where the second inequality is by the optimism Vj(m) ≤ V ? ≤ B? under the event of Lemma 6.3,
and q = 1/tj(m) according to Line 14 in Algorithm 1. We then conclude that

∑
m∈M0(M)

Hm∑
h=1

[
cm,h + PVj(m)(sm,h, am,h)−Qj(m)(sm,h, am,h)

]
≤

∑
m∈M0(M)

Hm∑
h=1

〈θ∗ − θm,h,φVj(m)
(sm,h, am,h)〉

︸ ︷︷ ︸
A1

+ (B? + 1) ·
∑

m∈M0(M)

Hm∑
h=1

1

tj(m)︸ ︷︷ ︸
A2

. (D.2)

18

Under review as a conference paper at ICLR 2022

To bound A1: Recall that θ̂j(m) given by Line 12 is the center of the confidence ellipsoid Cj(m).
First for each term 〈θ∗ − θm,h,φVj(m)

(sm,h, am,h)〉 in A1, we write

〈θ∗ − θ̂j(m) + θ̂j(m) − θm,h,φVj(m)
(sm,h, am,h)〉

≤
(
‖θ∗ − θ̂j(m)‖Σt(m,h)

+ ‖θ̂j(m) − θm,h‖Σt(m,h)

)
· ‖φVj(m)

(sm,h, am,h)‖Σ−1
t(m,h)

≤ 2
(
‖θ∗ − θ̂j(m)‖Σtj(m)

+ ‖θ̂j(m) − θm,h‖Σtj(m)

)
· ‖φVj(m)

(sm,h, am,h)‖Σ−1
t(m,h)

≤ 4βT ‖φVj(m)
(sm,h, am,h)‖Σ−1

t(m,h)
. (D.3)

Here the first inequality comes from the triangle inequality and Cauchy-Schwarz inequality. For
the second inequality, recall that tj(m) given by Line 11 in Algorithm 1 is the time step when the
j(m)-th EVI sub-routine is called, while t(m,h) is the time step corresponds to the h-th step in the
m-th interval and t(m,h) ≥ tj(m). Therefore, by the determinant-doubling triggering condition, we
must have det(Σt(m,h)) ≤ 2 det(Σtj(m)

), otherwise t(m,h) and tj(m) would not belong to the same
interval m. The second inequality then follows from λi(Σt(m,h)) ≤ 2λi(Σtj(m)

) ∀i ∈ [d], where
λi(·) is the i-th eigenvalue. The last inequality holds because under Lemma 6.3, θ∗ and θm,h belongs
to the confidence ellipsoid Cj(m) defined by Line 13.

Also note that for each term 〈θ∗ − θm,h,φVj(m)
(sm,h, am,h)〉 in A1, we have

〈θ∗ − θm,h,φVj(m)
(sm,h, am,h)〉 ≤ 〈θ∗,φVj(m)

(sm,h, am,h)〉
= PVj(m)(sm,h, am,h)

≤ B?, (D.4)

where both inequalities hold due to 0 ≤ Vj(m)(·) ≤ B?. Combine (D.3) and (D.4) and we have

A1 ≤ 4βT
∑

m∈M0

Hm∑
h=1

min
{

1, ‖φVj(m)
(sm,h, am,h)‖Σ−1

t(m,h)

}

≤ 4βT

√√√√(∑
m∈M0

Hm∑
h=1

1

)
·

(∑
m∈M0

Hm∑
h=1

min

{
1, ‖φVj(m)

(sm,h, am,h)‖2
Σ−1

t(m,h)

})
, (D.5)

where the first inequality holds due to B? < βT , and the second inequality is by Cauchy-Schwarz
inequality. Note that

∑
m∈M0

Hm∑
h=1

min

{
1, ‖φVj(m)

(sm,h, am,h)‖2
Σ−1

t(m,h)

}

≤ 2

[
d log

(
trace(λI) + T ·maxm∈M0

‖φVj(m)
(·, ·)‖22

d

)
− log (det(λI))

]

≤ 2d log

(
λd+ TB2

?d

λd

)
= 2d log

(
1 + TB2

?/λ
)
,

where the first inequality holds by Lemma G.4, and the second inequality holds because Vj(m)(·) ≤
B? under Lemma 6.3 and thus maxm∈M0

‖φVj(m)
(·, ·)‖2 ≤ B?

√
d by Assumption 3.1. Combine

the above inequality with (D.5) and we conclude that

A1 ≤ 4βT
√

2Td · log (1 +B2
?T/λ). (D.6)

To bound A2: by the definition ofM0 we can rewrite A2 as

A2 = (B? + 1) ·
∑

m∈M0(M)

Hm∑
h=1

1

tj(m)

19

Under review as a conference paper at ICLR 2022

= (B? + 1) ·
J∑
j=1

tj+1∑
t=tj+1

1

tj
.

Note that the time step doubling condition t ≥ 2tj in Line 9 implies that tj+1 ≤ 2tj for all j.
Therefore we have

A2 ≤ (B? + 1) ·
J∑
j=1

2tj
tj

= 2(B? + 1)J

≤ 4.5dB?

[
log

(
1 +

TB2
?d

λ

)
+ log(T)

]
,

where the last step is by Lemma C.1. Together with (D.2) and (D.6) we conclude that∑
m∈M0(M)

Hm∑
h=1

[
cm,h + PVj(m)(sm,h, am,h)−Qj(m)(sm,h, am,h)

]
≤ 4βT

√
2Td · log (1 +B2

?T/λ) + 5dB?

[
log

(
1 +

TB2
?d

λ

)
+ log(T)

]
. (D.7)

To bound E1, it remains to bound the following∑
m∈Mc

0

Hm∑
h=1

[
cm,h + PVj(m)(sm,h, am,h)−Qj(m)(sm,h, am,h)

]
.

Note that by definition,Mc
0 are all the intervals m such that j(m) = 0, i.e., the intervals before the

first call of the EVI sub-routine. However, since t0 = 1, by the triggering condition t ≥ 2t0, we
know that the first EVI is called at t = 2. Therefore we have∑

m∈Mc
0

Hm∑
h=1

[
cm,h + PVj(m)(sm,h, am,h)−Qj(m)(sm,h, am,h)

]
=

2∑
h=1

[c1,h + PV0(s1,h, a1,h)−Q0(s1,h, a1,h)]

≤ 4,

where the inequality holds because c1,h, V0(·) ≤ 1 and 0 ≤ Q0(·, ·). Together with (D.7) we conclude
that

E1 ≤ 4βT
√

2Td · log (1 +B2
?T/λ) + 5dB?

[
log

(
1 +

TB2
?d

λ

)
+ log(T)

]
+ 4. (D.8)

D.2 BOUNDING E2

The term E2 is the sum of a martingale difference sequence. However, the function Vj(m) is random
and not necessarily bounded, which disqualifies us from applying tools like Azuma-Hoeffding
inequality directly. To deal with this issue, we use an auxiliary sequence of functions. The result is
summarized by the following lemma.
Lemma D.2. With probability at least 1− δ, both the event of Lemma 6.3 and the following hold

M∑
m=1

Hm∑
h=1

[
Vj(m)(sm,h+1)− PVj(m)(sm,h, am,h)

]
≤ 2B?

√
2T log

(
2T

δ

)
.

Proof of Lemma D.2. We define the filtration {Fm,h}m,h such that Fm,h is the σ-field of all the
history up until (sm,h, am,h) which contains (sm,h, am,h) but does not contain sm,h+1. Then

20

Under review as a conference paper at ICLR 2022

(sm,h, am,h) is Fm,h-measurable. Also note that the time step tj(m) is no later than the time step
t(m,h), and thus the function Vj(m) is also Fm,h-measurable. By the definition of the operator P,
we have

E
[
Vj(m)(sm,h+1)

∣∣Fm,h] = PVj(m)(sm,h, am,h),

which shows that the term E2 is the sum of a martingale difference sequence. To deal with the
problem that Vj(m) might not be uniformly bounded, we define an auxiliary sequence of functions

Ṽj(m)(·) := min{B?, Vj(m)(·)},

and it immediately holds that Ṽj(m) is Fm,h-measurable. We now write E2 as

E2 =

M∑
m=1

Hm∑
h=1

[
Ṽj(m)(sm,h+1)− PṼj(m)(sm,h, am,h)

]
+

M∑
m=1

Hm∑
h=1

[
[Vj(m) − Ṽj(m)](sm,h+1)− P[Vj(m) − Ṽj(m)](sm,h, am,h)

]
.

Since Ṽj(m) is bounded, we can apply Lemma G.2 and get that, with probability at least 1− δ/2,

E2 ≤ 2B?

√
2T log

(
T

δ/2

)
+

M∑
m=1

Hm∑
h=1

[
[Vj(m) − Ṽj(m)](sm,h+1)− P[Vj(m) − Ṽj(m)](sm,h, am,h)

]
.

Now note that under the event of Lemma 6.3, we have Ṽj(m) = Vj(m) for all j(m) ≥ 1 by optimism
and also Ṽ0 = V0 by the initialization, which implies that the second term in the RHS is zero.
Therefore, take the intersection of the two events and we conclude that, with probability at least 1− δ,
E2 ≤ 2B?

√
2T log(2T/δ).

D.3 PROOF OF THEOREM 6.1

Proof. Note that the regret decomposition (6.1) is proved under the condition that the event of
Lemma 6.3 holds. Then together with Lemmas 6.3, D.1 and D.2, we conclude that with probability
at least 1− δ,

R(M) ≤ 4βT
√

2Td · log (1 +B2
?T/λ) + 5dB?

[
log

(
1 +

TB2
?d

λ

)
+ log(T)

]
+ 2B?

√
2T log

(
2T

δ

)
+ 4 + 2dB? log

(
1 +

TB2
?d

λ

)
+ 2B? log(T) + 2.

Combining the lower order terms finishes the proof.

E LOWER BOUND

E.1 PROOF OF THE LOWER BOUND

Proof of Theorem 5.5. We now construct a class of challenging SSP instances. We denote these
SSPs by M = {S,A,Pθ, c, sinit, g}. The state space S contains two states, i.e., S = {sinit, g}.
The action space A contains 2d−1 actions where each action a ∈ A is a (d − 1)-dimensional
vector a ∈ {−1, 1}d−1. Here we use the boldface notation a instead of a to emphasize the action
is represented by a vector. The cost function is given as c(sinit,a) = 1 and c(g,a) = 0 for any
a ∈ A. The transition kernel Pθ of this SSP class is parameterized by a (d− 1)-dimensional vector
θ ∈ {− ∆

d−1 ,
∆
d−1}

d−1. Specifically, for any a ∈ A, we have

Pθ(sinit|sinit,a) = 1− δ − 〈a,θ〉, Pθ(g|sinit,a) = δ + 〈a,θ〉, Pθ(g|g,a) = 1,

21

Under review as a conference paper at ICLR 2022

where δ and ∆ are parameters to be determined later. It is easy to verify that this is indeed an
instance of linear mixture SSP with the parameter θ∗ = (θ>, 1)> ∈ Rd and the feature mapping
φ(sinit|sinit,a) = (−a>, 1 − δ)>, φ(g|sinit,a) = (a>, δ)> , φ(sinit|g,a) = 0d, and φ(g|g,a) =
(0>d−1, 1)>.
Remark E.1. In addition, this hard-to-learn instance can be adapted into a linear SSP stud-
ied in Vial et al. (2021). More specifically, it suffices to set θ∗ = (1,0>d)>,µ(sinit) =

(1 − δ,−
√
dθ>, 0),φ(sinit,a) = (1,a>/

√
d, 0)> and φ(g,a) = (0,0>d−1, 1)>. Then the linear

SSP defined by the cost function c(s,a) = φ(s,a)>θ∗ and the transition probability function
Pθ(s′|s,a) = φ(s,a)>µ(s′) indeed recovers our construction above. This suggests that our analysis
also yields a Ω(dB?

√
K) for linear SSP, further complementing the results in Vial et al. (2021).

Note that for this SSP instance, the optimal policy is to always choose aθ in state sinit, where aθ denote
the vector whose entries has the same sign as the corresponding entries of θ, i.e., sgn(aθ,j) = sgn(θj)
for j = 1, · · · , d − 1. Here aθ,j and θj denote the j-th entry of the respective vectors. Then the
expected cost under the optimal policy is

V
π?
θ

1 (sinit) =

∞∑
t=1

(1− δ −∆)t−1(δ + ∆)t =
1

δ + ∆
.

Therefore we will choose δ and ∆ such that

δ + ∆ =
1

B?
. (E.1)

It remains to show that for any history-dependent and possibly non-stationary policy π = {πt}∞t=1,
there exists some valid choice of δ and ∆ such that the corresponding SSP class is hard to learn.

Let’s consider the regret in an arbitrary episode k. Let s1 = sinit. The expected regret can be written
as

Rθ,k

= V π1 (s1)− V π
?
θ

1 (s1)

= V π1 (s1)− Ea1∼π[Q
π?
θ

1 (s1,a1)] + Ea1∼π[Q
π?
θ

1 (s1,a1)]− V π
?

1 (s1)

= Ea1
[c(s1,a1)] + Ea1

{
Es2∼P(·|s1,a1)[V

π
2 (s2)]

}
− Ea1

[c(s1,a1)]− Ea1
{
Es2∼P(·|s1,a1)[V

π?
θ

2 (s2)]
}

+ Ea1 [Q
π?
θ

1 (s1,a1)]− V π
?
θ

1 (s1)

= Ea1,s2 [V π2 (s2)− V π
?
θ

2 (s2)] + Ea1
[Q

π?
θ

1 (s1,a1)]− V π
?
θ

1 (s1),

= Ea1,s2 [V π2 (s2)− V π
?
θ

2 (s2)] + Ea1

 2∆

d− 1
1{s1 = sinit}

d−1∑
j=1

1{sgn(a1,j) 6= sgn(θj)}

 ·B?,
(E.2)

where the third equality is by the Bellman equation, and the last equality holds because choosing a1

at state s1 = sinit instead of aθ results in an extra probability of 2∆
d−1

∑d
j=1 1{sgn(a1,j) 6= sgn(θj)}

to remain in sinit for step 2, which incurs an extra cost of 1 by our construction of the cost function.
Now by recursion, we can write the regret in episode k as

Rθ,k =
2∆B?
d− 1

·
∞∑
i=1

Ek

1{si = sinit} ·
d−1∑
j=1

1{sgn(ai,j) 6= sgn(θj)}

 ,
where the expectation Ek is taken with respect to the trajectory induced by the transition kernel Pθ

and history-dependent policy π given the history till the end of episode k − 1.

We can now write the total expected regret of π in K episodes given θ as

Rθ(K) =
2∆B?
d− 1

·
∞∑
t=1

Eθ

1{st = sinit} ·
d−1∑
j=1

1{sgn(at,j) 6= sgn(θj)}

 ,
22

Under review as a conference paper at ICLR 2022

where the expectation is taken with respect to Pθ and π. Here we omit the subscript π since it is clear
from the context.

We denote the total number of steps in sinit by N :=
∑∞
t=1 1{st = sinit}, and for j = 1, · · · , d− 1,

Nj(θ) :=

∞∑
t=1

1{st = sinit} · 1{sgn(at,j) 6= sgn(θj)}.

This allows us to write Rθ(K) = 2∆B?

d−1 Eθ[
∑d−1
j=1 Nj(θ)]. Now to bound the regret, we can rely on a

standard technique using Pinsker’s inequality (Jaksch et al., 2010). However, this would require each
Nj(θ) to be almost surely bounded, which does not hold in the case of SSP. To circumvent this issue,
we apply the “capping” trick from Cohen et al. (2020) that cap the learning process to contain only
the first T steps for some pre-determined T . To be specific, if the K episodes are finished before
the time T , then the agent remains in state g. In this case, the actual regret for this capped process
is exactly equal to the uncapped process. On the other hand, if at time T the agent has not finished
all the K episodes, it is stopped immediately. In this case the actual regret is smaller than that of
the uncapped process. Therefore, we only need to lower bound the expected regret for this capped
process.

Let N− :=
∑T
t=1 1{st = sinit}, and

N−j (θ) :=

T∑
t=1

1{st = sinit} · 1{sgn(at,j) 6= sgn(θj)}.

Then we can lower bound the expected regret by Rθ(K) ≥ 2∆B?

d−1 Eθ[
∑d−1
j=1 N

−
j (θ)]. For each

θ ∈ {− ∆
d−1 ,

∆
d−1}

d−1, let θj denote the vector which differs from θ only at the j-th entry. Then we
sum over θ and get that

2
∑
θ∈θ

Rθ(K) ≥ 2∆B?
d− 1

∑
θ

d−1∑
j=1

(
Eθ[N−j (θ)] + Eθj [N−j (θj)]

)
=

2∆B?
d− 1

∑
θ

d−1∑
j=1

(
Eθj [N−] + Eθ[N−j (θ)]− Eθj [N−j (θ)]

)
=

2∆B?
d− 1

∑
θ

d−1∑
j=1

(
Eθ[N−] + Eθ[N−j (θ)]− Eθj [N−j (θ)]

)
. (E.3)

The next shows that for large enough T , Eθ[N−] is lower bounded for all θ.
Lemma E.2 (Lemma C.2 in Cohen et al. 2020). If T ≥ 2KB?, then it holds that Eθ[N−] ≥ KB?/4
for all θ ∈ {− ∆

d−1 ,
∆
d−1}

d−1.

We will also use the following lemma which is a version of Pinsker’s inequality (Jaksch et al., 2010;
Zhou et al., 2021b).
Lemma E.3 (Pinsker’s inequality). Fix T and denote the trajectory s = {s1, · · · , sT } ∈ ST . For
any two probability distributions P1 and P2 on ST and any bounded function f : ST → [0, D], we
have

EP1
f(s)− EP2

f(s) ≤ D ·
√

log 2

2
·
√

KL(P2||P1).

Then we pick T = 2KB? and get

2
∑
θ

Rθ(K) ≥ 2∆B?
d− 1

∑
θ

d−1∑
j=1

(
KB?

4
+ Eθ[N−j (θ)]− Eθj [N−j (θ)]

)

≥ 2∆B?
d− 1

∑
θ

d−1∑
j=1

(
KB?

4
− T

√
1

2

√
KL(Pθ||Pθj)

)
,

where the first inequality is by Lemma E.2, and the second inequality is by Lemma E.3. The next
lemma shows that the KL-divergence can be related to the quantity N−.

23

Under review as a conference paper at ICLR 2022

Lemma E.4. Suppose 4∆ < δ ≤ 1/3. Then we have

KL(Pθ||Pθj) ≤ 16∆2

(d− 1)2δ
Eθ[N−].

It follows from Lemma E.4 that

2
∑
θ

Rθ(K) ≥ 2∆B?
d− 1

∑
θ

d−1∑
j=1

(
KB?

4
− T

√
1

2
· 4∆

d− 1
· 1√

δ

√
Eθ[N−]

)

≥ 2∆B?
d− 1

∑
θ

d−1∑
j=1

(
KB?

4
− T 3/2

√
1

2
· 4∆

d− 1
· 1√

δ

)

=
2∆B?
d− 1

∑
θ

d−1∑
j=1

(
KB?

4
− (2KB?)

3/2

√
1

2
· 4∆

d− 1
· 1√

δ

)
, (E.4)

where the last inequality is by N− ≤ T = 2KB?. Simplify the expression and we get that

1

|θ|
∑
θ

Rθ(K) ≥ B?
1

|θ|
· 1

d− 1

∑
θ

d−1∑
j=1

(
∆KB?

4
− 8∆2

(d− 1)
√
δ

(KB?)
3/2

)

= B?

[
∆KB?

4
− 8∆2

(d− 1)
√
δ

(KB?)
3/2

]
. (E.5)

We now pick

∆ =
(d− 1)

√
δ

64
√
KB?

, (E.6)

and δ such that δ + ∆ = 1/B?, plug into (E.5) and get that

1

|θ|
∑
θ

Rθ(K) ≥ dB?
√
δ
√
KB?

512
≥ dB?

√
K

1024
,

where the last step is by δ + ∆ = 1
B?

and ∆ < δ. Therefore, there must exist some θ ∈ θ such that
the expected regret Rθ(K) satisfies

Rθ(K) ≥ dB?
√
K

1024
.

Taking θ∗ = (θ, 1)> ∈ Rd finishes the proof of the lower bound. It remains to check the conditions.
Note that by (E.1) and (E.6), we have

δ +
(d− 1)

√
δ

64
√
KB?

=
1

B?
.

Since we also have ∆ < δ, we then require

d− 1

64
√
KB?

≤
√
δ <

1√
B?

,

which implies that K > (d− 1)2/212. This finishes the proof of Theorem 5.5.

E.2 PROOF OF LEMMAS IN APPENDIX E.1

Lemma E.2 is straightforward and we refer the reader to Lemma C.2 in Cohen et al. 2020. Lemma
E.3 is a standard result. We thus omit their proof. Lemma E.4 can be easily adapted from Lemma 6.8
in Zhou et al. 2021b. However, since the MDP instance we construct under the SSP setting differs
from theirs under the discounted setting, we present the proof here for completeness.

24

Under review as a conference paper at ICLR 2022

Proof of Lemma E.4. Denote the trajectory by st = {s1, s2, · · · , st}. The chain rule of the KL-
divergence gives

KL(Pθ||Pθj) =

T−1∑
t=1

KL
[
Pθ(st+1|st)

∣∣∣∣Pθj (st+1|st)
]
, (E.7)

where

KL
[
Pθ(st+1|st)

∣∣∣∣Pθj (st+1|st)
]

:=
∑

st+1∈S
Pθ(st+1) log

Pθ(st+1|st)
Pθj (st+1|st)

.

Then we write∑
st+1∈S

Pθ(st+1) log
Pθ(st+1|st)
Pθj (st+1|st)

=
∑

st∈S×t

Pθ(st)
∑
s∈S
Pθ(st+1 = s|st) log

Pθ(st+1 = s|st)
Pθj (st+1 = s|st)

=
∑

st−1∈S×(t−1)

Pθ(st−1)
∑

s′∈S,a∈A
Pθ(st = s′,at = a|st−1)

·
∑
s∈S
Pθ(st+1 = s|st = s′,at = a, st−1) log

Pθ(st+1 = s|st = s′,at = a, st−1)

Pθj (st+1 = s|st = s′,at = a, st−1)
.

Note that when s′ = g, the transition is irrelevant of θ and Pθ(st+1 = s|st = s′,at = a, st−1) =
Pθj (st+1 = s|st = s′,at = a, st−1) for all θ. Therefore the log-term in the above equation vanishes
when s′ = g. So we only need to consider the case where s′ = sinit in the summation, and it follows
that∑
st+1∈S

Pθ(st+1) log
Pθ(st+1|st)
Pθj (st+1|st)

=
∑

st−1∈S×(t−1)

Pθ(st−1)
∑
a∈A
Pθ(st = sinit,at = a|st−1)

·
∑
s∈S
Pθ(st+1 = s|st = sinit,at = a, st−1) log

Pθ(st+1 = s|st = sinit,at = a, st−1)

Pθj (st+1 = s|st = sinit,at = a, st−1)

=
∑
a∈A
Pθ(st = sinit,at = a) ·

∑
s∈S
Pθ(st+1 = s|st = sinit,at = a) log

Pθ(st+1 = s|st = sinit,at = a)

Pθj (st+1 = s|st = sinit,at = a)
.

(E.8)

Note that when st = sinit, st+1 is either sinit or g with probability 1− δ−〈a,θ〉 and δ+ 〈a,θ〉. Then
we can further write (E.8) as∑

st+1∈S
Pθ(st+1) log

Pθ(st+1|st)
Pθj (st+1|st)

=
∑
a∈A
Pθ(st = sinit,at = a)

·
[
(1− δ − 〈a,θ〉) · log

1− δ − 〈a,θ〉
1− δ − 〈a,θj〉

+ (δ + 〈a,θ〉) · log
δ + 〈a,θ〉
δ + 〈a,θj〉

]
≤
∑
a∈A
Pθ(st = sinit,at = a) · 2〈a,θj − θ〉2

δ + 〈a,θ〉
, (E.9)

where the last step holds due to the following inequality with δ′ = δ + 〈a,θ〉, and ε′ = 〈a,θj − θ〉.
Lemma E.5 (Lemma 20, Jaksch et al. 2010). For any real number δ′ and ε′ such that 0 ≤ δ′ ≤ 1/2
and ε′ ≤ 1− 2δ′, we have

δ′ log
δ′

δ′ + ∆
+ (1− δ′) log

1− δ′

1− δ′ − ε′
≤ 2(ε′)2

δ′
.

25

Under review as a conference paper at ICLR 2022

To verify the assumptions of Lemma E.5, note that δ′ ≤ δ+∆ ≤ 1/12+1/3 < 1/2 by 4∆ ≤ δ ≤ 1/3
from the assumption of Lemma E.4. Also note that

ε′ = 〈a,θj − θ〉 ≤ 2∆ ≤ 1− 2(∆ + δ) ≤ 1− 2δ′,

where the first step is by the definition of θ, the second step is by δ ≤ 1/12 and δ + ∆ ≤ 5/12, and
the last step is by δ′ ≤ δ + ∆. Therefore, (E.9) holds and we have∑

st+1∈S
Pθ(st+1) log

Pθ(st+1|st)
Pθj (st+1|st)

≤
∑
a∈A
Pθ(st = sinit,at = a) · 2〈a,θj − θ〉2

δ −∆

≤ 2〈a,θj − θ〉2

δ/2
·
∑
a∈A
Pθ(st = sinit,at = a)

=
4(2∆)2

(d− 1)2δ
·
∑
a∈A
Pθ(st = sinit,at = a)

=
16∆2

(d− 1)2δ
· Pθ(st = sinit).

Together with (E.7) we have

KL(Pθ||Pθj) =

T−1∑
t=1

∑
st+1∈S

Pθ(st+1) log
Pθ(st+1|st)
Pθj (st+1|st)

≤ 16∆2

(d− 1)2δ

T∑
t=1

Pθ(st = sinit)

=
16∆2

(d− 1)2δ
Eθ[N−],

where the last step is by the definition of N−.

F LEMMAS FOR THE UPPER BOUNDS

F.1 PROOF OF LEMMA 6.3

We first introduce the following classical result for self-normalized vector-valued martingales.

Lemma F.1 (Theorem 1, Abbasi-Yadkori et al. 2011). Let {Ft}∞t=0 be a filtration. Suppose {ηt}∞t=1
is a R-valued stochastic process such that ηt is Ft-measurable and ηt|Ft−1 is B-sub-Gaussian. Let
{φt}∞t=1 be an Rd-valued stochastic process such that φt is Ft−1-measurable. Assume that Σ is an
d× d positive definite matrix. For any t ≥ 1, define

Σt = Σ +

t∑
i=1

φiφ
>
i , at =

t∑
i=1

ηiφi.

Then, for any δ > 0, with probability at least δ, for all t, we have

‖Σ−1/2
t at‖2 ≤ B

√
2 log

(
det(Σt)1/2

δ · det(Σ)1/2

)
.

In the following proof we will decompose t into different rounds. For all j ≥ 1, round j corresponds
to t ∈ [tj−1 + 1, tj], during which the action-value function estimator is the output Qj of EVI. We
then apply an induction argument on the rounds to show that the optimism holds for all j ≥ 1.

Proof of Lemma 6.3. From the initialization of Algorithm 1, we have V0 ≤ B?.
Let’s consider round 1. We define ηt = V0(st+1)−〈φV0(st, at),θ

∗〉 for t ∈ [1, t1]. Then {ηt}t1t=1 are

26

Under review as a conference paper at ICLR 2022

B?-sub-Gaussian. We then apply Lemma F.1 and conclude that the following holds with probability
at least 1− δ

t1(t1+1) , for all t ∈ [1, t1]:∥∥∥∥∥Σ−1/2
t

t∑
i=1

φV0(si, ai)ηi

∥∥∥∥∥
2

≤ B?

√
2 log

(
det(Σt)1/2

δ · λd/2/(t1(t1 + 1))

)

≤ B?

√
d log

(
1 + td/(dλ)

δ/(t1(t1 + 1))

)

≤ B?

√
d log

(
t1(t1 + 1) + t · t1(t1 + 1)B2

?/λ

δ

)
, (F.1)

where the second step is by Assumption 3.1, Lemma G.3 and the initialization |V0| ≤ 1. Consider
the LHS of (F.1). We have∥∥∥∥∥Σ−1/2

t

t∑
i=1

φV0
(si, ai)ηi

∥∥∥∥∥
=

∥∥∥∥∥Σ1/2
t Σ−1

t

t∑
i=1

φV0
(si, ai)V0(si+1)−Σ

1/2
t Σ−1

t (Σt − λI)θ∗

∥∥∥∥∥
2

=
∥∥∥Σ1/2

t θ̂t −Σ
1/2
t θ∗ + λΣ

−1/2
t θ∗

∥∥∥
2

≥
∥∥∥Σ1/2

t (θ̂t − θ∗)
∥∥∥

2
−
∥∥∥λΣ

−1/2
t θ∗

∥∥∥
2

≥
∥∥∥Σ1/2

t (θ̂t − θ∗)
∥∥∥

2
− λ1/2 ·

√
d,

where the first inequality holds by Cauchy-Schwarz inequality and the second inequality holds
because ‖θ∗‖2 ≤

√
d. Together with (F.1) and the choice of βt, we conclude that∥∥∥Σ1/2

t (θ̂t − θ∗)
∥∥∥

2
≤ B?

√
d log

(
t1(t1 + 1) + t · t1(t1 + 1)B2

?/λ

δ

)
+
√
λd ≤ βt1 .

Since the above holds for all t ∈ [1, t1], it follows that with probability at least 1− δ
t1(t1+1) , the true

parameter θ∗ is in the set C1 ∩ B.

To show that the output Q1 and V1 of EVI are optimistic, we apply a second induction argument on
the loop of EVI. For the base step, note that by non-negativity of Q? and V ?, we have Q(0) ≤ Q?
and V (0) ≤ V ?. We now assume Q(i) and V (i) are optimistic. For the i+ 1-th iteration, we have

Q(i+1)(·, ·) = c(·, ·) + (1− q) · min
θ∈C1∩B

〈θ,φV (i)(·, ·)〉

≤ c(·, ·) + (1− q) · PV (i)(·, ·)
≤ c(·, ·) + PV (i)(·, ·)
≤ Q?(·, ·),

where the first step is because we are considering the case where ρ = 0, the second step is because we
are taking the minimum over a set that contains θ∗, the third step is by non-negativity of PV (i)(·, ·),
and the last step is by the Bellman optimal condition (3.2) and the induction hypothesis that V (i)

is optimistic. By induction, we conclude that Q(i) is optimistic for all i, and thus the final output
Q1(·, ·) and thus V1(·) are both optimistic. We finish the proof for round 1.

Now for our outer induction, let’s suppose that the event in Lemma 6.3 holds for round 1 to j − 1
with high probability. That is, we define the event

Ej−1 := {θ∗ ∈ Ci ∩ B, Vi(·) ≤ V ?(·) ≤ B?, Qi(·, ·) ≤ Q?(·, ·) for all i ∈ [1, j − 1]} ,
and assume that Pr(Ej−1) ≥ 1− δ′ for some δ′ > 0. We now show that the event Ej also holds with
high probability. Similar to the proof of Lemma D.2, we construct an auxiliary sequence of functions

Ṽi(·) := min {B?, Vi(·)} , i ∈ [1, j − 1].

27

Under review as a conference paper at ICLR 2022

We also denote, for any i ∈ [1, j] and for any t ∈ [ti−1 + 1, ti],

η̃t = Vi−1(st+1)− 〈φṼi−1
(st, at),θ

∗〉,

Σ̃t = λI +

t∑
l=1

φṼi(l)−1
(sl, al)φṼi(l)−1

(sl, al)
>,

θ̃t = Σ̃−1
t

t∑
l=1

φṼi(l)−1
(sl, al)Ṽi(l)−1(sl+1),

C̃i =
{
θ ∈ Rd :

∥∥∥Σ̃1/2
ti (θ̃ti − θ∗)

∥∥∥
2
≤ βti

}
,

where i(l) is the round that contains the time step l, i.e., l ∈ [ti−1 + 1, ti]. Observe that, by this
construction {η̃t}

tj
t=1 are almost surely B?-sub-Gaussian. This allows us to apply Lemma F.1 and do

the similar computation as above, and get that, with probability at least 1 − δ
tj(tj+1) , we have the

event Ẽj holds where

Ẽj :=
{
θ∗ ∈ C̃j ∩ B, Vj(·) ≤ V ?(·) ≤ B?, Qj(·, ·) ≤ Q?(·, ·)

}
,

and Qj is the output of EVI(C̃j , εj , 1
tj
, ρ).

Now, observe that under the event Ej−1, the optimism implies that Ṽi = Vi for all i ∈ [1, j − 1]. It
follows that under Ej−1, we have η̃t = ηt, Σ̃t = Σt, θ̃t = θ̂t for all t ≤ tj , and thus C̃j = Cj . We
then have

Ej = Ej−1 ∩ Ẽj ,

and by the union bound we have that Pr(Ej) ≥ 1− δ′ − δ
tj(t1+1) .

Now, by induction and taking the union bound

J∑
j=1

δ

tj(tj + 1)
=

J∑
j=1

δ ·
(

1

tj
− 1

tj + 1

)
≤ δ,

we conclude that with probability at least 1 − δ, the good event holds for all j ≤ J , where J is
the total number of times EVI being called. Note that compared with the analysis of EVI in the
discounted MDPs setting (for example in Zhou et al. 2021b), our analysis of EVI in SSP uses the
induction argument and a union bound, which results in extra t factors in the logarithmic term in the
confidence radius βt. At last, replacing t(t+ 1) with 2t2 and δ with δ/2 gives the final expression
for βt.

It remains to argue that EVI always converges in finite time. This actually follows directly from
the results established above by using an argument similar to the analysis of EVI for MDPs with
constant discount factor. To begin with, note that it suffices to show that ‖V (i) − V (i−1)‖∞ shrinks
exponentially. We now claim that ‖Qi −Q(i−1)‖∞ shrinks exponentially, which together with (4.2)
gives the desired result since ‖V (i) − V (i−1)‖∞ ≤ ‖Q(i) −Q(i−1)‖∞. To show this, first note that
for any (s, a) pair,

|Q(i)(s, a)−Q(i−1)(s, a)| = (1− q) ·
∣∣∣∣ min
θ∈C∩B

〈θ,φV (i−1)(s, a)〉 − min
θ∈C∩B

〈θ,φV (i−2)(s, a)〉
∣∣∣∣

≤ (1− q) · max
θ∈C∩B

|〈θ,φV (i−1)(s, a)− φV (i−2)(s, a)〉|

= (1− q) ·
∣∣〈θ̄,φV (i−1)(s, a)− φV (i−2)(s, a)〉

∣∣
= (1− q) ·

∣∣∣P̄(V (i−1) − V (i−2))(s, a)
∣∣∣

≤ (1− q) ·max
s′∈S

∣∣∣V (i−1)(s′)− V (i−2)(s′)
∣∣∣

= (1− q) ·max
s′∈S

∣∣∣min
a′

Q(i−1)(s′, a′)−min
a′

Q(i−2)(s′, a′)
∣∣∣

28

Under review as a conference paper at ICLR 2022

≤ (1− q) · ‖Q(i−1) −Q(i−2)‖∞,

where θ̄ is the θ in the non-empty set C ∩ B that achieves the maximum. Here the first inequality
holds due to the maximum function, the second inequality holds because P̄(·|s, a) is a probability
distribution, and the last inequality holds due to the same reason as the first one. Now, since s, a are
arbitrary in the above, we conclude that ‖Q(i) − Q(i−1)‖∞ ≤ (1 − q)‖Q(i−1) − Q(i−2)‖∞. This
finishes the proof.

G AUXILIARY LEMMAS

In this subsection we introduce the auxiliary lemmas used in the analysis.
Lemma G.1 (Azuma-Hoeffding inequality). Let {Xt}∞t=0 be a real-valued martingale such that for
every t ≥ 1, it holds that |Xt −Xt−1| ≤ B for some B ≥ 0. Then with probability at least 1− δ,
the following holds

|Xt −X0| ≤ 2B

√
t log

(
1

δ

)
.

Lemma G.2 (Azuma-Hoeffding inequality, anytime version). Let {Xt}∞t=0 be a real-valued mar-
tingale such that for every t ≥ 1, it holds that |Xt − Xt−1| ≤ B for some B ≥ 0. Then for any
0 < δ ≤ 1/2, with probability at least 1− δ, the following holds for all t ≥ 0

|Xt −X0| ≤ 2B

√
2t log

(
t

δ

)
.

Proof of Lemma G.2. By Lemma G.1, for any t, with probability at least 1− δ
t(t+1) , we have

|Xt −X0| ≤ 2B

√
t log

(
t(t+ 1)

δ

)
.

Note that since
∞∑
t=1

δ

t(t+ 1)
=

∞∑
t=1

(
1

t
− 1

t+ 1

)
δ = δ,

we take an union bound and get that, with probability at least 1− δ, for all t, the following holds

|Xt −X0| ≤ 2B

√
t log

(
t(t+ 1)

δ

)
≤ 2B

√
t log

(
t2

δ2

)
,

where the second step is by δ ≤ 1/2.

Lemma G.3 (Determinant-Trace inequality, Lemma 10 in Abbasi-Yadkori et al. 2011). Assume
φ1, · · · ,φt ∈ Rd and for any s ≤ t, ‖φs‖2 ≤ L. Let λ > 0 and Σt = λI +

∑t
s=1 φsφ

>
s . Then

det (Σt) ≤
(
λ+ tL2/d

)d
.

Lemma G.4 (Lemma 11 in Abbasi-Yadkori et al. 2011). Let {φt}∞t=1 be in Rd such that ‖φt‖ ≤ L
for all t. Assume Σ0 is a PSD matrix in Rd×d, and let Σt = Σ0 +

∑t
s=1 φsφ

>
s . Then we have

t∑
s=1

min
{

1, ‖φs‖Σ−1
s−1

}
≤ 2

[
d log

(
trace(Σ0) + tL2

d

)
− log det(Σ0)

]
.

29

	Introduction
	Related Work
	Preliminaries
	Algorithms
	Main Results
	Upper Bounds: Positive Cost Functions
	Upper Bound: General Cost Functions
	Lower Bound

	Proof Sketch of the Main Results
	Proof of Theorem 5.2
	Proof Sketch of Theorem 6.1

	Conclusions
	Additional discussions
	Discussion on the Linear Mixture MDPS
	Extension to Bernstein-type Algorithms

	Numerical Simulations
	Proof of Regret Decomposition
	Proof of Theorem 6.1
	Bounding E1
	Bounding E2
	Proof of Theorem 6.1

	Lower Bound
	Proof of the Lower Bound
	Proof of Lemmas in Appendix E.1

	Lemmas for the Upper Bounds
	Proof of Lemma 6.3

	Auxiliary Lemmas

