
A Experiment details

A.1 Datasets, splits, preprocessing, data augmentation

CIFAR-10 The CIFAR-10 dataset Krizhevsky [2012] consists of 60000 32x32 colour images in
10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.
We used the canonical train–test split. As a preprocessing, we normalized the images with the
means (0.4914, 0.4822, 0.4465) and standard deviations (0.2023, 0.1994, 0.2010) for the three RGB
channels, respectively. As augmentation, we used random horizontal flip, and 32x32 sized random
crop from the zero padded 40x40 inputs.

CelebA The CelebA dataset Liu et al. [2015] is a large-scale face attributes dataset, it consists
of 202599 number of images depicting faces of celebrities, each with 40 attribute annotations. We
used a random split with 80% train and 20% test set sizes. Originally the CelebA images are sized
178×218 (width × height). As a preprocessing, we first reshaped these images to 256x256 pixels and
then applied a center crop to 224x224 which was our final input shape for the Inception V1 networks.
We subtracted 117 from each pixel. As augmentation, we applied a random rotation between degrees
of -10 and 10.

A.2 Network architectures and training details

Tiny-10 Tiny-10 is a simple multi-layer convnet architecture. We use this model to provide a
simple convnet for the experiments that trains fast on modern hardware. (A similar architecture was
used also in Kornblith et al. [2019].) Table 1 details the layers along with the names we used in
the paper to refer to a particular part of the network. While this naming is ambiguous as it could
refer to three different activation spaces (in a row of the table), we use the activations after the batch
normalization and before the nonlinearity if not otherwise stated.

We trained the model on CIFAR-10 for 300 epochs, the optimizer was SGD with Nesterov momentum
0.9. There was a schedule for the learning rate: started with the value of 0.1 and it was divided by 10
at 1/3 of the training, and with another 10 at the 2/3 of the training. The batch size was 128. We used
weight decay with value 10−4. The average accuracy of the resulting models was 86.55%.

Table 1: The Tiny10 architecture.
Tiny10

Layers Name

3 × 3 conv. 16-BN-ReLu Layer 1
3 × 3 conv. 16-BN-ReLu Layer 2
3 × 3 conv. 32 stride 2-BN-ReLu Layer 3
3 × 3 conv. 32-BN-ReLu Layer 4
3 × 3 conv. 32-BN-ReLu Layer 5
3 × 3 conv. 64 stride 2-BN-ReLu Layer 6
3 × 3 conv. 64 BN-ReLu Layer 7
1 × 1 conv. 64-BN-ReLu Layer 8
Global average pooling
Dense
Logits

ResNet-20 Our ResNet-20 He et al. [2016] variant follows common practices regarding CIFAR-10:
we use a 3-level architecture with three residual blocks per level. A residual block contains the
following layers: Conv-Batchnorm-ReLU-Conv-Batchnorm. After each residual block, a ReLU
operation follows the addition operation. Convolution kernels are sized 3x3. In the paper, we use
the following naming convention: LayerX.Y corresponds to activations after the addition operation
following a residual block with index Y in level X, with the exception of Layer0.0, which corresponds
to the activation space after the first Conv-Batchnorm layer in the network preceding the residual
blocks.
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We trained the model on CIFAR-10 for 300 epochs, the optimizer was SGD with Nesterov momentum
0.9. There was a schedule for the learning rate: started with the value of 0.1 and it was divided by 10
at 1/3 of the training, and with another 10 at the 2/3 of the training. The batch size was 128. We used
weight decay with value 10−4. The average accuracies were 91.95%, 93.97%, 94.59%, 94.77% for
the 1-width, 2-width, 3-width, and 4-width ResNets, respectively.

Inception V1 For the Inception V1 Szegedy et al. [2015], we omit the detailed description of the
architecture as a reiteration would be cumbersome, and there are no specifics for the task at hand.
Regarding the layer names, we follow the standard naming conventions.

We trained the model on CelebA for 20 epochs, using the Adam optimizer with parameters β1 = 0.9
and β2 = 0.999. Learning rate was 0.0001, batch size was 128.

A.3 Experiment 1 - Details for matching with least squares and task loss matching

In this experiment, we take network pairs (Model 1 and Model 2) which are of the same architecture
but trained from different weight initializations and with different orderings of the training set.

Least squares matching Let A and B denote the activation matrices for the training data of Model
1 and Model 2, respectively. We appended an all ones vector to the activation matrix A of Model 1 to
represent the bias. Then we calculated the pseudoinverse A† of A using SVD. The transformation
matrix and the bias of the stitching layer was obtained by calculating A†B.

Task loss matching We initialized the transformation matrix and the bias of the stitching layer to
the least squares solution (which was calculated as described above). Then we trained the stitching
layer on the train set for 30 epochs. The utilized loss was cross-entropy to Model 2 activations. The
optimizer was Adam with parameters β1 = 0.9 and β2 = 0.999, learning rate was set to 10−3, batch
size was 128.

We used the following hyperparameter selection protocol: after a grid search with Tiny-10 and ResNet
consisting of the parameter settings { Optimizer: Adam, SGD } × { Learning rate: 0.1, 0.01, 0.001,
0.0001, 0.00001 } and training for 300 epochs, we observed that Adam is significantly better than
SGD, and that learning rates below 0.001 do not affect performance, only prolong the training time.
Moreover, we observed that with the selected hyperparameters the training of the stitching layer
always reaches a plateau before the 30th epoch, thus, we set this hyperparameter accordingly.

On Tiny-10, we matched the activations after the batch normalization layer (which comes after the
convolution and before the nonlinearity). With ResNets, we plotted the results that correspond to
stitchings after the addition operations of the residual blocks. (Matchings on the inside layers of
residual blocks are harder to interpret, while the results are very similar).

A.4 Experiment 2 - Details for networks of different width

We utilized the same methodology and settings to train the stitching layer as described in Ap-
pendix A.3. The baseline 3-level ResNet had 16, 32, and 64 filters in the convolution layers for each
level, respectively. The networks of different width were obtained by multiplying these baseline filter
numbers with the width multiplier.

A.5 Experiment 3 - Details for similarity indices and task performance

We utilized the same methodology and settings to set or train the stitching layer as described in
Appendix A.3.

CKA, CCA and SVCCA is calculated on the whole validation set. We can fit this amount of data
into memory without needing to resort to sampling methods like “minibatch CKA” Nguyen et al.
[2021]. We note that the resulting CKA values are indistinguishable from values obtained when
working with any number of data points between 2500 and 10000.
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Figure 9: CCA, SVCCA and cross-entropy values over the training iterations of task loss matching
started from the optimal Least Squares matching. Tiny-10 network, stitching at Layer 3. Bold
lines are averages of 10 runs, with bands representing standard deviations; dotted and dashed lines
correspond to two specific runs to show the individual characteristics of the training of the stitching
layer.

A.6 Experiment 4 - Details for low CKA value with high accuracy

The loss penalizing CKA was calculated on the training minibatch, the reported values were calculated
on the whole validation set. We trained the stitching layer for 2 epochs with batch size 128, CKA loss
weight 0.1, the optimizer was Adam with parameters β1 = 0.9 and β2 = 0.999, learning rate was
0.001 at the first epoch and 0.0001 in the second epoch. (Nevertheless, we observed that the general
outcome of the experiment is quite robust for a large range of hyperparameters.)

A.7 Experiment 5: Details for dependence of accuracy on initializations

We train the stitching layer on task loss from 50 random and 50 optimal least squares initializations
between two Tiny-10 architectures trained from different initializations. Other settings of the
experiment are the same as presented in Appendix A.3. Figure 10 shows the results for all layers,
between three pairs of networks.

A.8 Experiment 6: Details for linear mode connectivity of transformation matrices

We utilized the same methodology and settings to train the stitching layers as described in Ap-
pendix A.3. See Figure 11 for detailed results.

A.9 Experiment 7: Details for sparsity — direct vs. task loss matching

To compare the sparsity tolerance of task loss matching and direct matching, we trained 5 stitching
layers with both methods until convergence, which means 30 and 200 epochs, respectively. We used
the Tiny-10 architecture, and the CIFAR-10 dataset. For task loss matching we utilized the same
methodology and settings as described in Appendix A.3. We trained the direct matching using the
Adam optimizer with parameters β1 = 0.9 and β2 = 0.999, learning rate was set to 10−2. We ran
the trainings with different L1-regularization coefficients, namely: 0, 10−4, 10−3, 10−2, 10−1, 100,
101, 102, 103, 104 to achieve increasing sparsity. In order to achieve an actual sparse matrix, we set
every entry of the matrix to 0 below a certain threshold, 10−4. We evaluated the performance of the
sparse stitching matrices on the task. Figure 12 shows the relative accuracy and sparsity (ratio of zero
elements) with respect to L1-regularization term, and Figure 13 shows the relative accuracy with
respect to sparsity for all matched layers.
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A.10 Experiment 8: Details for low rank representations

For task loss matching, the low rank transformation is ensured by a bottleneck in the stitching layer:
for a prescribed rank k ∈ N, an n× n transformation matrix is parametrized by the product of two
k × n and n× k sized matrices.

For least squares matching, we use the reduced rank regression outlined in the main text.

In all other respects, we utilize the same methodology and settings to set or train the stitching layer as
described in Appendix A.3.

Figure 14 depicts further results for all the layers of the Tiny-10 architecture for this experiment.

A.11 Compute resources

We trained and evaluated approximately 20000 stitching layers overall. We used an internal cluster
with GeForce 1080 Ti and GeForce 2080 Ti GPUs and dual Intel Xeon E5-2650 v4 CPUs in the
machines. Each experimental run for a stitching layer with training and evaluation together used one
(or a partial) GPU and generally finished under ten minutes for the Tiny-10 architecture, and under
fifteen minutes for a 1-wide ResNet on these machines.

B Further direct matching methods

B.1 Weighted mean squares matching of activations

In these experiments, we train the stitching layer to minimize the Weighted Mean Squared (WMS)
objective. Our goal was to find a more or less simple method which sorts the activations, and assigns
higher weights to the activations where a more precise matching is beneficial from the perspective of
task performance. Roughly speaking, this method tries to identify more important features and put
them into focus during the direct matching.

Given flattened activations A,B ∈ Rn×s and a matrix of weights W ∈ Rn×s we used Stochastic
Gradient Descent to find the M which minimizes the WMS distance between AM and B:

min
M∈Rs×s

‖(AM −B) ◦W‖F , (4)

where ◦ is the Hadamard product [X ◦ Y ]ij = Xij · Yij .
For the experiments listed below, we used the Tiny-10 architecture, the Adam optimizer with
parameters β1 = 0.9 and β2 = 0.999, learning rate was set to 10−2, batch size was 64 and we trained
for 200 epochs.

In the following, we will present different choices for the unnormalized weight matrices Wu. In each
case, we will normalize the weight matrix with entries in [0, 1] as follows:

W =
Wu − wmin1N1T

s

wmax
, (5)

where wmin, wmax denote the smallest and largest entries in W .

Gradient based weighting As the Class Saliency method points out Simonyan et al. [2014], the
gradients of a network’s outputs with respect to its inputs may contain valuable information about
the importance of each part of the input. Our method is analogous, however we inspect the hidden
activations instead of the inputs. In this experiment, we solved a weighted mean squares matching (4)
where the weights were determined from the gradients in the network.

In the following, fix the network weights φ and the layer L, and denote by Tk = T kφ,L the task
map from Aφ,L to the kth class, and T̂k = T̂ kφ,L the task map from Aφ,L to the kth class without
the last non-linearity. Denote by ∂ijh = ∂jh(xi) the partial derivative of a real-valued function
h : Aφ,L → R on the ith datapoint according to the jth coordinate in the activation space Aφ,L.
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We experimented with four variants of gradient based weighting; in each case, we took as unnormal-
ized weights Wu a matrix of the form

Wu
ij = ∂ijf(gk),

where f ∈ {
∑
k, argmaxk} and gk ∈ {Tk, T̂k}. In each case we solved the weighted mean squares

matching problem (4) by taking as weight matrix W the normalization of such a weight matrix Wu.
In particular, we considered the following variants:

• Gradients of summed output of Model 2 with respect to its matched activations:

Wu
ij = ∂ij

∑
k

Tk

• Gradients of the Model 2’s output of the predicted class with respect to its matched activa-
tions:

Wu
ij = ∂ij argmax

k
Tk

• Gradients of summed output logits of Model 2 with respect to its matched activations:

Wu
ij = ∂ij

∑
k

T̂k

• Gradients of Model 2’s output logits of the predicted class with respect to its matched
activations:

Wu
ij = ∂ij argmax

k
T̂k

However, we found that overall these methods did not result in a consistent performance gain
compared to the direct matching with unweighted least squares objective.

Activation based weighting Another approach is to take as unnormalized weights Wu = B, and
use the corresponding normalized weight matrix W defined by (5). A simple way to emphasize
higher values in this weight matrix is to take higher powers of each entry of W , i.e. use the weighting

W ◦n =W ◦ . . . ◦W, (6)
where ◦ denotes the (element-wise) Hadamard product.

We highlight some of these results for different values of n in Figure 15a. Our experiments show, that
matching Tiny-10 architecture’s layers this way results in significant performance gain compared to
the Least Squares based direct matching. This indicates that matching the higher regime of activations
accurately is more important than the lower regime.

Another way to force higher activation focused matching is simply to define a threshold T , and only
match the activations above this threshold. In particular, this corresponds to a 0 – 1 weighting matrix

W = [1>T (bij)] (7)
where 1>T (x) denotes the indicator function, which serves as a threshold function. See Figure 15b
for experiments with different thresholds Ti, defined by different percentiles i ∈ {10, 20} of the
activation values bij . We also tested higher threshold values defined by higher percentiles, which
resulted in weaker performance. With this approach the activations below the threshold are not
matched at all.

We also experimented with a slightly modified setup, where we define the weights as:

Wij = 1− 1<T (bij) · 1<T ([AM ]ij) =

{
0, [AM ]ij < T and Bij < T,

1, else.
(8)

This choice of weights achieves that if a target activation in B is above a certain threshold, the
corresponding activation distance (bij − [AM ]ij)

2 is always matched with weight 1. However, if
the target activation in B is below the chosen threshold, then the direct matching only penalizes
the corresponding distance if the matched activation [AM ]ij exceeds the threshold. Informally, we
don’t care about the residuals as long as both activations are below the threshold. See Figure 15c
for experiments with different thresholds Ti defined by different percentiles i ∈ {10, 20, 30, 40, 50}.
The higher thresholds resulted in weaker performance.

Another version of this last experiment (with weights (8)), is to set the threshold T = 0, which is a
reasonable choice because Tiny-10 uses ReLU activations. See Figure 15d for results.
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C Further experiments

C.1 A sanity check for stitching

We measured the accuracy of stitching with task loss between N1
i and N2

j , where N1, N2 are
networks with the same architecture, trained on the same data but with different sample order, and
Ni, Nj refers to the ith and jth layers of the network.

Stitched activations are required to have the same dimensionality, so we downsampled the higher
dimensions with maxpooling before stitching. As upsampling without additional information is
questionable, we always stitched from higher dimension (earlier layer) to lower dimension (later
layer). Figure 16 shows the results measured on Resnet-20 architecture with width 1. We utilized the
same methodology and settings to train the stitching layer as described in Appendix A.3.

C.2 Cross-task stitching, Feature visualization

The following experiments use the Lucent port2 of the Lucid interpretability framework [Olah et al.,
2017] to visualize how Model 2 channels are constructed from the linear combinations of Model 1
channels during direct matching and stitching.

In the first setup, two Inception V1 networks trained on CelebA are stitched at various layers. The
feature visualizations are shown in Figure 17. In the second setup, Model 1 is trained on ImageNet,
and Model 2 is trained on CelebA. The feature visualizations are shown in Figure 18.

As seen in Tables 2a and 2b, the relative accuracies are consistently high, close to 100% in the case of
the CelebA-CelebA stitchings. Even more notable is the case of the ImageNet-to-CelebA stitchings,
where even the highest layers of the randomly initialized CelebA network can reuse the ImageNet
features, with only a 3% relative drop in accuracy.

Note that a limitation of backpropagation-based feature visualization is that even though the visualized
feature is a pattern that activates the channel, it can be activated by very different patterns as well.

Least Squares Frankenstein
layer

3a 99.45% 99.88%
3b 98.73% 99.86%
4a 99.41% 99.85%
4b 99.21% 99.84%
4c 99.05% 99.87%
4d 98.80% 99.91%
4e 98.88% 100.01%
5a 99.98% 100.07%
5b 99.92% 100.08%

(a) Stitchings between two CelebA networks with
different random initializations.

Least Squares Frankenstein
layer

3a 97.72% 99.77%
3b 95.90% 99.62%
4a 97.73% 99.41%
4b 96.74% 99.22%
4c 95.27% 98.88%
4d 93.45% 98.42%
4e 94.37% 98.21%
5a 95.75% 97.49%
5b 95.57% 97.02%

(b) Imagenet to CelebA stitchings.

Table 2: Inception V1 stitchings, relative accuracies.

2https://github.com/greentfrapp/lucent
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Figure 10: Comparing matching performance of randomly initialized transformation matrices versus
transformation matrices initialized with the least squares solution. Different plots correspond to
matchings on different layers, and different network pairs.
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(a) Linear mode connectivity of stitched networks trained from different random initializations.
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(b) Linear mode connectivity of stitched networks initialized with the least squares solution. Here the result is
still not deterministic, because of the dataset iteration order randomness, which differs in each solution.

Figure 11: Relative accuracy of the stitched network with respect to λ, where the transformation
matrix is Mλ = λM1 + (1− λ)M2 for pairs of transformation matrices M1 and M2. Different plots
correspond to matchings on different layers.
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Figure 12: Plotting relative accuracy to Model 2 and sparsity for different L1-regularization α
coefficients. Different plots correspond to matchings on different layers of the Tiny-10 architecture.
Results are averages of 5 runs, bands denote standard deviations.
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Figure 13: Relative accuracy to Model 2 with respect to sparsity. Different plots correspond to
matchings on different layers.
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Figure 14: Performance of the low-rank analogues of least squares and task loss matchings in terms
of relative accuracy. Averages of 5 runs, error bars denote standard deviations.
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(a) Activation weighted mean squared direct
matching (6), activations are raised on differ-
ent exponents after normalization.
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(b) 0-1 weighted mean squared direct match-
ing (7), with the threshold Ti set according to
a percentile of the activations bij , and activa-
tions below the threshold are not matched.
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(c) Activation weighted mean squared direct
matching (8), with the threshold Ti set accord-
ing to a percentile of the activations bij , and
activations below threshold matched to stay
below threshold.
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(d) 0-1 weighted mean squared direct match-
ing (8), with the threshold T set to 0, and
activations below threshold matched to stay
below threshold.

Figure 15: Relative accuracy to Model 2 and cross-entropy of Tiny10’s stitched layers with different
weighted mean squared direct matching methods.
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(a) Heatmap of relative accuracies to Model2.
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Figure 16: Stitching between two ResNet-20 networks, trained on the same data but with different
sample order. The stitching layer was trained from random initialization. ith row and jth column
refers to the two networks’ ith and jth layers.
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Figure 17: Stitching between two different CelebA models. All images are channel visualizations by
Lucent. Rows correspond to layers where stitching and visualization happens. Leftmost four columns
show first channel, rightmost four columns show second channel of the given layer. In each 4-column
block, first column presents Model 1 channel, for comparison. Second column presents Model 2
channel, which in a sense is the target for the last two columns. Third column presents the channel
linearly combined from Model 1 channels with the least squares error to Model 2 channel. (Direct
matching.) Fourth column presents the substitute of the Model 2 channel created by stitching. Each
row present the first two neuron of the corresponding layer.
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Figure 18: Stitching with Model 1 = ImageNet, Model 2 = CelebA. All images are channel visual-
izations by Lucent. Rows correspond to layers where stitching and visualization happens. Leftmost
fours columns show first channel, rightmost four columns show second channel of the given layer.
In each 4-column block, first column presents Model 1 channel, for comparison. Second column
presents Model 2 channel, which in a sense is the target for the last two columns. Third column
presents the channel linearly combined from Model 1 channels with the least squares error to Model
2 channel. (Direct matching.) Fourth column presents the substitute of the Model 2 channel created
by stitching. Each row present the first two neuron of the corresponding layer.
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