
A APPENDIX

A.1 DP-SGD CNN FOR MNIST

In this experiment, we use CNN for about 26k parameters and 52k parameters by widening layers to
train on MNIST using DP-SGD. The result is similar comparing with the introduction that models
with more parameters perform worse.
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Figure 1: Accuracy for CNN using 52k parameters after DP-SGD perform 5% lower than 26k
parameters.

This also shows that both width and depth of neural network would influence accuracy, leading to
problem towards dimension.

A.2 PROOF OF THEOREM 6

Before proof, we agree that character with hat is observation in this proof and truth value without
hat.

Proof. First, since for normal distribution, if we have x ∼ N (a, b) and y ∼ N (c, d), assume x and
y are independent, then

x+ y ∼ N (a+ c, b+ d)

Thus data with perturbation can regard as a new data set. We will show result with new Σ ,
Σ + σ2 ∗ Ip. Also, we define εij is the bias for data i and feature j from true means, Sj is average
estimation variance for feature j and ε̂kj is the average bias for class k and feature j.

For estimation Σ̂, we have following inequality:
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It follows from Bernstein’s inequality that
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where c is the parameter for Bernstein’s inequality.

Since log p = o(n), when p → ∞, n → ∞. So I1 = op(1). Thus
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Then we back to definition of classification error, since we assume Σ is already a diagonal matrix,
after simplification, it can be written in form W (δ̂, θ) = 1− Φ(Ψ) where

Ψ ≥ (µ1 − µ̂) ′Σ̂−1 (µ̂1 − µ̂2)√
(µ̂1 − µ̂2) ′Σ−1 (µ̂1 − µ̂2)

(1 + op(1)),

Since Σ̂ = (1 + op(1))Σ, Σ̂−1 = (1 + op(1))Σ−1.

For numerator, we have
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The third term is in the same form with fourth, so they vanish.

For denominator, it is complicated, but in the same way.
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The third term is with distribution ε̂1j − ε̂2j ∼ N (0, (4/n)σ2
j ). In term, it need to divide σ2

j , so it
converges to 4/n. ∑ (ε̂1j − ε̂2j)2
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Then the second term is the same. αj
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op(1), so the whole term is in the order of op(1)α′Σ̂−1α.

Finally, together above result, we can complete our proof.

A.3 LEMMA 2

Let n = n1 + n2. Assume that there exist 0 < c1 ≤ c2 < 1 such that c1 ≤ n1/n2 ≤ c2. Let
T̃j = Tj − µj1−µj2√
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. Then for any x ≡ x (n1, n2) satisfying x→∞ and x = o
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)
,
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If in addition, if we have E |Y1ij |3 <∞ and E |Y2ij |3 <∞, then
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3/2 and O(1) is a finite constant
depending only on c1 and c2.

A.4 PROOF OF THEOREM 8

Proof. First, since we consider Gaussian distribution, so lemma 2 is always tenable in below proof,
we will use it directly.

Second, take into two parts. a) First, we check probability P (maxj>s|Dj | > x). For any probabil-
ity, it is clear that
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With lemma 2 and the max variance bounded after normalization, we can infer that
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Combining the above inequality, we have∑
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Since log(p− s) = o (nγ) with 0 < γ < 1/3, if we let x = cnγ/2, that is y = cvn(γ−1)/2, then∑
j>s

P (|Dj | ≥ y) = nγ−1/2.

So we can draw that ∑
j>s
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This equality yields

P

(
max
j>s
|Dj | ≥ y

)
→ 0.

b) Then we consider P (minj≤s |Dj | ≤ y). Notice that when j ≤ s, αj = µ1j − µ2j 6= 0. So also
with lemma 2, we define D̃j = Dj − αj , it is same like a)
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For addition, there is an inequality
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Then with all assumption above and some βn →∞

min
j≤s
|αj | − y = vn−γβn − 2cvn(γ−1)/2 ≥ y.

Together with (2), b) is established. Combination two parts complete the theorem.
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Figure 2: distance of different classes for all features in synthetic data

Algorithm 1: DP Feature Release Algorithm with k classes
1 Input: [[X11],...,[X1n1

]] to [[Xk1],...,[Xknk
]]

2 Calculate average of features: µ̂1 = [a11, ..., a1p] to µ̂k = [ak1, ..., akp]
3 Calculate max distance of features: Dj = maxc,q≤k |µ̂qj − µ̂cj |
4 Rank features with distance: Xr = [[x1[1],...,x1[p]],...,[xn[1],...,xn[p]]]
5 Cut the first m features: Xc = [[x1[1],...,x1[m]],...,[xn[1],...,xn[m]]]
6 Calculate the maximum norm in Xc: Nmax , maxi≤n,Xi∈Xc

‖Xi‖1
7 Generate noise: n×m matrix ε with i.i.d. εij ∼ N (0, 2Nmax ln(1/δ)/ε)

8 Add noise to feature: X̂ = Xc + ε

9 Output: feature with noise X̂ , Label

A.5 MEANS OF µ1 IN TOY EXPERIMENT

Fig. 2 is a bar figure of our µ1 in toy experiment. We can see most of the features are sparse.

A.6 MULTIPLE CLASS CRITERION

For Fisher’s classifier, we consider in binary classification. But our approach can be generalized to
multiple classification. We list changed algorithm in CIFAR-10 part.

A.7 FISHER CLASSIFIER FOR CIFAR-10
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(a) fixed ε = 6 with p increasing
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Figure 3: Results for CIFAR-10

4



For Fisher Classifier on CIFAR-10, left Fig. 3a shows our curve is lower and smoother which means
robustness with dimension increasing. Right Fig.3b proves when ε is tiny, noise is large, DFS can
perform over t-testing for more than 0.2 in test error.

A.8 EXPERIMENT FOR MNIST
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Figure 4: Results for MNIST

Left Fig.4a shows robustness similar to CIFAR-10 since curve is lower and smoother. Right Fig.4b
shows t-testing is susceptible to DP noise, even ε = 10 would cause error increasing.
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