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ABSTRACT

The recent success of Transformer in natural language processing has sparked its
use in various domains. In offline reinforcement learning (RL), Decision Trans-
former (DT) is emerging as a promising model based on Transformer. However,
we discovered that the attention module of DT is not appropriate to capture the
inherent local dependence pattern in trajectories of RL modeled as Markov de-
cision processes. To overcome the limitations of DT, we propose a novel action
sequence predictor, named Decision ConvFormer (DC), based on the architecture
of MetaFormer, which is a general structure to process multiple entities in parallel
and understand the interrelationship among the multiple entities. DC employs lo-
cal convolution filtering as the token mixer and can effectively capture the inherent
local associations of the RL dataset. In extensive experiments, DC achieved state-
of-the-art performance across various standard RL benchmarks while requiring
fewer resources. Furthermore, we show that DC better understands the underly-
ing meaning in data and exhibits enhanced generalization capability. Our code is
available at https://beanie00.com/publications/dc

1 INTRODUCTION

Transformer (Vaswani et al., 2017) proved successful in various domains including natural language
processing (NLP) (Brown et al., 2020; Chowdhery et al., 2022), computer vision (Liu et al., 2021;
Hatamizadeh et al., 2023). Transformer is a special instance of a more abstract structure referred
to as MetaFormer (Yu et al., 2022), which is a general architecture that takes multiple entities in
parallel, understands their interrelationship, and extracts important features for addressing specific
tasks while minimizing information loss. As shown in Fig. 1, a MetaFormer is composed of blocks,
where each block contains normalizations, a token mixer, residual connections, and a feedforward
network. Among these components, the token mixer plays a crucial role in information exchange
among multiple input entities. In the case of Transformer, an attention module is used as the token
mixer. The attention module has been generally regarded as Transformer’s main success factor due
to its ability to capture the information relationship among tokens across a long distance.

With the successes in other areas, Transformer has also been employed in RL, especially in offline
RL, and provides an alternative to existing value-based or policy-gradient methods. The represen-
tative work in this vein is Decision Transformer (DT) (Chen et al., 2021). DT directly leverages
history information to predict the next action, resulting in competitive performance compared with
existing approaches to offline RL. Specifically, DT takes a trimodal token sequence of state, action,
and return as input, and predicts the next action to achieve a target objective. The input trimodal
sequence undergoes information exchange through DT’s attention module, based on the computed
relative importance (weights) between each token and every other token in the sequence. Thus, the
way that DT predicts the next action is just like that of GPT-2 (Radford et al., 2019) in NLP with
minimal change. However, unlike data sequences in NLP for which Transformer was originally
developed, offline RL data has an inherent pattern of local association between adjacent timestep to-
kens due to the Markovian property, as seen in Fig. 2. This dependence pattern is distinct from that
in NLP and is crucial for identifying the underlying transition and reward function of an MDP (Bell-
man, 1957), which are fundamental for decision-making in turn. As we will see shortly, however,
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Figure 1: The network architecture of MetaFormer, DT, and DC.

...

return-to-go (RTG)actionstate

Figure 2: The local dependence graph
of offline RL dataset: Blue arrows rep-
resent Markov property, red arrows indi-
cate the causal interrelation per a single
timestep, and the gray dotted line shows
the correlation of the adjacent returns.

the attention module of DT is an overparameterization and not appropriate to capture this distinct
local dependence pattern of MDPs.

In this paper, we propose a new action sequence predictor to overcome the drawbacks of DT for of-
fline RL. The proposed architecture named Decision ConvFormer (DC) is still based on MetaFormer
but the attention module used in DT is replaced with a new simple token mixer given by three causal
convolution filters for state, action, and return in order to effectively capture the local Markovian de-
pendence in RL dataset. Furthermore, to provide a consistent context for local association and
task-specific dataset traits, we use static filters that reflect the overall dataset distribution. DC has
a very simple architecture requiring far fewer resources in terms of time, memory, and the number
of parameters compared with DT. Nevertheless, DC has a better ability to extract the local pattern
among tokens and inter-modal relationships as we will see soon, yielding superior performance
compared to the current state-of-the-art offline RL methods across standard RL benchmarks, includ-
ing MuJoCo, AntMaze, and Atari domains. Specifically, compared with DT, DC achieves a 24%
performance increase in the AntMaze domain, a 39% performance increase in the Atari domain, and
a notable 70% decrease in training time in the Atari domain.

2 MOTIVATION

An RL problem can be modeled as a Markov decision process (MDP) M = ⟨ρ0,S,A, P,R, γ⟩,
where ρ0 is the initial state distribution, S is the state space, A is the action space, P (st+1|st, at) is
the transition probability, R(st, at) is the reward function, and γ ∈ (0, 1) is the discount factor. The
goal of conventional RL is to find an optimal policy π∗ that maximizes the expected return through
interaction with the environment.

Offline RL In offline RL, unlike the conventional setting, learning is performed without interac-
tion with the environment. Instead, it relies on a dataset D consisting of trajectories generated from
unknown behavior policies. The objective of offline RL is to learn a policy by using this dataset D
to maximize the expected return. One approach is to use Behavior Cloning (BC) (Bain & Sammut,
1995), which directly learns the mapping from state to action based on supervised learning from the
dataset. However, the offline RL dataset often lacks sufficient expert demonstrations. To address
this issue, return-conditioned BC has been considered. Return-conditioned BC exploits reward in-
formation in the dataset and takes a target future return as input. That is, based on data labeled with
rewards, one can compute the true return, referred to as return-to-go (RTG), by summing the future
rewards from time step t from the dataset: R̂t =

∑T
t′=t rt′ . In a dataset containing many subopti-

mal trajectories, this new label R̂ serves as a crucial indicator to distinguish optimal trajectories and
reconstruct optimal behaviors.

Decision Transformer (DT) DT is a representative approach to return-conditioned BC. DT
employs a Transformer to convert an RL problem as a sequence modeling task (Chen et al.,
2021). DT treats a trajectory as a sequence of RTGs, states, and actions. At each timestep
t, DT constructs an input sequence to Transformer as a sub-trajectory of length K timesteps:
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τt−K+1:t = (R̂t−K+1, st−K+1, at−K+1, ..., R̂t−1, st−1, at−1, R̂t, st), and predicts action at based
on τt−K+1:t.

In detail, each element of the input sequence τt−K+1:t is linearly transformed to a token vector of
the same dimension d to compensate for the different sizes of trimodal components R̂t, st and at.
Then, the 3K − 1 token vectors go through a series of blocks, where each block consists of layer
normalization, an attention module, residual connection, and a feedforward network. In particular,
the attention module consists of three matrices Q of size d × d′, K of size d × d′, and V of size
d× d. These three matrices generate the query, key, and value vectors from the input token vectors
{xi, i = 1, . . . , 3K − 1} of size 1× d, respectively, as follows:

qi = xiQ, ki = xiK, vi = xiV. (1)

Then, the i-th output of the attention module is given by

zi =

3K−1∑
j=1

αijvj , i = 1, . . . , 3K − 1 (2)

with causal masking on the combination weights αij , i.e., αij = 0,∀j > i. The combination
weights αij , also known as attention score, capture the dependence of the i-th output on the j-th
input token through the following formula:

αij = softmax({⟨qi, kj′⟩}3K−1
j′=1 )j . (3)
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Figure 3: Motivating results in hopper-medium: (a) attention scores of DT (1st layer), (b) atten-
tion scores of direct learning (1st layer), and (c) performance comparison.

Attention Score Analysis of DT Our quest begins with the question “Is the attention module
initially developed for NLP still an appropriate local-association identifying structure for data se-
quences of MDPs?” To answer this question, we performed an experiment on the widely considered
offline MuJoCo hopper-medium dataset with diverse trajectories. Fig. 3a shows the learned at-
tention map of DT with K = 20. The index i (or j) is ordered such that i = 1 corresponds to RTG
R̂t−K+1, i = 2 to state st−K+1, i = 3 to action at−K+1, i = 4 to RTG R̂t−K+2 up until i = 59
to the latest state st in τt−K+1:t. Since causality is applied, αij = 0, ∀j > i for each i. That
is, the attention matrix A = [αij ] is lower-triangular. We observe that the attention matrix of DT
is in the form of a full lower triangular matrix if we neglect the column-wise periodic decrease in
value (these columns correspond to RTGs). In the case of the latest st position of i = 59, the output
depends on up to the past K = 20 timesteps. Note that the state sequence forms a Markov chain.
From the theory of ergodic Markov chain, however, we know that a Markov chain has a forgetting
property, that is, as a Markov chain progresses, it soon forgets the impact of past states (Resnick,
1992). Furthermore, from the Markovian property, sl−2, sl−3, . . . should be independent of sl given
sl−1 for each l. The result in Fig. 3a is not consistent with these facts. Hence, instead of parametriz-
ing Q and K and obtaining aij with Eqs. (1) and (3) as in DT, we directly set the attention matrix
A = [αdirect

ij ] as learning parameters together with V, and directly learned {αdirect
ij } and V. The

resulting attention matrix A is shown in Fig. 3b. Now, it is seen that the resulting attention matrix
A is almost a banded lower-triangular matrix, which is consistent with the Markov chain theory, and
its performance is far better than DT as shown in Fig. 3c. Thus, the full lower-triangular structure of
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the attention matrix in DT is an artifact of the method used for parameterizing the attention module,
i.e., parameterizing Q and K and obtaining αij with Eqs. (1) and (3), and does not truly capture the
local associations in the RL dataset. Indeed, a recent study by Lawson & Qureshi (2023) showed
that even replacing the attention parameters learned in one MuJoCo environment with those learned
in another environment results in almost no performance decrease. One may think that DT can prop-
erly extract the local dependency simply by reducing the context length K to focus on neighboring
information and improve its performance. However, this is not the case as shown in Appendix G.3.
DT with reduced K yields worse performance.

3 THE PROPOSED METHOD: DECISION CONVFORMER

For our action predictor, we still adopt the MetaFormer architecture, incorporating the recent study
of Yu et al. (2022) suggesting that the success of Transformer, especially in the vision domain,
stems from the structure of MetaFormer itself rather than attention. Our experiment results in Figs.
3b and 3c guide a new design of a token mixer with proper model complexity for MetaFormers
as RL action predictors. First, the lower banded structure of A implies that for each time i, we
only need to consider a fixed past duration for combination index j. Such linear combination can be
accomplished by linear finite impulse response (FIR) filtering. Second, note that the attention matrix
elements [αij ] of DT vary over input sequences {τt−K+1:t} for different t’s since they are functions
of the token vectors {xi} as seen in Eqs. (1) and (3) although Q and K do not vary. However,
the direct attention matrix parameters [αdirect

ij ] obtained for Fig. 3b do not vary over input sequences
{τt−K+1:t} for different t’s. This suggests that we can simply use input-sequence-independent static
linear filtering. Then, the so-obtained filter coefficients will capture the dependence among tokens
inherent in the whole dataset. The details of our design based on this guidance are provided below.

3.1 MODEL ARCHITECTURE

The DC network architecture adopts a MetaFormer as shown in Fig. 1. In DC, the
token mixer of the MetaFormer is given by a convolution module, based on our pre-
vious discussion. For every timestep t, the input sequence It is formed as It =

(R̂t−K+1, st−K+1, at−K+1, ..., R̂t−1, st−1, at−1, R̂t, st), where K is the context length. It is
subjected to a separate input embedding for each of RTG, state and action, yielding Tt =[
EmbR̂(R̂t−K+1);Embs(st−K+1);Emba(at−K+1); · · · ;EmbR̂(R̂t);Embs(st)

]
∈ R(3K−1)×d.

Here, the sequence length is 3K − 1, reflecting the trimodal tokens, and d indicates the hid-
den dimension. Then, Tt passes through the convolution block stacked N times, each compris-
ing two sub-blocks. The first sub-block involves layer normalization followed by token mixing
through a convolution module, expressed as Z1st sub-block

t = Conv (LN(Tt)) + Tt. The second
sub-block also involves layer normalization followed by a Feed Forward Network, expressed as
Z2nd sub-block
t = FFN

(
LN(Z1st sub-block

t )
)
+ Z1st sub-block

t . The FFN is realized as a two-layered MLP.

3.2 CONVOLUTION MODULE

The primary purpose of the convolution module is to integrate the time-domain information among
neighboring tokens. To achieve this goal with simplicity, we employ 1D depthwise convolution
on each hidden dimension independently by using filter length L, leaving hidden dimension-wise
mixing to the later feedforward network. Considering the disparity among state, action, and RTG,
we use three separate convolution filters for each hidden dimension: state filter, action filter, and
RTG filter, to capture the unique information for each embedding. Thus, for each convolution block,
we have a set of 3d convolution kernels with 3dL kernel weights, which are our learning parameters.

The convolution process is illustrated in Fig. 4. The embeddings Tt defined above first go through
layer normalization, yielding Xt = LN(Tt) ∈ R(3K−1)×d. Note that each row of Xt corresponds
to a d-dimensional token, whereas each column of Xt corresponds to a time series of length 3K− 1
for a hidden dimension. The convolution is performed for the time series in each column of Xt,
as shown in Fig. 4. Specifically, consider the convolution operation on the q-th hidden dimension
column, where q = 1, 2, . . . , d. Let wR̂

q [l], w
s
q [l], and wa

q [l], l = 0, 1, . . . , L − 1, denote the coeffi-
cients for the RTG, state and action filters for the q-th hidden dimension, respectively. First, the q-th
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Figure 4: The overall convolution operation of DC.

column of Xt is appended left by L − 1 zeros, i.e., Xt[p, q] = 0 for p = 0,−1, . . . ,−(L − 2), to
match the size for convolution. Then, the convolution output for the q-th column is given by

Ct[p, q] =


∑L−1

l=0 wR̂
q [l] ·Xt[p− l, q] if mod(p, 3) = 1,∑L−1

l=0 ws
q [l] ·Xt[p− l, q] if mod(p, 3) = 2,∑L−1

l=0 wa
q [l] ·Xt[p− l, q] if mod(p, 3) = 0,

p = 1, 2, . . . , 3K − 1 (4)

for each q = 1, 2, . . . , d. The reason for adopting three distinct filters for mod(p, 3) = 1 (p: RTG
position), = 2 (p: state position), or = 3 (p: action position) is to capture different semantics when
the current position corresponds to RTG, state or action. We set the filter length L = 6 covering
the state, action, and RTG values of only the current and previous timesteps, incorporating the
Markov assumption. Nevertheless, a different filter length can be chosen or optimized for a given
task, considering that the Markov property can be weak for certain tasks. In fact, setting L = 6
corresponds to imposing an inductive bias for the Markov assumption on the locality in association
with a dataset. A study on the impact of the filter length is available in Appendix G.2.

The number of parameters of the token mixer of DC is 3dL, whereas that of Q and K of the attention
module of DT is 2dd′. In addition, DT has the V matrix of size d × d, whereas DC does not have
V at all. Since L ≪ min(d′, d), the number of parameters of DC is far less than that of the attention
module of DT. The actual number of parameters used for training DT and DC can be found in
Appendix F. We conjecture this model complexity is sufficient for token mixers of MetaFormers for
most MDP action predictors. Indeed, our new parameterization performs better than even the direct
parameterization of A and V used for Fig. 3b. The superior test performance of DC over DT in
Sec. 5 and especially the result in Sec. 5.3 support our conjecture.

Hybrid Token Mixers For environments in which the Markovian property is weak and credit
assignment across a long range is required, an attention module in addition to convolution modules
can be helpful. For this, the hybrid architecture with N MetaFormer blocks composed of the initial
N − 1 convolution blocks and a final attention block can be considered.

3.3 TRAINING AND INFERENCE

Training In the training stage, a K-length subtrajectory is sampled from offline data D and passes
through all DC blocks. Subsequently, the state tokens that have traversed all the blocks undergo a
final projection to predict the next action. The learning process minimizes the error between the
predicted action ât = πθ(R̂t−K+1:t, st−K+1:t, at−K+1:t−1) and the true action at for t = 1, . . . ,K,
given by

LDC := Eτ∼D

[
1

K

K∑
t=1

(
at − πθ(R̂t−K+1:t, st−K+1:t, at−K+1:t−1)

)2
]
. (5)

Inference In the inference stage, the true RTG is unavailable. Therefore, similarly to Chen et al.
(2021), as the initial RTG we set a target RTG that represents the desired performance. During the
inference, DC receives the current trajectory data, generates an action to obtain the next state and
reward, and subsequently subtracts the reward from the preceding RTG.
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4 RELATED WORKS

Return-Conditioned BC Both DC and DT fall under the category of return-conditioned BC,
an active research field of offline RL (Kumar et al., 2019; Schmidhuber, 2019; Chen et al., 2021;
Emmons et al., 2021; David et al., 2023). For example, RvS (Emmons et al., 2021) demonstrates
comparable performance to DT by modeling the current state and return with a two-layer MLP.
This highlights the potential for achieving robust results without resorting to complex networks
or long-range dependencies. On the other hand, Decision S4 (David et al., 2023) emphasizes the
importance of global information in the decision-making process. It resolves the DT’s scalability
issue by incorporating the S4 sequence model as proposed by Gu et al. (2022). Unlike the two
models, our approach focuses on accurate modeling of local associations and offers flexibility to
effectively incorporate global dependence if necessary.

From the context of visual offline RL, Shang et al. (2022) pointed out DT’s limitations in com-
prehending local associations. They proposed capturing local relationships by explicitly modeling
single-step transitions using the Step Transformer and combining ViT-like image patches for a better
state representation. In contrast, our method does not require training additional models on top of
DT. Instead, we replace DT’s attention module with a simpler convolution module.

Offline RL with Online Finetuning It is known that the performance of models trained through
offline learning is often limited by the quality of the dataset. Thus, finetuning through online inter-
actions can improve the performance of offline-pretrained models (Zhang et al., 2022; Luo et al.,
2023). Overcoming the limitations of DT for online applications, Zheng et al. (2022) proposed an
Online Decision Transformer (ODT), which includes a stochastic policy and an additional max-
entropy objective in the loss function. A similar method can be applied to DC for online finetuning.
We refer to DC with online finetuning as Online Decision ConvFormer (ODC).

5 EXPERIMENTS

We carry out extensive experiments to evaluate the performance of DC on the D4RL (Fu et al., 2020)
MuJoCo, D4RL AntMaze, and Atari (Mnih et al., 2013) domains. More on these domains can be
found in Appendix A. The primary goals of our experiments are 1) to compare DC’s performance
in offline RL benchmarks with other state-of-the-art baselines, and especially, to check whether the
basic DC model using local filtering is effective in the Atari domain or not, where long-range credit
assignment is known to be essential, 2) to determine whether DC can effectively adapt and refine
its performance when combined with online finetuning or not, 3) to see whether DC can capture
the intrinsic meaning of data rather than merely replicating behavior or not, and 4) to evaluate the
impact of each design element of DC on its overall performance.

5.1 MUJOCO AND ANTMAZE DOMAINS

We first conduct experiments on the MuJoCo and AntMaze domains from the widely-used D4RL
(Fu et al., 2020) benchmarks. MuJoCo features a continuous action space with dense rewards, while
AntMaze features a continuous action space with sparse rewards.

Baselines We considered seven baselines. These baselines include three value-based methods:
TD3+BC (Fujimoto & Gu, 2021), CQL (Kumar et al., 2020), and IQL (Kostrikov et al., 2021),
and four return-conditioned BC approaches: DT (Chen et al., 2021), ODT (Zheng et al., 2022),
RvS (Emmons et al., 2021), and DS4 (David et al., 2023). Further details about each baseline are
provided in Appendix B.

Hyperparameters To ensure a fair comparison between DC and ODC versus DT and ODT, we
set the hyperparameters (related to model and training complexity) of DC and ODC to be either
equivalent to or less than those of DT and ODT. Details on DC’s and ODT’s hyperparameters are
available in Appendix C and Appendix D, respectively. Moreover, the impact of context length of
DT and DC and be found in Appendix G.2 and G.3, and the examination of the impact of action
information on performance is provided in Appendix E.2.

Offline Results Table 1 shows the resulting performance of the algorithms including DC and
ODC in offline settings on the MuJoCo and AntMaze domains. All the performance scores are
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normalized, with a score of 100 representing the score of an expert policy, as indicated by Fu et al.
(2020). For DT/ODT and DC/ODC, the initial RTG value for the test period is a hyperparameter.
We examine six target RTG values, each being a multiple of the default target RTG in Chen et al.
(2021). In the MuJoCo domain, these values reach up to 20 times the default target RTG, while in
the AntMaze domain, they reach up to 100 times. We subsequently report the highest score achieved
for each algorithm. A detailed discussion on this topic can be found in Section 5.3.

Value-Based Method Return-Conditioned BC
Dataset TD3+BC IQL CQL DT ODT RvS DS4 DC ODC
halfcheetah-m 48.3 47.4 44.0 42.6 43.1 41.6 42.5 43.0 43.6
hopper-m 59.3 63.8 58.5 68.4 78.3 60.2 54.2 92.5 93.6
walker2d-m 83.7 79.9 72.5 75.5 78.4 71.7 78.0 79.2 80.5
halfcheetah-m-r 44.6 44.1 45.5 37.0 41.5 38.0 15.2 41.3 42.4
hopper-m-r 60.9 92.1 95.0 85.6 91.9 73.5 49.6 94.2 94.1
walker2d-m-r 81.8 73.7 77.2 71.2 81.0 60.6 69.0 76.6 81.4
halfcheetah-m-e 90.7 86.7 91.6 88.8 94.8 92.2 92.7 93.0 94.8
hopper-m-e 98.0 91.5 105.4 109.6 111.3 101.7 110.8 110.4 111.7
walker2d-m-e 110.1 109.6 108.8 109.3 108.7 106.0 105.7 109.6 108.9
locomotion mean 75.3 76.5 77.6 76.4 81.0 71.7 68.6 82.2 83.4

antmaze-u 78.6 87.1 74.0 69.4 73.5 64.4 63.4 85.0 74.4
antmaze-u-d 71.4 64.4 84.0 62.2 41.8 70.1 64.6 78.5 60.4
antmaze mean 75.0 75.8 79.0 65.8 57.7 67.3 64.0 81.8 67.4

Table 1: The offline results of DC and baselines in MuJoCo and Antamze domains. We report the
expert-normalized returns, following Fu et al. (2020), averaged across 5 random seeds. The dataset
names are abbreviated as follows: ‘medium’ as ‘m’, ‘medium-replay’ as ‘m-r’, ‘medium-expert’ as
‘m-e’, ‘umaze’ as ‘u’, and ‘umaze-diverse’ as ‘u-d’. The boldface numbers denote the maximum
score or comparable one among the algorithms.

In Table 1, we observe the following: 1) Both DC and ODC consistently outperform or closely match
the state-of-the-art performance across all environments. 2) In particular, DC and ODC show far
superior performance in the hopper environment compared with other baselines. 3) Our model ex-
cels not only in MuJoCo locomotion tasks focused on return maximization but also in goal-reaching
AntMaze tasks. Considering the sparse reward setting of Antmaze, the competitive performance in
this domain highlights the effectiveness of DC in sparse settings. Through these observations, we
can confirm that our approach effectively combines important information to make optimal decisions
specific to each situation, irrespective of whether the context involves high-quality demonstrations,
sub-optimal demonstrations, dense rewards, or sparse rewards.

Online Finetuning Results Table 2 shows the online finetuning result obtained with 0.2 million
online samples of ODC after offline pretraining. We compare against IQL (Kostrikov et al., 2021)
and ODT (Zheng et al., 2022). Like the offline result, all scores are normalized in accordance with
Fu et al. (2020). ODC yields top performance across most environments, further validating the
effectiveness of DC in online finetuning. In consistency with the offline result, the performance of
ODC stands out in the hopper environment. In the case of hopper-medium, ODC achieves
nearly maximum scores using sub-optimal trajectories for pretraining and using few samples during
online finetuning. The difference between the offline and online performance is denoted as δ. ODC
shows less fluctuation than other models. This is partly because the offline performance itself is
higher than others.

5.2 ATARI DOMAIN

In the Atari domain (Mnih et al., 2013), the setup differs from that of MuJoCo and AntMaze. Here,
the action space is discrete, and corresponding rewards are not immediately given after an action,
and this makes the direct association of specific rewards with states and actions difficult. In addition,
the Atari domain is more challenging due to its reliance on image inputs. By testing in this domain,
we can evaluate the algorithm’s capability in credit assignment and managing a discrete action space.
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Dataset IQL (0.2M) δIQL ODT (0.2M) δODT ODC (0.2M) δODC

halfcheetah-m 47.41 0.04 42.53 -0.62 42.82 -0.81
hopper-m 66.79 2.98 96.33 18.03 99.29 5.64
walker2d-m 80.33 0.44 75.56 -2.89 79.44 -1.09
halfcheetah-m-r 44.14 0.04 40.64 -0.86 41.42 -1.02
hopper-m-r 96.23 4.10 89.26 -2.65 95.23 1.16
walker2d-m-r 70.55 -3.12 77.71 -3.32 77.89 -3.14
locomotion mean 67.56 0.75 70.34 1.28 72.68 0.05

antmaze-u 89.5 2.4 86.43 12.88 86.70 12.24
antmaze-u-d 56.8 -7.6 60.26 18.37 61.12 0.68
antmaze mean 73.2 -2.6 73.35 15.63 73.91 6.46

Table 2: Online finetuning results of DC and baselines after offline pretraining. All models are fine-
tuned with 0.2 million online samples. We report the expert-normalized returns averaged across five
random seeds. Dataset abbreviations are the same as those used in Table 1.

Hybrid Token Mixers As the Atari domain requires credit assignment across long horizons, in-
corporating a module that can capture global dependency in addition to our convolution module, can
be advantageous. Therefore, in this domain, in addition to experiments with the default DC employ-
ing a convolution block in every layer, we conduct experiments using the hybrid DC mentioned in
Section 3.2, composed of N MetaFormer blocks with the first N − 1 convolution blocks and a final
attention block.

Baselines and Hyperparameters For the Atari domain, we compare DC with CQL (Kumar
et al., 2020), BC (Bain & Sammut, 1995), and DT (Chen et al., 2021) on eight games: Breakout,
Qbert, Pong, Seaquest, Asterix, Frostbite, Assault and Gopher including the games used in Chen
et al. (2021) and Kumar et al. (2020). The hybrid DC uses the same hyperparameters used by DT,
including the context length K = 30 or K = 50. However, we set K = 8 for the default DC due to
its emphasis on local association. Details of the hyperparameters are provided in Appendix C.

Game CQL BC DT DC DChybrid

Breakout 211.1 142.7 242.4 ±31.8 352.7 ±44.7 416.0 ±105.4

Qbert 104.2 20.3 28.8 ±10.3 67.0 ±14.7 62.6 ±9.4

Pong 111.9 76.9 105.6 ±2.9 106.5 ±2.0 111.1 ±1.7

Seaquest 1.7 2.2 2.7 ±0.7 2.6 ±0.3 2.7 ±0.04

Asterix 4.6 4.7 5.2 ±1.2 6.5 ±1.0 6.3 ±1.8

Frostbite 9.4 16.1 25.6 ±2.1 27.8 ±3.7 28.0 ±1.8

Assault 73.2 62.1 52.1 ±36.2 73.8 ±20.3 79.0 ±13.1

Gopher 2.8 33.8 34.8 ±10.0 52.5 ±9.3 51.6 ±10.7

mean 64.9 44.9 62.2 86.2 94.7

Table 3: Offline performance results of DC and baselines in the Atari domain. We report the gamer-
normalized returns, following Ye et al. (2021), averaged across three random seeds. We denote the
hybrid setting as DChybrid. The boldface numbers denote the maximum score or comparable one
among the algorithms.

Results Table 3 shows the performance results in the Atari domain. The performance scores are
normalized according to Agarwal et al. (2020), such that 100 represents a professional gamer’s pol-
icy, and 0 represents a random policy. In the Atari dataset, four successive frames are stacked to form
a single observation, capturing the motion over time. Although Chen et al. (2021) proposed that ex-
tending the timesteps might be advantageous, our findings indicate that a simple aggregation of local
information alone can exceed the performance achieved by the longer-timestep DT setup. Further-
more, the hybrid configuration, which integrates an attention module in its last layer to balance both
local and global information, outperforms the baselines, and the gap is huge in Breakout. These
results highlight the importance of effectively integrating local context before incorporating long-
term information when making decisions on environments that demand long-horizon reasoning.
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5.3 DISCUSSION

In this subsection, we examine the mechanisms that allow DC to excel in decision-making by con-
sidering the aspects of understanding local associations and model complexity. Please refer to Ap-
pendix G for a more detailed discussion.

zeroing-out RTG
zeroing-out states except the current state

zeroing-out action

no zeroing-out

Figure 5: Inference perfor-
mance with zeroed out modals in
hopper-medium.

Input Modal Dependency Assessing how the convolution fil-
ter gauged the importance of each modal (RTG, state, or action) is
challenging because visualizing filters is not as straightforward as
visualizing attention scores. However, performance analysis by
zeroing out each modal during inference can reveal their learned
significance from training. For instance, if zeroing out RTG dur-
ing testing severely impairs performance, it indicates its critical
role in decision-making. Given the importance of the current state
for predicting the next action, we keep it intact when zeroing out
states. The results in MuJoCo hopper-medium shown in Fig. 5
reveal that for DT, zeroing out each modal results in a minor per-
formance decrease, and the impact is more or less the same for
each modal except the fact that zeroing out states has a slightly
bigger impact. In contrast, for DC, zeroing out action has no im-
pact on performance, but zeroing out RTG or state causes a huge
drop over 40%. Indeed, DC found out that RTG and state infor-
mation is more important than action, whereas DT seems not.

Figure 6: Test performance with respect to the target
RTG in hopper-medium and antmaze-umaze.

Generalization Capability: Out-Of-
Distribution RTG For any given task,
there’s an optimal model complexity; exceed-
ing this point leads to overfitting and larger
test or generalization errors (Goodfellow et al.,
2016). Thus, one way to check that a model
has proper complexity is to investigate the
generalization errors for samples unseen in
the training dataset. For DT and DC, setting
the initial target RTG to an out-of-distribution
(OOD) value unseen in training effectively
tests this. So, we performed experiments by
continuously increasing the target RTG from
the default value (used in Chen et al. (2021)) on
hopper-medium and antmaze-umaze,
and the result is shown in Fig. 6. It is seen that DC has far better generalization capability than
DT as the target RTG deviates from the training dataset distribution. This means that DC better
understands the task context and better knows how to achieve the unseen desired higher target RTG
by learning from the seen dataset than DT. The superior generalization capability of DC to DT
implies that the model complexity of DC is closer to the optimal complexity than that of DT indeed.

6 CONCLUSION

In this paper, we have proposed a new decision maker named Decision ConvFormer (DC) for of-
fline RL. DC is based on the architecture of MetaFormer and its token mixer is simply given by
convolution filters. DC drastically reduces the number of parameters and computational complexity
involved in token mixing compared with the conventional attention module, but better captures the
local associations in RL trajectories so that it makes MetaFormer-based approaches to RL a viable
and practical option. We have shown that DC has a model complexity relevant to MetaFormers as
MDP action predictors and has superior generalization capability due to its proper model complex-
ity. Numerical results show that DC yields outstanding performance across all the considered offline
RL tasks including MuJoCo, AntMaze, and Atari domains. Our token mixer structure can be used
for MetaFormers intended for other aspects of MDP problems which were difficult due to attention’s
heavy complexity, opening up possibilities for more MetaFormer-based algorithms for MDP RL.
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Appendix

A DOMAIN AND DATASET DETAILS

A.1 MUJOCO

The MuJoCo domain is a domain within the D4RL (Fu et al., 2020) benchmarks, which fea-
tures several continuous locomotion tasks with dense rewards. In this domain, we conduct ex-
periments in three environments: halfcheetah, hopper, and walker2d. For each envi-
ronment, we examined three distinct v2 datasets, each reflecting a different data quality level:
medium, medium-replay, and medium-expert. The medium dataset comprises 1 million
samples from a policy performing at approximately one-third of an expert policy’s performance.
The medium-replay dataset uses the replay buffer of a policy trained to match the performance
of the medium policy. Lastly, the medium-expert dataset consists of 1 million samples from the
medium policy and 1 million samples from an expert policy. Therefore, the MuJoCo domain serves
as an ideal platform to analyze the impact of diverse datasets from policies at various degrees of
proficiency.

A.2 ANTMAZE

AntMaze in the D4RL (Fu et al., 2020) benchmarks consists of environments aimed at reaching
goals with sparse rewards and includes maps characterized by diverse sizes and forms. This domain
is suitable for assessing the agent’s capability to efficiently integrate data and execute long-range
planning. The objective of this domain is to guide an ant robot through a maze to reach a des-
ignated goal. Successfully reaching the goal results in a reward of 1, whereas failing to reach it
yields a reward of 0. In this domain, we conduct experiments using two v2 datasets: umaze,
umaze-diverse. In umaze, the ant is positioned at a consistent starting point and has a specific
goal to reach. On the other hand, umaze-diverse places the ant at a random starting point with
the task of reaching a randomly designated goal.

A.3 ATARI

The Atari domain is built upon a collection of classic video games (Mnih et al., 2013). A notable
challenge in this domain is the delay in rewards, which can obscure the direct correlation between
specific actions and their outcomes. This characteristic makes the Atari domain an ideal testbed
for assessing an agent’s skill in long-term credit assignments. In our experiments, we utilized Atari
datasets provided by Agarwal et al. (2020), constituting 1% of all samples in the replay data gen-
erated during the training of a DQN agent (Mnih et al., 2015). We conduct experiments in eight
games: Breakout, Qbert, Pong, Seaquest, Asterix, Frostbite, Assault, and Gopher.

B BASELINE DETAILS

B.1 BASELINES FOR MUJOCO AND ANTMAZE

To evaluate DC’s performance in the MuJoCo and AntMaze domains, we compare DC with seven
baselines including three value-based methods: TD3+BC (Fujimoto & Gu, 2021), CQL (Kumar
et al., 2020), and IQL (Kostrikov et al., 2021) and four return-conditional BC methods: DT (Chen
et al., 2021), ODT (Zheng et al., 2022), RvS (Emmons et al., 2021), and DS4 (David et al., 2023).
We obtain baseline performance scores for BC and RvS from Emmons et al. (2021), for TD3+BC
from Fujimoto & Gu (2021) and for CQL from Kostrikov et al. (2021). Note that we cannot directly
compare the CQL score from its original paper (Kumar et al., 2020) due to the discrepancies in
dataset versions. For IQL, the score reported in Zheng et al. (2022) was used taking into consider-
ation both offline results and online finetuning results. For DT, ODT, and DS4, we reproduce the
results using the code provided by the respective authors.

Specifically, for DT, we use the official implementation available at https://github.com/
kzl/decision-transformer. While training DT, we mainly follow the hyperparameters rec-
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ommended by the authors. However, we adjust some hyperparameters as follows, as this improves
the results for DT:

• Activation function: As detailed in Appendix E.1, we replace the ReLU (Nair & Hinton, 2010)
activation function with GELU (Hendrycks & Gimpel, 2016).

• Embedding dimension: For hopper-medium and hopper-medium-replaywithin the Mu-
JoCo domain, we increase the embedding dimension from 128 to 256.

• Learning rate: Across all MuJoCo and AntMaze environments, we select a learning rate among
{10−4, 10−3} that yields a higher return (the default setting is to use 10−4 for all environments).

In addition, for ODT, we use the official implementations from https://github.com/
facebookresearch/online-dt. We mainly follow their hyperparameters but switch to
the GELU activation function and adjust the learning rate from options of 10−4, 5 × 10−4, and
10−3. For DS4, we use the code provided by the authors as supplementary material available at
https://openreview.net/forum?id=kqHkCVS7wbj and apply the hyperparameters as
proposed by the authors.

B.2 BASELINES FOR ATARI

In the Atari domain, we compare DC against CQL (Kumar et al., 2020), BC (Bain & Sammut,
1995), and DT (Chen et al., 2021). For the performance score of CQL, we follow the scores
from Kumar et al. (2020) for games available. For other games such as Frostbite, Assault, and
Gopher, we conduct experiments using the author-provided code for CQL (https://github.
com/aviralkumar2907/CQL). Regarding BC and DT, we conduct experiments using the DT’s
official implementation (https://github.com/kzl/decision-transformer). When
training BC and DT, for the games not in Chen et al. (2021) (Asterix, Frostbite, Assault, and Go-
pher), we set the context length K = 30 and apply RTG conditioning as per Table 6. Moreover, for
all Atari games, the training epochs are increased from 5 epochs to 10 epochs.

C IMPLEMENTATION DETAILS OF DC

We implement DC using the official DT code (https://github.com/kzl/
decision-transformer) and incorporate the convolution module.

C.1 MUJUCO AND ANTMAZE

For our training on MuJoCo and AntMaze domains, the majority of the hyperparameters are adapted
from Chen et al. (2021). However, we make modifications, especially concerning context length,
the nonlinearity function, learning rate, and embedding dimension.

Hyperparameter Value
Number of layers 3
Batch size 64
Context length K 8
Dropout 0.1
Nonlinearity function GELU
Grad norm clip 0.25
Weight decay 10−4

Learning rate decay Linear warmup
Total number of updates 105

Table 4: Common hyperparameters of DC on MuJoCo and AntMaze.

• Context length: While Chen et al. (2021) suggests a context length of K = 20, we shortened
this to 8 for DC, given DC’s reliance on nearby tokens. Note that the shortened context length is
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sufficient for achieving superior performance compared to DT. However, as described in Appendix
G.2, extending DC’s context length to match that of DT further improves the performance.

• Embedding dimension: We use an embedding dimension of 256 in hopper-medium and
hopper-medium-replay, and 128 in the other environments. The impact of the embedding
dimensions of DT and DC in hopper-medium and hopper-medium-replay, can be seen
in Table 5.

• Learning rate: We use a learning rate of 10−4 for training in hopper-medium,
hopper-medium-replay, walker2d-medium, and antMaze. For other environments,
we use 10−3.

DT DC
Dataset 128 256 128 256
hopper-medium 63.1 68.4 69.7 92.5
hopper-medium-replay 83.4 85.6 88.2 94.2

Table 5: The training results of DT and DC in MuJoCo hopper-medium and
hopper-medium-replay with embedding dimensions of 128 and 256 respectively. We report
the expert-normalized returns averaged across five random seeds.

C.2 ATARI

Hyperparameter Value
Number of layers 6
Embedding dimension 128
Batch size 256
Return-to-go conditioning 90 Breakout (≈ 1 × max in dataset)

2500 Qbert (≈ 5 × max in dataset)
20 Pong (≈ 1 × max in dataset)
1450 Seaquest (≈ 5 × max in dataset)
520 Asterix (≈ 5 × max in dataset)
950 Frostbite (≈ 5 × max in dataset)
780 Assault (≈ 5 × max in dataset)
2750 Gopher (≈ 5 × max in dataset)

Nonlinearity ReLU, encoder
GELU, otherwise

Encoder channels 32, 64, 64
Encoder filter sizes 8× 8, 4× 4, 3× 3

Encoder strides 4, 2, 1
Max epochs 10
Dropout 0.1
Learning rate 6× 10−4

Adam betas (0.9, 0.95)
Grad norm clip 1.0
Weight decay 0.1
Learning rate decay Linear warmup and cosine decay
Warmup tokens 512 * 20
Final tokens 2 * 500000 * K

Table 6: Common hyperparameters of DC on Atari.

Game Context length K

Breakout 30
Qbert 30
Pong 50
Seaquest 30
Asterix 30
Frostbite 30
Assault 30
Gopher 30

Table 7: The game-specific
context length K used when
training DChybrid and DT on
Atari.

Similarly to the MuJoCo and AntMaze domains, the DC hyperparameters for the Atari domain
mostly follow those from Chen et al. (2021). The only adjustment made is to the context length K,
which is decreased to 8, reflecting DC’s focus on local information. In this domain, we also con-
duct experiments in a hybrid manner, combining the convolution module and the attention module.
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For the hybrid setup, we use the same context length as defined in Chen et al. (2021) to ease the
integration with the attention module. Table 6 presents the common hyperparameters used across
all Atari games for both DC and DChybrid. The context length of each game in the hybrid setting is
represented in Table 7.

D IMPLEMENTATION DETAILS OF ODC

Our ODC implementation builds upon the official ODT code, accessible at https://github.
com/facebookresearch/online-dt, by replacing the attention module with a convolution
module. Table 8 outlines the hyperparameters used for the offline pretraining of ODC in the Mu-
JoCo and AntMaze domains. While most of these hyperparameters align with those from Zheng
et al. (2022), we have modified the learning rate, weight decay, embedding dimension, and nonlin-
earity. Regarding positional embedding, DC does not require explicit ones, as the convolution with
neighboring tokens sufficiently provides positional information. However, akin to the approach of
Zheng et al. (2022), which determines the use of positional embedding based on specific bench-
marks, we make selective decisions regarding the use of positional embedding for each benchmark,
as detailed in Table 9.

Hyperparameter Value
Number of layers 4
Embedding dimension 256, hopper-medium-replay

512, otherwise
Batch size 256
Context length K 8
Dropout 0.1
Nonlinearity function GELU
Learning rate 10−3, walker2d-medium

5× 10−4, otherwise
Grad norm clip 0.25
Weight decay 10−4

Learning rate decay Linear warmup for first 104 training steps
Target entropy β −dim(A)

Total number of updates 105

Table 8: Common hyperparameters of ODC on MuJoCo and AntMaze.

Dataset Positional embedding
{halfcheetah, hopper, walker2d}-medium no

{halfcheetah, hopper, walker2d}-medium-replay yes
{halfcheetah, hopper, walker2d}-medium-expert no

antmaze-{umaze, umaze-diverse} yes

Table 9: Usage of positional embedding for ODC by benchmark.

For online finetuning, we retain most of the hyperparameters from Table 8. However, specific
benchmark-based hyperparameters are outlined in Table 10. Note that, ODC requires an additional
target RTG, gonline, for gathering additional online data (Zheng et al., 2022). In Table 10, geval de-
notes the target RTG for evaluation rollouts, and gonline denotes the exploration RTG for gathering
online samples.
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Dataset pretraining
updates

buffer
size

embedding
size

learning
rate

weight
decay

geval gonline positional
embedding

hopper-m 5000 1000 512 0.0005 0.0001 3600 7200 no
hopper-m-r 5000 1000 512 0.0005 0.00005 3600 7200 no
walker2d-m 10000 1000 512 0.0005 0.0001 5000 10000 no
walker2d-m-r 10000 1000 512 0.001 0.0001 5000 10000 no
halfcheetah-m 5000 1000 512 0.0005 0.0001 6000 12000 no
halfcheetah-m-r 5000 1000 512 0.0001 0.0001 6000 12000 no
antmaze-u 7000 1500 512 0.001 0 1 2 yes
antmaze-u-d 7000 1500 1024 0.0001 0 1 2 yes

Table 10: The hyperparameters employed for finetuning ODC for each benchmark. The dataset
names are abbreviated as follows: ‘medium’ as ‘m’, ‘medium-replay’ as ‘m-r’, ‘medium-expert’ as
‘m-e’, ‘umaze’ as ‘u’, and ‘umaze-diverse’ as ‘u-d’.

E FURTHER DESIGN OPTIONS

E.1 ACTIVATION FUNCTION

In the original DT implementation, a ReLU (Nair & Hinton, 2010) activation function is used for
the 2-layer feedforward network within each block. We conduct experiments by replacing this acti-
vation function with the GELU (Hendrycks & Gimpel, 2016) function. We observe that this change
has no impact on the MuJoCo domain but improves the performance in the AntMaze domain for
DT and DC (no improvement for ODT and ODC). GELU is derived by combining the character-
istics of dropout (Srivastava et al., 2014), zoneout (Krueger et al., 2016), and the ReLU function,
resulting in a curve that is similar but smoother than ReLU. As a result, GELU has the advantage of
propagating gradients even for values less than zero. This advantage has been linked to performance
improvements and is widely used in recent models such as BERT (Devlin et al., 2019), ROBERTa
(Liu et al., 2019), ALBERT (Lan et al., 2019), and MLP-Mixer (Tolstikhin et al., 2021). When us-
ing the GELU activation, we observe noticeable performance enhancements in some environments
with no degradation in other environments. Consequently, we conduct experiments by replacing the
ReLU activation function with GELU in DT, DC, ODT, and ODC. The impact of GELU activation
in the AntMaze domain is presented in Table 11.

DT DC
Dataset ReLU GELU ReLU GELU
antmaze-umaze 66.2 69.4 71.0 85.0
antmaze-umaze-diverse 58.0 62.2 63.6 78.5

Table 11: Expert-normalized returns for DC and DT on antmaze-umaze and
antmaze-umaze-diverse, averaged over five random seeds, using ReLU and GeLU.

E.2 INCORPORATING ACTION INFORMATION

In specific environments such as hopper-medium-replay from MuJoCo, the inclusion of ac-
tion information in the input sequence can hinder the learning process. This observation is supported
by Ajay et al. (2022), which suggests that action information might not always benefit the approach
of treating reinforcement learning as a sequence-to-sequence learning problem. The same source,
when discussing the application of diffusion models to reinforcement learning, points out that a
sequence of actions tends to exhibit a higher frequency and lack smoothness. Such characteristics
can disrupt the predictive capabilities of diffusion models. This phenomenon might explain the
challenges observed in hopper-medium-replay. Addressing this challenge of high-frequency
actions remains an area for future exploration. Comparative training results, with and without the
action information in hopper-medium-replay, are provided in Table 12.
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DT DC ODT ODC
Dataset action

O
action

X
action

O
action

X
action

O
action

X
action

O
action

X
hopper-medium-replay 82.2 85.6 88.7 94.2 88.9 91.9 90.1 94.1

Table 12: Expert-normalized returns averaged across five random seeds for DT, DC, ODT, and ODC
on hopper-medium-replay, both with and without action information.

E.3 PROJECTION LAYER AT THE END OF TOKEN-MIXER

In the Atari domain, we observe that the utilization of a dimension-preserving projection layer at
the end of each attention or convolution module can affect performance. Therefore, for both DT and
DC, we set the inclusion of the projection layer as a hyperparameter. The inclusion of the projection
layer for each game is listed in Table 13.

Projection layer
Game DT DC DChybrid

Breakout yes no no
Qbert no yes yes
Pong yes no no
Seaquest yes yes yes
Asterix yes no yes
Frostbite no yes yes
Assault yes yes yes
Gopher no no no

Table 13: The game-specific usage of projection layer when training DT, DC, and DChybrid on the
Atari domain.

F COMPLEXITY COMPARISON

Table 14, 15, and 16 present the computation time for one training epoch, GPU memory usage,
and the number of parameters. These metrics offer a comparative analysis of the computational
efficiency between DT vs. DC, ODT vs. ODC, all of which are trained on a single RTX 2060 GPU.
In the table “#” symbol denotes “number of” and “∆%” denotes the reduction ratio of the latter
relative to the former, i.e. ( former−latter

former ) × 100. Examining the results, we can observe that DC and
ODC are more efficient than DT and ODT in terms of training time, GPU memory usage, and the
number of parameters.

G ADDITIONAL ABLATION STUDIES

G.1 DISTINCT CONVOLUTION FILTERS

The convolution module in DC employs three separate filters: the RTG filter wR̂
q , state filter ws

q ,
and action filter wa

q . These are designed to distinguish variations across the semantics of RTG,
state, and action. To assess the contribution of these specific filters, we perform experiments using
a unified single filter wU

q ∈ RL applicable to all position p across various MuJoCo and AntMaze
environments. Analogous to Eq. 4, for the 1-filter DC, the convolution output for the q-th dimension
is computed as:

Ct[p, q] =

L−1∑
l=0

wU
q [l] ·Xt[p− l, q], p = 1, 2, . . . , 3K − 1. (6)

Results in Table 17 indicate that except in the walker2d-medium-replay scenario, using three
filters enhances performance. Impressively, even when limited to a single filter, DC substantially
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Complexity DT DC ∆%

Training time (s) 426 396 7%
GPU memory usage 0.7GiB 0.6GiB 14%
All params # 1.1M 0.8M 27%
Token mixer params # 198K 8K 95 %

Table 14: The resource usage for training DT,
DC on MuJoCo and Antmaze.

Complexity ODT ODC ∆%

Training time (s) 2147 854 60%
GPU memory usage 4GiB 1.4GiB 65%
All params # 13.4M 8.1M 40%
Token mixer params # 4202K 43K 99%

Table 15: The resource usage for training
ODT, and ODC on MuJoCo and Antmaze.

Complexity DT DC ∆%

Training time (s) 764 193 75%
GPU memory usage 3.7GB 1.8GB 51%
All params # 2.1M 1.7M 19%
Token mixer params # 396K 16K 96%

Table 16: The resource usage for training DT, DC on Atari.

surpasses DT. This implies that even by only capturing local patterns with a single filter, there’s a
notable enhancement in decision-making.

Dataset 1-filter DC 3-filter DC DT
hopper-medium 88.3 92.5 68.4
walker2d-medium 77.6 79.2 75.5
hopper-medium-replay 89.6 94.1 85.6
walker2d-medium-replay 78.0 76.6 71.2

antmaze-umaze 81.6 85.0 69.4
antmzae-umaze-diverse 78.1 78.5 62.2

Table 17: Comparison between expert-normalized returns of 1-filter DC, 3-filter DC, and DT, aver-
aged across five random seeds.

G.2 CONTEXT LENGTH AND FILTER SIZE OF DC

DC focuses on local information and, by default, employs a window size of L = 6 to reference
previous timesteps within the (RTG, s, a) triple token setup. While enlarging the window size
enables decisions that account for a broader horizon, it could inherently reduce the impact of local
information. To assess the effect, we conduct extra experiments to validate performance across
various filter window sizes L and context lengths K.

K

L
3 6 30

8 83.5 92.5 -
20 90.1 94.2 93.5

Table 18: Expert-normalized returns averaged across five random seeds in hopper-medium for
different combinations of K and L.

G.3 CONTEXT LENGTH OF DT

Chen et al. (2021) highlights that longer sequences often yield better results than merely consid-
ering the previous timestep, particularly in the Atari domain. Consistent with this, we train DT
with an emphasis on local information, akin to how DC is trained on the MuJoCo medium and
medium-replay datasets. For evaluation, we set DT’s context length K = 8 to parallel DC’s
configuration and also assess DT with K = 2 to prioritize the current timestep and its predecessor.
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Examining the outcomes in Table 19, it’s evident that in the hopper and walker2d environments,
the performance of DT gradually decreases with reduced context lengths. However, unlike these
environments, there’s almost no performance drop in the halfcheetah environment. To delve
deeper, we conduct experiments by entirely excluding the attention module, and the averaged expert-
normalized score is 39.5. In the halfcheetah environment, it’s apparent that the attention module
doesn’t hold a significant role, hence its impact doesn’t seem contingent on context length.

Dataset DT (20) DT (8) DT (2) DC (8)
hopper medium & medium-replay 77.0 74.8 72.5 93.4
walker2d medium & medium-replay 73.4 72.5 71.6 77.9
halfcheetah medium & medium-replay 39.8 39.3 39.4 42.2

Table 19: Performance of DT across context lengths K: 20, 8, and 2. Expert-normalized returns are
averaged over the medium and medium-replay MuJoCo benchmarks, and across five random
seeds.

H LIMITATIONS AND FUTURE DIRECTION

Although DC offers efficient learning and remarkable performance, it has its limitations. Since DC
replaces the attention module, it is not immediately adaptable to scenarios demanding long-horizon
reasoning, such as meta-learning (Xu et al., 2022) or tasks with partial observability. Our proposed
hybrid approach might be a solution for these scenarios. Exploring further extensions to propagate
the high-quality local features of DC over long horizons is a meaningful direction for future research.
Furthermore, return-conditioned BC algorithms, including DC, have not yet achieved the results of
the value-based approach in the halfcheetah environment.
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