
A Model Architecture

In this section, we provide comprehensive details about the Transformer model architectures con-
sidered in this work. We implement all models in PyTorch [61] and adapt the implementation of
Transformer-XL from VPT [4].

A.1 Observation Encoding

Experiments conducted on both DMLab and RoboMimic include RGB image observations. For
models trained on DMLab, we use a ConvNet [29] similar to the one used in Espeholt et al. [20]. For
models trained on RoboMimic, we follow Mandlekar et al. [53] to use a ResNet-18 network [29]
followed by a spatial-softmax layer [23]. We use independent and separate encoders for images taken
from the wrist camera and frontal camera. Detailed model parameters are listed in Table A.1.

Table A.1: Model hyperparameters for vision encoders.

Hyperparameter Value
DMLab

Image Size 72 ⇥ 96
Number of ConvNet Blocks 1
Channels per Block [16, 32, 32]
Output Size 256

RoboMimic

Image Size 84 ⇥ 84
Random Crop Height 76
Random Crop Width 76
Number of Randomly Cropped Patches 1
ConvNet Backbone ResNet-18 [29]
Output Size 64
Spatial-Softmax Number of Keypoints 32
Spatial-Softmax Temperature 1.0
Output Size 64

Since DMLab is highly partially observable, we follow previous work [20, 22, 4] to supply the model
with previous action input. We learn 16-dim embedding vectors for all discrete actions.

To encode proprioceptive measurement in RoboMimic, we follow Mandlekar et al. [53] to not apply
any learned encoding. Instead, these types of observation are concatenated with image features and
passed altogether to the following layers. Note that we do not provide previous action inputs in
RoboMimic, since we find doing so would incur significant overfitting.

A.2 Transformer Backbone

We use Transformer-XL [16] as our model backbone, adapted from Baker et al. [4]. Transformer-XL
splits long sequences into shorter sub-sequences that reduce the computational cost of attention while
allowing the hidden states to be carried across the entire input by attending to previous keys and
values. This feature is critical for the long sequence inputs necessary for cross-episodic attention.
Detailed model parameters are listed in Table A.2.

A.3 Action Decoding

To decode joystick actions in DMLab tasks, we learn a 3-layer MLP whose output directly parameter-
izes a categorical distribution. This action head has a hidden dimension of 128 with ReLU activations.
The “Goal Maze” and “Irreversible Path” tasks have an action dimension of 7, while “Watermaze” has
15 actions. To decode continuous actions in RoboMimic, we learn a 2-layer MLP that parameterizes
a Gaussian Mixture Model (GMM) with 5 modes that generates a 7-dimensional action. This network

18



Table A.2: Model hyperparameters for Transformer-XL.

Hyperparameter Value (DMLab) Value (RoboMimic)
Hidden Size 256 400
Number of Layers 4 2
Number of Heads 8 8
Pointwise Ratio 4 4

has a hidden dimension of 400 with ReLU activations. During deployment, we employ the “low-noise
evaluation” trick [31].

B Training Details and Hyperparameters

All experiments are conducted on cluster nodes with NVIDIA V100 GPUs. We utilize DDP (dis-
tributed data parallel) to accelerate the training if necessary. Training hyperparameters are listed in
Table A.3.

Table A.3: Hyperparameters used during training.

Hyperparameter Value (DMLab) Value (RoboMimic)
Learning Rate 0.0005 0.0001
Warmup Steps 1000 0
LR Cosine Annealing Steps 100000 N/A
Weight Decay 0.0 0.0

C Experiment Details

C.1 DMLab Main Experiment

Our DMLab main experiment is conducted on three levels with task IDs

• explore goal locations large,
• rooms watermaze,
• and skymaze irreversible path hard.

We use no action repeats during training and evaluation. For experiments with varying task difficulty,
we select difficulty parameters “room numbers”, “spawn radius”, and “built-in difficulty” for these
three levels, respectively. We adopt environment wrappers and helper functions from Petrenko et al.
[63] to flexibly and precisely maneuver task difficulties.

Due to different task horizons, we tune the context length of Transformer-XL models and vary
curricular trajectories accordingly. These differences are summarized in Table A.4.

RL oracles serve as source agents used to generate training data for our methods and the “BC w/
Expert Data” baseline. They are trained with the PPO [70] implementation from Petrenko et al. [63].
The “BC w/ Expert Data” baselines have the same model architecture, training hyperparameters, and
amount of training data as our method, but are trained solely on trajectories generated by the best
performing RL oracles without cross-episodic attention.

C.2 DMLab Generalization

This series of experiments probe the zero-shot generalization capabilities of embodied agents
in unseen maze configurations, out-of-distribution difficulty levels, and varying environment
dynamics. For the task “Goal Maze w/ Unseen Mechanism”, we use the level with task ID

19



Table A.4: Experiment details on DMLab tasks. Columns “Epoch” denote the exact training epochs
with best validation performance. We select these checkpoints for evaluation. For task-difficulty-
based curriculum, the column “Training Trajectories” with n⇥m entries means n trajectories per
difficulty level (m levels in total). The column “Sampled Episodes” with [i, j] entries means we first
determine the number of episodes per difficulty level by uniformly sampling an integer from [i, j]
(inclusively).

Level
Name

Context
Length

Task-Difficulty-Based Curriculum Learning-Progress-Based Curriculum
Epoch Training Trajectories Sampled Episodes Epoch Training Trajectories Sampled Episodes

Goal Maze 500 84 100 x 3 [1, 5] 88 300 9
Watermaze 400 89 100 x 3 [1, 5] 80 300 9

Irreversible Path 1600 90 100 x 4 [1, 3] 97 400 8

Table A.5: Evaluation results on DMLab, averaged over three tasks (Figure 3).

Ours (Task
Difficulty), Auto

Ours (Task
Difficulty), Fixed

Ours (Learning
Progress)

DT (Mixed
Difficulty)

DT (Single
Difficulty)

AT (Mixed
Difficulty)

AT (Single
Difficulty)

BC w/ Expert
Data

RL
(Oracle)

Curriculum RL
(Oracle)

51.4 54.4 32.4 35.3 11.7 42.7 33.4 14.2 40.6 50.6

Table A.6: Generalization results on DMLab, averaged over five settings (Figure 4).

Ours (Task
Difficulty)

Ours (Learning
Progress)

DT (Mixed
Difficulty)

DT (Single
Difficulty)

AT (Mixed
Difficulty)

AT (Single
Difficulty)

BC w/ Expert
Data

RL
(Oracle)

Curriculum RL
(Oracle)

39.6 27.8 31.8 13.6 39.4 29.2 18.1 30.0 37.6

explore obstructed goals large, which adds randomly opened and closed doors into the maze
while ensuring a valid path to the goal always exists. An example of an agent’s ego-centric observation
is visualized in Figure A.1.

The task “Irreversible Path (OOD. Difficulty)” corresponds to configurations with the built-in difficulty
of 1 (agents are only trained on difficulty up to 0.9, as noted in Table 1). For tasks with varying
environment dynamics, we directly test agents with an action repeat of 2. This is different from the
training setting with no action repeat.

C.3 RoboMimic Main Experiment

We leverage the Multi-Human (MH) dataset from Mandlekar et al. [53]. It consists of demonstrations
collected by operators with varying proficiency. We construct the expertise-based curriculum by
following the order of “worse operators, okay operators, then better operators”. We use a context
length of 200 for both tasks. There are 90 trajectories per expertise level. To determine the number of
trajectories per expertise level when constructing curricular data, we uniformly sample an integer
from [1, 5] (inclusively). The “Lift” and “Can” tasks are solved after training for 33 epochs and 179
epochs, respectively. We control for the same number of training epochs in subsequent ablation
studies.

C.4 Ablation Study on Curriculum Granularity

We perform this ablation with the task-difficulty-based curriculum on DMLab levels due to the ease of
adjusting granularity. The definition of varying levels of curriculum coarseness is listed in Table A.7.

Table A.7: Definitions of varying levels of curriculum coarseness.

Level Name Difficulty Parameter Test Difficulty Fine Medium Coarse
Goal Maze Room Numbers 20 5→10→15 5→10 5→15
Watermaze Spawn Radius 580 150→300→450 150→300 150→450

Irreversible Path Built-In Difficulty 0.9 .1→.3→.5→.7 .1→.5→.7 .1→.3→.5

20



Figure A.1: A visualization of the task “Goal Maze (Unseen Mechanism)”. It includes doors that
are randomly opened or closed.

Table A.8: Results show the performance of different curricula on two robotic manipulation tasks:
Lift and Can. Standard deviations are included.

Task Expertise-Based Curriculum Learning-Progress-Based Curriculum CQL [41]

Lift 100.0± 0.0 32.0± 17.0 2.7± 0.9
Can 100.0± 0.0 30.0± 2.8 0.0± 0.0
Average 100.0 31.0 1.4

C.5 Comparison of Curricula in RoboMimic

In IL settings, we further explored the efficacy of various curricula. For the RoboMimic tasks
examined, we employed a learning-progress-based curriculum, ensuring the total training trajectories
matched those of the expertise-based curriculum (i.e., 270 trajectories per task). All other parameters
remained consistent, with the training data derived from RoboMimic’s machine-generated dataset.

Table A.8 indicates that when heterogeneous-quality human demonstrations are accessible, the
expertise-based curriculum is preferable due to its superior performance over the learning-progress-
based approach. Conversely, without expert demonstrations and relying solely on machine-generated
data, the learning-progress-based curriculum is still commendable. It offers noteworthy results and
surpasses offline RL methods like CQL [41], even though CQL is trained on the full RoboMimic
dataset, encompassing 1500 trajectories for the Lift task and 3900 for the Can task.

D Feasibility of Obtaining Curricular Data

The challenge of accurately orchestrating a curriculum is non-trivial and hinges on various factors.
In the present work, three curriculum designs are introduced and validated, each with its practical
considerations and underlying assumptions, discussed herein.

Learning-Progress-Based Curriculum. RL agents typically exhibit monotonic improvement
over training epochs, thereby naturally producing incrementally better data. The curriculum
here is devised through a series of checkpoints throughout the training duration, necessitating no
supplementary assumptions for its formulation.

Task-Difficulty-Based Curriculum. In contexts where environmental difficulty is parameterizable,
curricula can be structured through a schedule, determined by the relevant difficulty parameter, as
demonstrated within this work. In scenarios lacking parameterized difficulty, alternatives such as
methods proposed by Kanitscheider et al. [40] may be employed. The application of our method to
tasks where difficulty is not explicitly characterized presents an intriguing avenue for future research.

Expertise-Based Curriculum. A notable limitation resides in the requisite to estimate demon-
strators’ proficiency. While some IL benchmarks, e.g., RoboMimic [53], come pre-equipped
with proficiency labels, a broader application of our method necessitates an approximation of
proficiency. One plausible approach entails ranking trajectories via completion time. Furthermore,

21



a demonstrator’s proficiency is likely to organically improve—from initial unfamiliarity with
teleoperation systems or tasks, to a stage of executing data collection with muscle memory [52].
This progression potentially provides a rich learning signal conducive for CEC application.

E Broader Impact

Our Cross-Episodic Curriculum can significantly enhance Transformer agent learning but carries
potential societal impacts. The efficiency of our method depends on the curriculum’s design. If
the curriculum unintentionally reflects biases, it could lead to the amplification of these biases in
learned policies, potentially perpetuating unfair or discriminatory outcomes in AI-driven decisions.
Furthermore, the computational intensity of our approach at evaluation could contribute to increased
energy usage, which has implications for the environmental footprint of AI applications.

22


	Introduction
	Cross-Episodic Curriculum: Formalism and Implementations
	Preliminaries
	Curricular Data Assembly and Model Optimization
	Practical Implementations

	Experimental Setup
	Task Settings and Environments
	Baselines
	Training and Evaluation

	Experiments
	Main Evaluations
	Ablation Studies

	Related Work
	Conclusion
	Model Architecture
	Observation Encoding
	Transformer Backbone
	Action Decoding

	Training Details and Hyperparameters
	Experiment Details
	DMLab Main Experiment
	DMLab Generalization
	RoboMimic Main Experiment
	Ablation Study on Curriculum Granularity
	Comparison of Curricula in RoboMimic

	Feasibility of Obtaining Curricular Data
	Broader Impact

