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ABSTRACT

The ability to predict upcoming events has been hypothesized to comprise a key
aspect of natural and machine cognition. This is supported by trends in deep
reinforcement learning (RL), where self-supervised auxiliary objectives such as
prediction are widely used to support representation learning and improve task
performance. Here, we study the effects predictive auxiliary objectives have on
representation learning across different modules of an RL system and how these
mimic representational changes observed in the brain. We find that predictive
objectives improve and stabilize learning particularly in resource-limited archi-
tectures. We identify settings where longer predictive horizons better support rep-
resentational transfer. Furthermore, we find that representational changes in this
RL system bear a striking resemblance to changes in neural activity observed in
the brain across various experiments. Specifically, we draw a connection between
the auxiliary predictive model of the RL system and hippocampus, an area thought
to learn a predictive model to support memory-guided behavior. We also connect
the encoder network and the value learning network of the RL system to visual
cortex and striatum in the brain, respectively. This work demonstrates how repre-
sentation learning in deep RL systems can provide an interpretable framework for
modeling multi-region interactions in the brain. The deep RL perspective taken
here also suggests an additional role of the hippocampus in the brain— that of an
auxiliary learning system that benefits representation learning in other regions.

1 INTRODUCTION

Deep reinforcement learning (RL) models have shown remarkable success solving challenging prob-
lems (Sutton & Barto, 2018; Mnih et al., 2013; Silver et al., 2016; Schulman et al., 2017). These
models use neural networks to learn state representations that support complex value functions. A
key challenge in this setting is to avoid degenerate representations that support only subpar policies
or fail to transfer to related tasks. Self-supervised auxiliary objectives, particularly predictive ob-
jectives, have been shown to regularize learning in neural networks to prevent overfit or collapsed
representations (Lyle et al., 2021; Dabney et al., 2021; Frangois-Lavet et al., 2019). As such, it is
common to combine deep RL objectives with auxiliary objectives. The modular structure of these
multi-objective models can function as a metaphor for how different regions of the brain combine to
comprise an expressive, generalizable learning system.

Analogies can readily be drawn between the components of a deep RL system augmented with pre-
dictive objectives and neural counterparts. For instance, the striatum has been identified as a RL-like
value learning system (Schultz et al., 1997). Hippocampus has been linked to learning predictive
models and cognitive maps (Mehta et al., 1997; O’Keefe & Nadel, 1978; Koene et al., 2003). Fi-
nally, sensory cortex has been suggested to undergo unsupervised or self-supervised learning akin to
feature learning (Zhuang et al., 2021), although reward-selective tuning also been observed (Poort
et al., 2015). It is unclear how value learning, predictive objectives, and feature learning mutually
interact to shape representations. Comparing representations across artificial and biological neu-
ral networks can provide a useful frame of reference for understanding the extent artificial models
resemble the brain’s mechanisms for robust and flexible learning.

These comparisons can also provide useful insights into neuroscience, where little is known about
how learning in one region might drive representational changes across the brain. For instance, the
hippocampus is a likely candidate for predictive objectives, as ample experimental evidence has
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shown that activity in this region is predictive of the upcoming experience of an animal (Skaggs &
McNaughton, 1996; Lisman & Redish, 2009; Mehta et al., 1997; Payne et al., 2021; Muller & Ku-
bie, 1989; Pfeiffer & Foster, 2013; Schapiro et al., 2016; Blum & Abbott, 1996; Mehta et al., 2000).
These observations are often accounted for in theoretical work as hippocampus computing a predic-
tive model or map (Lisman & Redish, 2009; Mehta et al., 2000; Russek et al., 2017; Whittington
et al., 2020; Momennejad, 2020; George et al., 2021; Stachenfeld et al., 2017). Much has been writ-
ten about how learned predictive models may be used by the brain to simulate different outcomes
or support planning (Vikbladh et al., 2019; Geerts et al., 2020; Mattar & Daw, 2018; Miller et al.,
2017; Olafsdottir et al., 2018; Redish, 2016; Koene et al., 2003; Foster & Knierim, 2012; McNamee
etal., 2021). However, in the context of deep RL, the mere act of learning to make predictions in one
region confers substantial benefits to other interconnected regions by shaping representations to in-
corporate predictive information (Hamrick et al., 2020; Oord et al., 2018; Bengio, 2012). One of the
key insights of this work is to propose that an additional role of predictive learning in hippocampus
is to drive representation learning that supports deep RL in the brain.

The main contribution of this paper is to quantify how representations in a deep RL model change
with predictive auxiliary objectives, and to identify how these changes mimic representational
changes in the brain. We first characterize functional benefits this auxiliary system confers on learn-
ing. We evaluate the effects of predictive auxiliary objectives in a simple gridworld foraging task,
and confirm that these objectives help prevent representational collapse, particularly in resource-
limited networks. We also observe that longer-horizon predictive objectives are more useful than
shorter ones for transfer learning. We further demonstrate that a deep RL model with multiple ob-
jectives undergo a variety of representational phenomena also observed in neural populations in the
brain. Downstream objectives can alter activity in the encoder, which is mirrored in various results
that show how visual cortical activity is altered by both predictive and value learning. Additionally,
learning in the prediction module drives activity patterns consistent with activity measured in hip-
pocampus. Overall we find that interacting objectives explain diverse effects in the neural data not
well modeled by considering learning systems in isolation. Moreover, this suggests that deep RL
with predictive objectives appears to in many ways mirror the brain’s approach to learning.

2 RELATED WORK

In deep RL, auxiliary objectives have emerged as a crucial tool for representation learning. These
additional objectives require internal representations to support other learning goals besides the pri-
mary task of value learning. Auxiliary objectives thus regularize internal representations to preserve
information that may be relevant for learning. They are thought to address challenges that may arise
in sparse reward environments, such as representation collapse and value overfitting (Lyle et al.,
2021). Many auxiliary objectives used in machine learning are predictive in flavor. Prior work has
found success in defining objectives to predict reward (Jaderberg et al., 2016; Shelhamer et al., 2016)
or to predict future states (Shelhamer et al., 2016; Oord et al., 2018; Wayne et al., 2018) from his-
tory. Predictive objectives may be useful for additional functions as well. Intrinsic rewards based on
the agent’s ability to predict the next state can be used to guide curiosity-driven exploration (Pathak
et al., 2017; Tao et al., 2020). These objectives may also aid with transfer learning (Walker et al.,
2023), by learning representations that capture features that generalize across diverse domains. The
incorporation of auxiliary objectives has greatly enhanced the efficiency and robustness of deep RL
models in machine learning applications.

In neuroscience, much theoretical work has sought to characterize brain regions by the computa-
tional objective they may be responsible for. Hippocampus in particular has been suggested to learn
predictions of an animal’s upcoming experience. This has been formalized as learning a transition
model similar to model-based reinforcement learning (Fang et al., 2022) to learning long-horizon
predictions as in the successor representation (Gershman et al., 2012; Stachenfeld et al., 2017). Sep-
arately, the striatum has long been suggested to support model-free (MF) reinforcement learning like
actor-critic models (Joel et al., 2002), with more recent work connecting these hypotheses to deep
RL settings (Dabney et al., 2021; Lindsey & Litwin-Kumar, 2022).

Less work has been done to understand how the computational objectives of multiple brain regions
interact, although this has been suggested as a framework for neuroscience (Marblestone et al., 2016;
Yamins & DiCarlo, 2016; Botvinick et al., 2020). Prior work has used multi-region recurrent neural
networks (Pinto et al., 2019; Andalman et al., 2019; Kleinman et al., 2021) or switching nonlinear
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Figure 1: A deep RL framework to model multi-
region computation. A. In the deep RL model
we use, reward is provided as a scalar input 7.
Observations o are 2D visual inputs fed into an
encoder (green) that learns low-dimensional state
space representations z. The encoder is a convolu-

latent state W’é tional neural network. Representations z are used
pocamy to learn Q values via a MLP (blue); these Q values

are used to select actions a. A predictive auxiliary
objective (orange) is enforced by a separate MLP
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dynamical systems (Semedo et al., 2014; Glaser et al., 2020; Karniol-Tambour et al., 2022) to model
the interactions of different regions. However, much of this work focuses more on fitting recorded
neural activity than taking a normative perspective on brain function. A growing body of work
considers modular and multi-objective approaches to building integrative models of brain function.
One approach has been to construct multi-region models by combining modules performing inde-
pendent computations and comparing representations in these models to neural activity (Frank &
Claus, 2006; O’Reilly & Frank, 2006; Geerts et al., 2020; Russo et al., 2020; Liu et al., 2023; Jensen
et al., 2023). On the behavioral end, there has also been prior work discussing how the addition of
biologically-realistic regularizers or auxiliary objectives can result in performance more consistent
with humans (Kumar et al., 2022; Binz & Schulz, 2022; Jensen et al., 2023).

Our work differs in that the entire system consists of a neural network that is trained end-to-end,
allowing us the opportunity to specifically study the effects on representation learning. In this paper,
we show how deep RL networks can be a testbed for studying representational changes and serve as
a multi-region model for neuroscience.

3 EXPERIMENTAL METHODS

Network architecture We implement a double deep Q-learning network (Van Hasselt et al., 2016)
with a predictive auxiliary objective, similar to Francois-Lavet et al. (2019) (Fig 1A). A deep con-
volutional neural network F encodes observation o; at time ¢ into a latent state z; (o; will be a 2D
image depicting the agent state in a tabular grid world). The state z; is used by two network heads:
a Q-learning network Q(z, a) that will be used to select action a; and a prediction network T'(z, a)
that predicts future latent states. Both () and T" are multi-layer perceptrons with one hidden layer.

Network training procedure The agent is trained on transitions (o, at, 0t41, ;1) sampled from
a random replay buffer. We will also let o; and o; denote any two observations randomly sam-
pled from the replay buffer that may not have occurred in sequence. The weights of E, ), T are
trained end-to-end to minimize the standard double Q-learning temporal difference loss function L
Van Hasselt et al. (2016) and a predictive auxiliary loss Ly,,..q. The predictive auxiliary loss is simi-
lar to that of contrastive predictive coding (Oord et al., 2018). That is, L,cq = L4 + L£_ where L
is a positive sampling loss and £_ is a negative sampling loss. The positive sample loss is defined
as Ly = ||7(2z¢,a1) — 2001 — Y7 (2041, ar11)||?, where z; = E(o;) and 7(2¢, a) = 2z + T(2¢, ay).
That is, in the v = 0 case, the network 7 is learning the difference between current and future latent
states such that 7(z¢, a;) = 2 + T'(2¢,a:) = z¢4+1. This encourages the learned representations z
to be structured to be structured so as to be consistent with predictable transitions (Frangois-Lavet
et al., 2019). Additionally, v modulates the predictive horizon.

The negative sample loss is defined as £ = —exp||z; — z;||. We emphasize that z; and z; are
randomly sampled from the buffer and thus may represent states that are spatially far from another.
This loss drives temporally distant observations to be represented differently, thereby preventing
the trivial solution from being learned (mapping all latent states to a single point). The use of two
contrasting terms (£_ and £ ) is not just useful for optimization reasons— it also mirrors the hypoth-
esized pattern separation and pattern completion within the hippocampus (O’Reilly & McClelland,
1994; Schapiro et al., 2017). However, we note that negative sampling elements are not always
needed to support self-predictive learning if certain conditions are satisfied (Tang et al., 2023). Ex-
cept where indicated, the agent learns off-policy via a random policy during learning, only using its
policy during test time. The weights over loss terms Lo, £, £_ are chosen through a small grid
search over the final episode score.
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Figure 2: Gridworld performance with predictive auxiliary tasks. A. The model is tested on grid-
world task in a 8x8 arena. The agent must navigate to a hidden reward given random initial starting
locations. B. Average episode score across training steps for models without auxiliary losses (blue),
with only the negative sampling loss £_ (green), and with the full predictive loss £,,.q (orange).
The maximum score is 1 and |z| = 10 (i.e. z contains 10 units). In each step, the network is trained
on one batch of replayed transitions (batch size is 64). All error bars are standard error mean over
45 random seeds. C. 3D PCA representations of latent states z for the models in (B) (two random
seeds). The latent states are colored by the quadrant of the arena they lie in. The quadrants (in order)
are purple, pink, gray, brown. The goal location state is colored red. Gray lines represent the true
connectivity between states. D. Diagram of the encoder network (red), learned latent state (gray),
and value-learning network (blue). We vary |z| (see E, F), as well as the encoder/decoder depths
(Appendix A.3AB). E. Average episode score at the end of learning (600 training steps) across |z|.
F. Fraction of units in z that are silent during the task, across |z|. G. Cosine similarity of two ran-
domly sampled states throughout learning, |z| = 10.

Experimental comparisons and modifications We will treat the encoder network as a sensory
cortex analog, the Q-learning network as a striatum analog, and the prediction network as a hip-
pocampus analog (Fig A.1AB). In our analyses, we vary several parameters of interest. We vary the
size of z to test the effects of the information bottleneck of the encoder. We will also modulate the
strength of +y in the auxiliary loss to test the effects of different timescales of prediction. Finally, we
also test how the depths of the decoder and encoder networks affect learning.

4 RESULTS

4.1 PREDICTIVE OBJECTIVES HELP PREVENT REPRESENTATIONAL COLLAPSE.

We first want to understand the effect predictive auxiliary objectives have on a learning system. We
test the RL model in a simple gridworld foraging task, where an agent must navigate to a hidden
reward from any point in a 2D arena. The observation received by the agent is a 2D image depicting a
birds-eye view of the agent’s location. Further details and examples are provided in Figure A.2 A-D.
We compare a model without auxiliary objectives (MF-only) to models with the negative sampling
objective £_ only and with the full predictive objective L,,.q. Here, the predictive model is trained
with one-step prediction (y = 0).

Given sufficient capacity in the encoder, decoder, and latent layer z, all models learn the foraging
task (Fig 2B). However, the model with prediction reaches maximum performance with fewer train-
ing steps than both the negative-sampling model and the MF-only agent (Fig 2B). Additionally, the
latent representation in the predictive model appears to capture the global structure of the environ-
ment better than the other two models (Fig 2C). The model without any auxiliary tasks tends to
expand the representation space around rewarding states, while the model with negative sampling
(Fig 2C) evenly spaces apart state representations without regard for environment structure.
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We next tested how the effects of auxiliary tasks change with the size of the model components (Fig
2D). We first varied the size of z, and thus the representational capacity of the encoder. We find
that, although all models can perform well given a large enough latent dimension |z|, supplying the
model with a predictive auxiliary objective allows the model to learn the task even with a smaller
bottleneck (Fig 2E). This benefit is not conveyed by the negative sampling loss alone, suggesting that
learning the environment structure confers its own unique benefit (Fig 2E). We find similar results
by varying the encoder network depth and the decoder network depth (Fig A.3AB), showing that the
benefits of predictive auxiliary objectives are more salient in resource-limited cases.

This difference may be because representational collapse is a greater danger in lower-dimensional
settings. To test this, we measure how many units in the output of the encoder are involved in
supporting the state representation. We find that a greater proportion of units are completely silent
in the MF-only encoder (Fig 2F), suggesting a less distributed representation. To more directly
test for collapse, we measure how the cosine similarity between state representations change across
learning. Although all models start with highly similar states, the models with auxiliary losses
separate state representations across training more than the MF-only model does (Fig 2G).

Finally, we test more complex versions of this gridworld task to see how performance is affected.
We find consistent results in a CIFAR version of this task (Fig A.2D), where models equipped with
a predictive auxiliary objective outperform the other two models we tested (Fig A.3C). We also
test a version of gridworld where the environment is less predictable— that is, transitions are no
longer determinstic. We find that, as the probability of stochastic transitions increse, the benefit of
predictive auxiliary objectives vanish (Fig A.3D).

4.2 LONG-HORIZON PREDICTIVE AUXILIARY TASKS ARE MORE EFFECTIVE AT SUPPORTING
REPRESENTATIONAL TRANSFER THAN SHORT-HORIZON PREDICTIVE TASKS.

Thus far, we have tested the predictive auxiliary objective with one-step prediction. However, long
horizon predictions are often used as auxiliary objectives (Oord et al., 2018; Hansen et al., 2019),
and many neural systems, including hippocampus, have been hypothesized to perform long-horizon
predictions (Brunec & Momennejad, 2022; Lee et al., 2021). We next sought to understand under
what conditions longer horizons of prediction in auxiliary objectives would be useful. In particular,
we were interested in exploring how well learned representations could transfer to new tasks. We
hypothesize that long-horizon predictions (larger v in £) can better capture global environment
structure and thus learn representations that transfer better to tasks in similar environments.

We first test representation transfer to new reward locations in gridworld (Fig 3A). After the agent
learns an initial goal location in task A, we freeze the encoder, move the goal to a new state, and fine-
tune the value network for task B. This allows us to test how well the learned representation structure
can support new value functions. We test models with £,,..q loss and v € {0.0,0.25,0.5,0.8}. We
find that, although all models learn task A quickly, models with larger «y learn task B more efficiently
(Fig 3B). We test how this effect scales with latent sizes. Just having a predictive horizon longer
than one timestep appears sufficient to improve learning efficiency, with the effect stronger at larger
latent sizes. (Fig 3C). The selective benefit of longer time horizons for transfer may explain the
observation that regions of hippocampus with larger spatial scales appear to be preferentially active
in novel environments (Fredes et al., 2021; Kohler et al., 2002; Poppenk et al., 2010).

We hypothesize that the difference in efficient transfer performance across the models may result
from learning a latent structure that better reflects global structure. Long-horizon prediction may
be better at smoothing across experience over many timesteps, thus capturing global environment
structure better than short-horizon prediction and providing a larger benefit when latent representa-
tions are higher dimensional. Indeed, models with smaller ~ values tend to learn more curved maps
that preserve local, but not global, structure (Fig 3D). To quantify this effect, we measured the inner
product between the states representing the corners of the environment. These are states that are
maximally far from each other, and as such, representations that capture the environment structure
accurately should separate these states from each other. We see that, across learning, models with
larger y learn to separate corner states better (Fig 3E).

Predictive auxiliary objectives can also be disadvantageous under certain regimes. Predictive objec-
tives shape latent representations to reflect transition structure. However, these learned representa-
tions might not generalize well to new tasks where the transition structure or the policy changes. We
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Figure 3: Effects of predictive auxiliary objectives across transfer learning scenarios. A. We test
goal transfer by moving the goal location to a new state in task B. After training on task A, encoder
weights are frozen and the value function is fine-tuned on task B. B. Average episode score across
task A, then task B. All models shown use the predictive auxiliary loss, with the shade of each line
corresponding to the magnitude of 7y in £,,.q (v € {0.0,0.25,0.5,0.8}, |z| = 17). C. The episode
score after 100 training steps for each of the models in (B), as |z| is increased. All models achieve
maximum performance in task A. 30 random seeds are run for each latent size. D. 3D PCA plots, for
three models (v = 0.0,0.25,0.5) with the same random seed. E. Pairwise cosine similarity values
between the corner states of the arena for the model shown in (B). F. We test transition transfer by
shuffling the connectivity between all states in task B. Freezing and fine-tuning are the same as in
(A). G. Average episode score across task A, then task B. Here, |z| = 17 and € = 0.4-greedy policy
during learning. In green is the model with only £_ as an auxiliary loss. H. Episode score after
150 training steps for the model with only £_ (green) versus the model with £,;..q for v = 0.8. On
the x-axis, the policy € used during training is varied, with ¢ = 1.0 corresponding to a fully random
policy (|z| = 17, all models achieve maximum performance on task A).

test this in a different transfer task, where reward location remains the same in task B, but the envi-
ronment transition structure is scrambled (Fig 3F). Additionally, to test for effects of policy change
across task A and B, we vary the portion of random actions taken in our e-greedy agent. Under
this new transfer task with ¢ = 0.4, we find performance in task B decreases for models with the
predictive objective compared to a model with just the negative sampling loss. (Fig. 3G).

Indeed, as e gets smaller and the agent learns more from biased on-policy transition statistics, trans-
fer performance on task B accordingly suffers (Fig 3G,H). All models with predictive objectives do
not perform as well in task B as a model with only negative sampling loss (Fig 3G,H).

4.3 EFFECTS OF VALUE LEARNING AND HISTORY-DEPENDENCE IN PREDICTION NETWORK
RESEMBLE HIPPOCAMPAL ACTIVITY.

We next ask how well representations developed in the network can model representations found
in neural activity. The output of our 7" network serves as an analog to the hippocampus, a region
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Figure 4: Representational changes in the predictive model are similar to those observed in the
hippocampus. A. 2D foraging experiments are simulated as in the gridworld task from Fig 1-2. B.
2D receptive fields from top four 7' units (columns) sorted by spatial information score (Skaggs
et al., 1992). Three random seeds are shown (rows). The model uses L,,.q and |z| = 10. White
asterisk depicts reward. C. As in (B), but the model has no auxiliary objectives. D. Circular track
experiments are simulated in a circular gridworld with 28 states. Reward is in a random state for
each seed and the agent is rewarded for running clockwise to the reward. E. Receptive fields of two
example units in the 7" network before (gray) and after (orange) learning. F. Histogram over the shift
in receptive field peaks for units in 7" over 15 random seeds, where |z| = 24. Positive values indicate
shifts forward, and vice-versa for negative values. Black dotted line at 0. Median of the histogram
is —0.034. G. Histogram over the location of receptive field peaks for units in (F), with location
centered around the reward site. Random shuffle (gray) control was made by randomly shuffling the
weights of the T" network. Black dotted line at 0. The model median is —0.06, while the random
shuffle median is —0.02. H. We simulate a 5x5 alternating-T maze (see Appendix); center corridor
in pink. L. Cosine similarity of 7" population vector responses in the center corridor under left-turn
versus right-turn conditions. X-axis depicts location in the center corridor. Data is from 20 random
seeds. Shown is the model without auxiliary objectives (blue) and the model with £,,.4 (orange).
T is randomly initialized for the model without an auxiliary objective.

implicated in self-predictive learning. We first test whether the 7" network activity can capture a
classic result in the hippocampal literature: formation of spatially local activity patterns, called
place fields. We plot the spatial firing fields of individual 7" units in our model trained on gridworld,
and find 2D place fields as expected (Fig 4B). We also find that the prevalence of these place fields
is greatly reduced in models without predictive auxiliary tasks (Fig 4C).

Hippocampal place fields also undergo experience-dependent changes. We test for these effects
in our model through 1D circular track experiments (Fig 4D). We find that place fields developed
on the 1D track will skew and shift backwards from the movement of the animal (Fig 4E,F). This
is consistent with phenomena in rodent hippocampal data that have been attributed to predictive
learning (Mehta et al., 2000). We also find that the number of place fields across the linear track
is more abundant close to the reward site (Fig 4G), another widely observed phenomena that is
considered to be a result of reward learning in hippocampus. Our results suggest that value learning
in shared representations with other systems can result in reward-related effects in the hippocampus.

Finally, we test a more complex form of experience-dependency in neural activity by simulating an
alternating T-maze task. In this task, animals alternate between two trial types: one where they run
down a center corridor and turn left for reward, and another where they run down the same center
corridor but turn right for reward. In these tasks, neural activity has been observed to “split” — neu-
rons fire differently in the center corridor across trial types despite the spatial details of the corridor
remaining the same (Duvelle et al., 2023). Interestingly, the degree of splitting is greatest in the
beginning of the corridor and also high at the end of the corridor, splitting least in the middle of the
corridor (Duvelle et al., 2023). To enable the agent to perform this task, which requires remembering
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Figure 5: Representational changes in the encoder model resemble recordings from visual cortex. A.
Example sequence structure in the preference swap task of Li & DiCarlo (2008; 2010), images num-
bered by seqeunce location. B. Example changes in IT neuron response to preferred images (red)
and non-preferred images (blue) across exposure to new image transitions. C. Responses of two
example units from the model with £,,,..q. Arrows indicate response profile before and after experi-
encing swapped transitions. Red indicates the response to P1, P2, P3 states that were selected from
the gridworld environment, while blue indicates the response to N1, N2, N3 states selected from
the environment. D. Change in response difference between (P1, N1), (P2, N2), and (P3, N3)
over 10 units. Each unit is a separate transition swap experiment. Shown is the model without any
auxiliary objectives (blue) and the model with L. (orange). Asterisks indicate significance from
a t-test comparing the means from both models. We additionally note that the means of both models
are significantly different from 0. E. Linear track VR experiment used in Poort et al. (2015). Vertical
stripe corridors were rewarded but angled corridors were not. Animals experienced either condition
at random following an approach corridor. F. Selectivity across the population before learning (gray)
and after learning (orange). Selectivity was calculated as in Poort et al. (2015), with negative and
positive values corresponding to angled and vertical corridor preference, respectively. Asterisks in-
dicate significance from one-tailed t-test (t = —12.43, p = 9 x 10e—36) G. Selectivity of individual
units before and after learning for vertical condition (V), angled condition (A), or neither (N/A).
Units are pooled across 15 experiments.

the previous trial type, we introduce a memory component to the agent so that a temporally graded
trace of previous observations are made available. That is, the input into the encoder at time ¢ is
0t + aop_1 + 0&?04_o9 + ... for some o < 1. This decaying sum of recent observations captures
information about the recent past in a simple way, and is inspired by representations hypothesized
by temporal context model (Howard & Kahana, 2002). We measure cosine similarity between pop-
ulation activity in the left turn condition and the right turn condition. Lower similarity corresponds
to greater splitting. The representations in both a MF-only model and the model with the predictive
objective show increased splitting in the beginning of the corridor due to the memory component
(Fig 4F). However, only the model with the predictive objective shows increased splitting at the end
of the corridor (Fig 4F). This shows that the pattern of splitting seen in data can be captured by a
model using both memory and prediction.

We also test the effects of recurrency in the model by simulating a partially observable version of
the alternating-T maze (Fig A.5C). To solve this version of the task, recurrency must be used to
infer the current latent state with the model’s previous latent state. We find consistent results where
the inclusion of a predictive auxiliary objective greatly improves the model’s ability to learn the
task (Fig A.SDE) and where only the model with the predictive objective shows a splitting pattern
consistent with data (Fig A.5F).

4.4 EFFECTS OF VALUE LEARNING AND TRANSITION LEARNING IN THE ENCODER
NETWORK RESEMBLE ACTIVITY IN VISUAL CORTEX.

As another example of representational effects arising from mutually interacting regions, we com-
pare the activity of our encoder network to experimental results in sensory cortices. Neurons in
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visual cortex (even those in primary regions) have been observed to change their tuning as a result
of learning Poort et al. (2015); Li & DiCarlo (2008; 2010); Wilmes & Clopath (2019); Pakan et al.
(2018). Our model provides a simple system to look for such effects.

First, we test for effects of prediction and temporal statistics that have been seen in visual cortex.
Specifically, Li & DiCarlo (2008) found that object selectivity in macaque IT neurons could be al-
tered by exposing animals to sequences of images where preferred stimuli and non-preferred stimuli
became linked (Fig 5A). The images in the preferred and non-preferred that are linked together are
referred to as the “swap position” within a sequence (Fig 5SA). An analogous experiment can be run
in our gridworld task from Fig 2. We first identify spatially contiguous preferred and non-preferred
states of neurons in the encoder network. We then expose the model to sequences where preferred
states and non-preferred states became connected at arbitrarily chosen swap positions (Fig 5B). We
find neurons in the output of the encoder that, after exposure, decrease their firing rate for the pre-
ferred stimulus at the swap location and increase their firing rate for the non-preferred stimulus at
the swap position (Fig 5C). This is consistent with observations in data as well (Li & DiCarlo, 2008;
2010). We quantify this change in firing rate at different sequence locations. We find a similar trend
as in data, where tuning for stimuli closer to the swap position is increasingly altered away from the
original preferences (Fig 5D). Importantly, this effect is not present without the predictive auxiliary
objective, similar to lesion studies carried out in Finnie et al. (2021).

The downstream Q-learning objective also have an effect on representations in the encoder. We
simulate value learning effects in visual cortical activity through linear track experiments used in
Poort et al. (2015) (Fig 5E). In this experiment, authors found that V1 neurons in mice increased
selectivity for visual cues in the environment after learning the task. Furthermore, the authors noted
a slight selectivity increase for more rewarding cues (vertical gratings) compared to nonrewarding
cues (angled gratings). We find a similar effect in units in early layers of the encoder network: a
small, but statistically significant increase in proportion of units encoding the rewarded stimulus (Fig
5F). As in Poort et al. (2015), selectivity increases across learning, but with a greater preference for
the vertical grating environment (Fig 5G).

5 CONCLUSION

In this work, we explore the representational effects induced by predictive auxiliary objectives. We
show how such objectives are useful in resource-limited settings and in certain transfer learning
settings. We also investigate how prediction and predictive horizons affect learned representation
structure. Furthermore, we describe how such deep RL models can function as a multi-region model
for neuroscience. We show how representation learning in the prediction model recapitulates experi-
mental observations made in the hippocampus. We make similar connections between representation
learning in the encoder model and learning in visual cortex.

Our results point to a new perspective on the role of the hippocampus in learning. That is, a predic-
tive system like the hippocampus can be useful for learning without being used to generate sequences
or support planning. Learning predictions is sufficient to induce useful structure into representations
used by other regions. This view also connects to trends seen in machine learning literature. In deep
RL, predictive models need not be used for forward planning (Hamrick et al., 2020) to be useful
for representation learning. Additionally, the contrastive prediction objective used in this work is
drawn from machine learning literature but bears interesting similarities to classic descriptions of
hippocampal computation. CA3 and CA1 in the hippocampus have been implicated in predictive
learning similar to the positive sampling loss. Meanwhile, the dentate gyrus in the hippocampus has
been proposed to perform pattern separation similar to the contrastive negative sampling loss.

Our results are limited in the complexity of tasks and the diversity of auxiliary objectives tested.
Future work can improve on current understanding by more systematically comparing effects across
objectives over more complex tasks. We also did not examine representations in the value learning
network, which is ripe for comparison with striatum data. Future work can also explore the effects
of recurrence across modules, which can be both functionally useful and more biologically realistic.

Overall, this work points to the utility of a modeling approach that considers the effect of multiple
objectives in a deep learning system. The deep network setting reveals new aspects of neuroscience
modeling that are less apparent in tabular settings or in simpler models.



Under review as a conference paper at ICLR 2023

REFERENCES

Aaron S Andalman, Vanessa M Burns, Matthew Lovett-Barron, Michael Broxton, Ben Poole,
Samuel J Yang, Logan Grosenick, Talia N Lerner, Ritchie Chen, Tyler Benster, et al. Neuronal
dynamics regulating brain and behavioral state transitions. Cell, 177(4):970-985, 2019.

Yoshua Bengio. Deep learning of representations for unsupervised and transfer learning. In Pro-
ceedings of ICML workshop on unsupervised and transfer learning, pp. 17-36. JMLR Workshop
and Conference Proceedings, 2012.

Marcel Binz and Eric Schulz. Modeling human exploration through resource-rational reinforcement
learning. Advances in Neural Information Processing Systems, 35:31755-31768, 2022.

Kenneth I Blum and Larry F Abbott. A model of spatial map formation in the hippocampus of the
rat. Neural computation, 8(1):85-93, 1996.

Matthew Botvinick, Jane X Wang, Will Dabney, Kevin J Miller, and Zeb Kurth-Nelson. Deep
reinforcement learning and its neuroscientific implications. Neuron, 107(4):603-616, 2020.

Iva K. Brunec and Ida Momennejad. Predictive representations in hippocampal and prefrontal
hierarchies. Journal of Neuroscience, 42(2):299-312, 2022. ISSN 0270-6474. doi: 10.
1523/INEUROSCI.1327-21.2021. URL https://www. jneurosci.org/content/42/
2/299.

Cathrin B Canto, Floris G Wouterlood, Menno P Witter, et al. What does the anatomical organization
of the entorhinal cortex tell us? Neural plasticity, 2008, 2008.

Will Dabney, André Barreto, Mark Rowland, Robert Dadashi, John Quan, Marc G Bellemare, and
David Silver. The value-improvement path: Towards better representations for reinforcement
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 7160-
7168, 2021.

Eléonore Duvelle, Roddy M Grieves, and Matthijs AA van der Meer. Temporal context and latent
state inference in the hippocampal splitter signal. Elife, 12:e82357, 2023.

Ching Fang, Dmitriy Aronov, Larry F Abbott, and Emily Mackevicius. Neural learning rules for
generating flexible predictions and computing the successor representation. bioRxiv, pp. 2022-05,
2022.

Peter SB Finnie, Robert W Komorowski, and Mark F Bear. The spatiotemporal organization of ex-
perience dictates hippocampal involvement in primary visual cortical plasticity. Current Biology,
31(18):3996-4008, 2021.

David J Foster and James J Knierim. Sequence learning and the role of the hippocampus in rodent
navigation. Current opinion in neurobiology, 22(2):294-300, 2012.

Vincent Francois-Lavet, Yoshua Bengio, Doina Precup, and Joelle Pineau. Combined reinforce-
ment learning via abstract representations. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pp. 3582-3589, 2019.

Michael J Frank and Eric D Claus. Anatomy of a decision: striato-orbitofrontal interactions in
reinforcement learning, decision making, and reversal. Psychological review, 113(2):300, 2006.

Felipe Fredes, Maria Alejandra Silva, Peter Koppensteiner, Kenta Kobayashi, Maximilian Joesch,
and Ryuichi Shigemoto. Ventro-dorsal hippocampal pathway gates novelty-induced contextual
memory formation. Current Biology, 31(1):25-38.e5, 2021. ISSN 0960-9822. doi: https://doi.
org/10.1016/j.cub.2020.09.074. URL https://www.sciencedirect.com/science/
article/pii/S0960982220314445.

Jesse P Geerts, Fabian Chersi, Kimberly L Stachenfeld, and Neil Burgess. A general model of hip-

pocampal and dorsal striatal learning and decision making. Proceedings of the National Academy
of Sciences, 117(49):31427-31437, 2020.

10



Under review as a conference paper at ICLR 2023

Dileep George, Rajeev V Rikhye, Nishad Gothoskar, J] Swaroop Guntupalli, Antoine Dedieu, and
Miguel Lazaro-Gredilla. Clone-structured graph representations enable flexible learning and vi-
carious evaluation of cognitive maps. Nature communications, 12(1):1-17, 2021.

Samuel J Gershman, Christopher D Moore, Michael T Todd, Kenneth A Norman, and Per B Seder-
berg. The successor representation and temporal context. Neural Computation, 24(6):1553—-1568,
2012.

Joshua Glaser, Matthew Whiteway, John P Cunningham, Liam Paninski, and Scott Linderman. Re-
current switching dynamical systems models for multiple interacting neural populations. Ad-
vances in neural information processing systems, 33:14867—-14878, 2020.

Sarah C Goodroe, Jon Starnes, and Thackery I Brown. The complex nature of hippocampal-striatal
interactions in spatial navigation. Frontiers in human neuroscience, 12:250, 2018.

Jessica B Hamrick, Abram L Friesen, Feryal Behbahani, Arthur Guez, Fabio Viola, Sims Wither-
spoon, Thomas Anthony, Lars Buesing, Petar Velickovi¢, and Théophane Weber. On the role of
planning in model-based deep reinforcement learning. arXiv preprint arXiv:2011.04021, 2020.

Steven Hansen, Will Dabney, André Barreto, Tom Van de Wiele, David Warde-Farley, and
Volodymyr Mnih. Fast task inference with variational intrinsic successor features. CoRR,
abs/1906.05030, 2019. URL http://arxiv.org/abs/1906.05030.

Marc W. Howard and Michael J. Kahana. A distributed representation of temporal context.
Journal of Mathematical Psychology, 46(3):269-299, 2002. ISSN 0022-2496. doi: https://
doi.org/10.1006/jmps.2001.1388. URL https://www.sciencedirect.com/science/
article/pii/S0022249601913884.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397, 2016.

Kristopher T Jensen, Guillaume Hennequin, and Marcelo G Mattar. A recurrent network model of
planning explains hippocampal replay and human behavior. bioRxiv, pp. 2023-01, 2023.

Daphna Joel, Yael Niv, and Eytan Ruppin. Actor—critic models of the basal ganglia: New anatomical
and computational perspectives. Neural networks, 15(4-6):535-547, 2002.

Orren Karniol-Tambour, David M Zoltowski, E Mika Diamanti, Lucas Pinto, David W Tank, Car-
los W Brody, and Jonathan W Pillow. Modeling communication and switching nonlinear dynam-
ics in multi-region neural activity. bioRxiv, pp. 2022-09, 2022.

Michael Kleinman, Chandramouli Chandrasekaran, and Jonathan Kao. A mechanistic multi-area

recurrent network model of decision-making. Advances in neural information processing systems,
34:23152-23165, 2021.

Randal A Koene, Anatoli Gorchetchnikov, Robert C Cannon, and Michael E Hasselmo. Model-
ing goal-directed spatial navigation in the rat based on physiological data from the hippocampal
formation. Neural Networks, 16(5-6):577-584, 2003.

Stefan Kohler, Joelle Crane, and Brenda Milner. Differential contributions of the parahippocampal
place area and the anterior hippocampus to human memory for scenes. Hippocampus, 12(6):
718-723, 2002.

Sreejan Kumar, Carlos G Correa, Ishita Dasgupta, Raja Marjieh, Michael Y Hu, Robert Hawkins,
Jonathan D Cohen, Karthik Narasimhan, Tom Griffiths, et al. Using natural language and pro-
gram abstractions to instill human inductive biases in machines. Advances in Neural Information
Processing Systems, 35:167—-180, 2022.

Caroline S Lee, Mariam Aly, and Christopher Baldassano. Anticipation of temporally structured

events in the brain. eLife, 10:e64972, apr 2021. ISSN 2050-084X. doi: 10.7554/eLife.64972.
URL https://doi.org/10.7554/eLife.64972.

11



Under review as a conference paper at ICLR 2023

Nuo Li and James J DiCarlo. Unsupervised natural experience rapidly alters invariant object repre-
sentation in visual cortex. science, 321(5895):1502-1507, 2008.

Nuo Li and James J DiCarlo. Unsupervised natural visual experience rapidly reshapes size-invariant
object representation in inferior temporal cortex. Neuron, 67(6):1062—-1075, 2010.

Jack Lindsey and Ashok Litwin-Kumar. Action-modulated midbrain dopamine activity arises from
distributed control policies. Advances in Neural Information Processing Systems, 35:5535-5548,
2022.

John Lisman and A David Redish. Prediction, sequences and the hippocampus. Philosophical
Transactions of the Royal Society B: Biological Sciences, 364(1521):1193-1201, 2009.

Ziming Liu, Mikail Khona, Ila R Fiete, and Max Tegmark. Growing brains: Co-emergence
of anatomical and functional modularity in recurrent neural networks.  arXiv preprint
arXiv:2310.07711, 2023.

Clare Lyle, Mark Rowland, Georg Ostrovski, and Will Dabney. On the effect of auxiliary tasks on
representation dynamics. In International Conference on Artificial Intelligence and Statistics, pp.
1-9. PMLR, 2021.

Adam H Marblestone, Greg Wayne, and Konrad P Kording. Toward an integration of deep learning
and neuroscience. Frontiers in computational neuroscience, 10:94, 2016.

Marcelo G Mattar and Nathaniel D Daw. Prioritized memory access explains planning and hip-
pocampal replay. Nature neuroscience, 21(11):1609-1617, 2018.

Daniel C McNamee, Kimberly L Stachenfeld, Matthew M Botvinick, and Samuel J Gershman.
Flexible modulation of sequence generation in the entorhinal-hippocampal system. Nature neu-
roscience, 24(6):851—862, June 2021. ISSN 1097-6256. doi: 10.1038/s41593-021-00831-7.
URL https://europepmc.org/articles/PMC7610914.

Mayank R Mehta, Carol A Barnes, and Bruce L McNaughton. Experience-dependent, asymmetric
expansion of hippocampal place fields. Proceedings of the National Academy of Sciences, 94(16):
8918-8921, 1997.

Mayank R Mehta, Michael C Quirk, and Matthew A Wilson. Experience-dependent asymmetric
shape of hippocampal receptive fields. Neuron, 25(3):707-715, 2000.

Kevin J Miller, Matthew M Botvinick, and Carlos D Brody. Dorsal hippocampus contributes to
model-based planning. Nature neuroscience, 20(9):1269-1276, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Ida Momennejad. Learning structures: predictive representations, replay, and generalization. Cur-
rent Opinion in Behavioral Sciences, 32:155-166, 2020.

Nicolds A Morgenstern, Ana Filipa Isidro, Inbal Israely, and Rui M Costa. Pyramidal tract neurons
drive amplification of excitatory inputs to striatum through cholinergic interneurons. Science
Advances, 8(6):eabh4315, 2022.

Robert U. Muller and John L Kubie. The firing of hippocampal place cells predicts the future
position of freely moving rats. In The Journal of neuroscience : the official journal of the Society
for Neuroscience, 1989.

J. O’Keefe and L. Nadel. The hippocampus as a cognitive map. Clarendon Press, Oxford, United
Kingdom, 1978.

H Freyja Olafsdéttir, Daniel Bush, and Caswell Barry. The role of hippocampal replay in memory
and planning. Current Biology, 28(1):R37-R50, 2018.

12



Under review as a conference paper at ICLR 2023

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Randall C O’Reilly and Michael J Frank. Making working memory work: a computational model
of learning in the prefrontal cortex and basal ganglia. Neural computation, 18(2):283-328, 2006.

Randall C O’Reilly and James L McClelland. Hippocampal conjunctive encoding, storage, and
recall: Avoiding a trade-off. Hippocampus, 4(6):661-682, 1994.

Janelle MP Pakan, Valerio Francioni, and Nathalie L Rochefort. Action and learning shape the
activity of neuronal circuits in the visual cortex. Current opinion in neurobiology, 52:88-97,
2018.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778-2787.
PMLR, 2017.

HL Payne, GF Lynch, and D Aronov. Neural representations of space in the hippocampus of a
food-caching bird. Science, 373(6552):343-348, 2021.

Brad E Pfeiffer and David J Foster. Hippocampal place-cell sequences depict future paths to remem-
bered goals. Nature, 497(7447):74-79, 2013.

Lucas Pinto, Kanaka Rajan, Brian DePasquale, Stephan Y Thiberge, David W Tank, and Carlos D
Brody. Task-dependent changes in the large-scale dynamics and necessity of cortical regions.
Neuron, 104(4):810-824, 2019.

Jasper Poort, Adil G Khan, Marius Pachitariu, Abdellatif Nemri, Ivana Orsolic, Julija Krupic, Mar-
ius Bauza, Maneesh Sahani, Georg B Keller, Thomas D Mrsic-Flogel, et al. Learning enhances
sensory and multiple non-sensory representations in primary visual cortex. Neuron, 86(6):1478—
1490, 2015.

Jordan Poppenk, Anthony R Mclntosh, Fergus IM Craik, and Morris Moscovitch. Past experience
modulates the neural mechanisms of episodic memory formation. Journal of Neuroscience, 30
(13):4707-4716, 2010.

A David Redish. Vicarious trial and error. Nature Reviews Neuroscience, 17(3):147-159, 2016.

EM Russek, Momennejad I, MM Botvinick, SJ Gershman, and ND Daw. Predictive representations
can link model-based reinforcement learning to model-free mechanisms. PLoS Comput Biol,
2017. doi: 10.1371/journal.pcbi.1005768.

Abigail A Russo, Ramin Khajeh, Sean R Bittner, Sean M Perkins, John P Cunningham, Laurence F
Abbott, and Mark M Churchland. Neural trajectories in the supplementary motor area and motor
cortex exhibit distinct geometries, compatible with different classes of computation. Neuron, 107
(4):745-758, 2020.

Anna C Schapiro, Nicholas B Turk-Browne, Kenneth A Norman, and Matthew M Botvinick. Sta-
tistical learning of temporal community structure in the hippocampus. Hippocampus, 26(1):3-8,
2016.

Anna C Schapiro, Nicholas B Turk-Browne, Matthew M Botvinick, and Kenneth A Norman. Com-
plementary learning systems within the hippocampus: a neural network modelling approach to
reconciling episodic memory with statistical learning. Philosophical Transactions of the Royal
Society B: Biological Sciences, 372(1711):20160049, 2017.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Wolfram Schultz, Peter Dayan, and P Read Montague. A neural substrate of prediction and reward.
Science, 275(5306):1593-1599, 1997.

Joao Semedo, Amin Zandvakili, Adam Kohn, Christian K Machens, and Byron M Yu. Extracting
latent structure from multiple interacting neural populations. Advances in neural information
processing systems, 27, 2014.

13



Under review as a conference paper at ICLR 2023

Evan Shelhamer, Parsa Mahmoudieh, Max Argus, and Trevor Darrell. Loss is its own reward: Self-
supervision for reinforcement learning. arXiv preprint arXiv:1612.07307, 2016.

David Silver, Aja Huang, Chris ] Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484—489, 2016.

WE Skaggs and BL McNaughton. Replay of neuronal firing sequences in rat hippocampus during
sleep following spatial experience. Science, 1996. doi: 10.1126/science.271.5257.1870.

William Skaggs, Bruce Mcnaughton, and Katalin Gothard. An information-theoretic approach to
deciphering the hippocampal code. Advances in neural information processing systems, 5, 1992.

Kimberly Stachenfeld, Matthew Botvinick, and Samuel Gershman. The hippocampus as a predictive
map. Nature Neuroscience, 2017. doi: 10.1038/nn.4650.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Yunhao Tang, Zhaohan Daniel Guo, Pierre Harvey Richemond, Bernardo Avila Pires, Yash Chan-
dak, Rémi Munos, Mark Rowland, Mohammad Gheshlaghi Azar, Charline Le Lan, Clare Lyle,
et al. Understanding self-predictive learning for reinforcement learning. In International Confer-
ence on Machine Learning, pp. 33632-33656. PMLR, 2023.

Ruo Yu Tao, Vincent Frangois-Lavet, and Joelle Pineau. Novelty search in representational space for
sample efficient exploration. Advances in Neural Information Processing Systems, 33:8114-8126,
2020.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double g-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Oliver M Vikbladh, Michael R Meager, John King, Karen Blackmon, Orrin Devinsky, Daphna
Shohamy, Neil Burgess, and Nathaniel D Daw. Hippocampal contributions to model-based plan-
ning and spatial memory. Neuron, 102(3):683-693, 2019.

Jacob C Walker, Eszter Vértes, Yazhe Li, Gabriel Dulac-Arnold, Ankesh Anand, Théophane Weber,
and Jessica B Hamrick. Investigating the role of model-based learning in exploration and transfer.
In International Conference on Machine Learning, pp. 35368-35383. PMLR, 2023.

Greg Wayne, Chia-Chun Hung, David Amos, Mehdi Mirza, Arun Ahuja, Agnieszka Grabska-
Barwinska, Jack Rae, Piotr Mirowski, Joel Z Leibo, Adam Santoro, et al. Unsupervised predictive
memory in a goal-directed agent. arXiv preprint arXiv:1803.10760, 2018.

James CR Whittington, Timothy H Muller, Shirley Mark, Guifen Chen, Caswell Barry, Neil Burgess,
and Timothy EJ Behrens. The tolman-eichenbaum machine: Unifying space and relational mem-
ory through generalization in the hippocampal formation. Cell, 183(5):1249-1263, 2020.

Katharina Anna Wilmes and Claudia Clopath. Inhibitory microcircuits for top-down plasticity of
sensory representations. Nature communications, 10(1):5055, 2019.

Daniel LK Yamins and James J DiCarlo. Using goal-driven deep learning models to understand
sensory cortex. Nature neuroscience, 19(3):356-365, 2016.

Chengxu Zhuang, Siming Yan, Aran Nayebi, Martin Schrimpf, Michael C. Frank, James J. Di-
Carlo, and Daniel L. K. Yamins. Unsupervised neural network models of the ventral visual
stream. Proceedings of the National Academy of Sciences, 118(3):€2014196118, 2021. doi:
10.1073/pnas.2014196118. URL https://www.pnas.org/doi/abs/10.1073/pnas.
2014196118.

14



