
A Proofs for β-CROWN

A.1 Proofs for deriving β-CROWN using bound propagation

Lemma 2.1 is from part of the proof of the main theorem in Zhang et al. [46]. Here we present it
separately to use it as an useful subprocedure for our later proofs.
Lemma 2.1 (Relaxation of a ReLU layer in CROWN). Given two vectors w, v ∈ Rd, l ≤ v ≤ u
(element-wise), we have

w>ReLU(v) ≥ w>Dv + b′,

where D is a diagonal matrix defined as:

Dj,j =


1, if lj ≥ 0

0, if uj ≤ 0

αj , if uj > 0 > lj and wj ≥ 0
uj

uj−lj , if uj > 0 > lj and wj < 0,

(1)

0 ≤ αj ≤ 1 are free variables, b′ = w>b and each element in b is

bj =


0, if lj > 0 or uj ≤ 0

0, if uj > 0 > lj and wj ≥ 0

− uj lj
uj−lj , if uj > 0 > lj and wj < 0.

(2)

Proof. For the j-th ReLU neuron, if lj ≥ 0, then ReLU(vj) = vj ; if uj < 0, then ReLU(vj) = 0.
For the case of lj < 0 < uj , the ReLU function can be linearly upper and lower bounded within this
range:

αjvj ≤ ReLU(vj) ≤
uj

uj − lj
(vj − lj) ∀ lj ≤ vj ≤ uj

where 0 ≤ αj ≤ 1 is a free variable - any value between 0 and 1 produces a valid lower bound.
To lower bound w>ReLU(v) =

∑
j wjReLU(vj), for each term in this summation, we take the

lower bound of ReLU(vj) if wj is positive and take the upper bound of ReLU(vj) if wj is negative
(reflected in the definitions of D and b). This conservative choice allows us to always obtain a lower
bound ∀ l ≤ v ≤ u:∑

j

wjReLU(vj) ≥
∑
j

wj
(
Dj,jvj + bj

)
= w>Dv + w>b = w>Dv + b′

where Dj,j and bj are defined in Eq. 1 and Eq. 2 representing the lower or upper bounds of ReLU.

Before proving our main theorem (Theorem 3.1), we first define matrix Ω, which is the product of a
series of model weights W and “weights” for relaxed ReLU layers D:

Definition A.1. Given a set of matrices W(2), · · · ,W(L) and D(1), · · · ,D(L−1), we define a recur-
sive function Ω(k, i) for 1 ≤ i ≤ k ≤ L as

Ω(i, i) = I, Ω(k+1, i) = W(k+1)D(k)Ω(k, i)

For example, Ω(3, 1) = W(3)D(2)W(2)D(1), Ω(5, 2) = W(5)D(4)W(4)D(3)W(3)D(2). Now we
present our main theorem with each term explicitly written:
Theorem 3.1 (β-CROWN bound). Given a L-layer neural network f(x) : Rd0 → R with weights
W(i), biases b(i), pre-ReLU bounds l(i) ≤ z(i) ≤ u(i) (1 ≤ i ≤ L), input constraint C and split
constraint Z . We have

min
x∈C,z∈Z

f(x) ≥ max
β≥0

min
x∈C

(a+ Pβ)>x+ q>β + c, (3)

where P ∈ Rd0×(
∑L−1

i=1 di) is a matrix containing blocks P :=
[
P1
> P2

> · · · PL−1
>
]
, q ∈

R
∑L−1

i=1 di is a vector q :=
[
q1
> · · · qL−1

>]>, and each term is defined as:

a =
[
Ω(L, 1)W(1)

]>
∈ Rd0×1 (4)

14

Pi = S(i)Ω(i, 1)W(1) ∈ Rdi×d0 , ∀ 1 ≤ i ≤ L− 1 (5)

qi =

i∑
k=1

S(i)Ω(i, k)b(k) +

i∑
k=2

S(i)Ω(i, k)W(k)b(k−1) ∈ Rdi , ∀ 1 ≤ i ≤ L− 1 (6)

c =

L∑
i=1

Ω(L, i)b(i) +

L∑
i=2

Ω(L, i)W(i)b(i−1) (7)

diagonal matrices D(i) and vector b(i) are determined by the relaxation of ReLU neurons, and
A(i) ∈ R1×di represents the linear relationship between f(x) and ẑ(i). D(i) and b(i) depend on
A(i), l(i) and u(i):

D
(i)
j,j =


1, if l

(i)
j ≥ 0 or j ∈ Z+(i)

0, if u
(i)
j ≤ 0 or j ∈ Z−(i)

αj , if u
(i)
j > 0 > l

(i)
j and j /∈ Z+(i) ∪ Z−(i) and A

(i)
1,j ≥ 0

uj

uj−lj , if u
(i)
j > 0 > l

(i)
j and j /∈ Z+(i) ∪ Z−(i) and A

(i)
1,j < 0

(8)

b
(i)
j =


0, if l

(i)
j > 0 or u

(i)
j ≤ 0 or j ∈ Z+(i) ∪ Z−(i)

0, if u
(i)
j > 0 > l

(i)
j and j /∈ Z+(i) ∪ Z−(i) and A

(i)
1,j ≥ 0

− u
(i)
j l

(i)
j

u
(i)
j −l

(i)
j

, if u
(i)
j > 0 > l

(i)
j and j /∈ Z+(i) ∪ Z−(i) and A

(i)
1,j < 0

(9)

A(i) =

{
W(L), i = L− 1

(A(i+1)D(i+1) + β(i+1)>S(i+1))W(i+1), 0 ≤ i ≤ L− 2
(10)

Proof. We prove this theorem by induction: assuming we know the bounds with respect to layer ẑ(m),
we derive bounds for ẑ(m−1) until we reach m = 0 and by definition ẑ(0) = x. We first define a set of
matrices and vectors a(m), P(m), q(m), c(m), where P(m) ∈ Rdm×(

∑L−1
i=m+1 di) is a matrix containing

blocks P :=

[
P

(m)
m+1

>
· · · P

(m)
L−1

>
]

, q ∈ R
∑L−1

i=m+1 di is a vector q :=
[
q
(m)
m+1

> · · · q
(m)
L−1

>
]>

, and

each term is defined as:

a(m) =
[
Ω(L,m+ 1)W(m+1)

]>
∈ Rdm×1 (11)

P
(m)
i = S(i)Ω(i,m+ 1)W(m+1) ∈ Rdi×dm , ∀m+ 1 ≤ i ≤ L− 1 (12)

q
(m)
i =

i∑
k=m+1

S(i)Ω(i, k)b(k) +

i∑
k=m+2

S(i)Ω(i, k)W(k)b(k−1) ∈ Rdm , ∀m+ 1 ≤ i ≤ L− 1

(13)

c(m) =

L∑
i=m+1

Ω(L, i)b(i) +

L∑
i=m+2

Ω(L, i)W(i)b(i−1) (14)

and we claim that

min
x∈C
z∈Z

f(x) ≥ max
β̃(m+1)≥0

min
x∈C

z̃(m)∈Z̃(m)

(a(m) + P(m)β̃(m+1))>ẑ(m) + q(m)>β̃(m+1) + c(m) (15)

where β̃(m+1) :=
[
β(m+1)> · · ·β(L−1)>]> concatenating all β(i) variables up to layer m+ 1.

15

For the base case m = L− 1, we simply have

min
x∈C,z∈Z

f(x) = min
x∈C,z∈Z

W(L)ẑ(L−1) + b(L).

No maximization is needed and a(m) =
[
Ω(L,L)W(L)

]>
= W(L)>, c(m) =

∑L
i=L Ω(L, i)b(i) =

b(L). Other terms are zero.

In Section 3.1 we have shown the intuition of the proof by demonstrating how to derive the bounds
from layer ẑ(L−1) to ẑ(L−2). The case for m = L− 2 is presented in Eq. 6.

Now we show the induction from ẑ(m) to ẑ(m−1). Starting from Eq. 15, since ẑ(m) = ReLU(z(m))

we apply Lemma 2.1 by setting w =
[
a(m) + P(m)β̃(m+1)

]>
:= A(m). It is easy to show that A(m)

can also be equivalently and recursively defined in Eq. 10 (see Lemma A.2). Based on Lemma 2.1
we have D(m) and b(m) defined as in Eq. 8 and Eq. 9, so Eq. 15 becomes

min
x∈C
z∈Z

f(x) ≥ max
β̃(m+1)≥0

min
x∈C

z̃(m)∈Z̃(m)

(a(m) + P(m)β̃(m+1))>D(m)z(m)

+ (a(m) + P(m)β̃(m+1))>b(m) + q(m)>β̃(m+1) + c(m)

(16)

Note that when we apply Lemma 2.1, for j ∈ Z+(i) (positive split) we simply treat the neuron j as if
l
(i)
j ≥ 0, and for j ∈ Z−(i) (negative split) we simply treat the neuron j as if u

(i)
j ≤ 0. Now we add

the multiplier β(m) to z(m) to enforce per-neuron split constraints:

min
x∈C
z∈Z

f(x) ≥ max
β̃(m+1)≥0

min
x∈C

z̃(m−1)∈Z̃(m−1)

max
β(m)≥0

(a(m) + P(m)β̃(m+1))>D(m)z(m) + β(m)>S(m)z(m)

+(a(m) + P(m)β̃(m+1))>b(m) + q(m)>β̃(m+1) + c(m)

≥ max
β̃(m)≥0

min
x∈C

z̃(m−1)∈Z̃(m−1)

(a(m)>D(m) + β̃(m+1)>P(m)>D(m) + β(m)>S(m))z(m)

+(a(m) + P(m)β̃(m+1))>b(m) + q(m)>β̃(m+1) + c(m)

Similar to what we did in Eq. 5, we swap the min and max in the second inequality due to weak duality,
such that every maximization on β(i) is before min. Then, we substitute ẑ(m) = W(m)ẑ(m−1)+b(m)

and obtain:

min
x∈C
z∈Z

f(x) ≥ max
β̃(m)≥0

min
x∈C

z̃(m−1)∈Z̃(m−1)

(a(m)>D(m) + β̃(m+1)>P(m)>D(m) + β(m)>S(m))>W(m)ẑ(m−1)

+ (a(m)>D(m) + β̃(m+1)>P(m)>D(m) + β(m)>S(m))>b(m)

+ (a(m) + P(m)β̃(m+1))>b(m) + q(m)>β̃(m+1) + c(m)

=

[a(m)>D(m)W(m)
]>

︸ ︷︷ ︸
a′

+(β̃(m+1)>P(m)>D(m)W(m) + β(m)>S(m)W(m))︸ ︷︷ ︸
P′β̃(m)


>

ẑ(m−1)

+
(
(P(m)>D(m)b(m) + P(m)>b(m) + q(m))>β̃(m+1) + (S(m)b(m))>β(m)

)
︸ ︷︷ ︸

q′>β̃(m)

+ a(m)>D(m)b(m) + a(m)>b(m) + c(m)︸ ︷︷ ︸
c′

16

Now we evaluate each term a′, P′, q′ and c′ and show the induction holds. For a′ and q′ we have:

a′ =
[
a(m)>D(m)W(m)

]>
=
[
Ω(L,m+ 1)W(m+1)D(m)W(m)

]>
=
[
Ω(L,m)W(m)

]>
= a(m−1)

c′ = c(m) + Ω(L,m+ 1)W(m+1)D(m)b(m) + Ω(L,m+ 1)W(m+1)b(m)

=

L∑
i=m+1

Ω(L, i)b(i) +

L∑
i=m+2

Ω(L, i)W(i)b(i−1) + Ω(L,m)b(m) + Ω(L,m+ 1)W(m+1)b(m)

=

L∑
i=m

Ω(L, i)b(i) +

L∑
i=m+1

Ω(L, i)W(i)b(i−1)

= c(m−1)

For P′ :=
[
P′m
> · · · P′L−1

>], we have a new block P′m where

P′m = S(m)W(m) = S(m)Ω(m,m)W(m) = P(m−1)
m

for other blocks where m+ 1 ≤ i ≤ L− 1,

P′i = P
(m)
i D(m)W(m) = S(i)Ω(i,m+ 1)W(m+1)D(m)W(m) = S(i)Ω(i,m)W(m) = P

(m−1)
i

For q′ :=
[
q′m
> · · · q′L−1

>], we have a new block q′m where

q′m = S(m)b(m) =

m∑
k=m

S(i)Ω(i, k)b(i) = q(m−1)
m

for other blocks where m+ 1 ≤ i ≤ L− 1,

q′i = q
(m)
i + P(m)>D(m)b(m) + P(m)>b(m)

=

i∑
k=m+1

S(i)Ω(i, k)b(k) +

i∑
k=m+2

S(i)Ω(i, k)W(k)b(k−1) + P(m)>D(m)b(m) + P(m)>b(m)

=

i∑
k=m+1

S(i)Ω(i, k)b(k) +

i∑
k=m+2

S(i)Ω(i, k)W(k)b(k−1)

+ S(i)Ω(i,m+ 1)W(m+1)D(m)b(m) + S(i)Ω(i,m+ 1)W(m+1)b(k)

=

i∑
k=m+1

S(i)Ω(i, k)b(k) +

i∑
k=m+2

S(i)Ω(i, k)W(k)b(k−1) + S(i)Ω(i,m)b(m)

+ S(i)Ω(i,m+ 1)W(m+1)b(m)

=

i∑
k=m

S(i)Ω(i, k)b(k) +

i∑
k=m+1

S(i)Ω(i, k)W(k)b(k−1)

= q
(m−1)
i

Thus, a′ = a(m−1), P′ = P(m−1), q′ = q(m−1) and c′ = c(m−1) so the induction holds for layer
ẑ(m−1):

min
x∈C
z∈Z

f(x) ≥ max
β̃(m)≥0

min
x∈C

z̃(m−1)∈Z̃(m−1)

(a(m−1) + P(m−1)β̃(m))>ẑ(m−1) + q(m−1)>β̃(m) + c(m−1)

(17)

Finally, Theorem 3.1 becomes the special case wherem = 0 in Eq. 11, Eq. 12, Eq. 13 and Eq. 14.

17

The next Lemma unveils the connection with CROWN [46] and is also useful for drawing connections
to the dual problem.

Lemma A.2. With D, b and A defined in Eq. 8, Eq. 9 and Eq. 10, we can rewrite Eq. 3 in Theorem 3.1
as:

min
x∈C
z∈Z

f(x) ≥ max
β≥0

min
x∈C

A(0)x+

L−1∑
i=1

A(i)(D(i)b(i) + b(i)) (18)

where A(i), 0 ≤ i ≤ L− 1 contains variables β.

Proof. To prove this lemma, we simply follow the definition of A(i) and check the resulting terms
are the same as Eq. 3. For example,

A(0) = (A(1)D(1) + β(1)>S(1))W(1)

= A(1)D(1)W(1) + β(1)>S(1)W(1)

= (A(2)D(2) + β(2)>S(2))W(2)D(1)W(1) + β(1)>S(1)W(1)

= A(2)D(2)W(2)D(1)W(1) + β(2)>S(2)W(2)D(1)W(1) + β(1)>S(1)W(1)

= · · ·

= Ω(L, 1)W(1) +

L−1∑
i=1

β(i)>S(i)Ω(i, 1)W(1)

= [a+ Pβ]
>

Other terms can be shown similarly.

With this definition of A, we can see Eq. 3 as a modified form of CROWN, with an extra term
β(i+1)>S(i+1) added when computing A(i). When we set β = 0, we obtain the same bound
propagation rule for A as in CROWN. Thus, only a small change is needed to implement β-CROWN
given an existing CROWN implementation: we add β(i+1)>S(i+1) after the linear bound propagates
backwards through a ReLU layer. We also have the same observation in the dual space, as we will
show this connection in the next subsection.

A.2 Proofs for the connection to the dual space

Theorem 3.2. The objective dLP for the dual problem of Eq. 10 can be represented as

dLP = −‖a+ Pβ‖1·ε+ (P>x0 + q)>β + a>x0 + c,

where a, P, q and c are defined in the same way as in Theorem 3.1, and β ≥ 0 corresponds to the
dual variables of neuron split constraints in Eq. 10.

Proof. To prove the Theorem 3.2, we demonstrate the detailed dual objective dLP for Eq. 10, following
a construction similar to the one in Wong and Kolter [42]. We first associate a dual variable for each
constraint involved in Eq. 10 including dual variables β for the per-neuron split constraints introduced
by BaB. Although it is possible to directly write the dual LP for Eq. 10, for easier understanding, we

18

first rewrite the original primal verification problem into its Lagrangian dual form as Eq. 19, with
dual variables ν, ξ+, ξ−µ,γ,λ,β:

L(z, ẑ;ν, ξ,µ,γ,λ,β) = z(L) +

L∑
i=1

ν(i)>(z(i) −W(i)ẑ(i−1) − b(i))

+ ξ+
>
(ẑ(0) − x0 − ε) + ξ−

>
(−ẑ(0) + x0 − ε)

+

L−1∑
i=1

∑
j /∈Z+(i) ⋃Z−(i)

l
(i)
j <0<u

(i)
j

[
µ

(i)
j

>
(−ẑ(i)j) + γ

(i)
j

>
(z

(i)
j − ẑ

(i)
j) + λ

(i)
j

>
(−u

(i)
j z

(i)
j + (u

(i)
j − l

(i)
j)ẑ

(i)
j + u

(i)
j l

(i)
j)

]

+

L−1∑
i=1

 ∑
z
(i)
j ∈Z−(i)

β
(i)
j z

(i)
j +

∑
z
(i)
j ∈Z+(i)

−β(i)
j z

(i)
j


Subject to:

ξ+ ≥ 0, ξ− ≥ 0,µ ≥ 0,γ ≥ 0,λ ≥ 0,β ≥ 0
(19)

The original minimization problem then becomes:

max
ν,ξ+,ξ−,µ,γ,λ,β

min
z,ẑ

L(z, ẑ,ν, ξ+, ξ−,µ,γ,λ,β)

Given fixed intermediate bounds l,u, the inner minimization is a linear optimization problem and
we can simply transfer it to the dual form. To further simplify the formula, we introduce notations

similar to those in [42], where ν̂(i−1) = W(i)>ν(i) and α(i)
j =

γ
(i)
j

µ
(i)
j +γ

(i)
j

. Then the dual form can

be written as Eq. 20.

max
0≤α≤1,β≥0

g(α,β), where

g(α,β) = −
L∑
i=1

ν(i)>b(i) − ν̂(0)>x0 − ||ν̂(0)||1·ε+
L−1∑
i=1

∑
j /∈Z+(i) ⋃Z−(i)

l
(i)
j <0<u

(i)
j

l
(i)
j [ν

(i)
j]+

Subject to:

ν(L) = −1, ν̂(i−1) = W(i)>ν(i), i ∈ {1, . . . , L}

ν
(i)
j = 0, when u

(i)
j ≤ 0, i ∈ {1, . . . , L− 1}

ν
(i)
j = ν̂

(i)
j , when l

(i)
j ≥ 0, i ∈ {1, . . . , L− 1}

[ν
(i)
j]+ = u

(i)
j λ

(i)
j , [ν

(i)
j]− = α

(i)
j [ν̂

(i)
j]−

λ
(i)
j =

[ν̂
(i)
j]+

u
(i)
j −l

(i)
j

,α
(i)
j =

γ
(i)
j

µ
(i)
j +γ

(i)
j

when l
(i)
j < 0 < u

(i)
j , j /∈ Z+(i)

⋃
Z−(i), i ∈ {1, . . . , L− 1}

ν
(i)
j = −β(i)

j , j ∈ Z−(i), i ∈ {1, . . . , L− 1}

ν
(i)
j = β

(i)
j + ν̂

(i)
j , j ∈ Z+(i), i ∈ {1, . . . , L− 1}

µ ≥ 0,γ ≥ 0,λ ≥ 0,β ≥ 0, 0 ≤ α ≤ 1
(20)

Similar to the dual form in [42] (our differences are highlighted in blue), the dual problem can be
viewed in the form of another deep network by backward propagating ν(L) to ν̂(0) following the
rules in Eq. 20. If we look closely at the conditions and coefficients when backward propagating
ν
(i)
j for j-th ReLU at layer i in Eq. 20, we can observe that they match exactly to the propagation of

19

diagonal matrices D(i), S(i), and vector b(i) defined in Eq. 8 and Eq. 9. Therefore, using notations
in Eq. 8 and Eq. 9 we can essentially simplify the dual LP problem in Eq. 20 to:

ν(L) = −1, ν̂(i−1) = W(i)>ν(i),ν(i) = D(i)ν̂(i) − β(i)S(i), i ∈ {L, · · · , 1}∑
l
(i)
j <0<u

(i)
j

j /∈Z+(i) ⋃Z−(i)

l
(i)
j [ν

(i)
j]+ = −ν̂(i)Tb(i), j ∈ {1, · · · , di}, i ∈ {L− 1, · · · , 1} (21)

Then we prove the key claim for this proof with induction where a(m) and P(m) are defined in Eq. 11
and Eq. 12:

ν̂(m) = −a(m) −P(m)β̃(m+1) (22)

When m = L− 1, we can have ν̂(L−1) = −a(L−1) −P(L−1)β̃(L) = −
[
Ω(L,L)W(L)

]> − 0 =

−W(L)> which is true according to Eq. 21.

Now we assume that ν̂(m) = −a(m)−P(m)β̃(m+1) holds, and we show that ν̂(m−1) = −a(m−1)−
P(m−1)β̃(m) will hold as well:

ν̂(m−1) = W(m)>
(
D(m)ν̂(m) − β(m)S(m)

)
= −W(m)>D(m)a(m) −W(m)>D(m)P(m)β̃(m+1) −W(m)>β(m)S(m)

= −a(m−1) −
[(

S(m)W(m)
)>

,
(
P(m)>D(m)W(m)

)>] [
β(m), β̃(m+1)

]
= −a(m−1) −P(m−1)β̃(m)

Therefore, the claim Eq. 22 is proved with induction. Lastly, we prove the following claim where
q(m) and c(m) are defined in Eq. 13 and Eq. 14.

−
L∑

i=m+1

ν(i)>b(i) +

L−1∑
i=m+1

∑
l
(i)
j <0<u

(i)
j

j /∈Z+(i) ⋃Z−(i)

l
(i)
j [ν

(i)
j]+ = q(m)>β̃(m+1) + c(m) (23)

This claim can be proved by applying Eq. 21 and Eq. 22.

−
L∑

i=m+1

ν(i)>b(i) +

L−1∑
i=m+1

∑
l
(i)
j <0<u

(i)
j

j /∈Z+(i) ⋃Z−(i)

l
(i)
j [ν

(i)
j]+

= −
L∑

i=m+1

(
D(i)ν̂(i) − β(i)S(i)

)>
b(i) +

L∑
i=m+2

(
−ν̂(i−1)Tb(i−1)

)

=

L∑
i=m+1

[(
a(i)> + β̃(i+1)>P(i)>

)
D(i)b(i) + β(i)>S(i)b(i)

]

+

L∑
i=m+2

(
a(i−1)> + β̃(i)>P(i−1)>

)
b(i−1)

=

L∑
i=m+1

β̃(i)>
[
S(i),P(i)>D(i)

]
b(i) +

L∑
i=m+2

β̃(i)>P(i−1)>b(i−1)

+

L∑
i=m+1

a(i)>D(i)b(i) +

L∑
i=m+2

a(i−1)>b(i−1)

= q(m)>β̃(m+1) + c(m)

20

Finally, we apply claims Eq. 22 and Eq. 23 into the dual form solution Eq. 20 and prove the
Theorem 3.2.

g(α,β) = −
L∑
i=1

ν(i)>b(i) − ν̂(0)>x0 − ||ν̂(0)||1·ε+
L−1∑
i=1

∑
l
(i)
j <0<u

(i)
j

j /∈Z+(i) ⋃Z−(i)

l
(i)
j [ν

(i)
j]+

= −||−a(0) −P(0)β̃(1)||1·ε+
(
a(0)> + β̃(1)>P(0)>

)
x0 + q(0)>β̃(1) + c(0)

= −||a+ Pβ̃(1)||1·ε+
(
P>x0 + q

)>
β̃(1) + a>x0 + c

A more intuitive proof. Here we provide another intuitive proof showing why the dual form solution
of verification objective in Eq. 20 is the same as the primal one in Thereom 3.1. dLP = g(α,β) is the
dual objective for Eq. 10 with free variables α and β. We want to show that the dual problem can be
viewed in the form of backward propagating ν(L) to ν̂(0) following the same rules in β-CROWN.
Salman et al. [30] showed that CROWN computes the same solution as the dual form in Wong
and Kolter [42]: ν̂(i) is corresponding to −A(i) in CROWN (defined in the same way as in Eq. 10
but with β(i+1) = 0) and ν(i) is corresponding to −A(i+1)D(i+1). When the split constraints are
introduced, extra terms for the dual variable β modify ν(i) (highlighted in blue in Eq. 20). The way
β-CROWN modifies A(i+1)D(i+1) is exactly the same as the way β(i) affects ν(i): when we split
z
(i)
j ≥ 0, we add β(i)

j to the ν(i)
j in Wong and Kolter [42]; when we split z(i)j ≥ 0, we add −β(i)

j to

the ν(i)
j in Wong and Kolter [42] (ν(i)

j is 0 in this case because it is set to be inactive). To make this
relationship more clear, we define a new variable ν′, and rewrite relevant terms involving ν, ν̂ below:

ν
(i)
j = 0, j ∈ Z−(i);

ν
(i)
j = ν̂

(i)
j , j ∈ Z+(i);

ν
(i)
j is defined in the same way as in Eq. 20 for other cases

ν
(i)
j
′ = −β(i)

j + ν
(i)
j , j ∈ Z−(i);

ν
(i)
j
′ = β

(i)
j + ν

(i)
j , j ∈ Z+(i);

ν
(i)
j
′ = ν

(i)
j , otherwise

ν̂(i−1) = W(i)>ν(i)′;

(24)

It is clear that ν′ corresponds to the term −(A(i+1)D(i+1) + β(i+1)>S(i+1)) in Eq. 10, by noting
that ν(i) in [42] is equivalent to−A(i+1)D(i+1) in CROWN and the choice of signs in S(i+1) reflects
neuron split constraints. Thus, the dual formulation will produce the same results as Eq. 18, and thus
also equivalent to Eq. 3.

Corollary 3.2.1. When α and β are optimally set, β-CROWN produces the same solution as LP with
split constraints when intermediate bounds l,u are fixed. Formally,

max
0≤α≤1,β≥0

g(α,β) = p∗LP

where p∗LP is the optimal objective of Eq. 10.

Proof. Given fixed intermediate layer bounds l and u, the dual form of the verification problem
in Eq. 10 is a linear programming problem with dual variables defined in Eq. 19. Suppose we use an LP

solver to obtain the optimal dual solution ν∗, ξ∗,µ∗,γ∗,λ∗,β∗. Then we can setα(i)
j =

γ
(i)
j
∗

µ
(i)
j
∗+γ

(i)
j
∗

,

β = β∗ and plug them into Eq. 20 to get the optimal dual solution d∗LP. Theorem 3.2 shows

that, β-CROWN can compute the same objective d∗LP given the same α(i)
j =

γ
(i)
j
∗

µ
(i)
j
∗+γ

(i)
j
∗

, β = β∗,

21

thus max0≤α≤1,β≥0 g(α,β) ≥ d∗LP. On the other hand, for any setting of α and β, β-CROWN
produces the same solution g(α,β) as the rewritten dual LP in Eq. 20, so g(α,β) ≤ d∗LP. Thus,
we have max0≤α≤1,β≥0 g(α,β) = d∗LP. Finally, due to the strong duality in linear programming,
p∗LP = d∗LP = max0≤α≤1,β≥0 g(α,β).

The variables α in β-CROWN can be translated to dual variables in LP as well. Given α in β-
CROWN, we can get the corresponding dual LP variables µ,γ given α by setting µ(i)

j = (1 −
α

(i)
j)[ν̂

(i)
j]− and γ(i)

j = α
(i)
j [ν̂

(i)
j]−.

A.3 Proof for soundness and completeness

Theorem 3.3. β-CROWN with branch and bound on splitting ReLU neurons is sound and complete.

Proof. Soundness. Branch and bound (BaB) with β-CROWN is sound because for each subdomain
Ci := {x ∈ C, z ∈ Zi}, we apply Theorem 3.1 to obtain a sound lower bound fCi (the bound is valid
for any β ≥ 0). The final bound returned by BaB is mini fCi

which represents the worst case over
all subdomains, and is a sound lower bound for x ∈ C := ∪iCi.
Completeness. To show completeness, we need to solve Eq. 1 to its global minimum. When there
are N unstable neurons, we have up to 2N subdomains, and in each subdomain we have all unstable
ReLU neurons split into one of the z(i)j ≥ 0 or z(i)j < 0 case. The final solution obtained by BaB is
the min over these 2N subdomains. To obtain the global minimum, we must ensure that in every of
these 2N subdomain we can solve Eq. 10 exactly.

When all unstable neurons are split in a subdomain Ci, the network becomes a linear network and
neuron split constraints become linear constraints w.r.t. inputs. Under this case, an LP with Eq. 10
can solve the verification problem in Ci exactly. In β-CROWN, we solve the subdomain using the
usually non-concave formulation Eq. 12; however, in this case, it becomes concave in β̂ because
no intermediate layer bounds are used (no α′ and β′) and no ReLU neuron is relaxed (no α), thus
the only optimizable variable is β (Eq. 12 becomes Eq. 8). Eq. 8 is concave in β so (super)gradient
ascent guarantees to converge to the global optimal β∗. To ensure convergence without relying on a
preset learning rate, a line search can be performed in this case. Then, according to Corollary 3.2.1,
this optimal β∗ corresponds to the optimal dual variable for the LP in Eq. 10 and the objective is a
global minimum of Eq. 10.

B More details on β-CROWN with branch and bound (BaB)

B.1 β-CROWN with branch and bound for complete verification

We list our β-CROWN with branch and bound based complete verifier (β-CROWN BAB) in Algo-
rithm 1. The algorithm takes a target NN function f and a domain C as inputs. The subprocedure
optimized_beta_CROWN optimizes α̂ and β̂ (free variables for computing intermediate layer bounds
and last layer bounds) as Eq. 12 in Section 3.3. It operates in a batch and returns the lower and upper
bounds for n selected subdomains simultaneously: a lower bound is obtained by optimizing Eq. 12
using β-CROWN and an upper bound can be the network prediction f(x∗) given the x∗ that mini-
mizes Eq. 71. Initially, we don’t have any splits, so we only need to optimize α̂ to obtain f for x ∈ C
(Line 2). Then we utilize the power of GPUs to split in parallel and maintain a global set P storing all
the sub-domains which does not satisfy fCi < 0 (Line 5-10). Specifically, batch_pick_out extends
branching strategy BaBSR [8] or FSB [11] in a parallel manner to select n (batch size) sub-domains
in P and determine the corresponding ReLU neuron to split for each of them. If the length of P is less
than n, then we reduce n to the length of P. batch_split splits each selected Ci to two sub-domains
Cli and Cui by forcing the selected unstable ReLU neuron to be positive and negative, respectively.
Domain_Filter filters out verified sub-domains (proved with fCi ≥ 0) and we insert the remaining

1We want an upper bound of the objective in Eq. 1. Since Eq. 1 is an minimization problem, any feasible x
produces an upper bound of the optimal objective. When Eq. 1 is solved exactly as f∗ (such as in the case where
all neurons are split), we have f∗ = f = f . See also the discussions in Section I.1 of De Palma et al. [10].

22

Algorithm 1 β-CROWN with branch and bound for complete verification. Comments are in brown.
1: Inputs: f , C, n (batch size), δ (tolerance), η (maximum length of sub-domains)
2: (f, f)← optimized_beta_CROWN(f, [C]) . Initially there is no split, so optimization is done over α̂
3: P←

[
(f, f, C)

]
. P is the set of all unverified sub-domains

4: while f < 0 and f ≥ 0 and f − f > δ and length(P) < η do
5: (C1, . . . , Cn)← batch_pick_out(P, n) . Pick sub-domains to split and removed them from P
6:

[
Cl1, Cu1 , . . . , Cln, Cun

]
← batch_split(C1, . . . , Cn) . Each Ci splits into two sub-domains Cli and Cui

7:
[
f
Cl1
, fCl1

, f
Cu1
, fCu1

, . . . , f
Cln
, fCln , fCun

, fCun

]
← optimized_beta_CROWN(f,

[
Cl1, Cu1 , . . . , Cln, Cun

]
)

. Compute lower and upper bounds by optimizing α̂ and β̂ mentioned in Section 3.3 in a batch
8: P← P

⋃
Domain_Filter

(
[f
Cl1
, fCl1

, Cl1], [fCu1
, fCu1

, Cu1], . . . , [fCln
, fC1n , C

l
n], [fCun

, fCun , C
u
n]
)

.

Filter out verified sub-domains, insert the left domains back to P
9: f ← min{f

Ci
| (f
Ci
, fCi , Ci) ∈ P}, i = 1, . . . , n . To ease notation, Ci here indicates either Cui or Cli

10: f ← min{fCi | (fCi , fCi , Ci) ∈ P}, i = 1, . . . , n

11: Outputs: f , f

ones to P. The loop breaks if the property is proved (f ≥ 0), or a counter-example is found in any
sub-domain (f < 0), or the lower bound f and upper bound f are sufficiently close, or the length of
sub-domains P reaches a desired threshold η (maximum memory limit).

Note that for models evaluated in our paper, we find that computing intermediate layer bounds in
every iteration at line 7 is too costly (although it is possible and supported) so we only compute
intermediate layer bounds once at line 2. At line 7, only the neuron with split constraints have their
intermediate layer bounds updated, and other intermediate bounds are not recomputed. This makes
the intermediate layer bounds looser but it allows us to quickly explore a large number of nodes
on the branch and bound search tree and is overall beneficial for verifying most models. A similar
observation was also found in De Palma et al. [10] (Section 5.1.1).

B.2 Comparisons to other GPU based complete verifiers

Bunel et al. [6] proposed to reformulate the linear programming problem in Eq. 10 through Lagrangian
decomposition. Eq. 10 is decomposed layer by layer, and each layer is solved with simple closed
form solutions on GPUs. A Lagrangian is used to enforce the equality between the output of a
previous layer and the input of a later layer. This optimization formulation has the same power as a
LP (Eq. 10) under convergence. The main drawback of this approach is that it converges relatively
slowly (it typically requires hundreds of iterations to converge to a solution similar to the solution
of a LP), and it also cannot easily jointly optimize intermediate layer bounds. In Table 1 (PROX
BABSR) and Figure 1 (BDD+ BABSR, which refers to the same method) we can see that this
approach is relatively slow and has high timeout rates compared to other GPU accelerated complete
verifiers. Recently, De Palma et al. [11] proposed a better branching strategy, filtered smart branching
(FSB), to further improved verification performance of [6], but the Lagrangian Decomposition based
incomplete verifier and the branch and bound procedure stay the same.

De Palma et al. [10] used a tighter convex relaxation [2] than the typical LP formulation in Eq. 10
for the incomplete verifier. This tighter relaxation may contain exponentially many constraints,
and De Palma et al. [10] proposed to solve the verification problem in its dual form where each
constraint becomes a dual variable. A small active set of dual variables is maintained during dual
optimization to ensure efficiency. This tighter relaxation allows it to outperform [6], but it also
comes with extra computational costs and difficulties for an efficient implementation (e.g. a “masked”
forward/backward pass is needed which requires a customised low-level convolution implementation).
Additionally, De Palma et al. [10] did not optimize intermediate layer bounds jointly.

Xu et al. [45] used CROWN [46] (categorized as a linear relaxation based perturbation analysis
(LiRPA) algorithm) as the incomplete solver in BaB. Since CROWN cannot encode neural split
constraints, Xu et al. [45] essentially solve Eq. 10 without neuron split constraints (z(i)j ≥ 0, i ∈
{1, · · · , L − 1}, j ∈ Z+(i) and z(i)j < 0, i ∈ {1, · · · , L − 1}, j ∈ Z−(i)) in Eq. 10. The missing

23

constraints lead to looser bounds and unnecessary branches. Additionally, using CROWN as the
incomplete solver leads to incompleteness - even when all unstable ReLU neurons are split, Xu et al.
[45] still cannot solve Eq. 1 to a global minimum, so a LP solver has to be used to check inconsistent
splits and guarantee completeness. Our β-CROWN BaB overcomes these drawbacks: we consider
per-neuron split constraints in β-CROWN which reduces the number of branches and solving time
(Table 1). Most importantly, β-CROWN with branch and bound is sound and complete (Theorem 3.3)
and we do not rely on any LP solvers.

Another difference between Xu et al. [45] and our method is the joint optimization of intermediate
layer bounds (Section 3.3). Although [45] also optimized intermediate layer bounds, they only
optimize α and do not have β, and they share the same variable α for all intermediate layer bounds
and final bounds, with a total of O(Ld) variables to optimize. Our analysis in Section 3.3 shows that
there are in fact, O(L2d2) free variables to optimize, and we share less variables as in Xu et al. [45].
This allows us to achieve tighter bounds and improve overall performance.

B.3 Detection of Infeasibility

Maximizing Eq. 8 with infeasible constraints leads to unbounded dual objective, which can be
detected by checking if this optimized lower bound becomes greater than the upper bound (which is
also maintained in BaB, see Alg.1 in Sec. B.1). For the robustness verification problem, a subdomain
that has lower bound greater than 0 is dropped, which includes the unbounded case. Due to insufficient
convergence, this cannot always detect infeasibility, but it does not affect soundness, as this infeasible
subdomain only leads to worse overall lower bound in BaB. To guarantee completeness, we show
that when all unstable neurons are split the problem is concave (see Section A.3); in this case, we
can use line search to guarantee convergence when feasible, and detect infeasibility if the objective
exceeds the upper bound (line search guarantees the objective can eventually exceed upper bound).
In most real scenarios, the verifier either finishes or times out before all unstable neurons are split.

C Details on Experimental Setup and Results

C.1 Experimental Setup

We run our experiments on a machine with a single NVIDIA RTX 3090 GPU (24GB GPU memory),
a AMD Ryzen 9 5950X CPU and 64GB memory. Our β-CROWN solver uses 1 CPU and 1 GPU
only, except for the MLP models in Table 2 where 16 threads are used to compute intermediate layer
bounds with Gurobi2. We use the Adam optimizer [21] to solve both α̂ and β̂ in Eq. 12 with 20
iterations. The learning rates are set as 0.1 and 0.05 for optimizing α̂ and β̂ respectively. We decay
the learning rates with a factor of 0.98 per iteration. To maximize the benefits of parallel computing
on GPU, we use batch sizes n =1024 for Base (CIFAR-10), Wide (CIFAR-10), Deep (CIFAR-10),
CNN-A-Adv (MNIST) and ConvSmall (MNIST), n =2048 for ConvSmall (CIFAR-10), n =4096 for
CNN-A-Adv (CIFAR-10), CNN-A-Adv-4 (CIFAR-10), CNN-A-Mix (CIFAR-10) and CNN-A-Mix-4
(CIFAR-10), n =256 for CNN-B-Adv (CIFAR-10) and CNN-B-Adv-4 (CIFAR-10), n =1024 for
ConvBig (MNIST), n =10 for ConvBig (CIFAR-10), n =8 for ResNet (CIFAR-10) respectively.
The CNN-A-Adv, CNN-A-Adv-4, CNN-A-Mix, CNN-A-Mix-4, CNN-B-Adv and CNN-B-Adv-4
models are obtained from the authors or [9] and are the same as the models used in their paper. We
summarize the model structures in both incomplete verification and complete verification (Base, Wide
and Deep) experiments in Table A1. Our code is available at http://PaperCode.cc/BetaCROWN.

C.2 Additional Experiments

More results on incomplete verification In this paragraph we compare our β-CROWN FSB to
many other incomplete verifiers. WK [42] and CROWN [46] are simple bound propagation methods;

2Note that our β-CROWN verifier does not rely on MILP/LP solvers. For these very small MLP models, we
find that a MILP solver can actually compute intermediate layer bounds pretty quickly and using these tighter
intermediate bounds are quite helpful for β-CROWN. This also enables us to utilize both CPUs and GPUs on a
machine. For all other models, intermediate layer bounds are computed through optimizing Eq. 12. Practically,
MILP is not scalable beyond these very small MLP models and these small models are not the main focus of this
work.

24

http://PaperCode.cc/BetaCROWN

Table A1: Model structures used in our experiments. For example, Conv(1, 16, 4) stands for a conventional
layer with 1 input channel, 16 output channels and a kernel size of 4× 4. Linear(1568, 100) stands for a fully
connected layer with 1568 input features and 100 output features. We have ReLU activation functions between
two consecutive layers.

Model name Model structure

CNN-A-Adv (MNIST) Conv(1, 16, 4) - Conv(16, 32, 4) - Linear(1568, 100) - Linear(100, 10)
ConvSmall (MNIST) Conv(1, 16, 4) - Conv(16, 32, 4) - Linear(800, 100) - Linear(100, 10)
ConvBig (MNIST) Conv(1, 32, 3) - Conv(32, 32, 4) - Conv(32, 64, 3) - Conv(64, 64, 4) - Linear(3136, 512) -

Linear(512, 512) - Linear(512, 10)
ConvSmall (CIFAR-10) Conv(3, 16, 4) - Conv(16, 32, 4) - Linear(1152, 100) - Linear(100, 10)
ConvBig (CIFAR-10) Conv(3, 32, 3) - Conv(32, 32, 4) - Conv(32, 64, 3) - Conv(64, 64, 4) - Linear(4096, 512) -

Linear(512, 512) - Linear(512, 10)
CNN-A-Adv/-4 (CIFAR-10) Conv(3, 16, 4) - Conv(16, 32, 4) - Linear(2048, 100) - Linear(100, 10)
CNN-B-Adv/-4 (CIFAR-10) Conv(3, 32, 5) - Conv(32, 128, 4) - Linear(8192, 250) - Linear(250, 10)
CNN-A-Mix/-4 (CIFAR-10) Conv(3, 16, 4) - Conv(16, 32, 4) - Linear(2048, 100) - Linear(100, 10)

Base (CIFAR-10) Conv(3, 8, 4) - Conv(8, 16, 4) - Linear(1024, 100) - Linear(100, 10)
Wide (CIFAR-10) Conv(3, 16, 4) - Conv(16, 32, 4) - Linear(2048, 100) - Linear(100, 10)
Deep (CIFAR-10) Conv(3, 8, 4) - Conv(8, 8, 3) - Conv(8, 8, 3) - Conv(8, 8, 4) - Linear(412, 100) - Linear(100, 10)

CROWN-OPT uses the joint optimization on intermediate layer bounds (optimizing Eq. 12 with no β̂,
as done in [45]). We also include triangle relaxation based LP verifiers with intermediate layer bounds
obtained from WK, CROWN and CROWN-OPT. In our experiments in Table 1, we noticed that
BIGM+A.SET BABSR [10] and Fast-and-Complete [45] are also very competitive among existing
state-of-the-art complete verifiers3 - they runs fast in many cases with low timeout rates. Therefore,
we also evaluate BIGM+A.SET BABSR and Fast-and-Complete with an early stop of 3 minutes for
the incomplete verification setting as an extension of Section 4.2. The verified accuracy obtained from
each method are reported in Table A2. BIGM+A.SET BABSR and Fast-and-Complete sometimes
produce better bounds than SDP-FO, however β-CROWN FSB consistently outperforms both of
them. Additionally, we found that intermediate layer bounds are important for LP verifier on some
models, although even with the tightest possible CROWN-OPT bounds the verified accuracy gap
between LP verifiers and ours is still large. Additionally, LP verifiers need significantly more time.

Additional results on the tightness of verification. In Figure A1, we include LP based verifiers
as baselines and compare the lower bound from verification to the upper bound obtained by PGD.
The LP verifiers use the triangle relaxations described in Section 2.1, with intermediate layer bounds
from WK [42], CROWN [46] and CROWN with joint optimization on intermediate layer bounds
(denoted as CROWN-OPT). We find that tighter intermediate layer bounds obtained by CROWN can
greatly improve the performance of the LP verifier compared to those using looser ones obtained
by Wong and Kolter [42]. Furthermore, using intermediate layer bounds computed by joint opti-
mization can achieve additional improvements. However, our branch and bound with β-CROWN
can significantly outperform these LP verifiers. This shows that BaB is an effective approach for
incomplete verification, outperforming the bounds produced by a single LP.

Lower bound improvements over time In Figure A2, we plot lower bound values vs. time for
β-CROWN BABSR and BIGM+A.SET BABSR (one of the most competitive methods in Table 1)
on the CNN-A-Adv (MNIST) model. Figure A2 shows that branch and bound can indeed quickly
improve the lower bound, and our β-CROWN BABSR is consistently faster than BIGM+A.SET
BABSR. In contrast, SDP-FO [9], which typically requires 2 to 3 hours to converge, can only provide
very loose bounds during the first 3 minutes of optimization (out of the range on these figures).

Ablation study of running time on GPUs and CPUs We conduct the same experiments as in
Table 1 but run β-CROWN FSB on CPUs instead of GPUs. As shown in Table A3, our method is
strong even on a single CPU, showing that the good performance does not only come from GPU
acceleration; our efficient algorithm also contributes to our success. On the other hand, using GPU
can boost the performance by at least 2x. Importantly, the models evaluated in this table are very
small ones. Massive parallelization on GPU will lead to more significant acceleration on larger

3The concurrent work BaDNB (BDD+ FSB) does not have public available code when our paper was
submitted.

25

Table A2: Verified accuracy (%) and avg. per-example verification time (s) on 7 models from SDP-FO [9].
Dataset MNIST ε = 0.3 CIFAR ε = 2/255

Model CNN-A-Adv CNN-B-Adv CNN-B-Adv4 CNN-A-Adv CNN-A-Adv4 CNN-A-Mix CNN-A-Mix4
Methods Verified% Time (s) Ver.% Time(s) Ver.% Time(s) Ver.% Time(s) Ver.% Time(s) Ver.% Time(s) Ver.% Time(s)

WK [42] 0 0.1 8.5 0.4 34.5 0.8 32.5 0.4 39.5 0.5 15.0 0.3 30.0 0.4
CROWN [46] 1.0 0.1 21.5 0.5 43.5 0.9 35.5 0.6 41.5 0.7 23.5 0.4 38.0 0.5

CROWN-OPT [45] 14.0 2.7 21.5 5.5 45.0 4.0 36.0 2.0 42.0 1.6 25.0 2.3 38.5 2.0
LP (WK)§ 0.5 16 14.5 612 41.0 1361 35.0 114 41.5 140 19.0 84 36.5 117

LP (CROWN) 3.5 22 21.5 941 45.0 1570 36.0 123 41.5 147 24.0 119 38.5 126
LP (CROWN-OPT) 14.0 40 21.5 977 45.0 1451 36.0 122 42.0 152 25.0 94.8 38.5 127

SDP-FO [9]∗ 43.4 >20h 32.8 >25h 46.0 >25h 39.6 >25h 40.0 >25h 39.6 >25h 47.8 >25h
PRIMA [26] 44.5 136 38.0 344 53.5 44 41.5 4.8 45.0 4.9 37.5‡ 34 48.5 7.0

BigM+A.Set [10] 63.0 117 N/A† N/A N/A N/A 41.0 79 46.0 39 30.0 122 47.0 71
Fast-and-Complete§ 66.0 49 38.5 64 51.5 21 41.5 14 46.0 4.2 33.0 79 46.0 10
β-CROWN FSB 70.5 21 46.5 32 54.0 12 44.0 5.8 46.0 5.6 41.5 50 50.5 5.9

Upper Bound (PGD) 76.5 - 65.0 - 63.0 - 50.0 - 49.5 - 53.0 - 57.5 -
§

Names in parentheses are methods to compute intermediate layer bounds for the LP verifier.
* SDP-FO results are directly from their paper due to the very long running time. All other methods are tested on the same set of 200 examples.
† The implementation of BigM+A.Set BaBSR is not compatible with CNN-B-Adv and CNN-B-Adv4 models which have an convolution with

asymmetric padding.
‡ A recent version (Oct 26, 2021) of [26] reported better results on CNN-A-Mix. We found that their results were produced on a selection of

100 data points, and reruning their method using the same command on the same set of 200 random examples as used in other methods in this
table produces different results, as reported here.
§ We use our β-CROWN code and turn off β optimization to emulate the algorithm used in [45]. This in fact leads to better performance than

the original approach in [45] because we allow more α variables to be optimized and our implementation is generally better.

Figure A1: Verified lower bound on f(x) by β-CROWN FSB compared against incomplete LP verifiers using
different intermediate layer bounds obtained from [42] (denoted as LP (WK)), CROWN [46] (denoted as LP
(CROWN)), and jointly optimized intermediate bounds in Eq. 12 (denoted as LP (CROWN-OPT)), v.s. the
adversarial upper bound on f(x) found by PGD. LPs need much longer time to solve than β-CROWN on
CIFAR-10 models (see Table A2).

2 0 2 4 6

PGD adversarial upper bound

10

8

6

4

2

0

2

4

6

V
e
ri

fi
e
d

 l
o
w

e
r

b
o
u
n
d

-CROWN

LP(WK)

LP(CROWN)

LP(CROWN-OPT)

PGD (y=x)

1 0 1 2 3 4 5 6 7

PGD adversarial upper bound

8

6

4

2

0

2

4

6

8

V
e
ri

fi
e
d

 l
o
w

e
r

b
o
u
n
d -CROWN

LP(WK)

LP(CROWN)

LP(CROWN-OPT)

PGD (y=x)

(a) MNIST CNN-A-Adv, runner-up targets, ε = 0.3 (b) CIFAR CNN-B-Adv, runner-up targets, ε = 2/255

models. The speedup on multi-core CPU is not obvious, possibly due to the limitation of underlying
implementations of PyTorch.

Ablation study on the impact of α, β, and their joint optimization We conduct the same exper-
iments as in Table 1 but turn on or turn off α and β optimization to see the contribution of each
part. As shown in Table A4, optimizing both α and β leads to optimal performance. Optimizing
beta has a greater impact than optimizing α. Joint optimization is helpful for CIFAR10-Base and
CIFAR10-Wide models, reducing the overall runtime. For simple models like CIFAR10-Deep,

Figure A2: For the CNN-A-Adv (MNIST) model, we randomly select four examples from the incomplete
verification experiment and plot the lower bound v.s. time (in 180 seconds) of β-CROWN BABSR and
BIGM+A.SET BABSR. Larger lower bounds are better. β-CROWN BaBSR improves bound noticeably faster
in all four situations.

0 50 100 150
time(s)

1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

lo
we

r b
ou

nd

-CROWN+BaBSR
Big-M+A. Set+BaBSR

0 50 100 150
time(s)

1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0
2.5

lo
we

r b
ou

nd

-CROWN+BaBSR
Big-M+A. Set+BaBSR

0 50 100 150
time(s)

2.5
2.0
1.5
1.0
0.5
0.0
0.5

lo
we

r b
ou

nd

-CROWN+BaBSR
Big-M+A. Set+BaBSR

0 50 100 150
time(s)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

lo
we

r b
ou

nd

-CROWN+BaBSR
Big-M+A. Set+BaBSR

26

Table A3: Average runtime and average number of branches on three CIFAR-10 models over 100 properties (the
same setting as in Table 1) by using different numbers of CPU cores, as well as using a single GPU.

CIFAR-10 Base CIFAR-10 Wide CIFAR-10 Deep

Hardware time(s) branches %timeout time(s) branches %timeout time(s) branches %timeout

1 CPU 249.49 7886.37 4.00 178.01 2749.96 4.00 47.46 41.12 0.00
4 CPU 228.28 9575.52 4.00 172.55 3956.17 4.00 45.35 41.12 0.00

16 CPU 222.71 10271.08 4.00 172.40 4087.15 4.00 43.97 41.12 0.00
1 GPU 118.23 208018.21 3.00 78.32 116912.57 2.00 5.69 41.12 0.00

disabling joint optimization can help slightly because this model is very easy to verify (within a few
seconds) and using looser bounds reduces verification cost.

Table A4: Ablation study on the CIFAR-10 Base, Wide and Deep models (the same setting as in Table 1),
including combinations of optimizing or not optimizing α and/or β variables, and using or not using joint
optimization for intermediate layer bounds.

CIFAR-10 Base CIFAR-10 Wide CIFAR-10 Deep

joint opt α β time(s) branches %timeout time(s) branches %timeout time(s) branches %timeout

X 233.86 233233.70 6.00 148.46 113017.10 4.00 5.77 260.18 0.00
X 174.10 163037.05 4.00 102.65 86571.18 2.00 5.73 134.76 0.00

X X 139.83 133346.44 3.00 91.01 73713.30 2.00 5.22 100.44 0.00

X X 163.69 160058.80 4.00 149.00 115509.71 4.00 8.58 65.70 0.00
X X 162.95 150631.49 4.00 89.22 72479.96 2.00 8.38 52.26 0.00
X X X 118.23 208018.21 3.00 78.32 116912.57 2.00 5.69 41.12 0.00

27

