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A Discussion of the Method Proposed by Jia et al.

In recent work, Jia et al. [4] also proposed an approach that aims to capture certified robustness for
top-k predictions. In this section, we provide details on differences between this work and ours;
particularly the shortcomings of this approach that our work addresses.

Recall our notation from Section 3, where, for neural network, f , we define F k(x) as the set of classes
corresponding to the top k logit values in f(x). The approach of Jia et al. provides a probabilistic
bound on the radius, rkj (x), under which a given class j ∈ F k(x) will remain in the top-k predictions.
That is, Jia et al. provide a probabilistic guarantee that Equation A1 holds.

∀x′ . ||x− x′|| ≤ rkj (x) =⇒ j ∈ F k(x′) (A1)

In their evaluation, Jia et al. consider a point, x, to be certified at radius, ε, if rky∗ ≥ ε, where y∗
is the ground truth label for x. This presents a problem for certifying unseen points as the ground
truth cannot be known. We therefore stipulate that certification must be independent of the true
label of the point being certified. Moreover, replacing the ground truth with the predicted label is
unsatisfactory, because the purpose of generalizing to top-k predictions is to consider cases where
any of the predictions in F k(x) may be correct.

While Jia et al. do not address this issue, one straightforward adaptation of their approach is to take
the minimum certified radius over all classes in F k(x). That is, let rk(x) = minj∈Fk(x){rkj (x)}.
We see that this leads to a natural guarantee given by Equation A2, which can be certified without
knowledge of the ground truth class. In short, Equation A2 holds because by taking the minimum rkj ,
we are guaranteed that all of the top k classes will remain in the top k classes under perturbations
bounded by rk(x).

∀x′ . ||x− x′|| ≤ rk(x) =⇒ F k(x) = F k(x′) (A2)
We note however, that when certification is determined by comparing rk(x) to a fixed radius,
Equation A2 is equivalent to our proposed definition for top-k robustness (Definition 2). As discussed
in Section 3, this is also not a satisfactory robustness analogue to top-k accuracy as it does not relax
local robustness. We therefore argue that RTK robustness (Definition 3) should be used to certify the
robustness of top-k predictions.

B Construction of Affinity GloRo Nets

In this section we describe how to produce networks that incorporate certifiable affinity robustness
into their training objectives. As with the construction for RTK GloRo Nets in Section 5, we follow a
similar approach to Leino et al. [9], instrumenting the output of a neural network to return an added
class,⊥, in cases where affinity robustness cannot be certified. To this end, we propose Affinity GloRo
Nets, which naturally satisfy affinity robustness on all non-rejected points.

As defined in Section 3, let F be the predictions made by f , i.e., F (x) = argmaxi{fi(x)}, and let
F k(x) be the set of the top k predictions made by f on x; and as above, let Kji be the Lipschitz
constant of fj − fi. Furthermore, let S be a collection of affinity sets, and let K = maxS∈S{|S|};
that is, K is the size of the largest affinity set in S.
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For k ≤ K and j ∈ F k(x), let mk
j (x) = fj(x) −maxi/∈Fk(x){fi(x) + εKji}. Intuitively, mk

j (x)
is the margin by which class j, which is in the top k classes, exceeds every class not in the top k
classes, after accounting for the maximum change in logit values within a radius of ε determined by
the Lipschitz constant. We observe that if mk

j (x) > 0 then the logit for class j, fj(x), cannot be
surpassed within the ε-ball around x by an output not in the top k outputs, fi(x) for i /∈ F k(x).

Next, let mk(x) = minj∈Fk(x){mk
j (x)}. This represents the minimum margin by which any class

in the top k classes exceeds every class not in the top k classes; thus if mk(x) > 0, then F is top-k
robust at x.

Finally, let m(S, x) be given by Equation B1. Essentially, we restrict our consideration of sets of
top-k predictions to those that are constrained to a single affinity set. Among the considered sets, we
take the maximum margin by which every class in the set will surpass every class not in the set under
bounded perturbations to x.

m(S, x) = max
k : ∃S∈S : Fk(x)⊆S

{
mk(x)

}
(B1)

We note that in practice, the maximum in Equation B1 can be computed efficiently by representing
the sets F k(x) and S as bit maps and masking out rows of mk that correspond to values of k for
which F k(x) ∩ S 6= F k(x) for all S ∈ S.

We observe that if m(S, x) > 0, then the model is affinity robust at x. We would thus like to predict
⊥ only when m(S, x) < 0. To accomplish this we create an instrumented model, g, as given by
Equation B2.

gi(x) = fi(x); g⊥(x) = max
i
{fi(x)−m(S, x)} (B2)

C Proofs

C.1 Correctness of RTK GloRo Nets

Theorem 1. Let g be an RTK GloRo Net as defined by Equation 1. Then, if the maximal output of
g(x) is not ⊥, then F is RTK ε-locally-robust at x.

Proof. Let y = F (x) = argmaxi{fi(x)}. Assume that the maximal output of g(x) is not ⊥, i.e., ∃i
such that g⊥(x) < gi(x) ≤ gy(x) = fy(x). By the definition of g⊥ in Equation 1, we obtain (C1).
By the definition of y, we obtain (C2).

fy(x) > max
i
{fi(x)−m(x)} (C1)

= fy(x)−m(x) (C2)

Thus, we have that m(x) is positive. As m(x) is defined as maxk≤K{mk(x)}, this means that there
exists some k∗ ≤ K such that mk∗

(x) > 0 (C3).

We recall from the definition of RTK robustness, we must show that there exists some k ≤ K such
that for all x′ at distance no greater than ε from x, F k(x) = F k(x′). We proceed to show that k∗ is
such a k; i.e., ||x− x′|| ≤ ε =⇒ F k∗

(x) = F k∗
(x′).

From (C3) we expand the definition of mk(x) to obtain (C4); and the definition of mk
j to obtain (C5).

0 < mk∗
(x) (C3)

= min
j∈Fk∗ (x)

{
mk∗

j (x)
}

(C4)

= min
j∈Fk∗ (x), i/∈Fk∗ (x)

{
fj(x)− fi(x)− εKji

}
(C5)

We observe that (C5) implies (C6).

∀j ∈ F k∗
(x), i /∈ F k∗

(x) . fi(x) + εKji < fj(x) (C6)
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Next, we assume x′ satisfies ||x− x′|| ≤ ε. As Kji is an upper bound on the Lipschitz constant of
fj − fi we obtain (C7).

|fj(x)− fi(x)− (fj(x
′)− fi(x′))|

||x− x′||
≤ Kji

=⇒ |fj(x)− fi(x)− (fj(x
′)− fi(x′))| ≤ Kjiε (C7)

Thus we argue as follows for all j ∈ F k∗
(x) and i /∈ F k∗

(x). First, by applying (C7), we obtain
(C8). Then, by applying (C6) we obtain (C9).

fi(x) + fj(x)− fi(x)− fj(x′) + fi(x
′)

≤ fi(x) + |fj(x)− fi(x)− fj(x′) + fi(x
′)|

≤ fi(x) + εKji (C8)
< fj(x) (C9)

By rearranging the terms in the above inequality, we obtain (C10).

∀j ∈ F k∗
(x), i /∈ F k∗

(x) . fi(x
′) < fj(x

′) (C10)

Finally, we realize that (C10) is equivalent to F k∗
(x) = F k∗

(x′). To see why, consider the following.
Let Z = {∀i . fi(x′)} be the set of all logit values produced by f on x′ (assume WLOG each logit
value is unique), and let Zk∗ = {∀j ∈ F k∗

(x) . fj(x
′)} be the subset of Z containing the logit

values of f(x′) corresponding to the classes in F k∗
(x). By (C10) we have that for all z ∈ Zk∗ and

z′ ∈ Z \ Zk∗ , z > z′. Thus, Zk∗ contains the top k∗ elements of Z.

Putting everything together, we conclude that ∃k ≤ K : ||x− x′|| ≤ ε =⇒ F k(x) = F k(x′).

C.2 Correctness of Affinity GloRo Nets

Theorem 2. Let g be an Affinity GloRo Net as defined by Equation B2. Then, if the maximal output
of g(x) is not ⊥, then F is affinity ε-locally-robust at x.

Proof. The proof follows a similar approach to the proof of Theorem 1. Let y = F (x) =
argmaxi{fi(x)}. Assume that the maximal output of g(x) is not ⊥, i.e., ∃i such that g⊥(x) <
gi(x) ≤ gy(x) = fy(x). By the definition of g⊥ in Equation B2, we obtain (C11). By the definition
of y, we obtain (C12).

fy(x) > max
i
{fi(x)−m(S, x)} (C11)

= fy(x)−m(S, x) (C12)

Thus, we have that m(S, x) is positive. From the definition of m(S, x) in Equation B1, we conclude
that there exists some k∗ and some S∗ ∈ S, such that F k∗

(x) ⊆ S∗ and mk∗
(x) > 0.

We recall from the definition of affinity robustness, we must show that there exists some k and S such
that for all x′ at distance no greater than ε from x, F k(x) = F k(x′) and F k(x) ⊆ S. We proceed to
show that ||x− x′|| ≤ ε =⇒ F k∗

(x) = F k∗
(x′) ∧ F k∗

(x) ⊆ S∗.

From our observations above, we have that F k∗
(x) ⊆ S∗, therefore it suffices to simply show that

||x− x′|| ≤ ε =⇒ F k∗
(x) = F k∗

(x′), given that mk∗
(x) > 0. As mk(x) is defined the same for

both Affinity GloRo Nets (Equation B2) and RTK GloRo Nets (Equation 1), the remainder of the
proof proceeds exactly as the proof for Theorem 1 in Section C.1.

D Discussion of Other Certification Techniques

While many certification methods have been proposed and studied in the past, we use the GloRo Net
approach to certification for two key reasons. First, GloRo Nets have been shown to be among the
top state-of-the-art methods for deterministic `2 certification, matching or outperforming the VRA of
all other deterministic methods recently surveyed by Leino et al. [9]. Second, GloRo Nets provide
an elegant way for incorporating our robustness objectives into a certifiable training procedure, as
certified training can be reduced to simply performing overapproximate certification.
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However, leveraging other types of techniques for certifying our proposed robustness properties
remains an interesting possibility for future work to explore. We now present a discussion of how other
certification techniques in the literature may be adapted to incorporate RTK and affinity robustness.

Randomized Smoothing. Jia et al. [4] suggest a technique based on randomized smoothing that
is in the same spirit as RTK robustness. While we point out several problems with their approach,
Appendix A describes how to adapt their technique to get an equivalent property to top-k robustness
(Definition 2). However, as we argue in Section 3, RTK robustness (Definition 3) is the correct
analogue to top-k accuracy.

In general, RTK robustness can be certified given a method to certify top-k accuracy, by iteratively
checking whether top-k robustness holds for any k in {1, ...,K}. Thus, it should be possible to adapt
the method of Jia et al. to correctly certify RTK robustness via randomized smoothing. A naive
implementation of this would be very expensive (following the approach outlined in Appendix A),
however, as it would require O(K2) calls to Jia et al.’s method, which is already expensive. On
hardware similar to our own, we estimate such an implementation would take about a minute to
evaluate and certify each instance1. Future work may be able to determine a more efficient way to
achieve this.

Finally, we note that although randomized smoothing can, in theory, obtain certificates without any
requirements on the original model, in order to get reasonable performance, it is necessary to augment
the data with Gaussian noise during training—this allows the model to behave well under the noise
that will be introduced at evaluation time. It is therefore possible that for similar reasons, additional
training considerations would be important to make use of the relaxed guarantee in smoothed models.

1-Lipschitz Models. Recently, a few similar certification approaches to GloRo Nets have been
proposed, which use orthonormal projections to ensure the model is 1-Lipschitz [11]. When the
model is 1-Lipschitz, certification simply requires a margin of ε between the top logit output and the
others. Because these techniques achieve robustness through Lipschitzness, the certification aspect of
the method described in Section 5 would also apply to such methods.

Primarily, these approaches differ from GloRo Nets in the way they are trained, targeting robustness
though a hinge-like loss function that encourages a sufficiently large margin between classes. Because
of the nuances of RTK robustness, it is less clear how RTK robustness could be achieved with a
simple loss function (e.g., RTK robustness is a naturally disjunctive property, and the network should
have a choice in which k to target). However, the GloRo training we propose avoids the challenges
of redesigning a proper loss function, and would still work to train models with orthonormalized
kernels.

Convex Relaxation/Bound Propagation. It is not immediately clear to us how to achieve RTK
(or Affinity) robustness with approaches like KW [12] or IBP-based methods [8], but we believe
this could be an interesting future direction. It may be possible to change these methods to ensure a
margin between the kth class and the (k + 1)th class. This in turn could be used as a step in certifying
RTK robustness as noted in our discussion of Randomized Smoothing. Note, however, that this would
likely mean that KW and IBP would require multiple propagations to handle RTK robustness, making
them more expensive (while the analysis of the GloRo approach only needs to consider the logits,
which only need to be computed once).

An additional important issue, moreover, is incorporating RTK robustness into the learning objective.
Because of the disjunctive nature of RTK robustness, it is not obvious how to design the loss function
to promote it. GloRo Nets avoid this issue because they essentially make an equivalence between the
problem of certification and the robust learning objective.

E Relaxed Robustness Guarantees on ACAS Xu

We provide further motivation for Affinity GloRo Nets by showing how they can be leveraged to
efficiently certify a previously-studied safety property for ACAS Xu [5], a classification problem

1this computation would require evaluating the underlying model on 100,000 samples (the number of samples
required for adequate smoothing [2]) K2 times
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dataset guarantee ε VRA rejection rate clean accuracy

ACAS Xu targeted affinity 0.010 0.749 ± 0.001 0.195 ± 0.001 0.858 ± 0.002

Table E1: Certification results under affinity robustness on ACAS Xu. VRA is given as the fraction of
points that are correctly classified and affinity robust. Results are taken as the average over 10 runs;
standard deviations are denoted by ±.

that has been a primary motivation in many prior works that study certification of neural network
safety properties [6, 7, 10, 3]. Specifically, we show that Affinity GloRo Nets can certify targeted
safe regions [3] in a single forward pass of the network, while previous techniques based on formal
methods require hours to certify this property, even on smaller networks [3]. We present these
experiments here.

ACAS Xu is an airborne collision avoidance system for unmanned aircraft that has been studied in
the context of neural network safety certification. The classification task for ACAS Xu is as follows.
Given a few features, e.g., altitude, velocity, etc., the network produces a horizontal maneuver
advisory for the aircraft, instructing it on how to turn to avoid a collision. This advisory comes from
one of the following options: (1) hard left, (2) left, (3) clear of conflict (i.e., go straight), (4) right, or
(5) hard right.

Access to the ACAS Xu dataset is not public. However, many trained networks that have been
certified for other safety properties specific to ACAS Xu (and unrelated to robustness) are publicly
available; we generated a synthetic dataset derived from the predictions of one such public model
provided by Katz et al. [6]. To create this dataset, we generated random inputs clipped to be within
the standard range for each input [6] and labeled them using a publicly-available pretrained ACAS
Xu network.

We chose our value for ε by estimating the minimum `2 distance between any two points with
different labels. This value was approximately 0.02 on our synthetic dataset; thus we used ε = 0.01,
as ε-local-robustness requires a separation of 2ε between classes.

Previously, Gopinath et al. [3] proposed certification of targeted safe regions on ACAS Xu. An `p
ball with radius ε, centered at x, is considered targeted safe if the horizontal maneuver advisory does
not change within the ball except to either one degree further left or one degree further right. E.g., an
`p ball may contain the directives “left” and “hard left” or “left” and “clear of conflict.” We note that
this property can be captured by affinity robustness, where the affinity sets are simply all pairs of
adjacent directives.

Table E1 presents the results of training and evaluating an Affinity GloRo Net on our synthetic ACAS
Xu dataset. In particular, we give the VRA (as the fraction of points that are correctly classified and
affinity robust), the rejection rate (as the fraction of points that cannot be certified as affinity robust),
and the clean accuracy. Gopinath et al. do not present any directly-comparable metrics to these in
their evaluation. Rather than presenting rejection rates for a fixed epsilon, they instead attempt to
determine the minimum radius under which the property holds, and they present the average such
radius. It is therefore unclear what fraction of points would be accepted under any fixed radius.
However, 16% of the points timed out after 12 hours, meaning that at least 16% of points were unable
to be certified. This is comparable to the 19% rejection rate obtained by our Affinity GloRo Net.
Moreover, the points that were successfully certified by Gopinath et al. took, on average, 7.6 hours to
certify; by comparison, our approach certifies points in a single forward pass of the network, meaning
an entire batch can be certified in a matter of milliseconds.

F Details on Hyperparameters

In this section we provide the details on the architecture, training procedure, hyperparameters, etc.,
used to train the models in our evaluation.

Hardware. All experiments were run on an NVIDIA TITAN RTX GPU with 24 GB of RAM, and
a 4.2GHz Intel Core i7-7700K with 32 GB of RAM.
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dataset guarantee epochs batch size learning rate schedule loss function TRADES schedule

EuroSAT standard 200 256 10−3 → 10−6 after half TRADES 0.01→ 1.2 log half
EuroSAT RT3 200 256 10−3 → 10−6 after half TRADES 1.0→ 1.2
EuroSAT highway+river affinity 200 256 10−3 → 10−6 after half cross-entropy N/A
EuroSAT highway+river+agriculture affty. 200 256 10−3 → 10−6 after half cross-entropy N/A

CIFAR-100 standard 200 256 10−3 → 10−6 after half TRADES 0.01→ 1.2 log half
CIFAR-100 RT5 200 256 10−3 → 10−6 after half TRADES 0.01→ 1.2 log half
CIFAR-100 superclass affinity 200 256 10−3 → 10−6 after half TRADES 0.01→ 1.2 log half

Tiny-Imagenet RT5 200 256 2.5 · 10−5 → 5 · 10−6 after half TRADES 1.0→ 10.0 half

ACAS Xu targeted affinity 100 128 10−3 → 5 · 10−6 after half cross-entropy N/A

Table F1: Hyperparameters for each model used in the evaluation in Section 6.

Data Splits. On CIFAR-100 and Tiny-Imagenet, we used the standard train-test split. We are
unaware of any “standard” train-test split for EuroSAT; thus we used 2/3 of the data for the training
set and 1/3 of the data for the test set.

Architectures. For CIFAR-100 and EuroSAT we used a simple convolutional architecture consist-
ing of two blocks with width 32 and 64 respectively—each containing a convolutional layer with
3 × 3 followed by a down-sampling layer—followed by two dense hidden layers with width 256
each. For Tiny-Imagenet we used the same architecture as was used previously by Lee et al. [8]
and subsequently Leino et al. [9]. This architecture consists of three convolutional blocks followed
by a dense layer of width 256. The first block is composed of two convolutional layers with 3× 3
filters and 64 channels followed by a strided convolution with 4× 4 filters and 64 channels. The first
block is the same as the first block, but with a width of 128. The third block has one convolutional
layer with 3 × 3 filters and 256 channels followed by a strided convolution with 4 × 4 filters and
256 channels. For ACAS Xu, we used a dense network consisting of three hidden layers with 1,000
neurons each. In all networks, we used min-max activations [1] rather than ReLU activations, as these
have been observed to achieve better performance with GloRo Nets [9]. Similarly, down-sampling
in the CIFAR-100 and EuroSAT models was achieved via invertible down-sampling [1] rather than
max-pooling.

Hyperparameters. Details on the hyperparameters used to train each model presented in the
evaluation in Section 6 are given in Table F1. All models were trained using the ADAM optimizer.

As briefly discussed in Section 5, GloRo Nets (and our variations thereof) make use of the underlying
model’s Lipschitz constant, which is approximated using the power method (see [9] for more details).
Prior to evaluation, the power method is run to convergence, however, during training we run a fixed
number of iterations on each batch. For each of the models in our evaluation we used two power
iterations on each training batch.

We used a continuous learning rate schedule, where the learning rate was adjusted on each epoch.
A description of the learning rate schedule is given in Table F1. E.g., learning rate schedule of
“10−3 → 10−6 after half” means that the learning rate begins at 10−3 and halfway through training
the learning rate decays exponentially to reach 10−6 on the final epoch.

For each model, we used one of two loss functions adapted for GloRo Nets as proposed by Leino et al.
[9], specified in the “loss function” column of Table F1: cross-entropy or TRADES (see [9] for more
details on these loss functions). The TRADES loss function takes an additional hyperparameter, λ,
which was scheduled during training. Where applicable, the “TRADES schedule” column describes
how this parameter was scheduled over training. For example, “0.01→ 1.2 log half” means that λ
was initialized to 0.1 and was increased logarithmically each epoch (i.e., it increases at a decreasing
rate) to reach a final value of 1.2 halfway through training; and “1.0 → 1.2” means that λ was
initialized to 1.0 and was increased linearly to reach 1.2 on the final epoch.
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Figure G1: Random samples of CIFAR-100 instances that are both correctly classified and certified
as top-k robust for k > 1. The classes included in the RT5 robustness guarantee are given beneath
each image.

G Further CIFAR-100 Results

Additional Samples of RT5-Certifiable Points. In Section 6.3, we provide a few selected samples
of correctly-classified, RT5-certifiable points with their corresponding robust prediction sets (Figure 5).
Figure G1 provides a larger random sample of such examples, illustrating the types of non-top-1
guarantees that are typically achieved by an RT5 GloRo Net on CIFAR-100.

Comparing Top-k Relaxations to Reducing the Number of Classes. To an extent, relaxations
like RTK robustness are somewhat similar to considering a classification problem with fewer unique
classes. We note, however, that achieving RTK VRA is still more difficult than achieving the same
standard VRA with 1/K the number of classes. This is because the loosest top-k guarantee on a
given point might be some k < K, in which case the correct class for that instance would need to be
among the top k classes rather than the top K (see Section 6.1:Metrics for details on how RTK and
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standard VRA are computed). E.g., some points receive only a top-1 guarantee even under a relaxed
robustness variant, meaning that for those points to count towards the RTK VRA, they would need
to be classified exactly correctly, not simply result in the correct label appearing among the top K
outputs.

For the sake of examining this juxtaposition, we trained a network on CIFAR-100 for RT10 robustness
in order to compare against state-of-the-art results on CIFAR-10 (which has similar images and 1/K
the number of classes). Leino et al. [9] find the state-of-the-art standard VRA on CIFAR-10 with
radius of ε = 0.141 to be approximately 58%. Meanwhile, we were able to achieve approximately
55% RT10 VRA on CIFAR-100 with the same radius. Thus, these findings are essentially in line
with the intuition that RTK robustness is similar to, but slightly more challenging than the objective
of standard robustness with 1/K the number of classes.
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[3] Divya Gopinath, Guy Katz, Corina S. Păsăreanu, and Clark Barrett. Deepsafe: A data-driven

approach for assessing robustness of neural networks. In Automated Technology for Verification
and Analysis, 2018.

[4] Jinyuan Jia, Xiaoyu Cao, Binghui Wang, and Neil Zhenqiang Gong. Certified robustness for
top-k predictions against adversarial perturbations via randomized smoothing. In ICLR, 2020.

[5] Kyle D. Julian, Jessica Lopez, Jeffrey S. Brush, Michael P. Owen, and Mykel J. Kochenderfer.
Policy compression for aircraft collision avoidance systems. In IEEE/AIAA Digital Avionics
Systems Conference (DASC), 2016.

[6] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex:
An efficient SMT solver for verifying deep neural networks. In International Conference on
Computer-Aided Verification (CAV), 2017.

[7] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim,
Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić, David L. Dill, Mykel J. Kochen-
derfer, and Clark Barrett. The marabou framework for verification and analysis of deep neural
networks. In Computer Aided Verification, 2019.

[8] Sungyoon Lee, Jaewook Lee, and Saerom Park. Lipschitz-certifiable training with a tight outer
bound. In NIPS, 2020.

[9] Klas Leino, Zifan Wang, and Matt Fredrikson. Globally-robust neural networks. In ICML,
2021.

[10] Diego Manzanas Lopez, Taylor Johnson, Hoang-Dung Tran, Stanley Bak, Xin Chen, and
Kerianne L. Hobbs. Verification of neural network compression of acas xu lookup tables with
star set reachability. In AIAA Scitech 2021 Forum.

[11] Asher Trockman and J Zico Kolter. Orthogonalizing convolutional layers with the cayley
transform. In International Conference on Learning Representations, 2021.

[12] Eric Wong and J. Zico Kolter. Provable defenses against adversarial examples via the convex
outer adversarial polytope. In ICML, 2018.

8


	Discussion of the Method Proposed by Jia et al.
	Construction of Affinity GloRo Nets
	Proofs
	Correctness of RTK GloRo Nets
	Correctness of Affinity GloRo Nets

	Discussion of Other Certification Techniques
	Relaxed Robustness Guarantees on ACAS Xu
	Details on Hyperparameters
	Further CIFAR-100 Results

