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ABSTRACT

The empirical success of distributional reinforcement learning (RL) highly de-
pends on the representation of return distributions and the choice of distribution
divergence. In this paper, we propose Sinkhorn distributional RL (SinkhornDRL)
algorithm that learns unrestricted statistics, i.e., deterministic samples, from each
return distribution and then leverages Sinkhorn divergence to minimize the differ-
ence between current and target Bellman return distributions. Theoretically, we
prove the convergence properties of SinkhornDRL in the tabular setting, which is
consistent with the interpolation nature of Sinkhorn divergence between Wasser-
stein distance and Maximum Mean Discrepancy (MMD). We also establish a
new equivalent form of Sinkhorn divergence with a regularized MMD beyond
the optimal transport literature, contributing to interpreting the superiority of
SinkhornDRL over existing distributional RL methods. Empirically, we show that
SinkhornDRL is consistently better or comparable to existing algorithms on the
suite of 55 Atari games.

1 INTRODUCTION

The design of classical reinforcement learning (RL) algorithms is mainly based on the expectation
of cumulative rewards that an agent observes while interacting with the environment. Recently, a
new class of RL algorithms called distributional RL estimates the full distribution of total returns
and has exhibited state-of-the-art performance in a wide range of environments, such as C51 (Belle-
mare et al., 2017a), Quantile-Regression DQN (QR-DQN) (Dabney et al., 2018b), Implicit Quan-
tile Networks (IQN) (Dabney et al., 2018a), Fully Parameterized Quantile Function (FQF) (Yang
et al., 2019), Non-Crossing QR-DQN (Zhou et al., 2020), MMDDRL (Nguyen et al., 2020), Spline
DQN (SPL-DQN) (Luo et al., 2021). Meanwhile, distributional RL has also enjoyed other benefits
in risk-sensitive control (Ma et al., 2020; Dabney et al., 2018a), policy exploration settings (Mavrin
et al., 2019; Rowland et al., 2019), robustness (Sun et al., 2023) and optimization (Sun et al., 2022).
In this work, we motivate a new distributional RL family via Sinkhorn divergence (Sinkhorn, 1967),
called SinkhornDRL, by revealing its advantages over existing distributional RL algorithms.

Advantages over Quantile-based / Wasserstein Distance Distributional RL. 1) Avoid the non-
crossing issue. Quantile-based algorithms suffer from the non-crossing issue (Zhou et al., 2020),
while using Sinkhorn divergence can elegantly sidestep it. 2) More flexible statistics. SinkhornDRL
employs samples to depict the return distribution, offering greater flexibility than quantiles. 3) Sta-
bility. Owing to its inherent smoothness, Sinkhorn divergence stands out as more numerically stable
than several methods used to calculate the Wasserstein distance. 4) Adaptability. SinkhornDRL
can handle the multi-dimensional reward function setting (Zhang et al., 2021), while the quantile
regression suffers from the curse of dimension. Advantages over MMDDRL. 1) Richer geome-
try. Sinkhorn divergence is based on optimal transport and thus is capable of capturing richer geo-
metric differences between distributions. In contrast, MMD relies on Reproducing Kernel Hilbert
space (RKHS) and may fail to capture the data geometry. 2) Interpolation Flexibility. Sinkhorn
divergence can find a sweet spot between Wasserstein distance and MMD, and this flexibility allows
a more tailored divergence measure on the specific requirements of the task at hand.

Contributions. While Sinkhorn divergence interpolates Wasserstein distance and MMD, the distri-
butional RL community has yet to investigate a Sinkhorn divergence-based distributional RL fam-
ily comprehensively. Therefore, our proposed SinkhornDRL algorithm is not only theoretically
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grounded but also timely, contributing significantly to the fast-evolving landscape of distributional
RL research. Our research also paves the way for a deeper understanding of different behaviors
across existing distributional RL algorithms. Below we summarize our contributions in this study:

Methodologically, we propose a Sinkhorn distributional RL algorithm that interpolates Quantile
Regression-based and MMD distributional RL families. SinkhornDRL inherits the advantage of
learning unrestricted statistics and can be easily implemented based on existing model architectures.

Theoretically, we prove the convergence property of SinkhornDRL in the tabular setting (introduced
in Section 4.2). Beyond the existing optimal transport literature, we reveal its new equivalent form
to a special regularized MMDDRL algorithm, contributing to explaining its empirical success.

Experimentally, we compare SinkhornDRL with typical distributional RL algorithms across 55
Atari games with a rigorous sensitivity analysis to allow its deployment.

2 PRELIMINARY KNOWLEDGE

2.1 DISTRIBUTIONAL REINFORCEMENT LEARNING

In classical RL, an agent interacts with an environment via a Markov decision process (MDP), a 5-
tuple (S,A, R, P, γ), where S andA are the state and action spaces. P is the environment transition
dynamics, R is the reward function and γ ∈ (0, 1) is the discount factor.

Given a policy π, the discounted sum of future rewards Zπ is a random variable with Zπ(s, a) =∑∞
t=0 γ

tR(st, at), where s0 = s, a0 = a, st+1 ∼ P (·|st, at), and at ∼ π(·|st). In expectation-
based RL, the action-value function Qπ is defined as Qπ(s, a) = E [Zπ(s, a)], which is iteratively
updated via Bellman operator T π through T πQ(s, a) = E[R(s, a)] + γEs′∼p,π [Q (s′, a′)], where
s′ ∼ P (·|s, a) and a′ ∼ π (·|s′). In contrast, distributional RL focuses on the action-value distribu-
tion, the full distribution of Zπ(s, a), which is updated via the distributional Bellman operator Tπ

through TπZ(s, a) :
D
= R(s, a) + γZ (s′, a′), where the equality implies random variables of both

sides are equal in distribution. The distributional Bellman operator Tπ is contractive under certain
distribution divergence metrics (Elie & Arthur, 2020).

2.2 DIVERGENCES BETWEEN MEASURES

Optimal Transport (OT) and Wasserstein Distance. The optimal transport (OT) metric Wc

between two probability measures (µ, ν) is defined as the solution of the linear program Wc =
minΠ∈Π(µ,ν)

∫
c(x, y)dΠ(x, y), where c is the cost function and Π is the joint distribution with

marginals (µ, ν). Wasserstein distance (a.k.a. earth mover distance) is a special case of optimal
transport with the Euclidean norm as the cost function. The desirable geometric property of Wasser-
stein distance allows it to recover full support of measures, but it suffers from the curse of dimension
and computational inefficiency (Genevay et al., 2019; Arjovsky et al., 2017).

Maximum Mean Discrepancy. The squared Maximum Mean Discrepancy (MMD) MMD2
k with

the kernel k is formulated as MMD2
k = E [k (X,X ′)] + E [k (Y, Y ′)]− 2E [k(X,Y )], where k(·, ·)

is a continuous kernel on X . X ′ (resp. Y ′) is a random variable independent ofX (resp. Y ). Mathe-
matically, the “flat” geometry that MMD induces on the space of probability measures does not faith-
fully lift the ground distance (Feydy et al., 2019), but MMD is cheaper to compute than OT and has
a smaller sample complexity, i.e., approximating the distance with samples of measures (Genevay
et al., 2019). We provide more detailed definitions of various distribution divergences, their rela-
tionships, and related contraction results under Tπ in distributional RL in Appendix A.

Notations. We constantly use the unrectified kernel kα = −∥x − y∥α in the MMDDRL and
SinkhornDRL algorithm analysis. With a slight abuse of notations, we also use Zθ to denote θ
parameterized return distribution, and dp as the distribution divergence.

3 RELATED WORK

According to the choice of distribution divergences and the distribution representation ways, distri-
butional RL algorithms can be mainly categorized into three classes.
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Categorical Distributional RL. As the first successful distributional RL, categorical distributional
RL (Bellemare et al., 2017a), e.g., C51, represents the return distribution by the categorical distribu-
tion defined on discrete fixed supports within a pre-specified interval. C51 performs favorably on the
suite of Atari games, but it is inferior to Quantile Regression distributional RL proposed afterward
mainly due to the expressive restriction of its pre-defining fixed supports (Dabney et al., 2018b).

Quantile Regression (Wasserstein Distance) Distributional RL. QR-DQN (Dabney et al., 2018b)
was proposed to use quantile regression to approximate Wasserstein distance, under which the con-
traction property of distributional Bellman operator can be guaranteed. Given a series of fixed quan-
tiles, QR-DQN learns the quantile values with a more flexible support range to represent a continu-
ous distribution. IQN (Dabney et al., 2018a) utilizes an implicit model to output quantile values more
expressively, instead of the fixed ones in QR-DQN, while FQF (Yang et al., 2019) further improves
IQN by proposing a more expressive quantile network. However, Quantile Regression distributional
RL suffers from the non-crossing issue raised in (Zhou et al., 2020), and needs to be carefully ad-
dressed, for example, by a monotonic splines (Luo et al., 2021). By contrast, SinkhornDRL aims at
approximating an entropy regularized Wasserstein distance via Sinkhorn iterations (Sinkhorn, 1967)
instead of quantile regression, while naturally circumstances the non-crossing issue.

MMD Distributional RL. Orthogonal to Quantile Regression distributional RL, MMD distribu-
tional RL (MMDDRL) (Nguyen et al., 2020) learns samples to represent the return distribution and
then optimizes with MMD. The less limited statistical budget via learning samples (Rowland et al.,
2019) allows MMDDRL to outperform other algorithms with predefined statistical principles, e.g.,
quantiles and categorical distribution. Similarly, the sample-based SinkhornDRL preserves this ad-
vantage, although Sinkhorn divergence is directly based on optimal transport. It is worthwhile to
mention that SinkhornDRL tends to “interpolate” Quantile Regression and MMD distributional RL.

4 SINKHORN DISTRIBUTIONAL RL (SINKHORNDRL)

The algorithmic evolution of distributional RL can be primarily viewed along two dimen-
sions (Nguyen et al., 2020). 1) Proposing new distributional RL families beyond the aforementioned
three ones based on other distribution divergences with the density estimation techniques. 2) extend-
ing existing algorithms within one family by increasing the model capacity, e.g., IQN and FQF. In
contrast, SinkhornDRL aims to expand algorithm families along the first dimension.

4.1 SINKHORN DIVERGENCE AND ALGORITHM

Sinkhorn divergence (Sinkhorn, 1967) is a tractable loss to approximate the optimal transport prob-
lem by leveraging an entropic regularization. It allows us to find a sweet trade-off that simultane-
ously leverages the geometry property of Wasserstein distance on the one hand, and the favorable
sample complexity advantage and unbiased gradient estimates of MMD (Genevay et al., 2018; Feydy
et al., 2019). We introduce the entropic regularized Wasserstein distanceWc,ε(µ, ν) as

Wc,ε(µ, ν) = min
Π∈Π(µ,ν)

∫
c(x, y)dΠ(x, y) + εKL(Π|µ⊗ ν), (1)

where KL(Π|µ⊗ν) =
∫
log

(
Π(x,y)

dµ(x)dν(y)

)
dΠ(x, y) is a strongly convex regularization. The impact

of this entropy regularization is similar to ℓ2 ridge regularization in linear regression that contributes
to the optimization. Next, the Sinkhorn divergence between two measures µ and ν is defined as

Wc,ε(µ, ν) = 2Wc,ε(µ, ν)−Wc,ε(µ, µ)−Wc,ε(ν, ν). (2)

Sinkhorn divergenceWc,ε(µ, ν) is convex, smooth and positive definite that metricizes the conver-
gence in law (Feydy et al., 2019). In statistical physics,Wc,ε(µ, ν) can be re-factored as a projection
problem:

Wc,ε(µ, ν) := min
Π∈Π(µ,ν)

KL (Π|K) , (3)

where K is the Gibbs distribution and its density function satisfies dK(x, y) = e−
c(x,y)

ε dµ(x)dν(y).
This problem is often referred to as the “static Schrödinger problem” (Léonard, 2013; Rüschendorf
& Thomsen, 1998) as it was initially considered in statistical physics.
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Algorithm dp Distribution Divergence Representation Zθ Convergence Rate of Tπ Sample Complexity of dp
C51 Cramér distance Categorical Distribution

√
γ

QR-DQN Wasserstein distance Quantiles γ O(n− 1
d )

MMDDRL MMD Samples γα/2 (kα) O(1/n)
SinkhornDRL

(ours) Sinkhorn divergence Samples
γ (ε→ 0)

γα/2 (kα, ε→∞)
O(n

e
κ
ε

ε⌊d/2⌋
√

n ) (ε→ 0)
O(n− 1

2 ) (ε→∞)

Table 1: Properties of different distribution divergences in typical distributional RL algorithms. d
is the sample dimension and κ = 2βd + ∥c∥∞, where the cost function c is β-Lipschitz (Genevay
et al., 2019). Sample complexity is improved to O(1/n) using the kernel herding technique (Chen
et al., 2012) in MMD.

Distributional RL with Sinkhorn Divergence and Particle Representation. The key to applying
Sinkhorn divergence in distributional RL is to leverage the Sinkhorn lossWc,ε to measure the dis-
tance between the current action-value distribution Zθ(s, a) and the target distribution TπZθ(s, a),
yieldingWc,ε(Zθ(s, a),T

πZθ(s, a)) for each s, a pair. In terms of the representation for Zθ(s, a),
we employ the unrestricted statistics, i.e., deterministic samples, due to its superiority in MMD-
DRL (Nguyen et al., 2020), instead of using predefined statistic functionals, e.g., quantiles in QR-
DQN (Dabney et al., 2018b) or categorical distribution in C51 (Bellemare et al., 2017a). More con-
cretely, we use neural networks to generate samples to approximate the return distribution. This can
be expressed as Zθ(s, a) := {Zθ(s, a)i}Ni=1, where N is the number of generated samples. We refer
to the samples {Zθ(s, a)i}Ni=1 as particles. Then we leverage the Dirac mixture 1

N

∑N
i=1 δZθ(s,a)i to

approximate the true density function ofZπ(s, a), thus minimizing the Sinkhorn divergence between
the approximate distribution and its distributional Bellman target. A generic Sinkhorn distributional
RL algorithm with particle representation is provided in Algorithm 1.

Algorithm 1 Generic Sinkhorn distributional RL Update
Require: Number of generated samples N , the cost function c and hyperparameter ε.
Input: Sample transition (s, a, r′, s′)

1: Policy evaluation: a∗ ∼ π(·|s′) or Control: a∗ ← argmaxa′∈A
1
N

∑N
i=1 Zθ (s

′, a′)i
2: TZi ← r + γZθ∗ (s

′, a∗)i ,∀1 ≤ i ≤ N

Output: Wc,ε

(
{Zθ(s, a)i}Ni=1 , {TZθ(s, a)j}

N
j=1

)
(MMD2

k

(
{Zθ(s, a)i}Ni=1 , {TZθ(s, a)j}

N
j=1

)
)

Relationship with Quantile Regression DRL and MMDDRL. Although SinkhornDRL is closely
linked with Quantile Regression DRL and MMDDRL branches, we view SinkhornDRL as a new
distributional RL class. As suggested in the general algorithm framework in Algorithm 1, Sinkhorn-
DRL generally modifies the distribution divergence and still relies on sample representation com-
pared with MMDDRL in the gray color. However, SinkhornDRL is fundamentally OT-based,
which approximates a regularized Wasserstein distance in stark contrast to MMD. On the other
hand, SinkhornDRL leverages Sinkhorn iterations to approximately evaluate the regularized Wasser-
stein distance, while Quantile Regression DRL utilizes quantile regression to directly approximate
a Wasserstein distance. We will dive deeper to clarify their theoretical relationships in Section 4.2,
including the interpolation behavior in the limiting cases and an equivalent form of SinkhornDRL
with a regularized MMDDRL.

Relationship with IQN and FQF. One may ask that IQN and FQF have improved QR-DQN signif-
icantly and already achieved almost state-of-the-art performance, so why bother to design Sinkhorn-
DRL? As mentioned earlier, QR-DQN and MMDDRL are direct counterparts for SinkhornDRL in
the first statistic dimension of algorithmic evolution, while IQN and FQF along the second model-
ing dimension are orthogonal to our work. As discussed in (Nguyen et al., 2020), the techniques
from IQN and FQF can extend both MMDDRL and SinkhornDRL naturally. For example, we can
implicitly generate {Zθ(s, a)i}Ni=1 via applying a neural network function to N samples of a base
sampling distribution as in IQN, or additionally use a proposal network to learn the weights of each
generated sample as in FQF. We leave these related modeling extensions as future works and study
the simplest modeling choice via Sinkhorn divergence as rigorously as possible in this work.
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4.2 THEORETICAL ANALYSIS UNDER SINKHORN DIVERGENCE

In Table 1, we first summarize some properties of distribution divergences in typical distributional
RL algorithms, including the convergence rate of Tπ and sample complexity, i.e., the convergence
rate of a given metric between a measure and its empirical counterpart, as a function of the number
of samples n. Our results with related convergence proof are provided in Appendix A.

Convergence. We denote the supreme form of Sinkhorn divergence asW∞
c,ε(µ, ν):

W∞
c,ε(µ, ν) = sup

(x,a)∈S×A
Wc,ε(µ(x, a), ν(x, a)). (4)

We will useW∞
c,ε(µ, ν) to establish the convergence of Tπ in Theorem 1.

Theorem 1. If we apply Tπ under Sinkhorn divergence Wc,ε(µ, ν) with the unrectified kernel
kα := −∥x− y∥α as −c (α > 0) and denote Π∗ as the minimizer ofWc,ε(µ, ν), it holds that

(1) (ε→ 0)Wc,ε(µ, ν)→ 2Wα(µ, ν). When ε = 0, Tπ is a γ-contraction underW∞
c,ε.

(2) (ε→ +∞)Wc,ε(µ, ν)→ MMD2
kα(µ, ν). When ε = +∞, Tπ is γα/2-contractive underW∞

c,ε.

(3) (ε ∈ (0,+∞)), Tπ is at least a ∆(γ, α)-contractive operator under W∞
c,ε, where ∆(γ, α) =

1− infµ,ν
(1−γα)(2

∫
(x−y)αdΠ∗(x,y)−Wc,ε(µ,µ)−Wc,ε(ν,ν))

Wc,ε(µ,ν)
∈ (γα, 1).

We provide the long yet rigorous proof of Theorem 1 in Appendix B. Theorem 1 (1) and (2) are
follow-up conclusions in terms of the convergence behavior of Tπ based on the interpolation rela-
tionship between Sinkhorn divergence with Wasserstein distance and MMD (Genevay et al., 2018),
but we also give a rigorous analysis for the unspecified ε → 0 or +∞. Our key theoretical con-
tribution is the non-trivial proof for the general ε ∈ (0,∞), in which we conclude that Tπ is at
least a ∆(γ, α)-contractive operator and ∆(γ, α) ∈ (γα, 1) is a function of γ and α. The crux
of the proof is two-fold. Firstly, we show a variant of scale sensitive property of Sinkhorn diver-
gence when c = −κα, where the resulting non-constant scaling factor ∆

µ,ν
(γ, α) ∈ (γα, 1) is

also determined by the specified two probability measures µ, ν. Next, we additionally show that
∆(γ, α) = supµ,ν ∆

µ,ν
(γ, α) < 1 holds strictly owing to the difference between a non-trivial

Sinkhorn divergence and Wasserstein distance Wα
α , i.e., the non-zero entropic regularization in

Wc,ε. Based on the contraction mapping theorem, we eventually arrive at the ∆(γ, α)-contraction
of distributional Bellman operator Tπ underW∞

c,ε. Our non-trivial proof about Sinkhorn divergence
can even potentially contribute to the optimal transport literature.

Consistency with Related Theoretical Contraction Conclusions. As Sinkhorn divergence inter-
polates between Wasserstein distance and MMD, its contraction property for ε ∈ [0,∞] also aligns
well with them when c = −kα. Note that if we choose Gaussian kernels as the cost function, there
will be no concise and consistent contraction results as Theorem 1 (3). This conclusion is also con-
sistent with MMDDRL (Nguyen et al., 2020) (ε → +∞), where Tπ is generally not a contraction
operator under MMD equipped with Gaussian kernels owing to the existence of counterexamples
mentioned in (Nguyen et al., 2020). Guided by our theoretical results, we employ the rectified ker-
nel kα as the cost function and set α = 2 in our experiments, under which Tπ holds the contraction
property guaranteed by Theorem 1 (3). Empirically, SinkhornDRL in this case suggests almost
state-of-the-art performance in Section 5.

Regularized Moment Matching under Sinkhorn Divergence Associated with Gaussian Ker-
nels. We further examine the potential connection between SinkhornDRL with existing distribu-
tional RL families. Inspired by the similar manner in MMDDRL (Nguyen et al., 2020), we find
that Sinkhorn divergence with the Gaussian kernel can also promote matching all moments between
two distributions. More specifically, Sinkhorn divergence can be rewritten as a regularized moment
matching form as revealed in Proposition 1.

Proposition 1. Let X,X ′ i.i.d.∼ µ, Y, Y ′ i.i.d.∼ ν and X,X ′, Y, Y ′ are mutually independent. For
ε ∈ (0,+∞), we denote Π∗

ε(X,Y ),Π∗(X,X ′),Π∗(Y, Y ′) as the optimal joint distribution Π of
evaluating Wc,ε(µ, ν), Wc,ε(µ, µ) and Wc,ε(ν, ν), respectively. Sinkhorn divergence Wc,ε(µ, ν)
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associated with Gaussian kernels k(x, y) = exp(−(x− y)2/(2σ2)) as −c, is equivalent to

Wc,ε(µ, ν) ∝
∞∑
n=0

1

σ2nn!

(
M̃n(µ)− M̃n(ν)

)2

+ εE
[
log

Π∗
ε(X,Y )2

Π∗(X,X ′)Π∗(Y, Y ′)

]
, (5)

where M̃n(µ) = Ex∼µ
[
e−x

2/(2σ2)xn
]
, and similarly for M̃n(ν).

We provide the proof of Proposition 1 in Appendix C. In summary, akin to MMDDRL associated
with a Gaussian kernel (Nguyen et al., 2020), Sinkhorn divergence approximately performs a regu-
larized moment matching scaled by e−x

2/(2σ2).

Equivalence to Regularized MMD Distributional RL for General Kernels. For the general ker-
nel function not necessarily the Gaussian one, we can still establish a connection between Sinkhorn
divergence and MMD in Corollary 1. It indicates that minimizing Sinkhorn divergence between two
distributions is equivalent to minimizing a regularized squared MMD.

Corollary 1. For ε ∈ (0,+∞),

Wc,ε(µ, ν) ∝ MMD2
−c(µ, ν) + εE

[
log

Π∗
ε(X,Y )2

Π∗(X,X ′)Π∗(Y, Y ′)

]
. (6)

Proof of Corollary 1 is provided in Appendix C. It is worthy of noting that this equivalence is
established for the general case when ε ∈ (0,+∞), and it does not hold in the limiting cases when
ε = 0 or∞. For example, when ε → +∞, the second part including ε in Eq. 6 is not expected to
dominate. This is because the regularization term would tend to 0 as Π∗

ε → µ⊗ν when ε→ +∞. In
summary, even though Sinkhorn divergence was initially proposed to serve as an entropy regularized
Wasserterin distance when the cost function c = −κα, it turns out that it is equivalent to a regularized
MMD for the general kernels, as revealed in Corollary 1.

4.3 DISTRIBUTIONAL RL VIA SINKHORN ITERATIONS

The theoretical analysis in Section 4.2 sheds light on the behavior of Sinkhorn distributional RL, but
another crucial issue we need to address is how to evaluate the Sinkhorn loss effectively. Due to the
Sinkhorn divergence that enjoys the geometry property of optimal transport and the computational
effectiveness of MMD, we can utilize Sinkhorn’s algorithm, i.e., Sinkhorn Iterations (Sinkhorn,
1967; Genevay et al., 2018), to evaluate the Sinkhorn loss. Notably, Sinkhorn iteration with L steps
yields a differentiable and solvable efficient loss function as the main burden involved in it is the
matrix-vector multiplication, which streams well on the GPU by simply adding extra differentiable
layers on the typical deep neural network, such as a DQN architecture.

Given two sample sequences {Zi}Ni=1 , {TZj}
N
j=1 in the distributional RL algorithm, the optimal

transport distance is equivalent to the form minP∈RN×N
+

{
⟨P, ĉ⟩;P1N = 1N , P

⊤1N = 1N
}

, where
the empirical cost function is ĉi,j = c(Zi,TZj). By adding entropic regularization on optimal trans-
port distance, Sinkhorn divergence can be viewed to restrict the search space of P in the following
scaling form: Pi,j = aiKi,jbj , where Ki,j = e−ĉi,j/ε is the Gibbs kernel defined in Eq. 3. This al-
lows us to leverage iterations regarding the vectors a and b. More specifically, we initialize b0 = 1N ,

Algorithm 2 Sinkhorn Iterations to ApproximateWc,ε

(
{Zi}Ni=1 , {TZj}

N
j=1

)
Input: Two samples sequences {Zi}Ni=1 , {TZj}

N
j=1, number of iterations L and hyperparameter ε.

1: Initialization. ĉi,j = c(Zi,TZj), Ki,j = exp(−ĉi,j/ε) for ∀i, j = 1, ..., N ; b0 ← 1N
2: Iteration. al ← 1N

Kbl−1
, bl ← 1N

Kal for l = 1, 2, ..., L

3: Evaluation. Ŵc,ε

(
{Zi}Ni=1 , {TZj}

N
j=1

)
= ⟨(K ⊙ ĉ)b, a⟩

Return: Ŵc,ε

(
{Zi}Ni=1 , {TZj}

N
j=1

)
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and then the Sinkhorn iterations are expressed as

al+1 ←
1N
Kbl

and bl+1 ←
1N
K⊤al+1

, (7)

where ·
· indicates an entry-wise division. It has been proven that Sinkhorn iteration asymptotically

converges to the true loss in a linear rate (Genevay et al., 2018; Franklin & Lorenz, 1989; Cuturi,
2013; Jason Altschuler, 2017). We provide a detailed algorithm description of Sinkhorn iterations
in Algorithm 2. With the efficient and differentiable Sinkhorn iterations, we can easily evaluate the
Sinkhorn divergence and thus let our algorithm enjoy its theoretical advantages. In practice, we need
to choose L and ε, and we conduct a rigorous sensitivity analysis in Section 5.

5 EXPERIMENTS

We demonstrate the effectiveness of SinkhornDRL as described in Algorithm 1 on the full 55 Atari
2600 games. Without increasing model capacity for a fair comparison, we leverage the same archi-
tecture as QR-DQN and MMDDRL, and replace the quantiles output with N particles (samples).
In contrast to MMDDRL, SinkhornDRL only changes the distribution divergence from MMD to
Sinkhorn divergence, and therefore the potential superiority in the performance can be directly at-
tributed to the advantages of Sinkhorn divergence.

Baselines. We choose DQN (Mnih et al., 2015) and three typical distributional RL algorithms as
classic baselines, including C51 (Bellemare et al., 2017a), QR-DQN (Dabney et al., 2018b) and
MMDDRL (Nguyen et al., 2020). For a fair comparison, we build SinkhornDRL and all base-
lines based on a well-accepted PyTorch implementation1 of distributional RL algorithms. We re-
implement MMDDRL based on its original TensorFlow implementation2, and keep the same setting.
For example, we leverage Gaussian kernels kh(x, y) = exp(−(x−y)2/h) with the same kernel mix-
ture trick covering a range of bandwidths h as adopted in the original MMDDRL (Nguyen et al.,
2020). We deploy all algorithms on 55 Atari 2600 games, and reported results are averaged over
3 seeds with the shade indicating the standard deviation. We run 40M frames for computational
convenience and report learning curves across all games in Appendix F for trustworthy results.

Figure 1: Learning curves of SinkhornDRL algorithm compared with DQN, C51, QR-DQN and
MMD, on 12 typical Atari games averaged over 3 seeds. Games are randomly picked.

1https://github.com/ShangtongZhang/DeepRL
2https://github.com/thanhnguyentang/mmdrl
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Hyperparameter settings. For a fair comparison with QR-DQN, C51 and MMDDRL, we used
the same hyperparameters: the number of generated samples N = 200, Adam optimizer with lr =
0.00005, ϵAdam = 0.01/32. In SinkhornDRL, we choose the number of Sinkhorn iterations L = 10
and smoothing hyperparameter ε = 10.0 in Section 5.1 after conducting sensitivity analysis in
Section 5.2. Guided by the contraction guarantee analyzed in Theorem 1, we choose the unrectified
kernel as the cost function, i.e.,−c = kα, and select α = 2 in kα.

5.1 PERFORMANCE OF SINKHORNDRL

Learning Curves. Figure 1 illustrates that SinkhornDRL can achieve competitive performance
across 55 Atari games compared with other baselines. Notably, SinkhornDRL significantly outper-
forms other distributional RL algorithms on a large number of games, e.g., the first row in Figure 1.
For example, SinkhornDRL performs favorably on Tennis, while other algorithms even fail to con-
verge. Since SinkhornDRL only modifies the distribution distance compared with MMMDRL, its
empirical superiority over MMDDRL verifies the key role that the derived regularization term plays
in Eq. 6 as analyzed in Corollary 1. On some games, e.g., the last row of Figure 1, SinkhornDRL is
on par with MMDDRL and other baselines. We provide learning curves of all considered distribu-
tional RL algorithms on all 55 Atari games in Figure 4 of Appendix D, based on which we conclude
that SinkhornDRL performs better or is comparable to existing algorithms in general.

Mean IQM (5%) Median > Human >DQN
DQN 438.7 % 157.7% 43.6 % 17 0
C51 1043.4 % 240.7 % 103.7 % 26 42

QR-DQN-1 1286.4 % 298.8% 108.6 % 31 47
MMDDRL 924.6 % 248.4% 117.5 % 27 43

SinkhornDRL 1435.8 % 365.5% 113.0 % 27 42

Table 2: Evaluation of best human-normalized scores across
55 Atari games. Results are run on 3 seeds.

Human Normalized Scores (HMS).
We also compare the mean, In-
terquartile Mean (IQM) (Agarwal
et al., 2021) and median of best
HMS in Table 2 averaged over 55
Atari games, where IQM (x%) com-
putes the mean from x% to (1-x)% of
HMS, is robust to outlier scores and
more statistically efficient than Me-
dian. We evaluate our scores of algorithms after 40M frames for computational convenience. It
suggests that SinkhornDRL achieves state-of-the-art mean and IQM (5%) HMS compared with other
baselines. We also report raw scores across all games in Table 3 of Appendix F.

A Ratio Improvement Analysis: On Which Environments Does SinkhornDRL Perform Bet-
ter? Owing to the interpolation nature of Sinkhorn divergence between Wasserstein distance and
MMD as analyzed in Theorem 1, one may ask on which environments does SinkhornDRL perform
better or worse? To answer this question, we conduct a ratio improvement comparison between
SinkhornDRL and QRDQN / MMDDRL, respectively. In Figure 2, we sort all games by the ratio
improvement of SinkhornDRL over QR-DQN (MMDDRL), and select the top 10 games. It turns
out that all selected games tend to have a larger action space and more complex dynamics. In par-
ticular, within the top 5 games for each group, including Venture, Seaquest, DemonAttack, Tennis,
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Figure 2: Ratio improvement of return for SinkhornDRL over QRDQN (left) and MMDDRL (right)
averaged over 3 seeds. The ratio improvement is calculated by (SinkhornDRL - QR-DQN) / QR-
DQN in (a) and (SinkhornDRL - MMDDRL) / MMDDRL in (b), respectively.
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Phoenix, Atlantis, Privateye, and Zaxxon, all of these games have an 18-dimensional action space as
well as complex dynamics, except Atlantis with 6-dimensional action space and simpler dynamics,
on which MMDDRL is substantially inferior to SinkhornDRL. We provide features of all 55 games,
including the number of action space, and difficulty of environment dynamics in Table 4 of Ap-
pendix G for a detailed comparison. In summary, these empirical results in the ratio improvement
analysis demonstrate that SinkhornDRL is more likely to present significant superiority over QR-
DQN and MMDDRL on more complicated environments. The empirical success of SinkhornDRL
can be attributed to the interpolation advantage of Sinkhorn divergence that simultaneously makes
full use of the data geometry from Wasserstein distance and the favorable sample complexity and
unbiased gradient estimate property from MMD as revealed in Section 4. We also provide a ratio
improvement of SinkhornDRL over all 55 Atari games in Figure 5 of Appendix E as a reference.

5.2 SENSITIVITY ANALYSIS AND COMPUTATIONAL COST

Sensitivity Analysis. In practice, a proper ε is preferable as an overly large or small ε will lead to
numerical instability of Sinkhorn iterations in Algorithm 2, worsening its performance, as shown
in Figure 3 (a). This implies that the potential interpolation nature of limiting behaviors between
SinkhornDRL with QR-DQN and MMDDRL revealed in Theorem 1 may not be able to be rigor-
ously verified in numerical experiments. SinkhornDRL also requires a proper number of iterations
L and samples N . For example, a small N , e.g., N = 2 in Seaquest in Figure 3 (b) leads to the
divergence of algorithms, while an overly large N can degrade the performance and meanwhile
increases the computational burden (Appendix H). We conjecture that using larger networks to rep-
resent more samples is more likely to suffer from the overfitting issue, yielding the instability in the
RL training (Bjorck et al., 2021). Therefore, we choose N = 200 to attain favorable performance
and guarantee computational effectiveness at the same time. We provide more sensitivity analysis,
including results on StarGunner and Zaxxon, in Appendix H.

Computation Cost. We compare the computation cost between SinkhornDRL and other baselines.
It suggests SinkhornDRL increases around 50% computation cost compared with QR-DQN and
C51, but only slightly increases the overhead (by around 20%) in contrast to MMDDRL. Due to the
space limit, we provide more computation cost comparison in terms of L and N in Appendix H.
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Figure 3: Sensitivity analysis of SinkhornDRL on Breakout and Seaquest in terms of ε, number of
samples, and number of iteration L. Learning curves are reported over 3 seeds.

6 DISCUSSIONS AND CONCLUSION

Along the two dimensions of distributional RL algorithm evolution, we can further improve
Sinkhorn distributional RL by incorporating implicit generative models, including parameterizing
the cost function in Sinkhorn loss and increasing model capacity, which we leave as future works.

In this paper, a novel family of distributional RL algorithms based on Sinkhorn divergence is pro-
posed that accomplishes competitive performance compared with the state-of-the-art distributional
RL algorithms on the suite of Atari games. Theoretical results about the convergence guarantee and
an equivalent form with a regularized MMD are provided along with rigorous empirical verification.
Sinkhorn distributional RL contributes to distributional RL algorithm evolution and opens a door for
new applications of Sinkhorn divergence and more optimal transport approaches.
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Gabriel Peyré. Interpolating between optimal transport and mmd using sinkhorn divergences.
In The 22nd International Conference on Artificial Intelligence and Statistics, pp. 2681–2690.
PMLR, 2019.

Joel Franklin and Jens Lorenz. On the scaling of multidimensional matrices. Linear Algebra and its
applications, 114:717–735, 1989.
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A DEFINITION OF DISTRIBUTION DIVERGENCES AND CONTRACTION
PROPERTIES

Definition of distances. Given two random variables X and Y , p-Wasserstein metric Wp between
the distributions of X and Y is defined as

Wp(X,Y ) =

(∫ 1

0

∣∣F−1
X (ω)− F−1

Y (ω)
∣∣p dω)1/p

= ∥F−1
X − F−1

Y ∥p, (8)

which F−1 is the inverse cumulative distribution function of a random variable with the cumulative
distribution function as F . Further, ℓp distance (Elie & Arthur, 2020) is defined as

ℓp(X,Y ) :=

(∫ ∞

−∞
|FX(ω)− FY (ω)|p dω

)1/p

= ∥FX − FY ∥p (9)

The ℓp distance and Wasserstein metric are identical at p = 1, but are otherwise distinct. Note that
when p = 2, ℓp distance is also called Cramér distance (Bellemare et al., 2017b) dC(X,Y ). Also,
Cramér distance has a different representation given by

dC(X,Y ) = E|X − Y | − 1

2
E |X −X ′| − 1

2
E |Y − Y ′| , (10)

where X ′ and Y ′ are the i.i.d. copies of X and Y . Energy distance (Székely, 2003; Ziel, 2020) is a
natural extension of Cramér distance to the multivariate case, which is defined as

dE(X,Y) = E∥X−Y∥ − 1

2
E∥X−X′∥ − 1

2
E∥Y −Y′∥, (11)

where X and Y are multivariate. Moreover, the energy distance is a special case of the maximum
mean discrepancy (MMD), which is formulated as

MMD(X,Y; k) = (E [k (X,X′)] + E [k (Y,Y′)]− 2E[k(X,Y)])
1/2 (12)

where k(·, ·) is a continuous kernel on X . In particular, if k is a trivial kernel, MMD degener-
ates to energy distance. Additionally, we further define the supreme MMD, which is a functional
P(X )S×A × P(X )S×A → R defined as

MMD∞(µ, ν) = sup
(x,a)∈S×A

MMD∞(µ(x, a), ν(x, a)) (13)

We further summarize the convergence rates of the distributional Bellman operator under different
distribution divergences.

• T π is γ-contractive under the supreme form of Wassertein distance Wp.

• T π is γ1/p-contractive under the supreme form of ℓp distance.

• T π is γα/2-contractive under MMD∞ with the kernel kα(x, y) = −∥x− y∥α,∀α > 0.

Proof of Contraction.

• Contraction under the supreme form of Wasserstein distance is provided in Lemma
3 (Bellemare et al., 2017a).

• Contraction under supreme form of ℓp distance can refer to Theorem 3.4 (Elie & Arthur,
2020).

• Contraction under MMD∞ is provided in Lemma 6 (Nguyen et al., 2020).

B PROOF OF THEOREM 1

Proof. 1. ε = 0 and c = −kα It is obvious to observe that Sinkhorn loss degenerates to the
Wasserstein distance. We also have the conclusion that the distributional Bellman operator Tπ is
γ-contractive under the supreme form of Wasserstein distance, the proof of which is provided in
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Lemma 3 (Bellemare et al., 2017a). Since the above conclusion is made directly based on the
limiting case when ε = 0, for an unspecified ε > 0 albeit ε → 0, we need a more rigorous proof.
We show that their distance difference is at most an infinitesimal δ.

Firstly, as Wc,ε → Wα and the regularization term is non-negative, using the language of (ϵ, δ)
definition, we have: for ∀δ, there exists a small positive constant a, such thatWc,ε −Wα < δ when
ε ≤ a. Based on that, we have the contraction conclusion:

W∞
−κα,ε(T

πZ1,T
πZ2) =W

∞
−κα,ε(T

πZ1,T
πZ2)−W∞

α (TπZ1,T
πZ2) +W∞

α (TπZ1,T
πZ2)

≤ δ +W∞
α (TπZ1,T

πZ2),
(14)

where the second term W∞
α (TπZ1,T

πZ2) is contractive. Therefore, for the unspecified ε, the only
difference from the limiting ε = 0 is an infinitesimal δ, which will vanish as ε→ 0 or a→ 0.

2. ε = ∞ and c = −kα. Our complete proof is inspired by (Ramdas et al., 2017; Genevay et al.,
2018). Recap the definition of squared MMD is

E [k (X,X′)] + E [k (Y,Y′)]− 2E[k(X,Y)]

When the kernel function k degenerates to an unrectified kα(x, y) := −∥x− y∥α for α ∈ (0, 2), the
squared MMD would degenerate to

2E∥X−Y∥α − E∥X−X′∥α − E∥Y −Y′∥α

where X,X ′ i.i.d.∼ µ, Y, Y ′ i.i.d.∼ ν and X,X ′, Y, Y ′ are mutually independent. On the other hand,
by definition, we have the Sinkhorn loss as

Wc,∞(µ, ν) = 2Wc,∞(µ, ν)−Wc,∞(µ, µ)−Wc,∞(ν, ν)

Denoting Πε be the unique minimizer forWc,ε, it holds that Πε → µ ⊗ ν as ε → ∞. That being
said,Wc,∞(µ, ν) →

∫
c(x, y)dµ(x)dν(y) + 0 =

∫
c(x, y)dµ(x)dν(y). If c = −kα = ∥x − y∥α,

we eventually haveW−kα,∞(µ, ν)→
∫
∥x−y∥αdµ(x)dν(y) = E∥X−Y∥α. Finally, we can have

W−kα,∞ → 2E∥X−Y∥α − E∥X−X′∥α − E∥Y −Y′∥α

which is exactly the form of squared MMD with the unrectified kernel kα. Now the key is to prove
that Πε → µ⊗ ν as ε→∞. We give the detailed proof as follows.

Firstly, it is apparent thatWc,ε(µ, ν) ≤
∫
c(x, y)dµ(x)dν(y) as µ⊗ν ∈ Π(µ, ν). Let {εk} be a pos-

itive sequence that diverges to∞, and Πk be the corresponding sequence of unique minimizers for
Wc,ε. According to the optimality condition, it must be the case that

∫
c(x, y)dΠk+ εkKL(Πk, µ⊗

ν) ≤
∫
c(x, y)dµ⊗ ν + 0 (when Π(µ, ν) = µ⊗ ν). Thus,

KL (Πk, µ⊗ ν) ⩽
1

εk

(∫
c dµ⊗ ν −

∫
c dΠk

)
→ 0.

Besides, by the compactness of Π(µ, ν), we can extract a converging subsequence Πnk
→ Π∞.

Since KL is weakly lower-semicontinuous, it holds that
KL (Π∞, µ⊗ ν) ⩽ lim

k→∞
inf KL (Πnk

, µ⊗ ν) = 0

Hence Π∞ = µ⊗ν. That being said that the optimal coupling is simply the product of the marginals,
indicating that Πε → µ⊗ ν as ε→∞. As a special case, when α = 1,W−k1,∞(u, v) is equivalent
to the energy distance

dE(X,Y) := 2E∥X−Y∥ − E∥X−X′∥ − E∥Y −Y′∥. (15)

In summary, if the cost function is the rectified kernel kα, it is the case that W−kα,ε converges to
the squared MMD as ε → ∞. According to (Nguyen et al., 2020), Tπ is γα/2-contractive in the
supreme form of MMD with the rectified kernel kα.

For the unspecified ε < +∞ albeit ε → +∞, we can get a similar result to the case of ε → 0. For
∀δ, there exists a large positive constant M , such that MMD2

kα −Wc,ε < δ when ε ≥M . Based on
that, we have the contraction conclusion:

W∞
−κα,ε(T

πZ1,T
πZ2) =W

∞
−κα,ε(T

πZ1,T
πZ2)−MMD2

∞(TπZ1,T
πZ2) + MMD2

∞(TπZ1,T
πZ2)

≤ MMD2
∞(TπZ1,T

πZ2)− δ,
(16)
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where the first term MMD2
∞(TπZ1,T

πZ2) is γ
α
2 -contractive. Hence, for the unspecified ε, the

only difference from the limiting ε = ∞ is an infinitesimal δ, which will vanish as ε → +∞ or
M → +∞.

3. For ε ∈ (0,+∞), the contraction property needs a long proof. The proof pipeline is firstly
we prove three properties of Sinkhorn divergence, and then we show the contraction of the distri-
butional Bellman operator under Sinkhorn divergence based on its properties. Most importantly,
we analyzed the contraction of the distributional Bellman operator under a new non-constant factor,
whose supremum is strictly less than 1.

3.1 Properties of Sinkhorn Divergence. We recap three crucial properties of a divergence metric.
The first is scale sensitive (S) (of order β, β > 0), i.e., dp(cX, cY ) ≤ |c|βdp(X,Y ). The second
property is shift invariant (I), i.e., dp(A + X,A + Y ) ≤ dp(X,Y ). The last one is unbiased
gradient (U). A key observation is Sinkhorn divergence would degenerate to a two-dimensional KL
divergence, and therefore embraces similar properties to KL divergence. Concretely, according to
the equivalent form of Wc,ε(µ, ν) in Eq. 3, it can be expressed as the KL divergence between an
optimal joint distribution and a Gibbs distribution associated with the cost function:

Wc,ε(µ, ν) := KL (Π∗(µ, ν)|K(µ, ν)) , (17)

where Π∗ is the optimal joint distribution. Thus, the total Sinkhorn divergence is expressed as

Wc,ε(µ, ν) := 2KL (Π∗(µ, ν)|K(µ, ν))− KL (Π∗(µ, µ)|K(µ, µ))− KL (Π∗(ν, ν)|K(ν, ν)) .
(18)

Due to the form ofWc,ε(µ, ν), the convergence behavior is determined byWc,ε(µ, ν), which is simi-
lar to the behavior of KL divergence. According to the fact that KL divergence has unbiased gradient
estimates (U) and shift invariant (I), and Sinkkhorn divergence can be viewed as a two-dimensional
KL divergence, both properties of U and I can be extended to Sinkhorn divergence. However, we
find the non-scale sensitive (S) property of KL divergence can not directly apply to Sinkhorn
divergence due to the minimum nature ofWc,ε(µ, ν) and the difference between optimal joint dis-
tributions of Π∗(µ, ν) and Π0(aµ, aν) where a is the scale factor. On the contrary, we find Sinkhorn
divergence satisfies a variant of scale-sensitive property under certain conditions, which is crucial
for the convergence of the distributional Bellman operator under Sinkhorn divergence. As such, we
provide a new rigorous proof of scale-sensitive property as follows.

3.2 A New Variant of Scale Sensitive Property of Sinkhorn Divergence. We show the key part of
Sinkhorn divergence, i.e.,Wc,ε, satisfies a variant of scale sensitive property when c = −kα, i.e.,

Wc,ε(aU, aV ) ≤ ∆(a, α)Wc,ε(U, V ), (19)

where ∆(a, α) = 1 − infU,V
(1−|a|α)

∫
(x−y)αdΠ∗(x,y)

Wc,ε(U,V ) ∈ (|a|α, 1). Before a formal proof, we
introduce a Lemma.

Lemma 1. Define c(x) = a(x) + b(x), where a(x) ≥ 0, b(x) ≥ 0 for each x ∈ D. Both a(x) and
b(x) are bounded if c(x) is bounded for each x.

Proof. Denote c(x) ≤ M . If a(x0) is divergent given any x0, then b(x0) = c(x0) − a(x0) ≤
M −+∞ < 0, which contradicts with the positive b(x). Thus, a(x) is bounded for each x ∈ D. A
similar proof is also applied for b(x).

By definition of Sinkhorn divergence, the pdf of K(U, V ) ∝ e
−c(x,y)

ε µ(x)ν(y). After a scaling
transformation, the pdf of aU and aV with respect to x and y would be 1

aµ(
x
a ) and 1

aν(
y
a ). Thus

K(aU, aV ) ∝ e
−c(x,y)

ε
1
aµ(

x
a )

1
aν(

y
a ). We denote Π∗ and Π0 as the optimal joint distribution of
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Wc,ε(µ, ν) andWc,ε(aµ, aν). Then we have:

Wc,ε(aU, aV ) =

∫
c(x, y)dΠ0(x, y) + εKL(Π0|aµ⊗ aν)

≤
∫
c(x, y)dΠ∗(x, y) + εKL(Π∗|aµ⊗ aν)

c=−kα=

∫
(x− y)α 1

a2
π∗(

x

a
,
y

a
)dxdy + ε

∫
1

a2
π∗(

x

a
,
y

a
) log

1
a2π

∗(xa ,
y
a )

1
a2µ(

x
a )ν(

y
a )

dxdy

= |a|α
∫
(x− y)απ∗(x, y)dxdy + ε

∫
π∗(x, y) log

π∗(x, y)

µ(x)ν(y)
dxdy

=

∫
(x− y)απ∗(x, y)dxdy + εKL(Π∗|µ⊗ ν)− (1− |a|α)

∫
(x− y)απ∗(x, y)dxdy

=Wc,ε(U, V )− (1− |a|α)
∫
(x− y)αdΠ∗(x, y)

= ∆U,V (a, α)Wc,ε(U, V )
(20)

where ∆U,V (a, α) = 1− (1−|a|α)
∫
(x−y)αdΠ∗(x,y)

Wc,ε(U,V ) ∈ (|a|α, 1) for ε ∈ (0,+∞) and a < 1 due to the
fact that 0 < (1− |a|α)

∫
(x− y)αdΠ∗(x, y) <

∫
(x− y)αdΠ∗(x, y) <Wc,ε(U, V ). ∆U,V (a, α) is

a function less than 1 that depends on the two margin distributions and the scale factor a.

However, the fact that ∆U,V (a, α) < 1 can only guarantee a non-expansive contraction rather than
a desirable contraction of the distributional Bellman operator. For example, denote the non-constant
factor as qk for the k-th distributional Bellman update, where qk < 1. We can construct a coun-
terexample as qk = 1 − 1/(k + 2)2. In this case, Π+∞

k=1qk = 2
3
4
3
3
4
5
4 · · · > 0, which intuitively

implies that iteratively applying distribution Bellman operator may not lead to convergence given
the non-constant factor ∆U,V (a, α). To address this issue towards a rigorous proof, we need to
find a universal upper bound of ∆U,V (a, α) for ∀U, V that is strictly less than 1. We have the
following result:

sup
U,V

∆U,V (a, α) = 1− inf
U,V

(1− |a|α)
∫
(x− y)αdΠ∗(x, y)

Wc,ε(U, V )

= 1− inf
U,V

(1− |a|α)
∫
(x− y)αdΠ∗(x, y)∫

(x− y)αdΠ∗(x, y) + εKL(Π∗|µ⊗ ν)
(a)

≤ 1− inf
U,V

(1− |a|α)
∫
(x− y)αdΠ∗(x, y)∫

(x− y)αdΠ∗(x, y) + εM

(b)
< 1− inf

U,V

(1− |a|α)Wα
α

Wα
α + εM

(c)

≤ 1

(21)

where according to Lemma 1, for a boundedWc,ε(U, V ) in general, we have a bounded KL(Π∗|µ⊗
ν) denoted as KL(Π∗|µ⊗ν) < M . The inequality (a) results from the fact that the whole quantity is
a monotonically increasing function regarding the KL term. The key inequality (b) results from the
infimum nature of these distances and the relationship between Sinkhorn divergence and Wasserstein
distance Wα, i.e.,

∫
(x− y)αdΠ∗(x, y) > infΠ

∫
(x− y)αdΠ(x, y) = Wα

α (U, V ), where there is a
strict inequality as long as KL(Π∗|µ⊗ν) > 0 in general for a non-trivial Sinkhorn divergence when
ε ∈ (0,+∞). More importantly, their difference infU,V

∫
(x − y)αdΠ∗(x, y) −Wα

α (U, V ) > 0
holds even while taking the infimum, which is a strict inequality as well for a non-trivial Sinkhorn
divergence with KL(Π∗|µ ⊗ ν) > 0. The inequality (c) results from the infU,V

(1−|a|α)Wα
α

Wα
α +M = 0

when Wα
α = 0 with U = V . Our result indicates that supU,V ∆U,V (a, α) < 1. That being said, we

find an upper bound denoted as ∆(a, α) = supU,V ∆U,V (a, α), which is strictly less than 1.

Following the similar procedure of Wc,ε, we start to prove the scale-sensitive property of the
Sinkhorn divergenceWc,ε, i.e.,

Wc,ε(aU, aV ) ≤ ∆(a, α)Wc,ε(U, V ), (22)
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where ∆(a, α) = 1 − infU,V
(1−|a|α)(2

∫
(x−y)αdΠ∗(x,y)−Wc,ε(µ,µ)−Wc,ε(ν,ν))

Wc,ε(U,V )
∈ (|a|α, 1) ∈

(|a|α, 1). Before a formal proof, we introduce another Lemma.

Lemma 2. Denote Π∗ as the minimizer ofWc,ε, based on the dual maximization form ofWc,ε, we
have 2

∫
c(x, y)dΠ∗(x, y)−Wc,ε(µ, µ)−Wc,ε(ν, ν) > 0.

Proof. We firstly show that 2Wc(µ, ν) − Wc,ε(µ, µ) − Wc,ε(ν, ν) ≥ 0, where Wc is the optimal
transport metric with the cost function c. Note that the set of admissible joint distribution/couplings
for the optimal transport metric Wc is:

Π(µ, ν) :=

{
γ ∈ X × Y | γxy ⩾ 0,

∫
y

γxydy = µx∀x ∈ X,
∫
x

γxydx = νy∀y ∈ Y
}
, (23)

where γxy is the admissible joint distribution. Define the Lagrangian function of the minimization
problem in Wc as:

L(γ, φ, ψ) : =
∫∫

x,y

c(x, y)γxydxdy +

∫
x

φ(x)(µx −
∫
y

γxydy)dx+

∫
y

ψ(y)(νy −
∫
y

γxydx)dy

=

∫∫
x,y

(c(x, y)− φ(x)− ψ(y))γxydxdy +
∫
x

φ(x)µxdx+

∫
y

ψ(y)νydy

(24)

We take the derivative of L(γ, φ, ψ) in terms of γxy , we have c(x, y)−φ(x)−ψ(y). Thus, we have
the dual form of Wc as

sup
φ,ψ

min
γ
L(γ, φ, ψ) = sup

φ,ψ

∫
x

φ(x)µxdx+

∫
y

ψ(y)νydy (25)

Define φ∗ and ψ∗ as the solutions ofWc,ε(µ, µ) andWc,ε(ν, ν), respectively. According to the fact
thatWc,ε(µ, µ) = 2

∫
x
φ∗(x)µxdx andWc,ε(ν, ν) = 2

∫
y
ψ∗(y)νydy due to the independence, we

arrive at 2Wc(µ, ν) ≥ 2(
∫
x
φ∗(x)µxdx +

∫
y
ψ∗(y)νydy) −Wc,ε(µ, µ) −Wc,ε(ν, ν) ≥ 0. For the

special case, when c = −kα, we have 2Wα
α (µ, ν)− Eµ∥X −X ′∥α − Eν∥Y − Y ′∥α ≥ 0.

Finally, we have 2
∫
c(x, y)dΠ∗(x, y) − Wc,ε(µ, µ) − Wc,ε(ν, ν) > 2Wα

α (µ, ν) − Wc,ε(µ, µ) −
Wc,ε(ν, ν) due to the infimum nature of Wasserstein distance Wα

α with the cost function c(x, y) =
−∥x− y∥α, where the first inequality is strict, resulting from the non-trivial KL term inWc,ε.

We return to the sensitive property of Wc,ε. Let X,X ′ i.i.d.∼ µ, Y, Y ′ i.i.d.∼ ν and X,X ′, Y, Y ′ are
mutually independent, the joint distribution Π in Wc,ε is only the multiplication of two marginal
distributions from two random variables, and would degenerate to a simpler form. In particular,
Wc,ε(µ, µ) =

∫
c(x, x′)dµ(x)dµ(x′) + 0 = −

∫
(x − x′)αdµ ⊗ µ, and Wc,ε(ν, ν) = −

∫
(y −

y′)αdν ⊗ ν. Based on the wisdom in Eq. 20, we immediately haveWc,ε(aµ, aµ) = |a|αWc,ε(µ, µ)
andWc,ε(aν, aν) = |a|αWc,ε(ν, ν) when c = −kα. Then, we have

Wc,ε(aU, aV )

= 2Wc,ε(aU, aV )−Wc,ε(aU, aU
′)−Wc,ε(aV, aV

′)

= 2Wc,ε(aU, aV )− |a|αWc,ε(µ, µ)− |a|αWc,ε(ν, ν)

≤ 2(Wc,ε(U, V )− (1− |a|α)
∫
(x− y)αdΠ∗(x, y))− |a|αWc,ε(µ, µ)− |a|αWc,ε(ν, ν)

=Wc,ε(U, V )− (1− |a|α)(2
∫
(x− y)αdΠ∗(x, y)−Wc,ε(µ, µ)−Wc,ε(ν, ν))

= ∆
U,V

(a, α)Wc,ε(U, V )

(26)

where ∆
U,V

(a, α) = 1 − (1−|a|α)(2
∫
(x−y)αdΠ∗(x,y)−Wc,ε(µ,µ)−Wc,ε(ν,ν))

Wc,ε(U,V )
∈ (|a|α, 1) as well

according to Lemma 2 and the inequality is based on Eq. 20. In particular, this is because
0 < 2

∫
(x − y)αdΠ∗(x, y) − Wc,ε(µ, µ) − Wc,ε(ν, ν) < Wc,ε(U, V ). Lemma 2 also helps to
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derive supU,V ∆
U,V

(a, α) < 1. In particular, we have

sup
U,V

∆
U,V

(a, α) = 1− inf
U,V

(1− |a|α)(2
∫
(x− y)αdΠ∗(x, y)−Wc,ε(µ, µ)−Wc,ε(ν, ν))

Wc,ε(U, V )

≤ 1− inf
U,V

(1− |a|α)(2
∫
(x− y)αdΠ∗(x, y)−Wc,ε(µ, µ)−Wc,ε(ν, ν))

2
∫
(x− y)αdΠ∗(x, y)−Wc,ε(µ, µ)−Wc,ε(ν, ν) + εM

(d)
< 1− inf

U,V

(1− |a|α)(2Wα
α (µ, ν)−Wc,ε(µ, µ)−Wc,ε(ν, ν))

2Wα
α (µ, ν)−Wc,ε(µ, µ)−Wc,ε(ν, ν) + εM

(e)

≤ 1

(27)

where the inequality (d) is based on Lemma 2 and more importantly, infU,V
∫
(x− y)αdΠ∗(x, y)−

Wα
α (U, V ) > 0 holds even when we take the infimum, which is a strict inequality as well ow-

ing to a non-trivial Sinkhorn divergence with KL(Π∗|µ ⊗ ν) > 0. The inequality (e) holds as
2Wα

α (µ, ν) −Wc,ε(µ, µ) −Wc,ε(ν, ν) ≥ 0 based on Lemma 2, where the inequality holds when
the minimizers Φ∗, ϕ∗ in the dual norm of Wc,ε(µ, µ) are not exactly those for Wc,ε(µ, µ) and
Wc,ε(ν, ν), respectively. In summary, we have shown that supU,V ∆

U,V
(a, α) < 1 and thus we

define ∆(a, α) = supU,V ∆
U,V

(a, α). Therefore, we have the result:

Wc,ε(aU, aV ) ≤ ∆(a, α)Wc,ε(U, V ), (28)

where ∆(a, α) = 1 − infU,V
(1−|a|α)(2

∫
(x−y)αdΠ∗(x,y)−Wc,ε(µ,µ)−Wc,ε(ν,ν))

Wc,ε(U,V )
∈ (|a|α, 1). This

result paves the crucial path toward the convergence of the distributional Bellman operator under
Sinkhorn divergence analyzed in 3.3.

3.3 Contraction of Distributional Bellman Operator under Sinkhorn Divergence. Based on
results in 3.1 and 3.2, we derive the convergence of distributional Bellman operator Tπ under the
supreme form ofWc,ε, i.e.,W∞

c,ε:

W∞
c,ε(T

πZ1,T
πZ2)

= sup
s,a
Wc,ε(T

πZ1(s, a),T
πZ2(s, a))

=Wc,ε(R(s, a) + γZ1(s
′, a′), R(s, a) + γZ2(s

′, a′))

=Wc,ε(γZ1(s
′, a′), γZ2(s

′, a′))

c=−kα
≤ ∆Z1(s

′,a′),Z2(s
′,a′)(γ, α)Wc,ε(Z1(s

′, a′), Z2(s
′, a′))

≤ sup
s′,a′

∆
Z1(s

′,a′),Z2(s
′,a′)

(γ, α) sup
s′,a′
Wc,ε(Z1(s

′, a′), Z2(s
′, a′))

≤ sup
Z1,Z2

∆
Z1(s

′,a′),Z2(s
′,a′)

(γ, α)W∞
c,ε(Z1, Z2)

= ∆(γ, α)W∞
c,ε(Z1, Z2)

(29)

where the first inequality comes from the scale-sensitive property proof of Sinkhorn divergence and
the last inequality is based on the fact the range of return distribution Z1 and Z2 can be larger than
that for Z1(s, a) and Z2(s, a) for ∀s ∈ |S|, a ∈ |A|. Owing to the fact that ∆(γ, α) ∈ (|γ|α, 1) that
is a constant function determined by γ and α, we conclude that distributional Bellman operator is
at least ∆(γ, α)-contractive. Based on the existing Banach fixed point theorem, we have a unique
optimal return distribution when convergence.

C PROOF OF PROPOSITION 1 AND COROLLARY 1

Proof. We leverage Π∗
ε(µ, ν),Π

∗(µ, µ),Π∗(ν, ν) to denote the optimal joint distribution Π
while evaluating Sinkhorn divergence Wc,ε(µ, ν), Wc,ε(µ, µ) and Wc,ε(ν, ν), respectively. Let
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X,X ′ i.i.d.∼ µ, Y, Y ′ i.i.d.∼ ν and X,X ′, Y, Y ′ are mutually independent. The Sinkhorn divergence
can be composed in the following form:

Wc,ε(µ, ν)

= 2KL (Π∗
ε(µ, ν)|K−k(µ, ν))− KL (Π∗(µ, µ)|K−k(µ, µ))− KL (Π∗(ν, ν)|K−k(ν, ν))

∝ 2(EX,Y [log Π∗
ε(X,Y )]) +

1

ε
EX,Y [c(X,Y )])− (EX,X′ [log Π∗(X,X ′)]) +

1

ε
EX,X′ [c(X,X ′)])

− (EY,Y ′ [log Π∗(Y, Y ′)]) +
1

ε
EY,Y ′ [c(Y, Y ′)])

= EX,X′,Y,Y ′

[
log

Π∗
ε(X,Y )2

Π∗(X,X ′)Π∗(Y, Y ′)

]
+

1

ε
(EX,X′ [k(X,X ′)] + EY,Y ′ [k(Y, Y ′)]− 2EX,X′ [k(X,Y )])

= EX,X′,Y,Y ′

[
log

Π∗
ε(X,Y )2

Π∗(X,X ′)Π∗(Y, Y ′)

]
+

1

ε
MMD2

−c(µ, ν)

(30)
where the cost function c in the Gibbs distribution K is minus kernel in MMD. ∝ indicates we
cancel the normalization factor in the probability density function of Gibbs distribution K(x, y) =
1
Z e

−c(x−y)/ε. Till now, we have shown the result in Corollary 1.

Next, we use Taylor expansion to prove the moment matching of MMD with the Gaussian kernel.
Firstly, we have the following equation:

MMD2
−c(µ, ν) = EX,X′ [k(X,X ′)] + EY,Y ′ [k(Y, Y ′)]− 2EX,X′ [k(X,Y )]

= EX,X′
[
ϕ(X)⊤ϕ(X ′)

]
+ EY,Y ′

[
ϕ(Y )⊤ϕ(Y ′)

]
− 2EX,X′

[
ϕ(X)⊤ϕ(Y )

]
= E∥ϕ(X)− ϕ(Y )∥2

(31)

We expand the Gaussian kernel via Taylor expansion, i.e.,

k(x, y) = e−(x−y)2/(2σ2)

= e−
x2

2σ2 e−
y2

2σ2 e
xy

σ2

= e−
x2

2σ2 e−
y2

2σ2

∞∑
n=0

1√
n!
(
x

σ
)n

1√
n!
(
y

σ
)n

=

∞∑
n=0

e−
x2

2σ2
1√
n!
(
x

σ
)ne−

y2

2σ2
1√
n!
(
y

σ
)n

= ϕ(x)⊤ϕ(y)

(32)

Therefore, we have

MMD2
−c(µ, ν) =

∞∑
n=0

1

σ2nn!

(
Ex∼µ

[
e−x

2/(2σ2)xn
]
− Ex∼ν

[
e−y

2/(2σ2)yn
])2

=

∞∑
n=0

1

σ2nn!

(
M̃n(µ)− M̃n(ν)

)2
(33)

M̃n(µ) = Ex∼µ
[
e−x

2/(2σ2)xn
]
, and similarly for M̃n(ν). The conclusion is the same as the

moment matching in (Nguyen et al., 2020). Finally, due to the equivalence of Wc,ε(µ, ν) after
multiplying ε, we have

Wc,ε(µ, ν; k) ∝ MMD2
−c(µ, ν) + εE

[
(Π∗

ε(X,Y ))2

Π∗(X,X ′)Π∗(Y, Y ′)

]
=

∞∑
n=0

1

σ2nn!

(
M̃n(µ)− M̃n(ν)

)2

+ εE
[

(Π∗
ε(X,Y ))2

Π∗(X,X ′)Π∗(Y, Y ′)

]
,

(34)

18



Under review as a conference paper at ICLR 2024

This result is also consistent with Theorem 1, where Π∗ would degenerate to µ ⊗ ν as ε → +∞.
In that case, the regularization term would vanish, and thus the Sinkhorn divergence degrades to an
MMD loss, i.e., MMD2

−c(µ, ν).

D LEARNING CURVES ON 55 ATARI GAMES

Figure 4: Learning curves of SinkhornDRL compared with DQN, C51, QRDQN and MMD on 55
Atari games after training 40M frames averaged over 3 seeds.
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E RATIO IMPROVEMENT ANALYSIS ACROSS ALL 55 ATARI GAMES
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Figure 5: Ratio improvement of return for Sinkhorn distributional RL algorithm over QRDQN (left)
and MMDDRL (right) over 3 seeds. For example, the ratio improvement is calculated by (Sinkhorn
- QRDQN) / QRDQN in the left.

We provide a ratio improvement analysis across all 55 Atari games in Figure 5. Figure 5 showcases
that compared with QRDQN (left), SinkhornDRL achieves better performance across almost half
of the considered games and the superiority of SinkhornDRL is significant across a large number
of games, including Venture, Seaquest, Tennis and Phoenix. This empirical outperformance verifies
the effectiveness of smoothing Wasserstein distance in distributional RL. In contrast with MMD-
DRL, the advantage of SinkhornDRL is reduced with the performance improvement on a slightly
smaller proportion of games, but a remarkable performance improvement for SinkhornDRL on a
large number of games can be easily observed.

20



Under review as a conference paper at ICLR 2024

F RAW SCORE TABLES ACROSS ALL ATARI GAMES

GAMES RANDOM HUMAN DQN C51 QRDQN MMD Sinkhorn
Alien 211.9 7,127.7 1334.0 1946.0 1625.0 2218.0 1873.0
Amidar 2.34 1,719.5 400.2 354.5 554.6 706.4 506.7
Assault 283.5 742.0 5651.8 3368.1 7593.6 6001.5 3771.0
Asterix 268.5 8,503.3 5490.0 31860.0 7660.0 15890.0 7610.0
Asteroids 1008.6 47,388.7 1246.0 826.0 1660.0 1095.0 624.0
Atlantis 22188 29,028.1 18990.0 1490040.0 2520080.0 80920.0 3417430.0
BankHeist 14 753.1 657.0 948.0 1000.0 1034.0 849.0
BattleZone 3000 37,187.5 22100.0 28400.0 37800.0 28400.0 27000.0
BeamRider 414.3 16,926.5 9519.0 13069.2 8043.8 14072.6 9865.6
Berzerk 165.6 2,630.4 746.0 824.0 928.0 959.0 1029.0
Bowling 23.48 160.7 29.6 30.3 35.5 60.0 12.6
Boxing -0.69 12.1 96.0 91.8 98.3 96.9 96.7
Breakout 1.5 30.5 313.4 373.0 361.4 405.9 402.5
Centipede 2064.77 12,017.0 4548.1 6090.9 5508.0 5152.0 4952.2
ChopperCommand 794 7,387.8 2780.0 4360.0 5490.0 6760.0 6520.0
CrazyClimber 8043 35,829.4 15960.0 158070.0 69430.0 112130.0 16000.0
DemonAttack 162.25 1,971.0 58324.5 41656.5 63889.0 437760.5 195827.0
DoubleDunk -18.14 -16.4 0.2 0.6 -0.4 -0.4 -2.2
Enduro 0.01 860.5 1961.3 1507.5 2832.5 3248.2 4272.0
FishingDerby -93.06 -38.7 15.8 26.0 33.4 24.5 24.6
Freeway 0.01 29.6 30.9 32.6 34.0 33.6 34.0
Frostbite 73.2 4,334.7 1767.0 3317.0 4487.0 2874.0 2632.0
Gopher 364 2,412.5 7058.0 9314.0 6466.0 6412.0 15168.0
Gravitar 226.5 3,351.4 110.0 325.0 565.0 345.0 470.0
Hero 551 30,826.4 4657.5 8098.0 11673.5 7215.0 7476.0
IceHockey -10.3 0.9 -13.0 -11.4 -3.6 -4.5 -4.6
Jamesbond 27 302.8 320.0 625.0 1995.0 480.0 450.0
Kangaroo 54 3,035.0 660.0 9870.0 13440.0 14720.0 10680.0
Krull 1,566.59 2,665.5 9191.1 9366.9 9918.7 8732.7 9549.0
KungFuMaster 451 22,736.3 62800.0 55060.0 36020.0 36940.0 42600.0
MontezumaRevenge 0.0 4,753.3 1.0 1.0 1.0 1.0 0.0
MsPacman 242.6 6,951.6 3230.0 2168.0 2673.0 2568.0 2568.0
NameThisGame 2404.9 8,049.0 4702.0 6278.0 11739.0 12394.0 9200.0
Phoenix 757.2 7,242.6 5398.0 12043.0 12324.0 32086.0 18558.0
Pitfall -265 6,463.7 1.0 1.0 1.0 1.0 0.0
Pong -20.34 14.6 20.0 20.7 20.8 20.9 21.0
PrivateEye 34.49 69,571.3 100.0 100.0 100.0 100.0 100.0
Qbert 188.75 13,455.0 8150.0 16575.0 13830.0 15782.5 6530.0
RiverRaid 1575.4 17,118.0 8350.0 10232.0 8714.0 9350.0 11998.0
RoadRunner 7 7,845.0 44950.0 54490.0 54620.0 42530.0 52600.0
Robotank 2.24 11.9 13.2 22.5 48.1 34.4 48.1
Seaquest 88.2 42,054.7 1444.0 10666.0 2640.0 11685.0 14795.0
Skiing -16267.9 -4,336.9 -13340.4 -19040.3 -29970.3 -8983.3 -29970.3
Solaris 2346.6 12,326.7 582.0 192.0 956.0 3336.0 792.0
SpaceInvaders 136.15 1,668.7 1005.0 1725.5 1826.5 1216.0 2302.5
StarGunner 631 10,250.0 1270.0 22600.0 38380.0 52050.0 43820.0
Tennis -23.92 -8.3 -5.7 -1.5 -11.9 -1.5 13.3
TimePilot 3682 5,229.2 1420.0 3260.0 6030.0 7900.0 7060.0
Tutankham 15.56 167.6 206.6 186.0 178.3 205.2 202.8
UpNDown 604.7 11,693.2 19145.0 16046.0 17074.0 44746.0 20063.0
Venture 0.0 1,187.5 1.0 1.0 1.0 1.0 1370.0
VideoPinball 15720.98 17,667.9 270050.9 477206.8 388106.7 288137.2 164597.3
WizardOfWor 534 4,756.5 1440.0 1620.0 4890.0 4480.0 3250.0
YarsRevenge 3271.42 54,576.9 12507.9 15954.4 17593.8 8516.8 13507.3
Zaxxon 8 9,173.3 1.0 5910.0 7410.0 4640.0 10320.0

Table 3: Scores of all algorithms averaged over 3 seeds across 55 Atari games after training 40M
Frames. All scores are computed based on our own PyTorch implementation, rather than directly
referring to existing ones based on the Dopamine TensorFlow framework with 200M frames.
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G FEATURES OF ATARI GAMES

GAMES Action Space Dynamics
Alien 18 Complex

Amidar 6 Simple
Assault 7 Complex
Asterix 18 Complex

Asteroids 4 Simple
Atlantis 4 Simple

BankHeist 18 Simple
BattleZone 18 Simple
BeamRider 18 Complex

Berzerk 18 Complex
Bowling Continuous Simple
Boxing 6 Simple

Breakout 4 Simple
Centipede 18 Complex

ChopperCommand Continuous Complex
CrazyClimber 18 Complex
DemonAttack 18 Complex
DoubleDunk 18 Simple

Enduro 9 Simple
FishingDerby 18 Simple

Freeway 3 Simple
Frostbite 18 Complex
Gopher 18 Simple
Gravitar Continuous Complex

Hero 18 Simple
IceHockey Continuous Simple
Jamesbond 18 Complex
Kangaroo 18 Complex

Krull 18 Complex
KungFuMaster 18 Complex

MontezumaRevenge 18 Complex
MsPacman 9 Simple

NameThisGame 18 Complex
Phoenix 18 Complex
Pitfall 18 Complex
Pong 3 Simple

PrivateEye 18 Complex
Qbert 6 Complex

Riverraid 18 Complex
RoadRunner 18 Simple

Robotank 9 Simple
Seaquest 18 Complex

Skiing 9 Simple
Solaris 18 Complex

SpaceInvaders 6 Simple
StarGunner 18 Complex

Tennis 18 Simple
TimePilot 18 Complex

Tutankham 18 Complex
UpNDown 18 Complex

Venture 18 Complex
VideoPinball 6 Simple

WizardOfWor 12 Complex
YarsRevenge 18 Complex

Zaxxon 18 Complex

Table 4: Number of Action space and difficulty of environmental dynamics of 55 Atari games.
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H SENSITIVITY ANALYSIS AND COMPUTATIONAL COST

H.1 MORE RESULTS IN SENSITIVITY ANALYSIS

Decreasing ε. We argue that the limit behavior connection as stated in Theorem 1 may not be
able to be verified rigorously via numeral experiments due to the numerical instability of Sinkhorn
Iteration in Algorithm 2. From Figure 6 (a), we can observe that if we gradually decline ε to 0,
SinkhornDRL’s performance tends to degrade and approach QR-DQN. Note that an overly small ε
will lead to a trivial almost 0 Ki,j in Sinkhorn iteration in Algorithm 2, and will cause 1

0 numerical
instability issue for al and bl in Line 5 of Algorithm 2. In addition, we also conducted experiments
on Seaquest, a similar result is also observed in Figure 6 (d). As shown in Figure 6 (d), the per-
formance of SinkhornDRL is robust when ε = 10, 100, 500, but a small ϵ = 1 tends to worsen the
performance.

Increasing ε. Moreover, for breakout, if we increase ε, the performance of SinkhornDRL tends
to degrade and be close to MMDDRL as suggested in Figure 6 (b). It is also noted that an overly
large ε will let the Ki,j explode to∞. This also leads to the numerical instability issue in Sinkhorn
iteration in Algorithm 2.

Samples N . We find that SinkhornDRL requires a proper number of samples N to perform fa-
vorably, and the sensitivity w.r.t N depends on the environment. As suggested in Figure 7 (a), a
smaller N , e.g., N = 2 on breakout has already achieved favorable performance and even acceler-
ates the convergence in the early phase, while N = 2 on Seaquest will lead to the divergence issue.
Meanwhile, an overly largeN worsens the performance across two games. We conjecture that using
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Figure 6: (a) Sensitivity analysis w.r.t. a small level of ε SinkhornDRL to compare with QR-DQN
that approximates Wasserstein distance on Breakout. (b) Sensitivity analysis w.r.t. a large level of ε
SinkhornDRL algorithm to compare with MMDDRL on Breakout. All learning curves are reported
over 2 seeds. (c) and (d) are results for a general ε on Breakout and Seaquest, respectively.
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larger network networks to generate more samples may suffer from the overfitting issue, yielding
the training instability (Bjorck et al., 2021). In practice, we choose a proper number of samples, i.e.,
N = 200 across all games.
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Figure 7: Sensitivity analysis of Sinkhorn in terms of the number of samples N on Breakout (a) and
Seaquest (b).

More Games on StarGunner and Zaxxon. Beyond Breakout and Seaquest, we also provide
sensitivity analysis on StarGunner and Zaxxon games in Figure 8. It suggests overly small samples,
e.g., 1 and overall large samples tend to degrade the performance, especially on Zaxxon. Although
the two games are robust to ε, and we find a small or large ε hurts the performance in Seaquest.
Thus, considering all games, we set samples 200, and ε = 10.0 in a moderate range across all
games, although a more careful tuning in each game will improve the performance further.
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Figure 8: Sensitivity analysis of SinkhornDRL on StarGunner and Zaxxon in terms of ε, and number
of samples. Learning curves are reported over 3 seeds.
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H.2 COMPARISON WITH THE COMPUTATIONAL COST

We evaluate the computational time every 10,000 iterations across the whole training process of
all considered distributional RL algorithms and make a comparison in Figure 9. It suggests that
SinkhornDRL indeed increases around 50% computation cost compared with QR-DQN and C51,
but only slightly increases the cost in contrast to MMDDRL on both Breakout and Qbert games. We
argue that this additional computational burden can be tolerant given the significant outperformance
of SinkhornDRL in a large number of environments.

In addition, we also find that the number of Sinkhorn iterations L is negligible to the computation
cost, while an overly large sample N , e.g., 500, will lead to a large computational burden as il-
lustrated in Figure 10. This can be intuitively explained as the computation complexity of the cost
function ci,j isO(N2) in SinkhornDRL, which is particularly heavy in the computation ifN is large
enough.
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Figure 9: Average computational cost per 10,000 iterations of all considered distributional RL al-
gorithm, where we select ε = 10, L = 10 and the number of samples N = 200 in SinkhornDRL
algorithm.
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Figure 10: Average computational cost per 10,000 iterations of SinkhornDRL algorithm over differ-
ent samples.
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