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ABSTRACT

Task and Motion Planning (TAMP) is a computationally challenging robotics
problem due to the tight coupling of discrete symbolic planning and continuous
geometric planning of robot motions. In particular, planning manipulation tasks
in complex 3D environments leads to a large number of costly geometric planner
queries to verify the feasibility of considered actions and plan their motions. To
address this issue, we propose Geometric Reasoning Networks (GRN), a graph
neural network (GNN)-based model for action and grasp feasibility prediction,
designed to significantly reduce the dependency on the geometric planner. More-
over, we introduce two key interpretability mechanisms: inverse kinematics (IK)
feasibility prediction and grasp obstruction (GO) estimation. These modules not
only improve feasibility predictions accuracy, but also explain why certain actions
or grasps are infeasible, thus allowing a more efficient search for a feasible solu-
tion. Through extensive experimental results, we show that our model outperforms
state-of-the-art methods, while maintaining generalizability to more complex en-
vironments, diverse object shapes, multi-robot settings, and real-world robots.

1 INTRODUCTION

Task and Motion Planning (TAMP) (Garrett et al., 2021) is a robotics problem in which the goal
is to find a sequence of robot actions and their corresponding motions to transition an environment
from an initial state to a goal state. In most cases, the order of actions, their grounded parameters,
and the feasibility of the corresponding motions are tightly coupled, requiring a careful combination
of symbolic task planning and continuous geometric planning. However, the resulting large search
space leads to a combinatorial explosion. Moreover, every action considered must be validated
geometrically to ensure feasibility, leading to numerous costly queries to the geometric planner.
Thus, geometric planning can become a bottleneck for TAMP (Bouhsain et al., 2023b).

Previous works (Wells et al., 2019; Driess et al., 2020a; Khodeir et al., 2023a) demonstrate that learn-
ing methods can help accelerate TAMP by providing fast geometric feedback to the task planner. In
particular, action feasibility prediction offers an efficient alternative to geometric planning during
the TAMP process. In offline manipulation planning, it can answer critical questions such as which
object can be picked, how to grasp it, where to place it, or how to free access to it. However, action
feasibility prediction presents several challenges. A suitable representation of 3D environments is
needed, as these may contain an arbitrary number of objects, along with action representations that
capture varying parameters such as grasps. Furthermore, predictions must not only be fast and accu-
rate but also interpretable to understand why an action is infeasible and how to rectify it (e.g. another
object is blocking access to the desired one). Finally, action feasibility prediction must generalize to
environments with numerous objects, objects of varying shapes, and multi-robot settings.

Existing approaches to action feasibility prediction often struggle with interpretability, scalability,
and generalization across diverse environments. To address these limitations, we propose a novel
approach that leverages a GNN-based model for robot action and grasp feasibility prediction. Our
method constructs a graph representation of 3D environments, where fixed and movable objects are
represented as nodes, and edges capture spatial relationships and interaction constraints. Through
this graph-based structure, we leverage an Edge-Enhanced Graph Attention Network (EGAT) to
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predict action and grasp feasibility for each movable object. A unique aspect of our approach is
the introduction of two interpretability mechanisms: inverse kinematics (IK) feasibility predictions,
which determine whether the robot can feasibly manipulate an object from different sides, and Grasp
Obstruction (GO) predictions, which quantify how neighboring objects restrict access to grasps
from different sides of the object. These interpretable features not only allow us to predict action
infeasibility, they also explain why a specific action fails, enabling more efficient planning.

The contributions of this paper are threefold: (1) We propose a novel GNN-based model for efficient
and accurate action and grasp feasibility prediction in complex 3D environments. (2) We introduce
two mechanisms, inverse kinematics (IK) feasibility and grasp obstruction (GO) predictions, that im-
prove feasibility prediction while enhancing its interpretability, hence task planning efficiency. (3)
We provide comprehensive experiments showcasing our method’s state-of-the-art (SOTA) perfor-
mance, including evaluations of its interpretability and generalization capabilities. Our code is avail-
able at: https://github.com/Smail8/geometric_reasoning_networks.git

2 RELATED WORKS

2.1 TASK AND MOTION PLANNING

Task and Motion Planning (TAMP) combines discrete symbolic task planning with continuous ge-
ometric motion planning to achieve robotic manipulation goals. Early approaches (Alami et al.,
1990; Koga & Latombe, 1994; Ahuactzin et al., 1998; Siméon et al., 2004) view the problem pri-
marily from a geometric perspective. These approaches build manipulation graphs that map valid
grasps, placements, and connecting motions. Although, they suffer from a combinatorial explosion
as the number of objects increases. Later, multi-modal motion planning (Hauser & Latombe, 2010;
Hauser & Ng-Thow-Hing, 2011) generalized these methods using constraint-based graphs, but the
complexity of constructing these graphs for cluttered environments remains a challenge. Modern
methods integrate symbolic task planning with geometric planners, using backtracking when actions
are infeasible (Cambon et al., 2009; Srivastava et al., 2014; Lagriffoul et al., 2014; Dantam et al.,
2016; Garrett et al., 2018). However, in complex environments, the large number of queries to the
geometric planner causes significant computational overhead, leading to slow planning processes.

2.2 LEARNING FOR TASK AND MOTION PLANNING

Many recent works leverage learning methods to provide heuristics for TAMP. Chitnis et al. (2016)
apply reinforcement learning (RL) to learn policies for task refinement. Xu et al. (2021) model
both immediate and future affordances in a learned latent space. Some methods leverage GNNs
to identify the smallest set of objects for solving a planning problem (Silver et al., 2021), learning
inter-robot relations to verify subgoal satisfaction (Huang et al., 2023), or predict dynamic object
interactions (Chen et al., 2023). Eisner et al. (2024) tackles the problem of precise relative object
placement using an SE(3)-equivariant learning. Agia et al. (2023) learn task-agnostic policies for
various robot skills and verify their feasibility. Other works learn to fully solve TAMP problems.
Zhu et al. (2021) leverage a two-level scene graph for neuro-symbolic task planning and graph-based
motion generation. McDonald & Hadfield-Menell (2022) propose an imitation learning method that
mimics a TAMP solver. Lin et al. (2022) introduce a GNN-based policy architecture trained on
expert demonstrations. Haramati et al. (2024) propose a goal-conditioned RL framework using an
object-centric image representation of the 3D environment. These methods tend to be problem-
dependent, needing further training on unseen manipulation problems. Wang et al. (2024), Lin et al.
(2023); Huang et al. (2024b) leverage large language models (LLM) to perform TAMP, incorporat-
ing feedback from geometric planning failures or predicted geometric infeasibility into the LLM to
iteratively refine the solution. Although, these methods require large resources for running LLMs.

2.3 ACTION AND GRASP FEASIBILITY PREDICTION FOR MANIPULATION PLANNING

Action and grasp feasibility prediction is a fast growing research topic, which aims at accelerating
common TAMP algorithms by reducing their dependency on the geometric planner. Wells et al.
(2019) pioneered this problem by proposing to use Support Vector Machines (SVM) as action and
grasp feasibility classifiers. Though, this method is limited to simple environments with a fixed num-
ber of objects. To tackle this issue, Driess et al. (2020b;a); Xu et al. (2022) propose to use top-view
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Figure 1: Visualization of GRN predictions on two manipulation problems, Access (Panda arm)
and Clutter (PR2 Robot, predictions shown for its right arm). A single query to GRN outputs 3
predictions for each movable object in the environment: Action feasibility, grasp types feasibility
(two views), and the predicted infeasibility causes for each grasp type. For clarity, we show the
predicted infeasibility cause for one object only (shown in blue), and distinguish two cases: (1) No
IK solution: robot shown in red, (2) Grasp type obstructed: we show all obstructing objects in a
color gradient representing the obstructions ratio. Arrows show approach directions of grasp types.

depth images as input to a convolutional neural network (CNN). However, this approach is limited
to tabletop problems. Bouhsain et al. (2023a;b) generalize this method to 3D environments by us-
ing 5 depth images from different scene views. Bouhsain et al. (2024) extend this method to mesh
objects and multi-robot problems. Yang et al. (2022) also use multiple views, combined with text
descriptions of actions and predicates as input to a transformer. Such image-based representations
suffer from occlusions, which can hurt feasibility prediction accuracy. Some methods use 3D voxel
grids (Park et al., 2022) or pointclouds (Huang et al., 2024a) to represent 3D scenes. Though, they
suffer from high inference times and are, hence, limited to environments with few objects. Other
works such as Kim et al. (2022); Khodeir et al. (2023a;b); Sung et al. (2023) tackle this issue by
representing 3D environments using scene graphs, leveraging GNNs to predict the success of geo-
metric planning steps from prior search experiences. These methods, however, lack interpretability
and can not provide feedback on why actions are infeasible.

3 PROBLEM DESCRIPTION

In this work, we address the problem of predicting action and grasp feasibility for offline manipula-
tion planning in 3D environments. The goal is to determine whether a robot can successfully plan
actions, precisely picking or placing objects, and which grasps allow their collision-free motions,
while accounting for inverse kinematics constraints and potential grasp obstructions.

3.1 OFFLINE MANIPULATION PLANNING CONTEXT

Our approach is tailored for offline manipulation planning tasks in 3D environments, containing
fixed objects and movable objects. We assume the shape, dimensions, and pose of all objects are
fully known, and that all objects remain static unless moved by the robot. A pick action involves
grasping a movable object, while a place action refers to placing it at a target pose. From a motion
planning perspective, these actions are symmetrical (Wells et al., 2019; Bouhsain et al., 2023b).
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Assuming they start and end at the same home configuration of the robot, a place action at a specific
pose is the reversed pick action from that pose. Throughout this work, the term ”action” refers to
both pick and place actions. Planning an action first requires sampling grasps. For each grasp, an
inverse kinematics (IK) solver computes the corresponding robot configurations. If one exists, it is
checked for collisions before a motion planner computes the robot’s full trajectory. This process
involving grasp sampling, IK solving, collision checking, and motion planning is computationally
expensive and incurs significant overhead during TAMP, especially in cluttered 3D environments.

We define G = {Top, Front,Rear,Right, Left} as a set of 5 grasp types, each one representing
a subspace of grasps related to the side from which the object is grasped. We focus on axis-aligned
grasps, such that each type is the continuous set of grasps for which the end-effector’s axis is parallel
to one of the object’s principal axes in a specific direction. This representation is similar to those
introduced in previous works (Wells et al., 2019; Driess et al., 2020b;a; Bouhsain et al., 2023a;b).

3.2 FEASIBILITY PREDICTION

This work aims to reduce the dependency on the complex geometric planning process involved in
offline manipulation planning. Given an environment E and an object of interest O ∈ E, the goal
is to predict both the feasibility Fa(O, E) ∈ R of picking or placing O at its pose in E, and the
feasibility of each grasp type, FG = [Fg(O, E),∀g ∈ G] ∈ R5.

Moreover, we aim to estimate the cause of infeasibility for each grasp type. We focus on two primary
factors contributing to infeasibility: (1) the absence of a valid inverse kinematics (IK) solution for
all grasps within a grasp type κG = [κg(O, E),∀g ∈ G] ∈ R5, and (2) the obstruction of grasps by
each neighboring objects, represented as the ratio ρG of obstructed grasps:

ρG = [ρg(O,O′), ∀g ∈ G, ∀O′ ∈ N (O)] ∈ R5×|N (O)| (1)

where N (O) denotes the distance-based neighborhood of O and |N (O)| its cardinality. In addition
to helping explain infeasibility and providing insights into the constraints imposed by the environ-
ment, these predictions are also used in the feasibility prediction process. In summary, the task at
hand is to learn two classification functions fF , fκ, and a regression function fρ s.t.:[

Fa

FG

]
= fF (O, E,κG ,ρG) where κG = fκ(O,E) and ρG = fρ(O,E) (2)

4 GEOMETRIC REASONING NETWORKS

We propose Geometric Reasoning Networks (GRN), a three-module GNN-based neural network
which takes as input a graph representation of the environment, and outputs the action and grasp
types feasibility for each movable object, as well as inverse kinematics feasibility (IK) and grasp ob-
struction (GO) predictions cf. Figure 1). The main challenge of learning methods in a manipulation
planning context is finding an appropriate representation of the 3D environment which can con-
tain an arbitrary number of objects. Previously proposed image-based representations suffer from
occlusions as the number of objects in the environment increases, which can significantly impact
performance. In this paper, we tackle this issue by representing 3D scenes as graphs where nodes
represent fixed and movable objects and edges represent geometric relationships between objects.

4.1 3D SCENE REPRESENTATION

Given an environment E, we construct a directed graph (V, E) where each node corresponds to an
object in E, fixed or movable. Nodes have a feature vector x = [l, w, h, x, y, z, θ]T where (l, w, h)
are the length, width and height of the object’s bounding box, (x, y, z) represent the position of
the object in the environment, and θ is the object’s orientation w.r.t its z axis. The position and
orientation of the object are expressed in the reference frame of the base of the robot. This allows
a straightforward generalization to multi-robot settings simply by switching the reference frame
to the base of the robot of interest. For each node u corresponding to a movable object O, we
add a self-loop edge (u → u) ∈ E , as well as a directed edge (v → u) ∈ E from each node v
corresponding to a neighboring (fixed or movable) object O′ ∈ N (O). Two objects are considered
neighbors if the euclidean distance between their closest points along the (x, y) plane is lower than
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Figure 2: Complete GRN architecture. A scene graph is constructed from the input 3D environ-
ment. Node features of movable objects are given to IK feasibility module which outputs are used to
update self-loop edge features. The concatenated features of nodes linked through a proximity edge
are fed to the GO module to get grasp obstruction estimations, which are appended to proximity
edge features. Finally, the updated graph is given to the AGF module to predict the action and grasp
types feasibility for each movable object in the environment.

a user-defined threshold. Since our approach is GNN-based, where edges are used to determine
which features to aggregate, the more edges are present in the input graph, the higher the number
of computations is. Hence, the permissiveness of this threshold creates a tradeoff between accuracy
and inference speed. Finally, self-loop edges and proximity edges are differentiated using a one-hot
encoded feature vector such that esl = [0, 1]T and ep = [1, 0]T , where esl and ep represent the
feature vectors for a self-loop edge and a proximity edge respectively. The obtained graph is given
as input to GRN, shown in Figure 2, which is comprised of three modules.

4.2 INVERSE KINEMATICS FEASIBILITY PREDICTION

The first module is the Inverse Kinematics (IK) feasibility prediction module. This submodel is a
binary classifer, composed of a 4-layer Multi-Layer Perceptron (MLP) with ReLU activation func-
tions, followed by a Sigmoid activation function. It takes as input the feature vector xu of each
node u ∈ V corresponding to a movable object, and simultaneously outputs the predicted inverse
kinematics feasibility for each of the five grasp types in G:

κG(u) = Sigmoid(MLPIK(xu)) ∈ [0, 1]5 (3)

Each prediction κg where g ∈ G corresponds to the presence of a valid inverse kinematics solution
for at least one grasp in g. This can be viewed as predicting whether the robot can reach a specific
side of the object at its pose in the environment, without taking into account any other object. Since
this information is valuable for action and grasp types feasibility prediction, we incorporate it to
the previously constructed graph by concatenating the obtained predictions κG to the features of
self-loop edges resulting in e+sl = [esl ∥ κG ] ∈ R7, where ∥ denotes the concatenation operator.

4.3 GRASP OBSTRUCTION ESTIMATION

The second stage is Grasp Obstruction (GO) estimation, which is a regression module consisting
of 4-layer MLP with ReLu activation functions, followed by a HardTanh activation function which
bounds the output between 0 and 1. It takes as input the concatenated features of each pair of nodes
(v → u) linked through a proximity edge. For each grasp type g ∈ G, it outputs the estimated ratio
of grasps of u that are obstructed by the object corresponding to v, which is defined as the number
of obstructed grasps divided by the total number of grasps of a specific type:

ρG(u, v) = HardTanh(MLPGO([xu ∥ xv])) ∈ [0, 1]5 (4)

This submodel not only predicts whether an object obstructs grasps of another, it also gives insight
into how much it blocks access to it. In a manipulation planning context, this allows to rank obstruct-
ing objects and plan accordingly. Similarly to IK feasibility predictions, this information impacts
directly the feasibility of actions and grasp types. Thus, we concatenate the grasp obstruction esti-
mations ρG to the edge features of proximity edges to obtain e+p = [ep ∥ ρG ] ∈ R7.
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4.4 ACTION AND GRASP FEASIBILITY PREDICTION

Once our graph is constructed and enriched through IK feasibility and GO predictions, it is given to
the action and grasp feasibility (AGF) prediction module. As mentioned previously, IK feasibility
and grasp obstructions, which constitute our edge features, have a direct impact on action and grasp
type feasibility. However, the classic graph attention network (GAT) (Veličković et al., 2018) uses
edge features simply for computing attention weights, and does not take them into account during
the aggregation process. This causes the model to lose valuable information when applied to tasks
where edge features are as important as node features. In this work, we propose to use the Edge-
Featured Graph Attention Network (EGAT) (Wang et al., 2021) which, in addition to using edge
features to compute attention, leverages both node and edge features during the aggregation process.

The third submodel first computes embeddings hu and e∗uv of node and edge features using two
fully-connected layers such that hu = Wh.xu and e∗uv = We.e

+
uv , where Wh, We are weight

matrices. Then, EGAT computes the multi-head attention of each edge as:

αuv =
exp(aT LeakyReLU([hu ∥ hv ∥ e∗uv]))∑

k∈N (u)∪{u} exp(a
T LeakyReLU([hu ∥ hk ∥ e∗uk]))

(5)

Note that this formulation is slightly different from the one proposed by Wang et al. (2021). We adapt
the attention computation introduced by Brody et al. (2022), which fixes the static attention problem
of the standard GAT. Once the multi-attention weights computed, our model computes a weighted
average of the concatenated node and edge embeddings, followed by a LeakyReLU activation:

h′u = LeakyReLU

 ∑
v∈N (u)∪{u}

αuv[hv ∥ e∗uv]

 (6)

Finally, the obtained vector is passed through a 2-layer MLP followed by a sigmoid activation func-
tion that outputs the action and grasp types feasibility predictions for movable object node u:[

Fa(u)
FG(u)

]
= Sigmoid(MLPF (h

′
u)) (7)

4.5 TRAINING STRATEGY

Our proposed GRN model is trained in a supervised manner by first pre-training each module sep-
arately. The IK feasibility prediction submodel is trained using a binary cross entropy loss denoted
LIK while the GO estimation module is trained using the mean square error loss LGO. Regarding the
AGF prediction module, it is trained using a binary cross entropy loss LF, using the ground truth of
IK feasibility and grasp obstructions as edge features. The complete GRN model is then fine-tuned
using a weighted sum of the previously defined losses such that:

L = LF + LIK + η.LGO (8)

where η is a weighting factor allowing a balanced order of magnitude across classification and
regression. This training strategy is inspired by the one proposed by Chen et al. (2020).

During training, our 3D scene representation allows two data augmentation methods: dimensions
switch and rotation. They both take advantage of the symmetry of bounding boxes. Indeed, switch-
ing the length and width of a bounding box, then applying a π

2 rotation around the z axis, keeps
the geometric properties of the environment unchanged, resulting in a new node feature vector
x = [w, l, h, x, y, z, θ ± π

2 ]
T . The same goes for applying a π rotation without any dimensions

switch such that x = [l, w, h, x, y, z, θ ± π]T . These can be applied to fixed and movable objects.
For the latter case, the labels associated with grasp types need to be interchanged, since switching
the dimensions and/or rotating the object changes which side is considered as the front for example.

5 EXPERIMENTS

We conduct a series of experiments in order to evaluate the performance of our proposed method
compared to existing approaches, and showcase the generalization capabilities of our approach. We
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conduct our experiments using mainly the Franka Emika Panda, which is a 7 degrees-of-freedom
(DOF) robotic arm with a parallel jaw gripper. Since our model is robot-centric, meaning that it is
specific to the robot it is trained for, we showcase the applicability of our method to other robotic
manipulators by running experiments on the Willow Garage PR2 robot as well. The latter is a
dual-arm robot where each arm has 7 DOFs and a parallel jaw gripper, and a telescoping spine.

5.1 DATASETS

Our model is trained and evaluated on fully synthetic data. We generate a number of datasets follow-
ing the method described in Appendix B. Each one characterized by a number of movable objects as
well as a minimum and maximum numbers of structures (e.g, rack, counter, basket) and obstacles.
They are also characterized by the robot used during data annotation.

Panda-3D-4: This is dataset is composed of 3D environments containing 4 movable objects, 1 to 4
structures and 0 to 4 obstacles and is annotated using a Panda robot.

Panda-Tabletop-4: In order to conduct a fair comparison to tabletop methods Wells et al. (2019);
Driess et al. (2020b), we generate a dataset consisting of tabletop environments with 0 structures, 4
movable objects and up to 4 obstacles, all placed on the same support surface as the robot’s base.

PR2-3D-4: We generate this dataset to showcase the applicability of our approach to other robotic
arms as well as multi-robot settings. It is generated using the same parameters as the Panda-3D
dataset, and annotated for the right arm of PR2 robot1. We consider that the base of robot is fixed to
the ground, and that the telescopic spine is one of the DOFs of the arms.

In order to quantitatively measure the generalizability of our approach to environments containing a
higher number of objects than training environments, we generate three additional test sets denoted
Panda-3D-10, Panda-3D-15, Panda-3D-20, each composed of 1’000 environments containing 10,
15 and 20 movable objects respectively. These environments also contain a higher number of fixed
objects, with a number of structures ranging from 4 to 8, as well as 2 to 4 obstacles. Moreover, we
increase the dimensions’ range used during data generation resulting in larger objects.

5.2 BASELINES

We compare our proposed approach to multiple baselines and methods proposed or adapted from
previous works on action and grasp feasibility prediction for manipulation planning.

MLP: This is a simple baseline which uses a 4-layer MLP that takes as input the feature vector x of
an object to predict action and grasp feasibility, without considering the rest of the environment.

Feasibility-SVM (F-SVM): Introduced by Wells et al. (2019), this method uses multiple SVMs
to predict the action and grasp types feasibility prediction in tabletop environments containing 2
movable objects represented using hand-crafted feature vectors.

Deep Visual Heuristics (DVH): This method, proposed by Driess et al. (2020b), represents envi-
ronments using top-view depth images, then uses a CNN to predict the feasibility of an action using a
grasp type. We adapt DVH to output the feasibility of the action and all grasp types simultaneously.

Action and Grasp Feasibility Prediction Network (AGFP-Net): Bouhsain et al. (2023b) propose
this method as an extension of DVH to 3D environments, using 5 depth images corresponding to
different views of the scene as input to the CNN.

Feasibility-GAT (F-GAT): This baseline is an adapted version of the methods proposed by Silver
et al. (2021) and Khodeir et al. (2023a;b). It represents environments as graphs where nodes repre-
sent objects, and edges represent symbolic relationships (e.g object on table). Nodes features are the
dimensions and pose of objects and edge features are one-hot-encodings of the different relationship
types. GAT is then used to predict action and grasp feasibility.

Feasibility-GCN (F-GCN): This baseline uses the same scene representation as F-GAT, except that
GAT is replaced with a Graph Convolution Network (GCN), which does not use edge features.

1As explained is Section 4.1, our model can be applied to different arms of the same type simply by ex-
pressing the objects’ poses in the frame of reference of the considered arm.
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Table 1: Comparison with SOTA methods trained and tested on different datasets. For grasp types
feasibility prediction, the mean (± standard deviation) of F1 scores of the 5 grasp types are reported.

Dataset Panda-3D-4 Panda-Tabletop-4 PR2-3D-4
Task Action (F1) Grasp (F1) Action (F1) Grasp (F1) Action (F1) Grasp (F1)

F-SVM - - 0.884 0.415 (± 0.220) - -
MLP 0.784 0.558 (± 0.089) 0.911 0.696 (± 0.121) 0.750 0.574 (± 0.104)
DVH 0.840 0.718 (± 0.108) 0.961 0.865 (± 0.073) 0.808 0.622 (± 0.179)

AGFPNet 0.882 0.806 (± 0.065) 0.964 0.916 (± 0.032) 0.836 0.655 (± 0.238)
F-GCN 0.836 0.721 (± 0.057) 0.955 0.879 (± 0.042) 0.791 0.680 (± 0.075)
F-GAT 0.867 0.796 (± 0.052) 0.961 0.904 (± 0.034) 0.827 0.764 (± 0.061)

GRN (Ours) 0.939 0.940 (± 0.009) 0.976 0.976 (± 0.004) 0.908 0.903 (± 0.013)

5.3 EVALUATION METRICS

We use the F1 score as the evaluation metric for classification tasks, namely action, grasp types and
IK feasibility predictions. For or Grasp Obstruction (GO) predictions, we use the Mean Absolute
Error to measure performance. For clarity, we report the mean and standard deviation of predictions
across the different grasp types.

6 RESULTS

6.1 COMPARISON TO PRIOR WORK

Table 1 shows that our proposed model outperforms all prior works on both action feasibility and
grasp types feasibility predictions, and on all datasets. CNN-based methods, DVH and AGFP-Net,
fall short compared to our approach, with a difference in F1 score on the Panda-3D-4 of 10% (resp.
5.7%) for action feasibility prediction, and 22.6% (resp. 13.7%), for grasp type feasibility predic-
tion. Indeed, image-based scene representation suffers from occlusions due to the 3D nature of the
environment, resulting in inaccurate predictions for occluded objects. GNN-based methods, on the
other hand, represent 3D environments using scene graphs. However, the performance of our ap-
proach compared to F-GCN and F-GAT shows that a careful design of the graph and its connectivity
is needed. Silver et al. (2021) and Khodeir et al. (2023a;b) connect nodes using symbolic facts. Our
method uses geometric relationships between objects to connect the graph. This allows our model
to achieve an F1 score up to 10.3% higher than other GNN-based baselines on action feasibility
prediction, and up to 21.8% higher on grasp types feasibility prediction on Panda-3D-4.

Comparing the standard deviations across F1 scores of each grasp type shows that our proposed
method has a more consistent performance across the different grasp types than other models. This
is due to our data augmentation method and the two interpretation mechanisms. Switching the di-
mensions then/or rotating an object implies interchanging grasp types annotations, which ensures
balanced labels across grasp types. This method is not applicable to CNN-based methods 2. Addi-
tionally, the use of IK feasibility predictions and GO estimations as edge features allows each grasp
type feasibility prediction to be informed, which is not the case for other GNN-based methods.

In robotic manipulation planning, feasibility
prediction must not only be accurate, it must
also have a low inference time and memory
footprint. Table 2 reports the number of param-
eters in previous models compared to GRN, as
well as the inference time of each model on a 3D
scene containing a Panda robot, 4 movable ob-
jects and 15 fixed object. The inference time in-
corporates the complete prediction process from
the model’s input construction to the output, for
each movable object in the environment. For
reference, we also report the planning time of
an off-the-shelf geometric planner.

Table 2: Comparison of the number of parameters
and inference time on a 3D environment with 4
movable objects and 15 fixed objects (4 queries).

Model Inference Nb
time (ms) Parameters

Geometric planner 1500 -
MLP 0.6 269’830
DVH 25 11’225’282

AGFPNet 150 34’585’350
F-GCN 4.25 1’057’798
F-GAT 5.0 2’636’806

GRN (Ours) 5.5 2’259’472

2Switching the dimensions then rotating an object results in the same input images.
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Table 3: Ablation Study on the Panda-3D-4 dataset. For each task related to grasp types, we report
the mean (± standard deviation) across all grasp types.

Task Action (F1) ↑ Grasp (F1) ↑ IK (F1) ↑ GO (MAE) ↓
w/o IK, w/o GO 0.868 0.811 (± 0.043) - -
w/o GO 0.872 0.811 (± 0.046) 0.995 (± 0.001) -
w/o IK 0.937 0.933 (± 0.011) - 0.029 (± 0.003)
Full model w/ GAT 0.928 0.924 (± 0.013) 0.995 (± 0.001) 0.029 (± 0.003)
Full model w/o data aug. 0.915 0.903 (± 0.013) 0.990 (± 0.001) 0.044 (± 0.002)
Full model (Trained from scratch) 0.932 0.925 (± 0.011) 0.994 (± 0.001) 0.038 (± 0.002)
Full model (Ours) 0.939 0.939 (± 0.009) 0.995 (± 0.001) 0.028 (± 0.003)

Results show that, compared to previous works, our method yields the most accurate predictions
while being one of the models with the lowest inference times and memory footprints. Furthermore,
GRN has a 99.6% lower inference time than traditional geometric planning. In an offline manipula-
tion planning context, where the number of feasibility checks can reach tens of thousands of queries,
this difference in computational cost can significantly reduce planning time.

6.2 ABLATION STUDY

In order to justify the choices behind our neural network architecture and training strategy, we con-
duct an ablation study on the Panda-3D-4 dataset. Results reported in Table 3 showcase the im-
portance of the proposed interpretation modules. Our full model shows a 7.1% gain in performance
compared to the one without IK feasibility and GO predictions. A more in-depth analysis shows that
the grasp obstruction estimation module is the most important, while IK feasibility prediction yields
a slight improvement in performance. Moreover, the improved performance obtained using EGAT
instead of classical GAT Veličković et al. (2018) shows that incorporating edge features in the atten-
tion computation and the aggregation process helps action and grasp types feasibility prediction. We
conduct two ablations to demonstrate the effectiveness of our training strategy. Training the model
without the proposed data augmentation method, yields a lower performance on all tasks, particu-
larly on grasp types feasibility prediction and GO estimation with a 3.6% difference in F1 score, and
1.6 % in MAE. Finally, training the full model from scratch, rather than pre-training each module
before fine-tuning the complete network, yields a slightly lower performance across all tasks.

6.3 GENERALIZABILITY EVALUATION

Applicability to other robots. Table 1 shows our model’s performance on the PR2-3D-4 compared
to prior methods. The results show that GRN achieves a better performance than the state-of-the-art
on robots with various kinematics. A consistent decrease in performance can be noticed across all
methods (ours included), compared to when trained on the Panda-3D-4 dataset. This is due to the
smaller number of training data of the PR2 dataset and the harder kinematics of the PR2 robot.

Generalizability to more complex environments. Table 4 reports the performance of our method
and the baselines on the Panda-3D-10, Panda-3D-15 and Panda-3D-20 test sets, when trained on
the Panda-3D-4 dataset. Results show that, although there is a decrease in F1-scores compared to
the one obtained on Panda-3D-4, GRN maintains a good performance on 3D environments with a
higher number of fixed and movable objects, with an F1-score on Panda-3D-20 of 0.89 for action
feasibility prediction, and 0.903 for grasp types feasibility prediction. Particularly, our model shows
a better generalization capability on the latter than previous CNN-based or GNN-based methods.

6.4 APPLICATION TO TASK AND MOTION PLANNING

Although the integration of our method into a task and motion planner is outside the scope of this
paper, we develop a simple single-shot planner (cf. Appendix C.1) to showcase the power of GRN’s
predictions and its interpretation mechanisms, as well as the planning performance gain yielded by
our approach. From a single query to GRN, it proposes a geometrically feasible plan to a class
of manipulation planning problems, where the goal is to move a single object initially placed in
a complex setting. We compare this algorithm to the non-informed TAMP planner proposed by
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Table 4: Evaluation of the generalizability to 3D environments with a higher number of objects
compared to SOTA methods, when trained on the Panda-3D-4 dataset.

Test set Panda-3D-10 Panda-3D-15 Panda-3D-20
Task Action (F1) Grasp (F1) Action (F1) Grasp (F1) Action (F1) Grasp (F1)
MLP 0.773 0.624 (± 0.028) 0.766 0.616 (± 0.046) 0.768 0.609 (± 0.047)
DVH 0.820 0.697 (± 0.115) 0.819 0.686 (± 0.127) 0.825 0.676 (± 0.140)

AGFPNet 0.858 0.770 (± 0.079) 0.862 0.768 (± 0.078) 0.864 0.755 (± 0.087)
F-GCN 0.794 0.633 (± 0.036) 0.771 0.595 (± 0.044) 0.764 0.565 (± 0.055)
F-GAT 0.829 0.738 (± 0.026) 0.826 0.725 (± 0.032) 0.825 0.715 (± 0.038)

GRN (Ours) 0.894 0.909 (± 0.012) 0.891 0.906 (± 0.013) 0.890 0.903 (± 0.012)

Table 5: Performance of GRN planner compared to a non-informed planner on the Access and
Clutter problems. Results are average over 10 runs on 10 different instances of each problem.

Problem Method Success Planning Nb Geometric
Rate (%) time (s) Planner Calls

Access Bouhsain et al. (2024) 100% 26.5 41.1
GRN planner 90% 3.17 6

Clutter Bouhsain et al. (2024) 100% 558.9 89.5
GRN planner 100% 14.8 7.2

Bouhsain et al. (2024) on two different problems shown in Figure 1. The first is the Access problem,
where a single Panda robot has to move a small bottle, to which a number of fixed and movable
objects block access. The second is a multi-robot Clutter problem, in which both arms of the PR2
robot can collaborate to pick an object surrounded by grasp-obstructing objects. Objects used in
these problems are a mix of box-shaped and mesh objects. Table 5 shows that despite its simplicity,
the GRN-based planner not only achieves a 90% and 100% success rate but also reduces planning
time by 88% on the Access problem, and 97% on the Clutter problem. This is possible thanks to
the two interpretation mechanisms, which allow the planner to reason over why an action or a grasp
type is infeasible, and recursively decide which objects should be moved to rectify that. We also test
GRN planner in real-world setups, on both a Panda and a PR2 robots. Objects’ poses are estimated
using a separate perception module. The proposed model is able to accurately predict action and
grasp feasibility, as well as reasons of infeasibility, from estimated objects’ poses in both setups,
allowing the planner to compute feasible solutions that are successfully executed by the robots.

7 DISCUSSION AND FUTURE WORK

In this work, we propose a framework for action and grasp feasibility prediction in 3D environments.
Leveraging a GNN-based neural network and two interpretation mechanisms, our model predicts the
feasibility of pick or place actions, different grasp types, and the infeasibility cause for each grasp
type from a scene graph representation. Results demonstrate that our approach outperforms state-
of-the-art methods, generalizing better to complex environments and robots. Additionally, through
IK feasibility and grasp obstruction predictions, a class of manipulation planning problems can be
solved with a single query to our model, significantly reducing planning time compared to traditional
TAMP planners. Our design also enables straightforward extensions to diverse object shapes via
bounding boxes and multi-robot feasibility predictions due to the robot-centric nature of GRN.

Currently, our method is limited to infeasibility caused by missing IK solutions or grasp obstructions,
and it struggles with problems stemming from infeasible robot motion. Future work will include
graph pooling layers to evaluate motion infeasibility across the entire scene graph. Additionally,
grasp obstructions are currently estimated as a blocked ratio, which does not indicate which grasps
are obstructed. Representing obstructions as blocked object regions could improve interpretability.
While bounding boxes work well for common objects, they face challenges with large or complex
shapes. A potential extension is using multi-bounding box representations, treating sub-boxes as
separate nodes. Alternatively, embeddings from off-the-shelf shape encoders (e.g., meshes or point
clouds) could enhance node features, though computational efficiency remains a challenge. Finally,
we also aim at integrating our model into a more sophisticated TAMP algorithm.
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A IMPLEMENTATION DETAILS

Scene Graph Construction. Scene graphs are built using the graph representation from Pytorch
Geometric (Fey & Lenssen, 2019). Nodes correspond to fixed and movable objects from the en-
vironment. Self-edge loops are added for nodes corresponding to movable objects. When adding
proximity edges, since evaluating the distance between two objects closest points can be computa-
tionally expensive, we consider two objects O and O′ as neighbors if the euclidean distance between
their centers is lower than a threshold ϵ = rO + rO′ +K, where rO and rO′ are the bounding cylin-
der radii of O and O′ respectively, and K is constant set to 0.6. This constant is chosen as twice the
length of the last link of the robot. Using this definition, the neighborhood of an object is easy to
compute and captures enough of its surroundings for accurate action/grasp feasibility prediction.

Model Architecture. The IK feasibility prediction and GO estimation modules are 4-Layer MLPs
with a hidden size of 512. The AGF module, on the other hand, has a hidden size of 256, 4 attention
heads and one message-passing step. Exceptionally, when training on the PR2-3D-4 dataset, we use
a hidden size of 256 for the GO module as it yields better results.

Training Details. The three modules are implemented in Pytorch Geometric (Fey & Lenssen, 2019)
and trained using the Adam optimizer (Kingma, 2014). During the pre-training stage, each module
is trained for 100 epochs. We use a batch size of 8192 and a learning rate of 0.001 for the IK
feasibility classifier and the GO estimator. For AGF classifier, we set the batch size to 2048 and
the learning rate to 0.0001. During the fine-tuning stage, the complete GRN model is trained for
100 epochs with a batch size of 2048 and a learning rate of 0.0001. The model is trained on an
Intel(R) Xeon(R) W-2223 CPU @ 3.60GHz workstation, with an NVIDIA RTX A5000 GPU. The
full training process takes approximately 15 hours.

Inference Time Decomposition. Table 6 shows
the inference time decomposition of our proposed
model. The total inference time of GRN is 5.5 ms
in average, with the most significant portion spent
on scene graph construction with an average time
cost of 3 ms. During this step, time is mostly spent
on evaluating the distance between pairs of objects
to add proximity edges between their correspond-
ing nodes. The IK feasibility and GO modules take
each a computation time of 0.5 ms. Finally, the AGF
module takes 1.5 ms to output the action and grasp
feasibility prediction modules.

Table 6: Decomposition of the inference time
of GRN on a 3D environment with 4 mov-
able objects and 15 fixed objects.

Step Inference Time
Scene Graph Construction 3 ms
IK Feasibility Module 0.5 ms
GO Module 0.5 ms
AGF Module 1.5 ms
Total 5.5 ms

Figure 3: Visualization of the different types of structures used during data generation.
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B DATA GENERATION AND ANNOTATION METHOD

Data Generation. Our data generation process consists of generating a number of 3D environments
containing a random number of support surfaces, movable objects and obstacles within a specified
range. We define 4 types of structures as shown in Figure 3: (1) a rack which is a structure containing
a varying number of shelves separated by a gap, and a holder on each side or each corner, (2) a bar
which is a L-shaped structure with one support surface and one holder, (3) a basket which consists
of a support surface and 4 sides surrounding it, and (4) a counter which is a large block. When
generating an environment, we first randomly sample a number of structures within the specified
range. We then choose one of the predefined structures, before randomly sampling its dimensions
and pose. After collision checking using the FCL library (Pan et al., 2012), all objects composing
the structure are added to the environment as fixed objects. These can be either support surfaces or
obstacles (e.g holders). This process is repeated until the number of structures sampled is reached.

Given the fact that our approach represents objects using their bounding boxes, it is sufficient to gen-
erate a dataset consisting of box-shaped objects only. After sampling a number of movable objects
to add, we randomly sample the dimensions of the object with a specified range. In order to incorpo-
rate difficulties encountered in real-world scenarios, we define three methods for object placement
sampling: (1) the first is random placement in which a support surface and a pose within its bounds
are randomly sampled, (2) proximity placement in which the object is placed in the neighborhood
of a randomly chosen object, (3) the third is the underneath placement in which the object is placed
underneath a randomly chosen support surface. We check the sampled object placement for colli-
sions before adding it to the environment. We then repeat the process until the sampled number of
movable objects is reached. Finally, a number of fixed box-shaped obstacles is randomly added to
the scene, before storing it.

Figure 4: Visualization of generated environments from the (top) Panda-3D-4, (middle) Panda-3D-
20, and (bottom) PR2-3D-4 test sets
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Using this method, we generate the datasets presented in Section 5.1. The Panda-3D-4 dataset
consists of a training set containing 70’000 scenes, a validation set of 10’000 scenes, and a test set of
20’000 scenes, each one generated using a different random seed to ensure that the environments are
different across all three sets. The Panda-Tabletop-4 and PR2-3D-4 are each composed of 25’000
training scene, 5’000 validation scenes and 10’000 test scenes. Figure 4 shows environments from
different datasets.

Data Annotation. Data annotation can be done using any off-the-shelf geometric planner. In this
work, we use an adapted version of Moveit Task Constructor (Görner et al., 2019), with the KDL plu-
gin for IK computation, FCL (Pan et al., 2012) for collision checking and, Bidirectional Transition-
Based Rapid Random Tree (Devaurs et al., 2013) for motion planning. Since pick and place actions
are symmetrical, they can be considered as equivalent. Thus, we only annotate pick actions. Also,
we do not focus on trivial infeasibility cases due to the object being larger than the gripper. Hence,
during annotation, we allow collisions between the object to pick and the gripper fingers. This also
allows the handling of mesh objects such as a mug or a wine glass, for which feasible grasps exist
even if the bounding box is larger than the gripper’s maximum width.

For each movable object in a generated environment, we query the geometric planner to plan a
pick action from its placement in the environment. First, we uniformly sample a number of grasps
depending on the size of the object. For each sampled grasp, we compute up to 8 IK solution,
which are then checked for collisions. Finally, the motion planner is queried for each collision-free
IK solution until a feasible collision-free trajectory is found. If a solution is found, the action is
annotated as feasible. In parallel, we set the feasibility label of each grasp type g ∈ G to 1 if at least
one grasp in g is feasible. Similarly, we set the IK feasibility label of a grasp type to 1 if at least one
grasp belonging to it has a valid inverse kinematics solution. Finally, we record all grasp-obstructing
objects as well as the ratio of grasps obstructed per grasp type. Data annotation takes approximately
68 hours to complete on the Panda-3D-4 dataset.

Figures 5 and 6 show the distributions of obtained labels for the Panda-3D-4 and PR2-3D-4 training
sets. For the former, the action feasibility annotations are balanced, while grasp types feasibility
is imbalanced with more infeasible cases. Regarding reasons of infeasibility, Figure 5c shows a
balanced distribution between failures due to IK feasibility and grasp obstructions. Cases where

(a) Number of feasible and infeasi-
ble actions

(b) Number of feasible and infeasi-
ble cases per grasp type

(c) Distribution of failure causes
per grasp type

Figure 5: Annotations statistics for the Panda-3D-4 training set.

(a) Number of feasible and infeasi-
ble actions

(b) Number of feasible and infeasi-
ble cases per grasp type

(c) Distribution of failure causes
per grasp type

Figure 6: Annotations statistics for the PR2-3D-4 training set.
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infeasibility is due to motion planning failure, on the other hand, appear rarely in the dataset. The
PR2-3D-4 dataset has a more pronounced imbalance towards infeasibility, the latter being caused
more often by the absence of inverse kinematics solutions than grasp obstructions, showcasing the
more complex kinematics of the PR2 robot.

C APPLICATION TO TAMP

C.1 GRN PLANNING ALGORITHM

Algorithm 1 shows the pseudo-code for the GRN-based planner. Given the GRN predictions on
the initial state of the environment, a feasibility threshold and a grasp obstructions threshold, it
recursively builds a task plan by moving objects when it is feasible, or trying to free access to grasp
types based on grasp obstruction and IK feasibility information otherwise. Once a task plan is found,
we query the geometric planner used during data annotation to verify its geometric feasibility, and
plan the corresponding robot motions. For simplicity, Algorithm 1 shows the planner used for the
single robot problem only. For the multi-robot Clutter problem using both arms of the PR2 robot,
we choose the robot with the higher feasibility prediction to execute feasible actions. If an action is
infeasible for both arms, we consider both of them when trying to free grasp types.

Algorithm 1 GRNPlanner
Input: Fa,FG ,κG ,ρG , TF , TGO,O ▷ GRN predictions, feasibility threshold, grasp obstruction threshold, desired object
1: plan← []
2: if Fa(O) > TF then
3: feasibleGrasps = ∅
4: for each g ∈ G such that Fg(O) > TF do
5: feasibleGrasps← feasibleGrasps ∪ g
6: end for
7: plan.append(Move(O, feasibleGrasps))
8: return plan
9: else
10: BlockersPerGraspType← [∅ ∀g ∈ G]
11: freeableGraspTypes← G
12: for each g ∈ G do
13: if κg(O) < TF then
14: freeableGraspTypes← freeableGraspTypes \ g
15: else
16: forO′ ∈ N (O) such that ρg(O,O′) > TGO do
17: ifO′ is fixed then
18: freeableGraspTypes← freeableGraspTypes \ g
19: break
20: else
21: BlockersPerGraspType[g]← BlockersPerGraspType[g] ∪ O′

22: end if
23: end for
24: end if
25: end for
26: if freeableGraspTypes is empty then
27: return []
28: else
29: for each g ∈ freeableGraspTypes do
30: subplan← []
31: graspTypeFreed← True
32: for eachO′ ∈ BlockersPerGraspType[g] do
33: result← GRNPlanner(Fa,FG ,κG ,ρG , TF , TGO,O′)
34: if result is empty then
35: graspTypeFreed← False
36: break
37: else
38: subplan.append(result)
39: end if
40: end for
41: if graspTypeFreed is True then
42: plan.append(subplan)
43: return plan
44: end if
45: end for
46: if graspTypeFreed is False then
47: return []
48: end if
49: end if
50: end if
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Figure 7: Rollout of the solution found by the GRN-based planner on the Access problem.

Figure 8: Rollout of the solution found by the GRN-based planner on the Clutter problem.
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C.2 REAL-WORLD EXPERIMENTS

We test the GRN-based planner in two real-world setups, using a Panda arm and a PR2 robot. We
use a perception module based on Overworld (Sarthou, 2023) to identify objects and estimate their
poses. The shapes of the object are known and are not subject to detection. The GRN-based planner
was able to generate geometrically feasible plans on both the Access and Clutter problems, which
were successfully executed by the robots. Figures 7 and 8 show the rollouts of both executions.
In the Access problem, the desired task is simply to pick and place the bottle object, the planner
has to find the solution plan that needs to move all obstructing objects to get the bottle. In the
Clutter problem, the goal is to simply pick the object in the middle of the clutter and place it at the
center of the table. In the same way, the planner has to find a solution that frees one of the grasp
types of the object first. Although these tasks might seem simple, they represent challenging TAMP
problem with high combinatorial complexity. Indeed, in both problems, multiple objects not only
block access to the goal object, they also block access to each other. The number of geometrically
feasible solutions is very limited, requiring the planner to find the specific order in which to move
the objects and which grasp to choose at each step. As shown in Figures 7 and 8, the Access problem
requires 6 Pick-Place actions to be solved, while the Clutter problem requires 7 Pick-Place actions
to be solved.

C.3 ADDITIONAL SIMULATION EXPERIMENTS

Access problem with a large number of objects. We conduct an additional experiment in simu-
lation to test the scalability of our method to problems requiring long-horizon planning. As in the
previous problems, the goal is to move a single object (shown in pink in Figure 9), to which a total
of 27 objects block access. This task requires removing at least 18 objects to access the desired one,
resulting in a total of 19 necessary Pick-Place actions. Figure 9 shows GRN’s predictions on the
initial state of this problem. The model accurately predicts that, initially accessing the desired object
is infeasible, and that only two blockers can be moved, using a single grasp type each. For simplic-
ity, we show the obtained reasons of infeasibility of the pink object only. However, after the same
initial query, our model also predicts the reasons of infeasibility for all the blockers as well. The
non-informed TAMP algorithm from Bouhsain et al. (2024) completely fails to solve this problem,
even after 2 hours of planning, while the GRN-based planner find a feasible solution in under 15s.

Figure 9: Visualization of GRN predictions on the initial state of a larger version of the Access
problem.

Inter-robot Handover. Our proposed approach can also be used to predict the feasibility of han-
dover actions between two robots. Indeed, given the robot-centric nature of our model, we can divide
a handover action into two separate Pick-Place actions, and query GRN for each robot individually
to predict the feasibility of each sub-action. One of the main challenges of handover tasks is to
determine where to perform the object exchange. Our model can be used to efficiently find feasible
handover positions by evaluating different sampled positions. In order to showcase this ability, we
define the Handover problem, in which two Panda robots have to perform a handover task for a
single object. A wall separates the two robots leaving only 3 ”windows” through which the object
can be exchanged. We sample a number of potential handover positions that lie in the intersection
between the two robots workspaces, and query GRN to evaluate their feasibility. As shown in Figure
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Figure 10: Visualization of GRN predictions on different sampled handover positions in the Han-
dover problem.

10, our model is able to accurately predict that the wall blocks most of the sampled positions, and
that only those in front of the windows are feasible. One key advantage of our method is that all the
sampled positions can be evaluated simultaneously by adding a node to the input scene graph for
each one, while making sure that proximity edges are not created between these nodes. This enables
an efficient search for feasible handover positions, requiring a single query to GRN. In contrast,
traditional methods need to query the geometric planner for each sampled position independently,
resulting in long planning times.

D INTERPRETABILITY ANALYSIS

To assess the interpretability of our model, we conduct an evaluation using a 3D environment con-
taining two objects of interest for which the action and grasps are initially infeasible, as illustrated
in Figure 11. Based on GRN’s predicted infeasibility causes, we systematically modify the envi-
ronment to observe how our model’s predictions change in response. This allows us to evaluate the
interpretability of our method by showcasing how the predicted reasons of infeasibility explain ac-
tion and grasp feasibility predictions, and how changing the input scene based on these infeasibility
causes affects the outputs of the model.

Figure 11a shows GRN’s predictions on the initial 3D environment, and the predicted reasons of
infeasibility for the first object of interest. For simplicity, we show infeasibility causes for the Top
and Rear grasp types only. The obtained predictions show that the action involving the object of
interest is infeasible, with Top grasps being obstructed by the shelf, while Rear grasps are obstructed
by two movable objects. Figure 11b shows that increasing the height of the shelf removes the
obstruction of the Top grasp type, with GRN predictions indicating that Top grasps and the action
are now feasible. For the Rear grasp type, Figure 11c shows that removing only one of the two
obstructing objects does not make the grasp type feasible. Removing the second object as well is
necessary to allow access to the object of interest, as shown in Figure 11d.

Regarding the second object of interest, the corresponding reasons of infeasibility are shown in
Figure 11e. Due to the object’s unreachability by the robot, all grasp types are infeasible due to the
absence of IK solutions. Figure 11f shows that decreasing the distance between the object and robot
allows reachability, with GRN predictions showing that the action as well as the Top and Rear grasp
types become feasible.

This evaluation demonstrates GRN’s strong interpretability capabilities. By predicting specific in-
feasibility causes, namely grasp obstructions and IK infeasibility, our model’s feasibility predictions
are not only informed, but also interpretable. Moreover, these explanations provide actionable in-
sights into how modifying the environment affects feasibility. Its outputs consistently align with
expected changes, sustaining GRN’s reliability and coherence. These interpretability features are
critical for real-world task and motion planning, where understanding the reasons behind infeasibil-
ity is as important as the feasibility predictions themselves.
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(a) An action involving the object of interest is infeasible, Top grasps are obstructed by the shelf, Rear grasps
are obstructed by two movable objects.

(b) With a higher shelf height, Top grasps become feasible, which makes the action feasible

(c) Removing only one of the two obstructing objects does not free access to the object via Rear grasps

(d) Removing both obstructing objects makes Rear grasps feasible, hence the action becomes feasible

(e) The object of interest is unreachable by the robot, making the action and grasps infeasible due to the absense
of IK solutions

(f) Making the object closer to the robot allows reachability, thus the action and grasps become feasible.

Figure 11: Interpretability evaluation of GRN’s predictions on an example 3D environments.
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E ROBUSTNESS TO NOISE

We evaluate the robustness of GRN by introducing varying levels of noise to the input data. Specifi-
cally, noise is added to the node features, i.e. the dimensions and poses of all objects in the environ-
ment. The noise is sampled from a normal distribution with the following parameters: (i) 1cm, 1°
Noise Level: Noise with a mean of 0 and a standard deviation of 1 cm for bounding box dimensions
and translation coordinates, and 1° for object orientation, (ii) 2cm, 2° Noise Level: Noise with a
mean of 0 and a standard deviation of 2 cm for bounding box dimensions and translation coordi-
nates, and 2° for object orientation. Table 7 presents the performance of GRN on the Panda-3D-4
test set under these noise conditions.

Table 7: Performance of GRN on the Panda-3D-4 test set with different levels of noise.

No Noise 1cm, 1° 2cm, 2°
Action (F1) 0.939 0.912 0.864
Grasp (F1) 0.940 (± 0.009) 0.891 (± 0.020) 0.820 (± 0.029)
IK (F1) 0.995 (± 0.001) 0.985 (± 0.001) 0.971 (± 0.002)
GO (MAE) 0.028 (± 0.003) 0.039 (± 0.003) 0.057 (± 0.003)

While there is a slight decrease in performance as noise levels increase, GRN maintains a good
accuracy in both action and grasp feasibility predictions. Importantly, even under the highest noise
condition (2 cm, 2°), our method still achieves a better performance than the one yielded by most
baselines on noise-free inputs, shown in Table 1. More precisely, under both noise levels, GRN
outperforms MLP, DVH and F-GCN on action and grasp feasibility prediction, even when these
baselines are given noise-free inputs. Under the (1cm, 1°) noise level, our model also provides
more accurate predictions than the ones obtained by AGFPNet and F-GAT under zero noise. Under
the highest noise level, GRN achieves similar performance to noise-free F-GAT and a slightly
worse performance than zero-noise AGFPNet on action feasibility prediction, but still yields a better
performance than both on grasp type feasibility prediction. Also, comparing standard deviations
shows that even when noise is applied, GRN results in a more consistent prediction quality across
grasp types.

Furthermore, we highlight that in addition to a better accuracy under different noise level, our model
also provides richer information thanks to our two interpretation modules. Table 7 shows that GRN
maintains a good performance across noise levels on IK feasibility and Grasp Obstruction (GO)
predictions as well. These results emphasize the robustness of GRN to real-world imperfections,
while still delivering state-of-the-art performance compared to other methods.

F VISUALIZATIONS

In this section, we present a visual comparison between the predictions of our model, GRN, and
the ground truth. Figure 12 illustrates GRN’s predictions in a test environment from Panda-3D-
4, while Figure 13 showcases predictions from Panda-3D-10. In these figures, action feasibility
predictions and ground truth are represented through object colors in the top images: green indicates
feasibility for pick or place actions, while red denotes infeasibility. The feasibility of different
grasp types is visualized through the coloration of the corresponding object’s faces. Finally, the
reasons of infeasibility are shown for one of the objects in the environment (in blue), for each grasp
type. There are two types of infeasibility causes, IK infeasibility (with the robot depicted in red)
and grasp obstructions (where obstructing objects are displayed in full opacity, with their colors
reflecting obstruction ratios). These comparisons highlight that GRN accurately predicts action
and grasp feasibility for most objects. It also effectively identifies the reasons for infeasibility and
estimates grasp obstruction ratios with minimal error. A notable exception occurs in the 10-object
environment, where the Rear grasp type of one object is incorrectly classified as infeasible. Figure
13 details the predicted infeasibility reasons for this misclassification. A closer examination of the
corresponding Rear grasp type plot reveals a slight overestimation of the obstruction ratio for a
large block, which likely contributes to the error. However, GRN correctly predicts the feasibility of
other grasp types for the same object, including the feasible Top grasp type, ensuring accurate action
feasibility predictions overall.
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Figure 12: Visualization of GRN prediction compared to the ground truth on a test environment
from Panda-3D-4.
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Figure 13: Visualization of GRN prediction compared to the ground truth on a test environment
from Panda-3D-10.
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