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A APPENDIX

A.1 PROOF OF THEOREM 1

Proof. First we show that the SMB step for each parameter group p can be expressed a special
quasi-Newton update. For brevity, let us use sk, stk, gk, gtk, and yk instead of sk,p, stk,p, gk,p, gtk,p,
and yk,p, respectively. Recalling the definitions of ✓ and � given in (5), observe that
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Therefore, we have
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Now, it is easy to see that
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Thus, for each parameter group p, we define
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where

�p = kgk,pkkyk,pk+
1

⌘
kgk,pk

2 + y>k,pgk,p, �p = �p � y>k,pgk,p, and �p = (�2
p � kgk,pk

2
kyk,pk

2).

Now, assuming that we have the parameter groups {p1, . . . , pn}, the SMB steps can be expressed as
a quasi-Newton update given by

xk+1 = xk � ↵kHkgk,
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where

Hk =

⇢
I, if the Armijo condition is satisfied;
diag(Hk,p1 , . . . , Hk,pn), otherwise.

Here, I denotes the identity matrix, and diag(Hk,p1 , . . . , Hk,pn) denotes the block diagonal matrix
with the blocks Hk,p1 , . . . , Hk,pn .

We next show that the eigenvalues of the matrices Hk, k � 1, are bounded from above and below
uniformly which is, of course, obvious when Hk = I . Using the Sherman-Morrison formula twice,
one can see that for each parameter group p, the matrix Hk,p is indeed the inverse of the positive
semidefinite matrix
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and hence, it is also positive semidefinite. Therefore, it is enough to show the boundedness of the
eigenvalues of Bk,p uniformly on k and p.

Since gk,py>k,p + yk,pg>k,p is a rank two matrix, �p/kgk,pk2 is an eigenvalue of Bk,p with multiplicity
n� 2. The remaining extreme eigenvalues are
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with the corresponding eigenvectors kyk,pkgk,p + kgk,pkyk,p and kyk,pkgk,p � kgk,pkyk,p, respec-
tively.

Observe that,
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Thus, the smallest eigenvalue Bk,p is bounded away from zero uniformly on k and p.

Now, by our assumption of Lipschitz continuity of the gradients, for any x, y 2 Rn and ⇠k, we have

kg(x, ⇠k)� g(y, ⇠k)k  Lkx� yk.

Thus, observing that kyk,pk = kgtk,p � gk,pk  Lkxt
k,p � xk,pk  ↵kLkgk,pk, we have
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This implies that the eigenvalues of Hk,p = B�1
k,p are bounded below by 1/(⌘�1 + 2L↵max) and

bounded above by 1 uniformly on k and p. This result, together with our assumptions, shows that
steps of the SMBi algorithm satisfy the conditions of Theorem 2.10 in (Wang et al., 2017) with
 = 1/(⌘�1 + 2L↵max) and  = 1 and Theorem 1 follows as a corollary.
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