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A APPENDIX

A.1 PROOF OF THEOREM[T]

Proof. First we show that the SMB step for each parameter group p can be expressed a special
quasi-Newton update. For brevity, let us use s, sk, gk, gk, and yj, instead of sy, , sfmp, The.ps g,tc,p,
and ;. ,,, respectively. Recalling the definitions of ¢ and J given in , observe that
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Now, it is easy to see that
sk = Cg(0)gr + ¢y (8)yr + ¢5(6)s},
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Thus, for each parameter group p, we define
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where
1
op = llgr.pllllyr.pll + Ellgk,pll2 + Yk pIkps Bp = 0p = Y pIhps a0 % = (B = llgrep* Ym0 1%)-
Now, assuming that we have the parameter groups {p1, . .., Pn }, the SMB steps can be expressed as

a quasi-Newton update given by
T4l = Tk — o Hygr,
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where
1, if the Armijo condition is satisfied;
"~ \diag(Hy.p,, .-, Hy,p,), otherwise.
Here, I denotes the identity matrix, and diag(H kpis -+ H k,pn) denotes the block diagonal matrix

with the blocks Hy, ;. , ..., Hi p,, .

We next show that the eigenvalues of the matrices Hy, k > 1, are bounded from above and below
uniformly which is, of course, obvious when Hj, = I. Using the Sherman-Morrison formula twice,
one can see that for each parameter group p, the matrix Hy, ,, is indeed the inverse of the positive
semidefinite matrix

Bip = (00 = GrpYi p — YkpTn.p)s

lgr.pll?

and hence, it is also positive semidefinite. Therefore, it is enough to show the boundedness of the
eigenvalues of By, ;, uniformly on k and p.

Since i pYx , + Yr.pda,p 15 a rank two matrix, oy /|| g p[|” is an eigenvalue of By, ;, with multiplicity
n — 2. The remaining extreme eigenvalues are
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with the corresponding eigenvectors |yx | gk.p + [|9k.pl|Yx.p a0d |Yk pllgr.p — |9k p Yk, p- respec-
tively.

Observe that,
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Thus, the smallest eigenvalue By, ;, is bounded away from zero uniformly on & and p.

Now, by our assumption of Lipschitz continuity of the gradients, for any z,y € R™ and §, we have

lg(z, &) — g(y, &)l < Lz -y
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This implies that the eigenvalues of Hy, , = By’ 11) are bounded below by 1/(n™! + 2Laq,) and
bounded above by 1 uniformly on k& and p. This result, together with our assumptions, shows that
steps of the SMBi algorithm satisfy the conditions of Theorem 2.10 in (Wang et al.| [2017) with
£=1/(n"'+2Lama,) and K = 1 and Theoremfollows as a corollary. O
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