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ABSTRACT

Speech quality estimation has recently undergone a paradigm shift from human-
hearing expert designs to machine-learning models. However, current models
rely mainly on supervised learning, which is time-consuming and expensive for
label collection. To solve this problem, we propose VQScore, a self-supervised
metric for evaluating speech based on the quantization error of a vector-quantized-
variational autoencoder (VQ-VAE). The training of VQ-VAE relies on clean speech;
hence, large quantization errors can be expected when the speech is distorted.
To further improve correlation with real quality scores, domain knowledge of
speech processing is incorporated into the model design. We found that the vector
quantization mechanism could also be used for self-supervised speech enhancement
(SE) model training. To improve the robustness of the encoder for SE, a novel
self-distillation mechanism combined with adversarial training is introduced. In
summary, the proposed speech quality estimation method and enhancement models
require only clean speech for training without any label requirements. Experimental
results show that the proposed VQScore and enhancement model are competitive
with supervised baselines. The code and pre-trained models will be released.

1 INTRODUCTION

Speech quality estimators are important tools in speech-related applications such as text-to-speech,
speech enhancement (SE), and speech codecs, etc. A straightforward approach to measure speech
quality is through subjective listening tests. During the test, participants are asked to listen to audio
samples and provide their judgment (for example, on a 1 to 5 Likert scale). Hence, the mean opinion
score (MOS) of an utterance can be obtained by averaging the scores given by different listeners.
Although subjective listening tests are generally treated as the "gold standard," such tests are time-
consuming and expensive, which restricts their scalability. Therefore, objective metrics have been
proposed and applied as surrogates for subjective listening tests.

Objective metrics can be categorized into handcrafted and machine learning-based methods. The
handcrafted metrics are typically designed by speech experts. Examples of this approach include
the perceptual evaluation of speech quality (PESQ) (Rix et al., 2001), perceptual objective listening
quality analysis (POLQA) (Beerends et al.| | 2013), virtual speech quality objective listener (ViSQOL)
(Chinen et al., 2020), short-time objective intelligibility (STOI) (Taal et al.,[2011), hearing-aid speech
quality index (HASQI) (Kates & Arehart, 20144a), and hearing-aid speech perception index (HASPI)
(Kates & Arehart, 2014b)), etc. The computation of these methods is mainly based on comparing
degraded speech with its clean reference and hence belongs to intrusive metrics. The requirement for
clean speech references significantly hinders their application in real-world conditions.

Machine-learning-based methods have been proposed to eliminate the dependence on clean speech
references during inference and can be further divided into two categories. The first attempts to
non-intrusively estimate the objective scores mentioned above (Fu et al., 2018} |Dong & Williamson)
2020; Zezario et al., [2020; |Catellier & Voran, 2020; [Yu et al.| [2021b; [Xu et al., [2022; |[Kumar et al.|
2023)). However, during training, noisy/processed and clean speech pairs are still required to obtain

*Internship at NVIDIA



Published as a conference paper at ICLR 2024

the objective scores as model targets. For example, Quality-Net (Fu et al.|2018) trains a bidirectional
long short-term memory (BLSTM) with frame-wise auxiliary loss to predict the PESQ score. Instead
of treating it as a regression task, MetricNet (Yu et al., 2021b)) estimates the PESQ score using a
multi-class classifier trained by the earth mover’s distance (Rubner et al., 2000). MOSA-Net (Zezario
et al.;,|2022) is an unified model that simultaneously predict multiple objective scores such as PESQ,
STOI, HASQI, and source-to-distortion ratio (SDR). NORESQA (Manocha et al., 2021) utilizes
non-matching references to predict relative speech assessment scores (i.e., the signal-to-noise ratio
(SNR) and scale-invariant SDR (SI-SDR) (Le Roux et al.| 2019)). Although these models release
the requirement of corresponding clean reference during inference, their training targets (objective
metrics) are generally not perfectly correlated with human judgments (Reddy et al.,[2021b).

The second category of machine-learning-based methods (Lo et al.,[2019; |Leng et al., 2021; Mittag
et al., 2021; Tseng et al.} 2021} |Reddy et al.,|2021bj [2022; Tseng et al., 2022 Manocha & Kumar,
2022)) has been proposed to solve this problem by using speech and its subjective scores (e.g., MOS)
for model training. VoiceMOS challenge (Huang et al., [2022) is targeted for automatic prediction
of MOS for synthesized speech. DNSMOS (Reddy et al.l [2021b; [2022) is trained on large-scale
crowdsourced MOS rating data using a multi-stage self-teaching approach. MBNet (Leng et al.,[2021)
consists of MeanNet, which predicts the mean score of an utterance, and BiasNet, which considers
the bias caused by listeners. NORESQA-MOS (Manocha & Kumar;, [2022) leverages pre-trained
self-supervised models with non-matching references to estimate the MOS and was recently released
as a package in TorchAudio (Kumar et al., 2023).

However, to train a robust quality estimator, large-scale listening tests are required to collect paired
speech and MOS data for model supervision. For example, the training data for DNSMOS P.835
(Reddy et al., 2022)) was 75 h. NORESQA-MOS (Manocha & Kumar, 2022} was trained on 7,000
audio recordings and their corresponding MOS ratings. In addition to the high cost of collecting
training data, these supervised models may exhibit poor generalizability to new domains (Maiti et al.}
2022). To address this issue, the SpeechLMScore (Maiti et al., 2022)), an unsupervised metric for
evaluating speech quality using a speech-based language model, was proposed. This metric first
maps the input speech to discrete tokens, and then applies a language model to compute its average
log-likelihood. Because the language model is trained only on clean speech, a higher likelihood
implies better speech quality.

Inspired by SpeechLMScore, we investigated unsupervised speech quality estimation in this study,
but used a different approach. Our method was motivated by autoencoder-based anomaly detection
(An & Cho, [2015)). Because the autoencoder is trained only on normal data, during inference, we
expect to obtain a low reconstruction error for normal data and a large error for abnormal data. |[Kim
(2017)) applied a speech autoencoder, whose input and output were trained to be as similar as possible
if inputs clean speech, to select the most suitable speech enhancement model from a set of candidates.
Although (Soni & Patill, 20165 [Wang et al., 2019 |[Martinez et al., 2019)) also used autoencoders for
speech-quality estimation, the autoencoders in their works were only used for feature extraction.
Therefore, a supervised model and quality labels are still required. Other works, such as (Giri et al.,
2020; [Pereira et al., [2021}; Ribeiro et al.| [2020; [Hayashi et al., |2020; |Abbasi et al., |2021) mainly
applied autoencoders for audio anomaly detection.

Our proposed quality estimator is based on the quantization error of VQ-VAE (Van Den Oord
et al., 2017), and we found that VQ-VAE can also be used for self-supervised SE. To align the
embedding space, Wang et al.|(2020) applied cycle loss to share the latent representation between
clean autoencoder and mixture autoencoder. Although paired training data is not required for their
model training, noisy speech and noise samples are still needed. On the other hand, we achieve
representation sharing through the codebook of VQ-VAE. In addition, by the proposed self-distillation
and adversarial training, the enhancement performance can be further improved.

2 METHOD

2.1 MOTIVATION

As mentioned in the previous section, the proposed speech quality estimator was motivated by
autoencoder-based anomaly detection. By measuring the reconstruction error with a suitable threshold,
anomalies can be detected even though only normal data are used for model training. In this study,
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Figure 1: Proposed VQ-VAE for self-supervised speech quality estimation and enhancement. The
Transformer blocks are only used for speech enhancement.

we go one step further based on the assumption that the reconstruction error and speech quality
may appear in an inverse proportion relationship (i.e., a larger reconstruction error may imply lower
speech quality). People usually rate the speech quality based on an implicit comparison to what clean
speech should sound. The purpose of training the VQ-VAE with a large amount of clean speech
is to guide the model in building its own image of clean speech (stored in the codebook). In this
study, we conducted a comprehensive investigation to address the following questions: 1) Which
metric should be used to estimate the reconstruction error? 2) Where should reconstruction error be
measured?

While developing a self-supervised speech quality estimator, we also found a potential method for
training a speech enhancement model using only clean speech.

2.2 PROPOSED MODEL FRAMEWORK

The proposed model comprises three building blocks, as shown in Figure[T]

1) Encoder (E) maps the input spectrogram X € R¥*T onto a sequence of embeddings Z € R*7,
where F' and T are the frequency and time dimensions of the spectrogram, respectively, and d is the
embedding feature dimension.

We first treat the input spectrogram X as a T-length 1-D signal with F' channels, and then build
the encoder using a series of 1-D convolution layers, as shown in Figure|l| In this figure, k£ and ¢
represent the kernel size and number of output channels (number of filters), respectively. Note that
we apply instance normalization (IN) (Ulyanov et al.,|2016) to input X and after every convolutional
layer. We found that normalization is a critical step for boosting the quality estimation performance.
Between the IN and convolution layers, LeakyReLLU (Xu et al.l 2015)) was applied as an activation
function.
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To increase the model’s capacity for speech enhancement, two Transformer encoder layers were
inserted before and after the vector quantization module (as indicated by the dashed rectangles in
Figure [I), respectively. The standard deviation normalization used in IN is inappropriate for SE
because the volume information is also important for signal reconstruction. Therefore, we only
maintain the mean removal operation in IN for SE.

2) Vector quantizer () replaces each embedding Z; € R%*! with its nearest neighbor in the
codebook C' € RV where t is the index along the time dimension and V is the size of the
codebook. The codebook is initialized using the k-means algorithm on the first training batch as
SoundStream (Zeghidour et al., 2021)) and is updated using the exponential moving average (EMA)
(Van Den Oord et al., 2017). During inference, the quantized embedding Z,, € R is chosen from
V' candidates of the codebook, such that it has the smallest L, distance:

th = arg m1n||Zt — CU||2 (1)
c,eC

v

We can also normalize the embedding and codebook to have unit Ly norm before calculating the Lo
distance:

Z,, = argmin ||normpg,(Z;) — normg,(Cy)||2 )

c,eC

This is equivalent to choosing the quantized embedding based on cosine similarity (Yu et al.,[2021a}
Chiu et al.| [2022). These two criteria have their own applications. For example, Eq. (1) is suitable for
speech enhancement while Eq. (Z)) is good at modeling speech quality. We will discuss details in the
following sections.

3) Decoder (D), which generates a reconstruction of input X € R"*T from quantized embeddings
Z, € RT_ The decoder architecture is similar to the encoder as shown in Figure m

2.3  TRAINING OBJECTIVE

The training loss of the VQ-VAE includes three loss terms (Van Den Oord et al., 2017):

L = dist(X, X) +1s9(Z0) = Zg|l2 + Bl Zs — 59(Zq, )2 ©)

where sg(.) represents the stop-gradient operator. The second term is used to update the codebook,
where, in practice, the EMA is applied. The third term is the commitment loss, which causes the
encoder to commit to the codebook. In this study, the commitment weight 8 was set to 1.0 and 3.0 for
quality estimation and SE, respectively, based on the performance on validation set. The first term is
the reconstruction loss of the input X and output X. Conventionally, this is simply an L; or Ly loss.
However, for speech quality estimation, we applied negative cosine similarity as the distance metric.

The reason for using cosine similarity in Eqs. (2) and (3) for quality estimation is that we want
similar phonemes can be grouped in the same token of the codebook. Using cosine similarity can
ignore the volume difference and focus more on the content. For example, if we apply Lo loss to
minimize the reconstruction loss, louder and quieter ’a’ sounds may not be grouped into the same
code, which hinders the evaluation of speech quality.

2.4 VQSCORE FOR SPEECH QUALITY ESTIMATION

In conventional autoencoder-based anomaly detection, the criterion for determining an anomaly is
based on the reconstruction errors of the model input and output. In this study, we found that the
quantization error between Z and Z, can provide a much higher correlation with human hearing
perception. Note that being able to calculate the quantization error is a unique property of the
VQ-VAE that other autoencoders do not have. Because the VQ-VAE was trained only with clean
speech, its codebook can be treated as a high-level representation (e.g., phonemes) for speech signals.
Therefore, the similarity calculated in this space aligns better with subjective quality scores. The
proposed VQScore is hence defined as:

T
1
VQScore(cos,»)(X) = T E cos(Zy, Zg,) “)
=1

4
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where cos(.) is cosine similarity. (cos, z) in VQScore s, ) represents using the cosine similarity as
the distance metric and it is calculated in code space (z). We compare the performances of different
combinations (e.g., VQScore .os ) and VQScore(r, ), etc.) in the Section@of Appendix.

2.5 SELF-DISTILLATION WITH ADVERSARIAL TRAINING TO IMPROVE MODEL ROBUSTNESS
FOR SPEECH ENHANCEMENT

The robustness of the encoder to out-of-domain data (i.e., noisy speech) is the key to self-supervised
SE. Once the encoder can map the noisy speech to the corresponding tokens of clean speech, or
the decoder has the error correction ability, speech enhancement can be achieved. Based on this
observation, our proposed self-supervised SE model training contains 2 steps.

Step 1 (VQ-VAE training): Train a normal VQ-VAE using Eq. with clean speech. After the
VQ-VAE training converges, it will be served as a teacher model 7. In addition, initialize a student
model S from the weights of the teacher model. The self-distillation (Zhang et al.2019) mechanism
will be used for the next training step.

Step 2-1 (Adversarial attack): To further improve the robustness of the student model, its encoder
and decoder are fine-tuned by adversarial training (AT) (Goodfellow et al.,|2014} Bai et al., [2021})
with its codebook being fixed.

Instead of adding some predefined noise that follows a certain probability distribution (e.g., Gaussian
noise) to the input clean speech, the adversarial noise is applied, which is the most confusing noise to
the model for making incorrect token predictions. Given a clean speech X and the encoder of the
teacher model Ty, its quantized token Zr, can be obtained using Eq. . The adversarial noise § of
the encoder of the student model S.,,. can be found by solving the following optimization problem:

mng Lce(Senc(X + 5)7 ZTq |C) (5)

Because the token selection is based on the distance between the encoder output and the candidates
in the dictionary C, (i.e., Eq. (I))), we can formulate this process as a probability distribution based
on the distance and softmax operation (e.g., if the distance is smaller, it is more likely to be chosen).
Therefore, the cross-entropy loss L., in Eq. (3)) can be calculated as :

LS g Sencl X + 0 = Zr, 1)
T t=1 Zq‘;/:l exp(_H(Senc’(X + 5)75 - O’U||2)

The obtained noise § when adding to the clean speech X, will maximize the cross-entropy loss
between tokens from the student and teacher model.

Lce =

) (6)

Step 2-2 (Adversarial training): To improve the robustness of the encoder part of the student model,
the adversarial attacked input X + § will be fed into the student model and the weights are updated to
minimize the cross-entropy loss between its token predictions and the ground truth tokens provided
by the teacher model (with clean speech as input) using the following loss function:

min Lee(Sene(X + 6), Z1,|C) (7)

enc

In addition, to obtain a robust decoder of the student model, an L loss between clean speech and the
decoder output (with adversarial attacked tokens as inputs) is also applied. Experimental results show
that this will slightly improve the overall performance.

Steps 2-1 and 2-2 will be alternatively applied, and the student model serves as the final SE model.
3 EXPERIMENTS

3.1 TEST SETS AND BASELINES FOR SPEECH QUALITY ESTIMATION

The test set used for the speech quality estimation was obtained from the Conferencing Speech 2022
Challenge (Y1 et al., |2022). First, we randomly sampled 200 clips from IU Bloomington COSINE
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(IUB_cosine) (Stupakov et al.,|2009) and VOiICES (IUB_voices) (Richey et al.,|2018), individually.
For the VOICES dataset, acoustic conditions such as foreground speech (reference), low-pass filtered
reference (anchor), and reverberants were included. For the COSINE dataset, close-talking mic
(reference) and chest or shoulder mic (noisy) data were provided. The second source of the test set was
the Tencent corpus, which included Chinese speech with (Tencent_wR) and without (Tencent_woR)
reverberation. In the without-reverberation condition, speech clips were artificially added with some
damage to simulate a scenario that may be encountered in an online meeting (e.g., background noise,
high-pass/low-pass filtering, amplitude clipping, codec processing, noise suppression, and packet
loss concealment). In the reverberation condition, simulated reverberation and speech recorded in a
realistic reverberant room were provided. We randomly sampled 250 clips from each subset. A list of
sampled clips will be released to facilitate model comparison. The VoiceBank-DEMAND noisy test
set (Valentini-Botinhao et al.,[2016) was selected as the validation set. Because it does not come with
quality labels, we set the training stop point when the VQScore reached the highest correlation with
its DNSMOS P.835 (OVRL) (Reddy et al., [2022]).

Two supervised quality estimators, DNSMOS P.835 and TorchaudioSquim (MOS) (Kumar et al.,
2023)), were used for baseline comparison. DNSMOS P.835 provided three audio scores: speech
quality (SIG), background noise quality (BAK), and overall quality (OVRL). OVRL was selected
as the baseline because it had a higher correlation with the real quality scores in our preliminary
experiments. The SpeechLMScore was selected as the baseline for the self-supervised method.

3.2 EXPERIMENTAL RESULTS OF SPEECH QUALITY ESTIMATION

The training data used to train our VQ-VAE for quality estimation was the LibriSpeech clean 460
hours (Panayotov et al. 2015). The model structure is shown in Figure [} where the codebook
size V and code dimension d are set to (2048, 32) and (c1, c2)=(128, 64). We first calculated
the conventional objective quality metrics (i.e., SNR, PESQ, and STOI) and DNSMOS P.835 on
the validation set (VoiceBank-DEMAND noisy test set). We then calculated the linear correlation
coefficient (Pearson, [1920) between those scores with SpeechLMScore and the proposed VQScore.
The experimental results are presented in Table|l} From this table, we can observe that, for metrics
related to human perception, the VQScore calculated in the code space (z) generally performs much
better than that calculated in the signal space (). Our VQScore s, ) had a very high correlation with
DNSMOS P.835 (BAK), implying that it has a superior ability to detect noise. It also outperformed
SpeechLMScore across all metrics.

Next, as shown in Table 2] we compare the correlation between different quality estimators and real
quality scores on the test set (the scatter plots are shown in Section [Clof Appendix). TorchaudioSquim
(MOS) did not perform as well as DNSMOS, possibly due to limited training data and domain mis-
match (its training data, BVCC (Cooper & Yamagishi, 2021) came from text-to-speech and the voice
conversion challenge). In contrast, the proposed VQScore was competitive with DNSMOS, although
NO quality labels were required during training. The VQScore also outperformed SpeechLMScore,
possibly because the SpeechLMScore is based on the perplexity of the language model, so minor
degradation or noise may not change the output of the tokenizer and the following language model.
Note that the training data of our VQScore is only based on LibriSpeech clean 460 hours which is a
subset (roughly 460/(960+5,600) ~ 7%) used to train SpeechLMScore. The proposed framework
can also be used for frame-level SNR estimation as discussed in the section[D]of Appendix.

3.3 TEST SETS AND BASELINES FOR SPEECH ENHANCEMENT

The test sets used for evaluating different speech enhancement models came from three sets: the
VoiceBank-DEMAND noisy test set, DNS1 test set (Reddy et al., 2020), and DNS3 test set (Reddy
et al.,[2021a).

The VoiceBank-DEMAND noisy test set is a relatively simple dataset for SE because only two
speakers and additive noise are included. In contrast, the blind test set in DNS1 covers different
acoustic conditions, such as noisy speech without reverberation (noreverb), noisy reverberant speech
(reverb), and noisy real recordings (real). The DNS3 test set can be divided into subcategories based
on realness (real or synthetic) and language (English or non-English).
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Table 1: Linear correlation coefficient between different objective metrics and the proposed VQScore
on the VoiceBank-DEMAND noisy test set (Valentini-Botinhao et al.,2016). For metrics related to
human perception, VQScore s, ) performs much better than VQScore s, z)-

SpeechLMScore
(Mait ctall p027)  VOSCOrE(cos)  VQSCOre(cou )

SNR 0.4806 0.5177 0.5327

PESQ 0.5940 0.6514 0.7941

STOI 0.6023 0.5451 0.7490
DNSMOS P.835 (SIG) 0.5310 0.4051 0.5620
DNSMOS P.835 (BAK) 0.7106 0.6836 0.8773
DNSMOS P.835 (OVR) 0.7045 0.6370 0.8386

Table 2: Linear correlation coefficient between real quality scores and different quality estimators on
different test sets.

\ Supervised training \ Self-Supervised training

DNSMOS P.835 TorchaudioSquim SpeechLMScore

(Reddy ctal|[2022) (Kumar et al}2023) | (Maiti et al}2022) ¥ QS€0r(cos.2)

Tencent_wR 0.6566 0.4040 0.5910 0.5865
Tencent_woR 0.7769 0.5025 0.7079 0.7159
IUB_cosine 0.3938 0.3991 0.3913 0.4880
TUB_voices 0.8181 0.6984 0.6891 0.8604

For comparison with our self-supervised SE model, two signal-processing-based methods, MMSE
(Ephraim & Malahl [1984)) and Wiener filter (Loizou, |2013)) were included as baselines. Noisy-target
training (NyTT) (Fujimura et al.| 2021)) and MetricGAN-U (Fu et al.||[2022)) are two approaches that
are different from conventional supervised SE model training. NyTT does not need noisy and clean
training pairs, it creates training pairs by adding noise to noisy speech. The noise-added signal and
original noisy speech are used as the model input and target, respectively. MetricGAN-U is trained on
noisy speech with the loss from the DNSMOS model (which actually requires extra (speech, MOS)
pairs data for training). For the supervised baselines, the first one is CNN-Transformer, which has the
same model structure as our self-supervised-based model except for the removal of the VQ module.
Another model that achieved good results on the VoiceBank-DEMAND noisy test set was also
selected: Demucs (Defossez et al.| [2020) is an SE model that operates in the waveform domain. Our
self-supervised-based SE model is VQ-VAE trained only on clean speech with (V, d, ¢1, c2)=(4096,
128, 200, 150).

3.4 EXPERIMENTAL RESULTS OF SPEECH ENHANCEMENT
3.4.1 SPEECH ENHANCEMENT RESULTS OF MATCHED AND MISMATCHED CONDITIONS

To make a fair comparison with the supervised baselines, we provide the results of our self-supervised
SE model trained only on the clean speech of the VoiceBank-DEMAND training set (i.e., the
corresponding noisy speech is NOT used during our model training). In Table [3] we present the
results for the matched condition, in which the training and evaluation sets were from the same
source. Compared with noisy speech and traditional signal-processing-based methods, Proposed +
AT showed a significant improvement in SIG, BAK, and OVRL. As expected, the effect of AT is

'Note that several recent papers have shown that PESQ can not reflect the true speech quality, especially for
speech generated by a generative model (such as GAN |Kumar et al.| (2020); [L1u et al.| (2022), vocoder Maiti
& Mandel| (2020); |Li & Yamagishi| (2020); |Du et al.[(2020), diffusion model [Serra et al.| (2022), etc.) We also
observe that the PESQ scores of enhanced speech generated by models with VQ usually CANNOT reflect the
true speech quality. This is mainly because the discrete tokens in VQ are shared by similar sounds, which makes
the generated speech have less fidelity. However, as pointed out by DNSMOS and the following subjective
listening test, this does not imply its generated speech has lower quality.

Comes from several different data sources.
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Table 3: Comparison of different SE models on the VoiceBank-DEMAND noisy test set. Training
data comes from the training set of VoiceBank-DEMAND. The underlined numbers represent the
best results for the supervised models. The bold numbers represent the best results for the models
that do not need (noisy, clean) training data pairs.

Model Training data PESQ] SIG BAK OVRL
Clean - 4.64 3463 3961 3.152
Noisy - 1.97 3273 2862 2.524
CNN-Transformer (noisy, clean) pairs 2.79 3.389  3.927 3.070

Demucs (Defossez et al., [2020) (noisy, clean) pairs 2.95 3.436 3.951 3.123

NyTT (Fujimura et al., 2021 (noisy speech, noise)ll  2.30  3.444 3.106 2.736

MetricGAN-U (Fu et al.,[2022) +D‘§"S?/[3’§iﬁg del 2.13 3200 3.400 2.660

MMSE (Ephraim & Malahl,[1984) - 2.19 3215 3.089 2.566
Wiener (Loizou, 2013) - 223 3208 2983 2.501
Proposed clean speech 220 3329 3.646 2.876

Proposed + AT clean speech 238 3300 3.838 2.941

mainly to make the encoder more robust to noise, and hence boost the model’s denoise ability (PESQ
and BAK improve by 0.18 and 0.192, respectively). Compared to NyTT and MetricGAN-U, our
Proposed + AT has significant improvement in PESQ, BAK, and OVRL. Both CNN-Transformer and
Demucs can generate speech with good quality (in terms of the DNSMOS scores) under this matched
condition.

To evaluate the model’s generalization ability, we compared their performance under mismatched
conditions, where the training and testing sets originated from different sources. Table [4]lists the
results for the DNS1 test set. Although the performance of CNN-Transformer is worse than Demucs
in the matched condition (Table [3), it generally performs better in this mismatched condition. In
addition, it can be observed that even though adding adversarial noise or Gaussian noise on the clean
input for self-supervised model training can further improve the scores of all the evaluation metrics,
the improvement from adversarial noise was more prominent. For the OVRL scores, Proposed + AT
was competitive with the supervised CNN-Transformer, and outperformed Demucs, especially in the
more mismatched cases (Real and Reverb cases). The experimental results for DNS3 are presented in
Section [E| of Appendix. The same trend appeared as in the case of DNS1: the proposed model with
AT can significantly outperform Demucs in the more mismatched cases (i.e., Real and non-English).

3.4.2 RESULTS OF LISTENING TEST

Since objective evaluation metrics may not consistently capture the genuine perceptual experience,
we conducted a subjective listening test. In order to assess the subjective perception, we compare our
Proposed + AT with noisy, Wiener, CNN-Transformer, and Demucs. For each acoustic condition
(real, noreverb, and reverb), 8 samples were randomly selected from the test set, amounting to a
total of 8 x 5 (different enhancement methods and noisy) x 3 (acoustic conditions) = 120 utterances
that each listener was required to evaluate. For each signal, the listener rated the speech quality
(STG sup), background noise removal (BAK,;), and the overall quality (OV R L,;) follows ITU-T
P.835. 17 listeners participated in the study. Table [5|shows the results of the listening test. It can
be observed that in every scenario, our Proposed + AT exhibits the best noise reduction capability
(highest BAK 4y, score). On the other hand, our method has larger speech distortion (lower STG sy
score) compared to the CNN-Transformer, which has the same model structure but is trained in a
supervised way. In terms of OV R L, our Proposed + AT is competitive with the CNN-Transformer
and outperforms other baselines. These results verify that our self-supervised model has better
generalization capability than Demucs and is comparable to CNN-Transformer.

4 CONCLUSION

In this study, we propose a novel self-supervised speech quality estimator trained only on clean
speech. Motivated by anomaly detection, if the input speech has a different pattern from that of the
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Table 4: Comparison of different SE models on the DNS1 test set. Training data comes from the

training set of VoiceBank-DEMAND.

Subset Model Training data SIG BAK OVRL
Noisy - 3.173 2367 2.238
CNN-Transformer (noisy, clean) pairs  3.074 3.339  2.620
Demucs (Defossez et al.,[2020)  (noisy, clean) pairs 3.073  3.335  2.570
Real Wiener (Loizou, 2013 - 3.207 2579 2313
Proposed clean speech 3.095 3.365 2.589
Proposed + Gaussian clean speech 3.152 3.458 2.673
Proposed + AT clean speech 3.156 3.640 2.750
Noisy - 3492 2.577 2513
CNN-Transformer (noisy, clean) pairs 3.515 3.786 3.124
Demucs (Defossez et al,2020)  (noisy, clean) pairs 3.535 3.651 3.073
Noreverb Wiener (Loizou, [2013) - 3311 2747 2.447
Proposed clean speech 3463 3.764 3.066
Proposed + Gaussian clean speech 3484 3.830 3.115
Proposed + AT clean speech 3481 3960 3.162
Noisy - 2.057 1576 1.504
CNN-Transformer (noisy, clean) pairs  2.849 3.352  2.409
Demucs (Defossez et al.,[2020)  (noisy, clean) pairs 2.586 3.260 2.175
Reverb Wiener (Loizoul [2013) - 2.649 2251 1.838
Proposed clean speech 2911 3.097 2.325
Proposed + Gaussian clean speech 2930 3.222 2394
Proposed + AT clean speech 2949 3361 2.456
Table 5: Listening test results of different SE models on the DNS1 test set.
Subset Model SIGg, BAKgp, OVRLgw,
Noisy 3.890 2.294 2.809
CNN-Transformer 3.537 2.801 3.044
Real Demucs (Defossez et al., [2020) 2.890 2.515 2.515
Wiener (Loizoul 2013) 3.787 2.250 2.868
Proposed + AT 3.272 2.978 3.000
Noisy 3.765 2.059 2.647
CNN-Transformer 3.706 2.809 3.088
Noreverb Demucs (Defossez et al., [2020) 3.676 2.779 3.051
Wiener (Loizoul 2013) 3.404 2.147 2.654
Proposed + AT 3.404 3.162 3.132
Noisy 3.169 1.691 2.176
CNN-Transformer 2.610 2.632 2.382
Reverb Demucs (Defossez et al., [2020) 1.588 1.934 1.515
Wiener (Loizou, 2013) 2.963 2.015 2.250
Proposed + AT 2.522 2.721 2.382

clean speech, the reconstruction error may be larger. Instead of directly computing the error in the
signal domain, we find that it can provide a higher correlation with other objective and subjective
scores when the distance is calculated in the code space (i.e., the quantization error) of the VQ-
VAE. Although no quality labels are required during model training, the correlation coefficient
between the real quality scores and the proposed VQScore is competitive with that of the supervised
estimators. Next, under the VQ-VAE framework, the key to self-supervised speech enhancement is
the robustness of the encoder and decoder. Therefore, a novel self-distillation mechanism combined
with adversarial training is proposed which can achieve good SE results without the need for any
(noisy, clean) speech training pairs. Both the objective and subjective experimental results show
that the proposed self-supervised framework is competitive with that of supervised SE models under
mismatch conditions.
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Appendix

A LEARNING CURVES ON VOICEBANK-DEMAND NOISY TEST SET FOR
SPEECH QUALITY ESTIMATION
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Figure 2: Learning curves of the correlation coefficient between various objective metrics and the
proposed VQScore(.s, ) on the VoiceBank-DEMAND noisy test set (Valentini-Botinhao et al.,
2016).

Figure 2| presents the learning curves of the correlation coefficient between various objective metrics
and the proposed VQScore s, ) on the noisy test set of VoiceBank-DEMAND. The figure illustrates
a general trend of increasing correlation coefficient with the number of iterations for most objective
metrics. Notably, our VQScore ., ) exhibited exceptionally high correlations with BAK, OVR, and
PESQ.

B COMPARISON OF DIFFERENT VQSCORES

Table 6: Linear correlation coefficient between real quality scores and various VQScores on different
test sets.

| VQScore(r, ) VQScore(r, .y | VQScore(cos ) VQScore cos,-)

Tencent_ wR -0.0081 -0.3709 0.0988 0.5865
Tencent_woR 0.4925 -0.5983 0.5636 0.7159
IUB_cosine 0.0320 -0.4266 0.1819 0.4880
IUB_voices 0.1764 -0.8436 0.6943 0.8604

In Section 2.4] we discussed four combinations of distance metrics and targets for calculating
VQScore. Table [6] presents the correlation coefficients between real quality scores and various
VQScores on different test sets. It is worth noting that VQScores using L» as the distance metric
are expected to exhibit a negative correlation with true quality scores (i.e., a larger distance implies
poorer speech quality). The results demonstrate that employing cosine similarity in the code space
(2) can significantly outperform the other alternatives.
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Figure 3: Scatter plots between various objective metrics and the proposed VQScore s, -) on the
VoiceBank-DEMAND noisy test set. (a) SIG, (b) BAK, (c) OVR, and (d) PESQ.

C SCATTER PLOTS FOR SPEECH QUALITY ESTIMATION

Figure |3|illustrates the scatter plots between the proposed VQScore(.,s,.) and various objective
metrics on the noisy test set of VoiceBank-DEMAND. From Figure 3] (a), it can be observed that the
correlation between VQScore (s, ) and SIG is low, particularly when the value of SIG is high. On
the other hand, Figure[3|(d) reveals a low correlation between VQScore s,y and PESQ when the
value of PESQ is low. These findings suggest that modeling quality scores in extreme cases may
present greater challenges. Furthermore, Figure ] displays the scatter plots between the proposed
VQScore(c,s,-) and real subjective quality scores. Similar trends can be found in FigureH (c) and (d),
indicating a low correlation between VQScore s, ) and real scores when the speech quality is poor.

D FRAME-LEVEL SNR ESTIMATOR

Most machine-learning-based quality estimators are black-box, so people find it hard to understand
the reason for their evaluation. On the other hand, from the definition of VQScore (Eq. E), we can
observe that the utterance score is based on summing up all the similarity scores of every frame.
We, therefore, want to further verify that the proposed method can localize the frames where quality
degrades (i.e., due to noise or speech distortion, etc.) in an utterance. Because most off-the-shelf
metrics cannot provide such scores on a frame basis, here we use frame-level SNR as the ground truth.
Given a synthetic noisy utterance, the frame-level SNR is calculated on the magnitude spectrogram
for each frame. Since our preliminary experiments suggest that calculating the Lo distance in the
signal space has a higher correlation with SNR, here we define the predicted frame-based quality as:
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Figure 4: Scatter plots between real subjective quality scores and the proposed VQScorec,s,.) on (a)
IUB_cosine, (b) IUB_voices, (¢) Tencent_woR, and (d) Tencent_wR.

Table 7: Average linear correlation coefficient between frame-level SNR and the proposed method on
the VoiceBank-DEMAND noisy test set.

Supervised Self-Supervised
| [Li et al.[ (2020) Proposed

Frame-level SNR | 0.721 0.789

| X¢|]2 ®
[ Xt — X¢||2

The denominator is used to measure the reconstruction error and the numerator is for normalization.

In this experiment, we train the VQ-VAE with L5 loss and evaluate the average correlation coefficient
with ground-truth frame-level SNR on the VoiceBank-DEMAND noisy test set. Table[7]shows that
our proposed metric can achieve a higher correlation than the supervised baseline 2020),
which uses frame-level SNR as the model’s training target. Figure [5] shows examples from the
VoiceBank-DEMAND noisy test set, featuring spectrograms alongside their corresponding frame-
level SNR and predicted frame-level quality using Eq. (8). Comparing Figure 5] (c) with (e), and (d)
with (f), it can be observed that the overall shapes are similar, indicating a high correlation between

them.
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Figure 5: Examples of spectrogram, its corresponding frame-level SNR and the predicted frame-level
quality. (c) and (d) are the frame-level SNR. (e) and (f) are our predicted frame-level quality.

E SPEECH ENHANCEMENT RESULTS ON THE DNS3 TEST SET

Table [8] displays the speech enhancement results on the DNS3 test set. Similar to the findings in
DNSI test set, it can be observed that applying AT in our model training can also further improve the
scores of all the evaluation metrics. In addition, Proposed + AT can outperform Demucs, especially
in the more mismatched conditions (i.e., Real or non-English cases).
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Table 8: Comparison of different SE models on the DNS3 test set. Training data comes from the
training set of VoiceBank-DEMAND.

Subset Model Training data SIG BAK OVRL
Noisy - 3.094 2.178 2.078

CNN-Transformer (noisy, clean) pairs 2.887 3.421 2.468

Real Demucs (Defossez et al.,[2020)  (noisy, clean) pairs 2.749 3.316  2.325
English Wiener (Loizou, [2013)) - 3.057 2361 2.125
Proposed clean speech 2.844  3.157 2.305

Proposed + AT clean speech 2.888 3.468 2.456

Noisy - 3.154 3.000 2.487

CNN-Transformer (noisy, clean) pairs 3.183 3.644 2.798

Real Demucs (Defossez et al.,[2020)  (noisy, clean) pairs 2.842 3.442  2.451
non-English Wiener (Loizou, |2013) - 3.142 3.099 2.489
Proposed clean speech 3.120 3.602 2.733

Proposed + AT clean speech 3.179 3.726  2.820

Noisy - 3.165 2.597 2300

CNN-Transformer (noisy, clean) pairs  3.053 3.590 2.645

Synthetic Demucs (Defossez et al.,[2020) (noisy, clean) pairs 2.716 3.526  2.374
non-English Wiener (Loizou, |2013) - 3174 2749 2.361
Proposed clean speech 2962 3334 2470

Proposed + AT clean speech 3.019 3.644 2.627

Noisy - 3,501 2900 2.646

CNN-Transformer (noisy, clean) pairs 3470 4.069 3.214

Synthetic Demucs (Defossez et al.,[2020)  (noisy, clean) pairs 3.357 3.929  3.053
English Wiener (Loizou, [2013)) - 3411 3.216 2.736
Proposed clean speech 3365 3.937 3.062

Proposed + AT clean speech 3381 4.039 3.117

F SPECTROGRAM COMPARISON OF ENHANCED SPEECH

Figure [6|and[7] present examples of enhanced spectrograms obtained from various SE models in the
Real and Reverb conditions from the DNS1 test set, respectively. These figures visually reveal that
the proposed self-supervised SE model exhibits good noise removal capabilities compared to other
baselines.

G ADVERSARIAL TRAINING’S LEARNING CURVES

Figure [8| shows the adversarial training’s learning curves on the VoiceBank-DEMAND noisy test
set. From the curves, we can observe that the process of AT is quite stable. The scores of most
evaluation metrics (except for SIG) first gradually increase and then converge to a better optimum
compared to the initial (the result after Step 1 in Section [2.3). Compared to normal training, our AT
only needs another forward and backward pass of the computational graph (i.e., adversarial attack,
Eq. [5), therefore, the computation cost is roughly twice of normal training. However, as illustrated in
the learning curves, AT is efficient and can converges quickly.

H DISTRIBUTION OF VQSCORE

To study the distribution of the VQScore, we first divide the test set into 3 subsets with equal size
based on the sorted MOS. The first and the third subset corresponds to the group of the lowest and
highest MOS, respectively. Figure [9]shows the histogram of the VQScore on the IUB test set, where
blue and orange represent the first and the third set, respectively. Although there is some overlap in
between for [UB_cosine, speech with higher MOS usually also have higher VQScore.
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(b) Wiener

(c) Demucs (d) Proposed + AT

Figure 6: Spectrograms generated by different SE models. This utterance (realrec_fileid_10) is
selected from the DNS1 Real test set. (a) Noisy, (b) Wiener, (c) Demucs, and (d) Proposed + AT.

(a) Noisy (b) Wiener

(c) Demucs (d) Proposed + AT

Figure 7: Spectrograms generated by different SE models. This utterance (reverb_fileid_5) is selected
from the DNS1 Reverb test set. (a) Noisy, (b) Wiener, (c) Demucs, and (d) Proposed + AT.
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Figure 8: Adversarial training’s learning curves on the VoiceBank-DEMAND noisy test set. The
starting point is the result after Step 1 in Section 23] (i.e., VQ-VAE trained on clean speech has
converged). (a) SIG, (b) BAK, (c) OVRL, and (d) PESQ.

I  SENSITIVITY TO HYPER-PARAMETERS

In this section, we study the effect of hyper-parameters on model performance. All the hyper-
parameters were decided based on the performance of DNSMOS (OVRL) on the validation set.
For quality estimation, it is the LCC between DNSMOS (OVRL) and VQScore. For the speech
enhancement, it is the score itself. We first investigate the influence of codebook size on quality
estimation. From Table[9} we can observe that except for very small codebook dimensions (i.e., 16),
the performance is quite robust to codebook number and dimension. The case for speech enhancement
is similar, except for very small codebook dimensions and numbers, the performance is robust to
the codebook setting. We next investigate the effect of setting different 3 in Eq. [3] Table[I0|shows
that the SE performance is also robust to different 8 which aligns with the observation made in (Van
Den Oord et al .} [2017).

Table 9: LCC between DNSMOS (OVRL) and VQScores under different codebook sizes.

Codebook size (number, dim) | LCC

(1024, 32) 0.8332
(2048, 16) 0.7668
(2048, 32) 0.8386
(2048, 64) 0.8317
(4096, 32) 0.8297
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scores, respectively. (a) IUB_voices, (b) IUB_cosine.

Table 10: DNSMOS (OVRL) of enhanced speech from our models trained with different 5.

| DNSMOS (OVRL)

1 2.865
2 2.872
3 2.876

J MODEL COMPLEXITY

In this section, we compare model complexity based on the number of parameters and the number of
computational operations as shown in Table[TT] MACs stand for multiply—accumulate operation and
are calculated based on 1 sec of audio input. Because NyTT doesn’t release the model, it is difficult
to accurately estimate its model complexity. However, its model structure is based on CNN-BLSTM,
so we can expect it to have higher model complexity compared to MetricGAN-U, which is based on
simple BLSTM. CNN-Transformer is the supervised version (and removing VQ) of our proposed
model and hence has a similar model complexity. Demucs is a CNN encoder and decoder framework
with BLSTM in between to model temporal relationships. Because directly models the waveform, its
model complexity is significantly higher than others.

Table 11: Model complexity for the proposed approach and baselines.

| Params (M) MACs (G)

CNN-Transformer 2.51 0.32
Demucs 60.81 75.56
MetricGAN-U 1.90 0.24
NyTT - -
Proposed 2.51 0.32

K STATISTICAL SIGNIFICANCE

In Table[T2] we report the T-test of DNSMOS (OVR) between Proposed + AT and different baselines
on the DNSI test set to show the statistical significance. In the table, the results shown in bold
represent Proposed + AT is statistically significant (p-value<0.05) better than the baseline. It can be
observed that Proposed + AT is significantly better than most of the baselines (noisy, Wiener, and
Demucs) and is comparable to CNN-Transformer.
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Table 12: P-value of DNSMOS (OVR) between Proposed + AT and baselines on the DNS1 test set.

| Noisy Wiener  Demucs CNN-Transformer
Real 1.35e-36 4.84e-31 8.97e-07 0.0001
Noreverb | 7.84e-43 1.18e-47  0.0042 0.141
Reverb | 9.20e-54 8.70e-34 3.21e-08 0.205

L  ASR RESULTS OF ENHANCED SPEECH

In this section, we apply Whisper-medium (Radford et al.| 2023)) as the ASR model and compute the
word error rate (WER) of speech generated by different SE models (with dry/wet knob technique
as proposed in (Defossez et al.;,2020)) on the VoiceBank-DEMAND noisy test set. Table@] shows
that all the SE can improve the WER performance, and our proposed method can achieve the lowest
WER.

Table 13: WER of speech generated by different SE models on the VoiceBank-DEMAND noisy test
set.

| Noisy ~Wiener Demucs CNN-Transformer Proposed
Whisper ASR | 1425 12.60 13.75 11.84 11.65

M LIMITATIONS AND FUTURE WORKS

1) Speech quality estimation:

Our preliminary experiment results show that the VQScore can obtain LCC around 0.46 with the
VoiceMOS 2022 challenge test set (Huang et al.| [2022)). This result is comparable to SpeechLMScore
(Pre) (0.452) but worse than SpeechLMScore(LSTM)+rep (0.582). One possible reason is that
VQScore trained on LibriSpeech clean-460 hours only uses <10% training data of SpeechLMScore.
Another possible reason is that if we observe each frame generated by a TTS system, it resembles a
clean frame. In the TTS evaluation, people may focus more on global conditions such as naturalness,
etc. In other words, it cares more about the relation of each frame with each other. On the other hand,
VQScore pays more attention to the degradation of each frame.

As can be observed in Eq. ] the VQScore is based on the average of the cosine similarity of input
frames. However, people may put larger weights on the frames with louder volume when evaluating
speech quality. It is difficult to design/learn the weights of each frame in the unsupervised setting.
If we extend to a semi-supervised framework, we believe this consideration will bring further
improvements.

2) Speech enhancement:

As discussed in the previous section, we observed a more pronounced speech distortion in the speech
generated by our method. In fact, the results of our listening test indicate that while our model receives
higher scores for noise removal (BAK), its speech distortion score (SIG) is comparatively worse than
that of conventional methods. Further analysis revealed that the primary source of speech distortion
may come from the finite combination of the discrete tokens in the VQ module. In summary, while
the VQ module contributes to the model’s great noise removal capability, it simultaneously introduces
speech distortion. One possible solution is to fuse the distorted enhanced speech with the original
noisy speech to recover some over-suppressed information (Hu et al.|[2023)). Our future efforts in the
development of this SE approach will be dedicated to mitigating the speech distortion caused by the
VQ module.
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