
Under review as a conference paper at ICLR 2021

A ALGORITHM

Algorithm 2 Regioned Episodic Reinforcement Learning (RERL)
1: Initialize ⇡, g⇤ as terminal state, ḡ⇤ as inital state
2: Initialize region-based memories {Mk}

N
k=1 by random sample

3: for episode = 1, 2, . . . , E do
4: Select region k according to Eq. (5)
5: Collect Z trajectories {⌧z}Zz=1 2Mk that maximize

PZ
z=1 w(xz, ⌧z) according to Eq. (10)

6: Construct intermediate goal g according to Eq. (11), ḡ from s 2Mk with average value
7: for t = 1, 2, . . . , T do
8: at ⇡(a|s, g, ḡ)
9: st+1 ⇠ P(·|st, at)

10: rt r(s, g, ḡ) according to Eq. (2)
11: ⌧ {s0, a0, r0, s1, . . . }
12: Mk Mk [{⌧}
13: Update Mk according to Eq. (12)
14: Rank Mk and sample a minibatch b from Mk

15: Update policy ⇡ on minibatch b using DDPG or PPO
16: end for
17: end for

The overall description of our algorithm is shown in Algorithm 2. In the initialization procedure, we
set the terminal state as the initial goal and initial state as the initial anti-goal, and sample trajectories
into each memory. At each episode e, the agent select one region that is most promising to lead to
terminal state in line 4. We construct goal based on the historical trajectories in line 5. We take
previous goals in other memories into consideration in the goal generation in line 6. From line 8 to
line 13, the agent interacts with environment and update the memory. Our work focuses on how to
build efficient exploration and exploitation mechanism that is naturally complementary with policy
networks such as deep deterministic policy gradient (DDPG (Duan et al., 2016)) and proximal policy
optimization (PPO (Schulman et al., 2017)) in line 15.

B DICUSSIONS

B.1 EXAMPLE FOR GOAL GENERATION

goal

target
state

region 1

region 2

1 trajectory at
memory 1
(region 1)

2 trajectory at
memory 2
(region 2)

1a

2a

anti-goal

1b

2b

1c

2c

Figure 6: An illustration of exploration strategy.

Previous works (Florensa et al., 2018; Vezhn-
evets et al., 2017) adopt a goal generator to con-
struct immediate intrinsic rewards according to
the previous states. However, they often suf-
fer a lot from balancing the efficiency of ex-
ploration and exploitation and stability in train-
ing. In the first episode, the agent explores two
trajectories in the different directions, with the
closest one ⌧1a to the target state labeled as the
goal g1 and the farthest one ⌧1b as the anti-goal
ḡ1. In the second episode, the agent evaluates
the highest value of states in the regions and se-
lects one according to Eq. (5). The agent does
exploration under the guided by g1 (illustrated
as sun icon in blue region) and ḡ1 (illustrated as
moon icon in blue region). If the agent selects
the region 2, following the similar procedures, the agent will explore the region guided by g2 (illus-
trated as sun icon in green region) and ḡ2 (illustrated as moon icon in green region). Note that goal
g will direct the exploration. Hence, in the goal generation, we take the historical goals in the other
regions in the consideration by the diversity constraint. However, for the anti-goal generation, there
is no need to consider other region data as described in Section 4.

12

Under review as a conference paper at ICLR 2021

B.2 RELATIONSHIP TO CURRICULUM LEARNING

In order to better understand why our method can work in complex environments and can excel other
traditional methods more intuitively, we further investigate the relationship between our algorithm
from Eq. (3) and empirical utility maximization formulation proposed in (Hacohen & Weinshall,
2019). We provide theoretical analysis that under some assumptions, optimizing our objection func-
tion can be similar to optimizing a curriculum algorithm under additional constraints.
Following Section 3, we formulated reinforcement learning problem as a Markov Decision Process
(MDP) by a tuple (S,A,P,R, �), where S is the state space, A is the action space, P : S ⇥A !

�(S) is the state transition probability distribution, R : S ⇥A! [0, 1) is the reward function, and
� 2 [0, 1) is the discount factor for future rewards. Utility function is defined as the expected sum of
the immediate and long-time utility U⇡(s) under the policy ⇡ : S ⇥A! [0, 1), and discount factor
� 2 [0, 1), which can be formulated as:

U⇡(s) := Es0=s,at⇠⇡(·|st),st+1⇠P(·|st,at)

"
TX

t=0

�tr(st, at)

#
, (1)

where T is the number of steps in the lifetime of the agent. Therefore, we can utilize U⇡(s) to
represent the long-time reward. To formulate the short-time reward, similarly, we define U⇡(st) by
U⇡(st) := �tr(st, at). In the similar manner with Empirical Risk Minimization (ERM) framework,
we choose to maximize the average utility, which is defined as follows:

⇡⇤ = argmax
⇡

U(⇡), where U(⇡) := E(U⇡) =
1

T

TX

t=1

U⇡(st) (2)

Hindsight Constriant. We define the scoring function, i.e., pacing function in curriculum learning
(Bengio et al., 2009) with � : S ! G ⇥ G which is a known and tractable mapping. � effectively
provides a Bayesian prior g 2 G for data sampling namely exploration, where g denotes goal and G

denotes goal space. We also adopt �+ and �� to represent the postive goal (i.e., goal) generation and
negative goal (i.e., anti-goal) generation respectively. Based on the analysis above, we can formulate
Eq. (1) as

Ug(⇡) = Eg[U⇡] =
1

T

TX

t=1

U⇡(st) · �(·|st), (3)

where �(·|st) denotes the induced prior probability conditioned on st. In order to guarantee the
convergence, �(·|st) should always be a non-increasing function of the difficulty level of st. In
our algorithm, we define the goal space G as a subset of state space S (i.e., hindsight constraint in
Section 4), which guarantees each goal/anti-goal is sampled from previous states. This proves the
following result:
Proposition 1. The difference between the expected utility function with and without prior g (i.e.,
Ug(⇡) and U(⇡)) is the covariance between utility function U⇡(s) and goal generation �(·|s).

The proof of Proposition 1 can be found in Appendix C.3.
Diversity Constraint. However, one should be noted that goal g here is sampled from previous
states which guarantees reachability of the goal but also limits potential exploration. To address
this issue, we adopt diversity measure Hregion(⇡) to encourage the exploration between different
region (diversity constraint in Section 4 is a simple implementation). Combining the aforementioned
hindsight and diversity constraints, we define our objective as

⇡⇤ = argmax
⇡

Ug(⇡), under hindsight and diversity constraints. (4)

which can easily derive as the equivalence to Eq. (6).
Proposition 2. The modified optimization landscape induced by curriculum learning has the same
global optimum ⇡⇤ as the original problem.

The proof of Proposition 2 can be found in Appendix C.4.
According to the analysis, we can conclude that our algorithm can be regarded as an novel cur-
riculum learning approach in goal-oriented setting, which can be proved to have the same global
optimum as the original problem. In Section 5, we conduct experiment to prove that the goals are
generated in the different levels as the curriculum to guide the agent in curriculum learning.

13

Under review as a conference paper at ICLR 2021

B.3 RELATIONSHIP TO MAXIMUM ENTROPY RL

In this section, we consider multi-goal RL as goal-oriented policy learning (Schaul et al., 2015; Plap-
pert et al., 2018). We further discuss the motivation behind these two constraints, namely hindsight
and diversity constraints, and the relationships between our work and inverse maximum entropy
reinforcement learning.
Preliminaries. We begin with some notations and previous motivations in maximum entropy re-
inforcement learning (Eysenbach et al., 2020). The likelihood of a trajectory ⌧ := {st}Tt=0 under
policy ⇡ can be formulated as L(s) = P(s0) ·

Q
t P(st+1|st, at)⇡(at|st). In the goal-oriented RL,

we can rewrite as

L(s, g) = P(s0) ·
Y

t

P(st+1|st, at)⇡(at|st, g), (5)

where the initial state is sampled as s0 ⇠ P(s0) and subsequent states are governed by a dynamic
distribution st+1 ⇠ P(st+1|st, at). As we discuss in Appendix B.2, goal-oriented RL can be re-
garded as regular RL with prior knowledge g generated by mapping function � based s. Hence, the
target joint distribution over goals and states is

X (s, g) =
�(·|s)

Z(g, ḡ)
· P(s0)

Y

t

P(st+1|st, at)e
r(st,gt,ḡt). (6)

where X : S ⇥ G ⇥ G ! [0, 1] be the joint distribution over state s 2 S , goal g 2 G and anti-goal
ḡ 2 G; and Z(g, ḡ) is the factor of normalization.
Diversity Constraint. We can express the multi-goals RL objective as the reverse KL divergence
between the joint state-goal distributions:

max
⇡
�H(s, g) = max

⇡
�DKL(L(s, g)kX (s, g)) (7)

where the joint distribution of likelihood L and prior information g of a trajectory ⌧ is defined as
L(s, g) := L(s|g) · �(·|s). Then, we can rewrite Eq. (7) as maximizing the expected (entropy-
regularized) reward of a goal-conditioned policy L(s|g):

Eg⇠�(·|s), s⇠L(·|g)

"
TX

t=0

r(st, at|g, ḡ)� log ⇡(st, at|g, ḡ)

!
� logZ(g, ḡ)

#
. (8)

Hindsight Constraint. Since the distribution over goals g is fixed, we can ignore the logZ(g, ḡ)
term for optimization. A less common but more intriguing choice is to factor L(s, g) = �(·|s)·B(s),
where B(⌧) is represented non-parametrically as a distribution over previously-observed states.
Therefore, �(·|s) is formulated as a hindsight relabeling distribution. In this implementation, we
sample goals from previous states in the region-based memory to present B(s).

C PROOFS

C.1 PROOF OF PROPOSITION 1

Proposition 3. Given the global distribution X and several region-based distributions Xk, where
k = 1, 2, . . . , N and N is the number of regions, we have

8⇡, max
x⇠X

V ⇡(x) � max
x2{x1,x2...,xN}

V ⇡(x), where xk = argmax
xk⇠Xk

V ⇡(xk). (9)

In this section, we provide the proof of Proposition 1. The motivation of Proposition 1 is to find a
relaxed lower bound of V ⇡(x), x ⇠ X based on the definition of the region.

14

Under review as a conference paper at ICLR 2021

Proof. By Eq. (3), 8⇡ we have

max
x⇠X

V ⇡(x) = max
x⇠X , X :S⇥G⇥G

Es2S;g,ḡ2G,P

" 1X

t=0

�tr(st, at|g, ḡ)

#

� max
x⇠{x1,x2,...,xN}

{ max
x1⇠X1, X1:S1⇥G1⇥G1

Es2S1;g,ḡ2G1,P

" 1X

t=0

�tr(st, at, st+1)

#
, . . . ,

. . . , max
xN⇠XN , XN :SN⇥GN⇥GN

Es2SN ;g,ḡ2GN ,P

" 1X

t=0

�tr(st, at, st+1)

#
}

� max
x⇠{x1,x2,...,xN}

V ⇡(x), where xi = argmax
xi⇠Xi

V ⇡(xk), k = 1, 2, 3, . . . , N.

(10)

The intuition behind the proposition is easy to understand. Since we have partitioned the whole
distribution X into several region-based distributions {Xk}

N
k=1. We effectively avoid the agent

switching among regions meanwhile removing these trajectories out of original candidate trajec-
tory family.

C.2 PROOF OF PROPOSITION 4

Proposition 4. Denote the Bellman backup operator in Q learning with goal as B : R|S|⇥|A|⇥|G|
!

R|S|⇥|A|⇥|G| and a mapping Q : S⇥A⇥G! R|S|⇥|A|⇥|G| with |S| <1 and |A| <1. Repeated
application of the operator B for our goal-oriented state-action value estimate Q̂ converges to a
unique optimal value Q̂⇤.

Proof. The proof of Proposition 4 is done in two main steps. The first step is to show that our goal
g 2 G can converge to the terminal state. In the second step, we prove that given goal g, our goal-
oriented approach can converge to unique optimal value Q⇤. In other words, we need to prove that
g ! g⇤ in the first step and Q! Q⇤ in the second step.
Step I. Since our algorithm aims to find the high-value previous states for goal generation. At the
beginning of the task, the terminal state will be regarded as the final goal, since it has the highest
value. Hence, the terminal state, if it has been visited once, will be assigned as the goal. Assume
that the agent can conduct plenty of exploration. Then, we can say that the generated goal g will
keep approaching to the terminal state g⇤.
Step II. Note that the proof of convergence for our goal-oriented RL is quite similar to Q-learning
(Bellman, 1966; Bertsekas et al., 1995; Sutton & Barto, 2018). The differences between our ap-
proach and Q-learning are that Q-value Q(s, a, g, ḡ) is also conditioned on goal g and anti-goal ḡ.
As introduced in Section 4, anti-goal ḡ works like a reward shaping technique, which is proposed to
avoid local optima (Trott et al., 2019). Hence, we omit ḡ in the following proof. We provide detailed
proof as follows:
We can obtain goal g 2 G approaching the terminal state from Step I. Based on that, our estimated
goal-conditioned action-value function Q̂ can be defined as

BQ̂(s, a, g) = R(s, a, g) + � ·max
a02A

X

s02S

P (s0|s, a) · Q̂(s0, a0, g). (11)

For any action-value function estimates Q̂1, Q̂2, we study that

|BQ̂1(s, a, g)� BQ̂2(s, a, g)|

= � · |max
a02A

X

s02S

P (s0|s, a) · Q̂1(s0, a0, g)�max
a02A

X

s02S

P (s0|s, a) · Q̂2(s0, a0, g)|

 � ·max
a02A

|

X

s02S

P (s0|s, a) · Q̂1(s0, a0, g)�
X

s02S

P (s0|s, a) · Q̂2(s0, a0, g)|

= � ·max
a02A

X

s02S

P (s0|s, a) · |Q̂1(s0, a0, g)� Q̂2(s0, a0, g)|

 � · max
s2S,a2A

|Q̂1(s, a, g)� Q̂2(s, a, g)|

(12)

15

Under review as a conference paper at ICLR 2021

Combining Step I and II, we can conclude that our goal-conditioned estimated state-action value Q̂
can converge to unique optimal value Q⇤ leading to the terminal state g⇤.

C.3 PROOF OF PROPOSITION 1
In this section, we provide the proof of Proposition 1. From Eq. (3), Ug(⇡) is a function of ⇡ which
is determined by the correlation between U⇡(s) and �(g) (i.e., �(·|s)). We can rewrite Eq. (3) as

Ug(⇡) =
1

T
{

TX

t=1

(U⇡(st)� E[U⇡])(�(gt)� E[�]) + T · E[U⇡]E[�]}

=
1

T
{Cov[U⇡,�] + T · E[U⇡]E[�]}

=
1

T
{U(⇡) + Cov[U⇡,�]}

(13)

This derivation can be found in Appendix C.6. We can find that curriculum learning changes the
landscape of the optimization function over the policy ⇡ from U(⇡) to Ug(⇡). Intuitively, the above
equation also suggests that if the induced goal g, which defines a latent variable over the goal space
G, is positively correlated with the optimal utility U⇡⇤(s), and more so than with any other U⇡(s),
then the gradients in the direction of the optimal policy ⇡ in the new optimization landscape may be
overall steeper.
Hence, this is necessary to design task-related goals. However, it is infeasible to obtain appropriate
goals through handcrafted design and manual generation. In this paper, we introduce hindsight and
diversity constraints to help the agent learn from achieved task-related information (previous states)
and unknown task-related information (unexplored states) respectively.

C.4 PROOF OF PROPOSITION 2
In this section, we provide the proof of Proposition 2. In order to prove that the modified optimiza-
tion function in the state space related parameter space ⇡ has the property that the global maximum
at ⇡⇤ is more pronounced, we derive the objective function based on Proposition 1. We can as-
sume that optimal policy ⇡⇤ maximizes the covariance between �(g) (i.e., �(·|s)) and utility U⇡(s),
namely

argmax
⇡

U(⇡) = argmax
⇡

Cov[U⇡,�] = ⇡⇤ (14)

The proof of the assumption can be found in Appendix C.3. We introduce Lemma 1 here, the proof
of which can be found in Appendix C.5.

Lemma 1. (Florensa et al. (2017)) For any curriculum satisfying Eq. (14):

1. ⇡⇤ = argmax⇡ U(⇡) = argmax⇡ U(⇡
⇤)

2. Ug(⇡⇤)� Ug(⇡) � U(⇡⇤)� U(⇡), 8⇡

Lemma 1 has proposed two claims. The first one presents that the problem of maximizing the co-
variance between �(g) and utility U⇡(s) shares the same optimal solution with the original problem.
In addition, the modified optimization function in the original parameter space without goal g has
the property that the global maximum with goal g is more pronounced.

C.5 PROOF OF LEMMA 1
In this section, we provide the proof of Lemma 1. Claim 1 in Lemma 1 can be derived directly from
Eq. (14), while for the claim 2, we have

Proof.
Ug(⇡

⇤)� Ug(⇡) = Ug(⇡
⇤)� U(⇡)� Cov[U⇡, g]

� Ug(⇡
⇤)� U(⇡)� Cov[U⇡⇤ , g]

= U(⇡⇤)� U(⇡)

(15)

16

Under review as a conference paper at ICLR 2021

C.6 DETAILED DERIVATION OF EQ. (13)

In this section, we provide the detailed derivation of Eq. (13). We begin from the formulation of
Ug(⇡) in Eq. (13) and try to obtain that in Eq. (3).
Proof.

Ug(⇡) =
1

T
{

TX

t=1

(U⇡(st)� E[U⇡])(�(gi)� E[�]) + T · E[U⇡]E[�]}

=
1

T
{

TX

t=1

(U⇡(st)�(gt))�
TX

t=1

(U⇡(st)E[�])�
TX

t=1

(�(gt)E[U⇡]) + T · E[U⇡]E[�] + T · E[U⇡]E[�]}

=
1

T
{

TX

t=1

(U⇡(st)�(gt))� T · E[U⇡]E[�]�
TX

t=1

(�(gt)E[U⇡]) + T · E[U⇡]E[�] + T · E[U⇡]E[�]}

=
1

T

TX

t=1

(U⇡(st)�(gt)) +
1

T
{T · E[U⇡]E[�]�

TX

t=1

(�(gt)) · E[U⇡]}

(16)
Since E[�] := 1

T

PT
t=1(�(gt)), we have

Ug(⇡) =
1

T

TX

t=1

(U⇡(st)�(gt)) +
1

T
{T · E[U⇡]E[�]� T · E[U⇡]E[�]}

=
1

T

TX

t=1

U⇡(st)�(gt)

(17)

D EXPERIMENT

D.1 MODIFIED ENVIRONMENTS

Ant Locomotion. In this part, we introduce two environments based on Ant Locomotion, namely
Free Ant and Ant Maze. The ant is a quadruped with 8 actuated joint, 2 for each leg. The envi-
ronment is implemented in Mujoco. Besides the coordinates of the center of mass, the joint angles
and joint velocities are also contained in the observation of the agent. Considering the high degrees
of freedom, navigation in this quite complex task requires motor coordination. More details can be
found in Duan et al. (2016), and the only difference is that in our goal-oriented version of Ant, we
extend the observation with the goals. The reward is still a sparse indicator function being 1 only
when the center of mass (x, y) of the Ant is within ✏ = 0.5 positions corresponding to ✏-balls in state
space. For the Free Ant experiments, the objective is to reach any position in the square [�5, 5]2.
Therefore the goal space is 2 dimensional, the state-space is 41 dimensional, and the action space
is 8 dimensional. As for the Ant Maze environment, the agent is constrained to move within the
maze environment, U-maze in this case and the size of all the blocks in the maze is 8⇥ 8. The maze
consists of totally 18 blocks.
Multi-Path Point Maze. All the experiment setting is similar with the Ant Maze environment. We
replace the Ant agent by a Point-Mass and change the maze into a multi-path one. The action of the
Point-Mass is a velocity vector, namely in 2 dimension.
N -dimensional Point-Mass Maze. In the N -dimensional Point-Mass maze experiment, the agent
can only move within a small subset of this state space. In the two-dimensional case, the set of
feasible states corresponds to the [�5, 5]⇥ [�1, 1] rectangle, making up 20% of the full space. For
N > 2, the feasible space is the Cartesian product of this 2D strip with [�✏, ✏]N�2, where ✏ = 0.3.
In this higher-dimensional environment, our agent receives a reward of 1 when it moves within
✏N = 0.3

p
Np
2

of the goal state, to account for the increase in average L2 distance between points in
higher dimensions. In this experiments, the full state-space of the N -dimensional Point Mass is the
hypercube [�5, 5]N .

17

Under review as a conference paper at ICLR 2021

(a) Free Ant Locomotion (b) MazeAnt Locomotion (c) Multi-Path PointMass

(e) 3-dimension PointMass

iterationiterationiteration

iteration

n
o
rm
al
iz
ed
ep
is
o
d
e
av
er
ag
e
re
tu
rn

n
o
rm
al
iz
ed
ep
is
o
d
e
av
er
ag
e
re
tu
rn

n
o
rm
al
iz
ed
ep
is
o
d
e
av
er
ag
e
re
tu
rn

(d) 2-dimension PointMass

iteration

n
o
rm
al
iz
ed
ep
is
o
d
e
av
er
ag
e
re
tu
rn

Figure 7: Learning curves of RERL, HGG, HER, SR and AutoGG on various environments, where
the solid curves depict the mean, the shaded areas indicate the standard deviation, and dashed hori-
zontal lines show the asymptotic performance.

D.2 EVALUATION DETAILS

We adopt HGG (Ren et al., 2019) incorporating with DDPG (Lillicrap et al., 2015), SR (Trott et al.,
2019) accompanying with PPO (Schulman et al., 2017) as these models are originally proposed. All
curves presented in this paper are plotted from 12 runs with random task initializations and seeds.
Following the regular procedure in goal-oriented RL, an episode is considered successful if and only
if the agent obtain 1 as the reward according to Eq. (2) where � stays the same for all the approaches.
However, in the practice, we conduct reward as the r(st, at|g, ḡ) = min[0,�d(�(gt+1|st+1), g) +
d(�(ḡt+1|st+1), ḡ)] to accelerate the training process.

D.3 IMPLEMENTATION DETAILS

Almost all hyper-parameters using DDPG (Lillicrap et al., 2015), TRPO (Schulman et al., 2015),
PPO (Schulman et al., 2017), Soft-AC (Haarnoja et al., 2018) are kept the same as benchmark
results. Specifically, we list our hyper-parameters as here. number of MPI workers: 1; buffer size:
104 trajectories; number of regions N : 5 in agent level; batch size: 256, number of trajectories
Z: 50, Lipschitz constant L: 5; learning rate: 10�5 in the network level; discount factor: 0.99;
interpolation factor in polyak averaging (if there is): 0.995; scale of additive Gaussian noise: 0.2;
probability of HER (Andrychowicz et al., 2017) experience replay: 0.8.

E RESULTS

E.1 ADDITIONAL EVALUATION ON STANDARD TASKS

In this section, we provide additional results on comparison between RERL and various baselines.
In order to answer the first two questions, we demonstrate our method in two challenging robotic
locomotion tasks, where the goals are the (x, y) position of the center of mass of dynamically com-
plex quadruped agent. In the first example, the agent has no constraints, and in the second one, the
agent is inside a U-maze (see Section 5 for details). Results in Figure 7(a)(b) demonstrate that the
performance of our approach exceeds that of the strong baselines mentioned in Section 5. To answer
the third question, we train an ant agent to reach any position within a multi-path maze. As shown in
Figure 7(c), our approach obtains better performance even at multi-path environment where goal dis-
tribution are naturally more complex than previous environments. To answer the fourth question, we
investigate how our method performs with the dimension of goal-space in an environment where the
goal space grows in dimension within the feasible region, e.g., 2D and 3D. As shown in Figure 7(d),
our approach outperforms strong baselines in both low- and high-dimensional environments.

18

Under review as a conference paper at ICLR 2021

E.2 ADDITIONAL RESULTS ON VISUALIZATION OF GENERATED GOALS

To answer the final question, we conduct a visualization study on generated goals to investigate
whether goals can encourage the agent to the target state, and anti-goals can prevent the agent from
the local optima. The visualization of goals can also represent the effect of diversity and hindsight
constraints through exploration and reachability of generated goals.

start state

goal

anti-goal

target state

(a) iteration=50 (b) iteration=150 (c) iteration=400

Figure 8: Generated goals and anti-goals visualized as the blue and green points respectively.

Results in Figure 8 show that the hindsight constraint helps the agent aim at feasible positions while
our diversity constraint encourages the agent to approach the target state. Specifically, from 1 and

2 , one can note that the agent is pulled by its goal, and pushed by its anti-goal and goals from the
other regions. Hence, once a region leading to a wrong direction, it also can encourage exploration
via diversity constraint.

start state

target state

normalized
episode
average
return

(a) iteration=50 (b) iteration=150 (c) iteration=400

Figure 9: Each grid cell in U-maze is colored according to the expected return success rate when
fixing its center as the target state.

As illustrated in Figure 9, the generated goals are approaching as the training proceeds, and at an
appropriate success rate level, which is accorded with the curriculum in the curriculum learning (see
Appendix B.2 for details).

start state

target state

(a) iteration=5 (b) iteration=15 (c) iteration=40

normalized
episode
average
return

Figure 10: Each grid cell in Multi-path maze is colored according to the expected return success rate
when fixing its center as the target state.

Results showed in Figure 10 and 11 are similar with that in Figure 9 and 8 respectively, which
actually can confirm the analysis above.

E.3 EXPERIMENT ON COMPARISON WITH EXPLICIT CURRICULUM LEARNING

In Florensa et al. (2017), GOID is defined as a goal set as GOID(⇡) = {g : ↵ f(⇡, g) 1� ↵}
where f(⇡, g) represents the average success rate in a small region closed by goal g. In order to
construct GOID set, we follow its definition and sample generated goals from GOID(⇡) via rejection
sampling.

19

Under review as a conference paper at ICLR 2021

start state

goal

anti-goal

target state

(a) iteration=5 (b) iteration=15 (c) iteration=40

Figure 11: Generated goals and anti-goals visualized as the blue and green points respectively.
(a) Hyper-parameter L (b) Hyper-parameter N (c) Hyper-parameter Z

iterationiterationiteration

n
o
rm
al
iz
ed
ep
is
o
d
e
av
er
ag
e
re
tu
rn

n
o
rm
al
iz
ed
ep
is
o
d
e
av
er
ag
e
re
tu
rn

n
o
rm
al
iz
ed
ep
is
o
d
e
av
er
ag
e
re
tu
rn

(d) Hyper-parameter ! (e) Hyper-parameter "

iterationiteration

n
o
rm
al
iz
ed
ep
is
o
d
e
av
er
ag
e
re
tu
rn

n
o
rm
al
iz
ed
ep
is
o
d
e
av
er
ag
e
re
tu
rn

Figure 12: Learning curves of ablation study on parameters: L, N , Z, ↵ and �, where the solid
curves depict the mean, the shaded areas indicate the standard deviation, and dashed horizontal lines
show the asymptotic performance.

E.4 ADDITIONAL RESULTS ON ABLATION STUDY

In this section, we set up a set of ablation tests on several hyper-parameters used in the RERL. The
selection of Lipschitz constant L is task dependent, since it is highly related with scale of value
function and goal distance. For the robotics tasks tested in this paper (i.e., Ant Maze Locomotion),
as showed in Figure 12(a), we find that the performance of RERL is reasonable as long as L is not too
small. Similar as L, the selection of the number of regions N is also theoretically task-specific. We
test a few choices on Ant Maze Locomotion and find a range of N that works well. As Figure 12(b)
illustrates, it appears that the RERL is reasonable as long as N is not too large. As for the number of
trajectories Z, we plot the curve on different Z in Figure 12(c) and find that for the simple tasks, the
choice of Z is not critical. Parameters ↵ and � together define the trade-off between value function,
diversity and hindsight constraints. Results in Figure 12(d)(e) show that the choice of ↵ and � is
indeed robust.

20

	Introduction
	Related Work
	Preliminaries
	Regioned Episodic Reinforcement Learning
	Construct Region-based Memory
	Explore with Goal-oriented Reinforcement Learning
	Exploit with Episodic Reinforcement Learning

	Experiments
	conclusion
	Algorithm
	Dicussions
	Example for Goal generation
	Relationship to Curriculum Learning
	Relationship to Maximum Entropy RL

	Proofs
	Proof of Proposition 1
	Proof of Proposition 4
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Lemma 1
	Detailed Derivation of Eq. (13)

	Experiment
	Modified Environments
	Evaluation Details
	Implementation Details

	Results
	Additional Evaluation on Standard Tasks
	Additional Results on Visualization of Generated Goals
	Experiment on Comparison with Explicit Curriculum Learning
	Additional Results on Ablation Study

