
Under review as a conference paper at ICLR 2024

A ALGORITHM PSEUDOCODE

The pseudocode of the Linearized ReLU Network Gradients and the Linearized Projected Gradient
Descent for ReLU NNs from Section 3.1, and Floating-point Neighbors Search algorithm from
Section 3.2 appear in Algorithm 1, Algorithm 2, and Algorithm 3 respectively.

In Algorithm 3, beforeFP(v) returns the first floating-point value before v, and afterFP(v) returns
the first floating-point value after v. In the experiments, we set p = 2 for Algorithm 3.

Algorithm 1: LinApproxPerturbDir: Linearized ReLU Network Gradients
Input: input to be perturbed x; the neural network model F (x) = Fn ◦ Fn−1 ◦ · · · ◦ F1(x),

Fi(x) = ReLU(θT
i x + θ̂i); current label l; adversarial target label t.

Output: ν, a perturbation direction.
Function LinApproxPerturbDir(x, F , l, t):

h1 ← θT
1 x + θ̂1

for i← 2 to n do
mi ← 1[hi−1>0] . elementwise thresholding
τT
i ← θT

i � 1mT
i . Hadamard product; 1 is a column vector of

1s
zi−1 ← ReLU(hi−1)

hi ← θT
i zi−1 + θ̂i

end
τT ← τT

n τT
n−1 · · · τT

2 θT
1 . weights of F ′

ν ← τT [t]− τT [l]
return ν

End Function

Algorithm 2: ReluPGD: Linearized Projected Gradient Descent for ReLU NNs
Input: input to be perturbed x; the neural network model F (x) = Fn ◦ Fn−1 ◦ · · · ◦ F1,

Fi(x) = ReLU(θT
i x + θ̂i); current label l; adversarial target label t; step size s; input

domain [Vmin, Vmax].
Output: δ, adversarial perturbation.
Function ReluPGD(x, F, l, t, s, Vmin, Vmax):

x′ ← x . initial adversarial example
do

ν ← LinApproxPerturbDir(x′, F, l, t)
δ ← s

‖ν‖ν

x′ ← x′ + δ
x′ ← clip(x′, Vmin, Vmax)

while F (x′) 6= t . or till timeout
return δ ← x′ − x

End Function

Algorithm 3: Neighbor: FP Neighbors Search
Input: perturbation seed vector δ = [δ1, δ2, . . . , δD];
p: number of signed neighbor values to sample from for each dimension;
N : number of sampled neighbors of δ to return;
Output: δ-neighb, N neighbors of δ
Function Neighbor(δ, N , n):

candidates← [(2p+ 1)×D]
. Continues next page

12

Under review as a conference paper at ICLR 2024

for i← 1 to D do
candidates[1][i]← δi
ri ← δi
li ← δi
j ← 2
while j < 2p+ 1 do

ri ← afterFP(ri)
li ← beforeFP(li)
candidates[j][i]← ri
candidates[j + 1][i]← li
j ← j + 2

end
end
δ-neighb← sample(candidates, N) . Construct N neighbor points: for
each point δ′, randomly sample component δ′i from candidates[·][i],
such that δ-neighb contains no duplicates nor copies of δ.

return δ-neighb
End Function

B ATTACK RESULTS ON MNIST FOR LINEAR SVM

The results of rounding search attacks on linear SVM from Section 4.2 for each combination of the
distinct labels i, j ∈ {0, . . . , 9} of the MNIST dataset are listed in Table 1 for the weak model and
Table 2 for the strong model. An example of original and adversarial images together with their
perturbation and certified radius information based on linear SVM attack is presented in Figure 3.

labels 1 2 3 4 5 6 7 8 9
0 11.06% 5.12% 3.62% 2.65% 0.53% 2.58% 6.18% 3.43% 3.12%
1 5.77% 5.64% 6.8% 23.24% 0.38% 16.04% 4.46% 6.06%
2 1.08% 0.3% 1.3% - 1.12% 1.0% 1.03%
3 0.1% 1.21% 5.18% 4.47% 1.31% 0.25%
4 1.92% 0.05% 4.08% 1.84% 0.4%
5 2.16% 5.78% 0.05% 0.58%
6 2.92% 10.09% 0.05%
7 2.3% 1.57%
8 1.06%

Table 1: The success rates of our rounding search attack against linear SVM models on the MNIST
dataset in the weak threat model (Section 4.2). An experiment is successful if adversarial perturba-
tion ‖δ‖ is less than or equal to certified radius R̃ = |wTx + b|/‖w‖ computed with finite-precision
floating-point arithmetic (i.e., ‖δ‖ ≤ R̃). 45 linear SVM models have been trained and attacked for
each combination of labels respectively. A cell in row i and column j reports the attack success rate
for classes original i and target j, plus the attack success rate for classes original j and target i. For
example, for an SVM model, we can find adversarial perturbations within certified radius for 11.06%
of all images labelled 1 (with the model classifying them as 0) or images labelled 0 (with the model
classifying them as 1). We use “-” to denote models where rounding search did not find an adversarial
example.

C ATTACK RESULTS ON MNIST FOR APPROXIMATE CERTIFICATION

Randomized smoothing for approximate certification. Researchers have studied approximate
certification of non-linear models such as neural networks, under the `2 norm Lecuyer et al. (2019); Li
et al. (2019); Cohen et al. (2019). In this work, we consider one such approach of Cohen et al. Cohen
et al. (2019) from which many subsequent results derive. Sufficiently stable model predictions lead

13

Under review as a conference paper at ICLR 2024

labels 1 2 3 4 5 6 7 8 9
0 - - - - - - - - 0.05%
1 - 0.05% 0.05% - - - - -
2 - - - - - - -
3 - 0.16% 0.05% - 0.05% -
4 - 0.05% - 0.05% -
5 - - 0.05% 0.16%
6 - - 0.05%
7 - -
8 -

Table 2: The success rates of our rounding search attack against linear SVM models on the MNIST
dataset in the strong threat model (Section 4.2). An experiment is successful if the upper bound of
adversarial perturbation ‖δ‖ is less than or equal to certified radius R̃ = |wTx + b|/‖w‖ computed
with finite-precision floating-point arithmetic (i.e., ‖δ‖ ≤ R̃). 45 linear SVM models have been
trained and attacked for each combination of labels respectively. A cell in row i and column j reports
the attack success rate for classes original i and target j, plus the attack success rate for classes
original j and target i. We use “-” to denote models where rounding search did not find an adversarial
example.

(a) (b)

Figure 3: (a) Original images from the MNIST dataset. (b) Corresponding adversarial images in the
weak threat model, with perturbations within the exact certified radius (i.e.,‖δ‖ ≤ R̃) but the linear
SVM model misclassifies them. For example, the first top-left image in (a) has certified radius of
R̃ = 333.6087764918925, and is classified as 1, while the corresponding adversarial image in (b)
has perturbation ‖δ‖ = 333.6087764918924, and is classified as 0. Labels at the bottom right of
each image are the classifications of the linear SVM model (Section 4.2).

to certifiable radii; therefore we seek to stabilize the outputs of the base classifier f by forming a
smoothed classifier g as follows. To input x ∈ RD add isotropic Gaussian noise, then apply f . The
input distribution induces a distribution over predictions, and outputs the most likely class. That is,
for ε ∼ N (0, σ2

P I
2), g(x) = arg maxk∈[K] Pr (f(x + ε) = k).

Consider lower (upper) bounds on the winning k? classification’s probability score, Pr(f(x + ε) =
k?) ≥ pA ≥ pB ≥ maxk∈[K]\{k?} Pr(f(x + ε = k)). Then Cohen et al. Cohen et al. (2019) prove
that radius R = 0.5σP (Φ−1(pA) − Φ−1(pB)) is a sound certification for smoothed classification
g(x), under R arithmetic. However the floating-point calculation of a corresponding R̃ is likely to
experience some degree of rounding, potentially sufficient to erroneously certify some R̃ > R.

Setting Our experiments on approximate certification attack a 3-layer ReLU network with 100
nodes in the hidden layer trained on the MNIST LeCun et al. (2010) dataset with labels 0 and 1,
which has validation accuracy 99.95%. Pixel values of all images are scaled to [0, 1].

14

Under review as a conference paper at ICLR 2024

Prediction and certified radius estimation. We adopt the same prediction procedures as Li et al.
(2019). Given an instance x, the smoothed classifier g runs the base classifier f onM noise-corrupted
instances of x, and returns the top class kA that has been predicted by f . The estimation of the
certified radius R̃ for a smoothed classifier g is based on the probability distribution of the winner
and runner-up classes (i.e., pA and pB). pA and pB are estimated via interval estimation Brown
et al. (2001), with confidence 1− α. As recommended in these papers, we set α = 0.1%, Gaussian
prediction noise scale σP ∈ {1.0, 3.0, 5.0, 7.0}, and let the number of Monte Carlo samples M range
in {100, 10000}.

Attack. We conduct our attack as follows. Given x and R̃ as returned by g, we first use ReluPGD
(maximum runtime is set as 15 minutes) to find an adversarial perturbation δ against the base classifier
f , then use Neighbor to find N = 1000 neighbors δ′ of δ. We evaluate all generated adversarial
examples x + δ′ using the robust classifier g. For an image x, if any one x + δ′ of the N = 1000
adversarial images flips the classification of the model with ‖δ′‖ ≤ R̃, we have a successful attack
against the approximate certification on this image. We chose f in the process of perturbation
generation as we need a concrete ReLU network with clear weights. We conduct attacks on 2 115
images of the MNIST dataset with labels 0 and 1, and have success rates up to 21.11% against
approximate certification. Detailed results are listed in Table 3.

σP M NA NV success rate

1.0 100 5 2111 0.24%
10000 1 2115 0.05%

3.0 100 182 2066 8.81%
10000 8 2113 0.38%

5.0 100 273 1606 17.00%
10000 54 2109 2.56%

7.0 100 220 1042 21.11%
10000 99 2066 4.79%

Table 3: The attack success rates of our rounding search within the certified radius R̃ (α = 0.1%) Co-
hen et al. (2019). The number of Monte Carlo samples M used in certified radius estimation ranges
in {100, 10000}. Prediction noise scale σP ∈ {1.0, 3.0, 5.0, 7.0}. We randomly sample and evaluate
N = 1000 neighbors δ′ of δ in the search area for each image. NA and NV denote the number of
examples that have been successfully attacked and verified respectively.

D MITIGATION DEFINITIONS

As outlined in Section 5, interval arithmetic is an approach to bounding approximations in numerical
analysis. It involves replacing each (possibly) approximate floating-point scalar with an interval
with floating-point end-points that are guaranteed to bound the scalar. Our goal is to enable any
computation on floating-points to be possible on interval representations, such that this ‘guaranteed
bounding’ property on input data, parameters, or intermediate computations, is invariant to further
computation.

It is first necessary to extend the standard arithmetic operators to interval arithmetic. The following
definition demonstrates this process assuming arithmetic on R: provided two target values a, b are
contained in intervals [a1, a2], [b1, b2] to begin with, then the presented operators are guaranteed to
maintain this property on basic arithmetic operations. For example, a + b ∈ ([a1, a2] + [b1, b2]),
where the operator ‘+’ on reals is overloaded to real intervals.

Definition 2 For real intervals [a1, a2], [b1, b2], define the following interval operators for elementary
arithmetic:

• Addition [a1, a2] + [b1, b2] is defined as [a1 + b1, a2 + b2].

• Subtraction [a1, a2]− [b1, b2] is defined as [a1 − b2, a2 − b1].

• Multiplication [a1, a2] ∗ [b1, b2] is defined as [min{a1b1, a2b1, a1b2, a2b2},
max{a1b1, a2b1, a1b2, a2b2}].

15

Under review as a conference paper at ICLR 2024

• Division [a1, a2]/[b1, b2] is defined as [a1, b2]× 1/[b1, b2] where by cases:

1

[b1, b2]
=

[

1
b2
, 1
b1

]
, if 0 /∈ [b1, b2][

−∞, 1
b1

]
∪
[

1
b2
,∞
]
, otherwise

1

[b1, 0]
=

[
−∞, 1

b1

]
,

1

[0, b2]
=

[
1

b2
,∞
]

Rounded interval arithmetic Higham (2002) further employs floating-point rounding when imple-
menting the arithmetic operators, to achieve these sound floating-point extensions.

Lemma 1 Consider the interval arithmetic operators in Definition 2 with the resulting lower (upper)
interval limits computed using IEEE754 floating-point arithmetic with rounding down (up), then the
resulting rounded interval arithmetic operators are sound floating-point extensions.

That is, given a collection of floating-point intervals representing a collection of corresponding reals,
rounded extension operators produce floating-point intervals that are guaranteed to contain the result
of corresponding (base, unextended) arithmetic on the given collection of reals.

By representing constants as singleton intervals, rounded interval arithmetic computes floating-point
bounds on real-valued results. Applying Definition 2 and Lemma 1, we can compute a sound
floating-point interval for the rational 1/3:

[1, 1]

[3, 3]
= [1, 1] ∗ 1

[3, 3]
= [1, 1] ∗

[
1

3
,

1

3

]
=

[⌊
1

3

⌋
,

⌈
1

3

⌉]
= [0.33 . . . 33, 0.33 . . . 337]

Beyond rounded interval arithmetic operators, libraries such as PyInterval offer rounded interval
implementations of standard algebraic functions (e.g., the square root) and transcendental functions
(e.g., the exponential, logarithm, trigonometric, and hyperbolic functions) using Newton-Raphson
approximation that itself applies the above basic operators. Such functionality enables application of
rounded interval arithmetic to general machine learning models and their certifications.

D.1 PROOF OF THEOREM 1

The result follows by strong induction on the levels of composition implementing R(f, x), with
repeated application of Lemma 1. The induction hypothesis is that up to l ≤ L levels of composition
of interval operators produces intervals that contain the result of the corresponding real operators. The
base case comes from the (coordinate-wise) intervals [x,x], [f(x), f(x)] containing coordinates of x
and f(x); the inductive step follows from repeated application of sound floating-point extensions.

E REVISITING ATTACKS

We now revisit our Section 4.1 experiment on randomized binary linear classifiers. Figure 2(a)
observes an intriguing behavior of fast initial improvement of attack success rate to 50% followed by
asymptoting in the weak threat model, for both 32-bit and 64-bit representations.

To explore why our success rate flattens, we conduct an experiment in the weak threat model with
64-bit representation. We use the PyInterval library Taschini (2008) to calculate the lower and upper
bounds, R and R, of certified radius R. Then we conduct a binary search in [R,R] to find the
maximum certified radius R̂, within which there are no adversarial examples (Theorem 1). We take
R̂ as our best approximation to R, and use it to estimate the rounding error of R̃ (i.e., R̂− R̃).

As in Figure 4(a), our attack against linear models exploits rounding errors in the magnitude of 10−15.
We find that the rate that R̃ is overestimated (R̃ > R̂) flattens around 50% (Figure 4(b)). Recall that
our attack works when R̃ is overestimated, so there is leeway for our attack to exploit. Therefore, our
success rate flattens around 50% because that is the maximum rate that R̃ is overestimated.

Why does the overestimated rate flatten around 50%? One intuition is that rounding is effectively
random: there is a 50% chance for R̃ to be overestimated (rounded up), and another 50% chance for

16

Under review as a conference paper at ICLR 2024

(a) (b)

Figure 4: Exploration of flattening success rate phenomenon in Section 4.1. The experiment is done
in the weak threat model with 64-bit floating-point representation. R̃ is the estimated certified radius
using IEEE 754 floating-point arithmetic (with rounding errors), R̂ is the certified radius found via
binary search within [R,R], R and R are the lower and upper bounds of the real certified radius R
estimated using interval arithmetic Taschini (2008). R̂ is our best approximation to R, within which
there are no robustness violations. (a) Deviations (R̂− R̃) between R̃ and R̂ over 10 000 trials for
D ∈ {3, 30}. (b) For each dimension D ∈ [1, 100], we plot percentage of 10 000 trials for which
R̂ > R̃ and R̂ ≤ R̃. Our attacks may work when R̂ < R̃, that is, the certified radius is overestimated.

R̃ to be underestimated (rounded down). Hence, no matter in 32-bit or 64-bit representation, our
attack success rates flatten around 50%.

F BROADER IMPACT

Our attacks could potentially be used to find violations of robustness guarantees in system imple-
mentations, by exploiting floating-point vulnerabilities in those implementations. Note that to date,
we are not aware of any certified robustness implementations yet in deployment. However since
certifications could be deployed in the near future, this work serves an important role in highlighting
this new vulnerability, and in proposing an effective mitigation against it.

G LIMITATIONS

We identify the following limitations that could be addressed as future work. First, our attacks against
methods based on randomized smoothing did not study the relationship between the attack success
rate and the soundness probability of these methods due to their probabilistic nature. A possible future
direction would be to study how the two interact. Second, we showed how to adopt our mitigation
based on interval arithmetic generally, and demonstrate this mitigation for linear models and exact
certifications. Detailed exploration of embedding these mitigations in other verifiers and models is
left as future work.

17

	Introduction
	Background and preliminaries
	Certified robustness

	Rounding search attack
	Adversarial perturbation direction
	Rounding search

	Attack experiments
	Random linear classifiers
	Linear SVM
	Certification for neural nets

	Mitigation: Certification with rounded interval arithmetic
	Related work
	Conclusion
	Algorithm pseudocode
	Attack results on MNIST for linear SVM
	Attack results on MNIST for approximate certification
	Mitigation definitions
	Proof of Theorem 1

	Revisiting attacks
	Broader impact
	Limitations

