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Abstract

Can we train a molecule generator that can generate 3D molecules from a new
domain, circumventing the need to collect data? This problem can be cast as the
problem of domain adaptive molecule generation. This work presents a novel
and principled diffusion-based approach, called GADM, that allows shifting a
generative model to desired new domains without the need to collect even a single
molecule. As the domain shift is typically caused by the structure variations of
molecules, e.g., scaffold variations, we leverage a designated equivariant masked
autoencoder (MAE) along with various masking strategies to capture the structural-
grained representations of the in-domain varieties. In particular, with an asymmetric
encoder-decoder module, the MAE can generalize to unseen structure variations
from the target domains. These structure variations are encoded with an equivariant
encoder and treated as domain supervisors to control denoising. We show that, with
these encoded structural-grained domain supervisors, GADM can generate effective
molecules within the desired new domains. We conduct extensive experiments
across various domain adaptation tasks over benchmarking datasets. We show that
our approach can improve up to 65.6% in terms of success rate defined based on
molecular validity, uniqueness, and novelty compared to alternative baselines.

1 Introduction

Geometric generative models are proposed to approximate the distribution of complex geometries
and are used to generate feature-rich geometries. They have emerged as a crucial research direction
in various scientific fields (e.g., material science, biology, and chemistry [16, 47, 50]), attempting to
facilitate the process of scientific knowledge discovery. In these fields, geometries could be point
clouds where each point is embedded in the Cartesian coordinates and encompasses rich features.
For example, 3D molecules can be represented as atomic geometric graphs [16, 51, 40].

There has been fruitful research progress on 3D molecule generation based on geometric generative
modeling due to their ability to estimate density and generate feature-rich geometries. Recent
representative models for generating 3D molecules in silicon include autoregressive [28], flow-
based models [11], and diffusion models [16]. Among others, diffusion models have demonstrated
their superior performance in terms of various empirical evaluation metrics, such as stability and
validity [16]. However, these generative models are trained to mimic the training data distribution,
limiting their capability within the in-domain generation and manipulation [13], i.e., controllable
generation.

With the expressive power of the state-of-the-art diffusion-based generators, can we train a diffusion-
based molecule generator that can flexibly adapt to a desired new domain where data are scarce
and difficult to collect? This problem can be cast as a domain adaptive generation problem, whose
goal is to shift the data distribution of generators to a desired new domain different from what it is
trained over. In the context of molecule generation, the distribution shift mainly comes from structure
variations [49, 25]. The structure variation could be the various types of scaffolds or ring-structures.
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Taking a canonical molecule dataset — QM9 as our running
example, diverse scaffolds of molecules have varying pro-
portions in nature [32, 49]. We observed that EDM [16]
and GeoLDM [51] indeed could capture the training data
distribution well — generating molecules with scaffolds
existing in the high-frequency class — but they struggle
to generate molecules with low-frequency scaffolds (see
Table 1). Our preliminary study proves the excellent ex-
pressive capability of the current diffusion-based molecule
generators. On the other hand, it indicates the difficulty in
generating molecules deviating from the training data dis-
tribution. Existing works for domain adaptive generation
are tailed for specific generation tasks, such as image [39],
dialog [31], and question-answering generation [54]. As
far as we know, ours is the first work to consider domain
adaptive generation for 3D molecules.

Table 1: Alternative baselines were
trained with QM9, a canonical molecule
dataset. Source, target I, and target II do-
mains encompass molecules with high-,
low-, and rare-frequency scaffolds, re-
spectively. The generated samples from
EDM and GeoLLDM, which are trained
on molecules with source scaffolds, are
dominated by the training scaffold set,
indicating that they can well reflect the
training data distribution.

QM9 Scaffold Propotion (%)

Domains Source Target] Target II
QM9 76.4 11.5 12.1
EDM [16] 90.9 5.9 2.7
GeoLDM [51]  90.6 5.9 3.5

To address the above issues, we develop a new and princi-
pled diffusion-based generator, called Geometric Adaptive
Diffusion Model (GADM), that can adaptively synthesize
3D molecules in the desired new domains. In particular, GADM enables the generation of 3D
molecules with structural-grained variations adaptively, including the distribution shifts due to scaf-
fold and ring-structure variations, respectively. The underlying assumption is that if we can capture
the set of structure variations right, generalizing the unseen ones that ultimately lead to the target
domain is a much easier process. Using QM9 as an example (see Table 1, source, target I, and
target II are three domains due to scaffold variations. Our proposed generator GADM is trained with
source molecules — the high-frequency scaffolds. Once trained, GADM can generate molecules
with low/rare-frequency scaffolds conditioned on corresponding scaffolds in target I/target II.

The crux of GADM is to empower the denoising process with domain priors, which is characterized by
a designated Equivariant Masked Autoencoder (EMAE). Our EMAE is realized with an asymmetric
encoder-decoder architecture, enabling to capture the domain priors — in-domain structure variations
and to generalize to out-of-domain structure variations [14]. More specifically, during training, the
in-domain priors, such as scaffolds or ring-structures from the source domain, are encoded and
subsequently act as domain supervisors to control the denoising process of Domain Supervised
Diffusion Model (DSDM). In the generation phase, the generalization capability provided by the
asymmetric EMAE allows for properly encoding the unseen structure variations, i.e., scaffolds or
rings from the target domains. These captured target domain priors are used to control the denoising
process to generate 3D molecules within the desired new domains.

To ensure that the generated 3D molecules are SE(3)-equivariant, our EMAE employs the well-
known equivariant graph neural network module to encode the structural-grained domain supervisors.
Notably, unlike prior domain adaption works [39], GADM does not need additional training for the
entire adaptive generation process. In a nutshell, our main contributions are delineated as follows.

First, we pioneer the domain adaptive generation problem in the context of 3D molecule generation.
Correspondingly, we propose a geometric adaptive diffusion-based generation framework capable of
adaptively generating target molecules outside the training domain without additional training. In
particular, we adopt the idea of Masked Autoencoder (MAE) to extract latent features of in-domain
and out-of-domain supervisors for conditional denoising in diffusion models. Second, we proved that
the domain supervisor extracted by the designed EMAE is SE(3)-equivariant, ensuring the molecular
generation is equivariant. Third, to validate the effectiveness of the proposed framework, we compare
it with EDM [16] and GeoLDM [51] over benchmarking datasets. Extensive experimental results
demonstrate that the latent features, acting as domain supervisors, empower the diffusion models
to generate molecules with desired structural variations adaptively. Remarkably, the success rate
of generated molecules by GADM is improved by up to 65.6% compared with existing methods.
Our work represents a significant advancement in generating novel molecules that are absent in the
training samples but exhibit the desired structural variations.
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Figure 1: The Illustration of Proposed GADM Framework.

During training (gray pipeline): I. Equivariant Masked Autoencoder (EMAE): the equivariant
encoder (&) first maps the domain prior—masked structure (i.e., scaffold/ring)—into the masked latent
features. These latent features would be processed with an equivariant decoder (D) for reconstructing
the original molecule in 3D atomic space. This asymmetric encoder-decoder architecture enables
to capture of the in-domain priors and to generalize to out-of-domain structures; II. Domain Prior-
Supervised Diffusion Model (DSDM): DSDM first diffuses the molecule into noises and then
incorporates the masked latent features as domain supervisor to perform denoising for reconstructing
the input molecules. During generation (red pipeline): EMAE receives the target domain prior
and encodes it as the domain supervisor. Then, DSDM denoises from sampled Gaussian noise under
domain supervision to generate novel and valid molecules with target structure variations.

2 Problem Setup and Preliminaries

2.1 Problem Definition

Notations: Let d be the dimensionality of node features; a 3D molecule can be represented as a point
cloud denoted as G = (x, h), where x = (x1,...,xy) € RY*3 is the atom coordinate matrix and
h = (hy,...,hy) € R¥*? s the node feature matrix containing atomic type, charge features, etc.
For a given molecule G, the scaffold is its structural framework [4], termed as “chemotypes,” which
could be regarded as a subgraph of the original molecule, represented as G° = (x°, h®). Except for
scaffolds, the ring structures are essential in Chemistry and Biology [20, 46, 33], which could also be
a factor that incurs the distribution shift.

Domain Adaptive Generation Problem: We consider the problem of domain adaptive generation in
the following two scenarios, including scaffold-domain and ring-structure-domain adaptive generation,
respectively. Given a collection of molecules as training samples and corresponding scaffold/ring-
structure set denoted as {Gg}, {G&}, respectively. For simplicity, we call the training sample domain
as the source domain. Domain adaptive generation aims to learn a generative model that can generate
valid and novel molecules falling into a targeted new domain, where corresponding scaffold/ring-
structure set is {G7 }, and the targeted scaffold/ring-structure set is unseen during training, a.k.a.

{gsrn{gz} =0.
2.2 Preliminaries

Equivariance. Molecules, typically existing within a three-dimensional physical space, are subject
to geometric symmetries, including translations, rotations, and potential reflections. These are
collectively referred to as the Euclidean group in 3 dimensions, denoted as E(3) [6].

A function F is said to be equivariant to the action of a group G if T, o F((x) = F o Sy(x) for all
g € G, where S, T}, are linear representations related to the group element g [36]. For geometric
graph generation, we consider the special Euclidean group SE(3), involving translations and rotations.
Moreover, the transformations S, or T, can be represented by a translation t and an orthogonal
matrix rotation R. For a molecule G = (x, h), the node features h are SE(3)-invariant while the
coordinates x are SE(3)-equivariant, which can be expressed as Rx +t = (Rx; +t,...,Rxy +t).

Diffusion Models. Diffusion models [38] are latent variable models for learning distributions by
modeling the reverse of a diffusion process [15]. Given a data point xog ~ ¢(xo) and a variance
schedule 3y, ..., B that controls the amount of noise added at each timestep ¢, the diffusion process
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or forward process gradually add Gaussian noise to the data point x:

Q(Xt|xt71) = N(Xt; v1- ﬁtxt—laﬁtI)a (D

Generally, the diffusion process ¢ has no trainable parameters. The denoising process or reverse
process aims at learning a parameterized generative process, which incrementally denoise the noisy
variables x7.1 to approximately restore the data point X in the original data distribution:

po(xe—1]xe) .= N (x¢—1; po (X, 1), Bo (x4, 1)), 2

where the initial distribution p(x;) is sampled from standard Gaussian noise A (0,I). The loss
for training diffusion model Lpy := L, is simplified as: Loy = Bxg,e,¢ [[l€ — €9(x¢,2)[|], where

w(t) = % is the reweighting term and could be simply set as 1 with promising sampling

quality, and x; = /X0 + /1 — aye. We provide detailed description about diffusion models in
Appendix C.

3 Method

Overview. Our objective is to learn a generator with the source domain with rich data that can
flexibly adapt to a new domain in a low-data regime. Generally, structure variations, such as scaffold
or ring-structure variations, are the main cause of the domain shift in the context of molecule
generation [49, 25]. We particularly focus on the geometric adaptive generation problem where the
scaffold/ring-structure set of the source domain, represented as {G%}, and the targeted scaffold/ring-
structure set from new domains, denoted as {g;}, are different. In other words, the targeted
scaffold/ring-structure set of the target domain is unseen during training — {G&} N {G5.} = 0.

With the superior capability of diffusion models for 3D molecule generation, we propose to address
the geometric domain adaptive molecule generation problem with a diffusion engine. However,
as illustrated in Section 1, the vanilla diffusion models have difficulty generating out-of-domain
molecules. In this regard, we propose to incorporate the structure variations of the source domain into
the denoising process during training and those of target domains into the denoising during generation.
These structure variations are dubbed as domain priors or domain supervisors. Nevertheless, charac-
terizing the domain priors that can adapt to new domains is challenging because the domain priors of
the target domains are not seen during training. Inspired by the impressive generalizability of masked
autoencoder in both vision and language fields [14, 18], we adopt an asymmetric encoder-decoder
architecture to capture the domain priors of the source domain and to generalize to unseen structure
variations from the target domains.

In what follows, we will elaborate on the design details of equivariant masked autoencoder and
domain prior-supervised diffusion model in Section 3.1 and Section 3.2, respectively. Then, we will
briefly summarize the training scheme and domain adaptive molecule generation in Section 3.3. The
proposed GADM workflow is provided in Figure 1.

3.1 Equivarient Masked Autoencoder

Masking. For a given molecule G = (x, h), we apply various masking strategies (M) to derive the
visible structure GV = (x", hV") <~ M(G) for distinct adaptive molecule design tasks, as depicted
in the right section of Figure 1. In the case of scaffold-domain and ring-domain adaptive design,
we mask (i.e., remove) the atoms not present on the scaffold/rings. This process is expressed as
GV« (x —x*,h — h*).

Variational Autoencoder. The EMAE comprises an encoder £, which maps visible structure
G" to a latent space, represented as fy, fi, = £(x",h"). Additionally, it includes a decoder D

that reconstructs the latent representation back to the original molecular space, denoted as X, h =
D(fy, fhn).

Our EMAE reconstructs the input by predicting the coordinates and features of each masked atom.
The loss function computes the mean squared error (MSE) between the reconstructed and original
molecules in the original molecular space. The EMAE can be trained by minimizing the reconstruction
objective, expressed as f(G,D(E(M(G)))). The encoder of the EMAE functions solely on the
visible structure M (G), while the decoder reconstructs the input from the latent representation to the
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Figure 2: The Illustration of the Adaptive Generation Process with GADM: given a scaffold as the
domain supervisor from a new domain, our trained GADM can generate valid, unique, and novel
molecules containing the target scaffold.

complete molecule G. This asymmetric encoder-decoder design offers promising generalization [14]
to the latent features. These features serve as domain supervisors and empower the model to generate
molecules with unseen domain priors.

Equivarient MAE. However, applying general MAE in the geometric domain is non-trivial. The
diffusion model within the overall framework operates in 3D molecular space and necessitates
conditions to be either equivariant or invariant. Therefore, it is crucial to ensure the equivariance of
the conditions extracted by EMAE. To achieve this, we design our EMAE based on the Equivariant
Graph Neural Networks (EGNNG5) [35], thereby incorporating equivariance into both the encoder
&y and decoder Dy, where ¢ and ¢ are two learnable EGNNs. EMAE ensures that the latent
representation fy and fx encoded by the encoder from visible structure are 3-D equivariant and k-d
invariant, respectively. Consequently, EMAE extracts both invariant and equivariant conditions, as
expressed below:

Rf, + ¢, fi, =€4(Rx" +¢,h") (3)
Rx +t,h =Dy(Rfy + ¢, fy) “

for all rotations R and translations t. Detailed architecture information about EMAE can be found in
Appendix D. The point-wise latent space adheres to the inherent structure of geometries G, which
facilitates learning conditions for the diffusion model and results in high-quality molecule design.

Following [16, 51], to ensure that linear subspaces with the center of gravity always being zero
can induce translation-invariant distributions, we define distributions of visible structures x" , latent
conditions f,, and reconstructed X on the subspace that Zl xz‘-/ (or f,; and X;) = 0. Then the
encoding and decoding processes can be formulated by g (x, fu|x, h) = N(Ey(M(x,h)), o0I)

and py(x, h|fy, f) = Hil po (x4, hilfx, fn) and the EMAE can be optimized by:

N
EEMAE = Eq¢(fx,fh|x,h)p19 (X7 h‘fx7 fh) - KL[q¢(fxy fh‘X7 h)|| HN(fx,i7 fh,i|07 I)]7 (5)

where —E,, £, £, |x,h)Pv (x, h|fy, f},) is the reconstruction loss and is calculated as Lo norm or

cross-entropy for continuous or discrete features. KL[gy (fx, fn|x, h)|| va N (fz, fn]0,1]) is a regu-
larization term between g, and standard Gaussians. Lgmag is standard VAE loss and is the variational
lower bound of log-likelihood. The equivariance of the loss, which is crucial for geometric graph
generation, is expressed as follows:

Theorem 3.1. Lpgyar is an SE(3)-invariant variational lower bound to the log-likelihood, i.e., for
any geometries (x,h), we have:

The theorem ensures that EMAE is equivariant so that the extracted condition satisfies the equivariant
constraints, thereby ensuring that the conditional denoising of the geometric diffusion model is also
equivariant. Detailed proof of Theorem 3.1 is given in Appendix F.

In summary, EMAE first masks the input molecule G, and then inputs the visible structure G into
the encoder £ to obtain equivariant latent features fy and invariant latent features f},. These features
have two purposes. One is to continue to be input into the decoder D for reconstruction to constrain
the latent features. Secondly, it is used as the condition to supervise and control the diffusion model.
The specific method of the second part will be explained in the following section.

3.2 Domain Prior-Supervised Diffusion Model

With the equivariant latent features (fy, f;,), now we can utilize these features as domain supervisors
for reconstructing structures G while still keeping geometric properties. The latent features encoded
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by the mask encoder from the same molecule serve as the condition for the diffusion model. Such
a similar manner to self-supervised learning enables the model to generate molecules with target
structural variations, and thereby, the proposed method can perform adaptive molecule generation.

Generally, geometric diffusion models are capable of controllable generation with given conditions
s by modeling conditional distributions p(z|s). This modeling in DMs can be implemented with
conditional denoising networks €4(z, t, s) with the critical difference that it takes additional inputs s.
However, an underlying constraint of such use is the assumption that s is invariant. By contrast, a
fundamental challenge for our method is that the conditions for the DM contain not only invariant
features f}, but also equivariant features fy. This requires the distribution py(zo.7) of our DMs to
satisfy the critical invariance:

VR, p@(zxvzhafxafh) :pg(RZx,Zh,fo,fh). (6)

To achieve this, we should ensure that (1) the initial distribution p(zx,1, Zn, 7, fx, fn) is invariant,
which is already satisfied since zx 7 is projected down by subtracting its center of gravity after
sampling from standard Gaussian noise. With the fy, f}, is obtained by equivariant £4 (Equations 3);
(2) the conditional reverse processes via 6, which is expressed as pg(zx,¢—1, Zh,t—1|Zx,t, Zh,¢, fx, fh),
are equivariant:

v R7 Do (Zx7t,1, Zh}t,] |Zx,t7 Zh,ta fxa fh) = Pe (sz,tfla Zh,tfla |RZx7t7 Zh7t7 fo7 fh)7 (7)

this can be realized by implementing the denoising dynamics €y with EGNN that satisfy the following
equivariance:

VRandt, Rzx; 1 +t,2n,—1 = €9(Rzx + t,2n, Rfx + t, 1}, 1), ®)

In order to keep translation invariance, all the intermediate states zy ¢, Zn ¢ are also required to lie on
the subspace by >, zx +; = 0 by moving the center of gravity. Analogous to Equation 17, now we
can train the DSDM by:

Losom = Eg e(m(g)).et [l€ — €o(2zx.t, zn e, Fx, Fa, £)]| ] )
with w(t) simply set as 1 for all steps t.

3.3 Training and Generation

Training. The training loss of the entire framework can be formulated as £ = Lgmag + Lpspm- To
make the training loss tractable, we also show that L is theoretically an SE(3)-invariant variational
lower bound of the log-likelihood and we can have:

Theorem 3.2. Let L := Lpyar + Lpspu- With certain weights w(t), £ is an SFE(3)-invariant
variational lower bound to the log-likelihood.

Given the above training loss and Theorem 3.2, we can optimize GADM via back-propagation with
reparameterizing trick [22]. We provide the detailed proof of Theorem 3.2 in Appendix G, and
a formal description of the optimization procedure in Algorithm 1 in Appendix H. We follow the
process of EDM [16] regarding the representation for continuous features x and categorical features
h. For clarity, we provided the details in Appendix D.3.

Adaptive Molecule Generation. With GADM trained on source dataset {Gg} and given a
scaffold/ring-structure from the target domain, denoted as a G7., we can perform adaptive molecule
generation (a scaffold adaptive generative process is illustrated in Figure 2). To sample from
the model, one first inputs the G7 into the encoder £4 and obtains the latent representation of
G5 denoted as (fy,fy,) via reparameterization. With the latent representation of the target do-
main prior as condition, DSDM first samples zx 1, zn 17 ~ Ny 1 (0,I) and then iteratively samples
Zx t—1,Zh,t—1 ~ Do(Zx,t—1,Zh,t—1|Zx,t; Zht, fx, fn). Finally, the output molecule represented as
(x, h) is sampled from p(zx,0, Zn,0|2x,1, Zn,1, fx, fn). The pseudo-code of the adaptive generation is
provided in Algorithm 2 in Appendix H.

4 Experiments

4.1 Experiment Setup

Datasets and Tasks. We evaluate over QM9 [32] and the GEOM-DRUG [1]. Specifically, QM09 is a
standard dataset that contains molecular properties and atom coordinates for 130k 3D molecules with
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up to 9 heavy atoms and up to 29 atoms, including hydrogens. GEOM-DRUG encompasses around
450,000 molecules, each with an average of 44 atoms and a maximum of 181. Dataset details and
experimental parameters are presented in Appendices A, B, and E.

Ring-Structure-Domain Adaptive Molecule Generation. In this task, ring-structure variations result
in distribution shifts. We used RDKit [24] to categorize molecules into 9 groups based on the
number of rings, ranging from O to 8. As the number of rings increases, the quantity of molecules
correspondingly decreases. We partition the QM9 dataset into two subsets based on ring count.
The source domain comprises molecules and those with O to 3 rings, and we consider the target
domains including molecules with 4 to 8 rings, respectively. Figure 6 in the Appendix presents a
schematic diagram illustrating example molecules with O to 8 rings. The GEOM-DRUG dataset
contains molecules with O to 14 rings and 22 rings. We use the subsets with O to 10 rings as the source
domain and consider five target domains, including 11 to 14 and 22. This is because the number of
molecules possessing 11 to 14 and 22 rings are all under 100, representing a micro fraction of the
total molecule count.

Scaffold-Domain Adaptive Molecule Generation. In this task, scaffold variations incur distribution
shifts. Similarly, we utilized RDkit [24] to examine the scaffold of each molecule within the QM9
dataset. Molecules lacking a scaffold were denoted as ‘-* and were included in the total scaffold
count. The entire dataset was divided based on scaffold frequency. Specifically, the source domain
contained 100,000 molecules and 1,054 scaffolds — most scaffolds appeared at least 100 times. The
target domain I included 15,000 molecules and 2,532 scaffolds, where most scaffold’s frequency is
between 10 to 100. The target domain II consisted of 15,831 molecules and 12,075 scaffolds; each
scaffold’s frequency is less than 10. We aim to learn a generative model with the source domain
training data, which can adaptively generate effective molecules that fall into desired new domains,
such as target domain I/II.

Baselines. Our work is the first to consider the problem of domain adaptive generation for 3D
molecules, leading to the absence of baselines for a comprehensive comparison. As alternatives,
we employ three state-of-the-art 3D molecule diffusion models, EDM [16], GeoLDM [51] and
EEGSDE [3], as baselines to validate the efficacy of our proposed GADM. These methods can
perform controllable generation but can only control the generation process with numerical features.
Intuitively, the number of rings could be a numerical feature of a molecule. We treat the ring counts
as one control factor to manipulate the generation process of the baselines, denoted as C-EDM,
C-GeoLDM, and EEGSDE to verify GADM’s effectiveness in the ring-structure domain adaptive
generation task (see Table 2).

Metrics. Our objective is to generate effective 3D molecules in a target new domain. A generated
sample is effective only when it falls into the target domain while it is valid, unique, and novel
simultaneously. Therefore, our evaluation metrics can be defined as follows:

1. Proportion (P): Given a target scaffold/ring set {G3.}, proportion describes the percentage of
molecules that contain the desired scaffold/ring-structure in {G%.} among generated valid samples; 2.
Coverage (C): Coverage describes the percentage of scaffolds set of the generated samples (denoted
as {G& }) in target scaffolds set {G5.}, which is expressed as C' = [{G& }|/|{G5 }; 3. Target validity
(V): The percentage of valid molecules among all the desired molecules, which is measured by
RDKkit [24] and widely used for calculating validity [16, 51]); 4. Target novelty (N): The percentage
of novel molecules among all the desired valid molecules, the novel molecule is different from
training samples; 5. Success rate (S): The ratio of generated valid, unique, and novel molecules that
contain the desired scaffold/ring-structure. 6. Target atom stability (AS): The ratio of atoms that has
the correct valency with the desired scaffold/ring-structure among all generated molecules. 7. Target
molecule stability (MS): The ratio of generated molecules contains the desired scaffold/ring-structure,
and all atoms are stable. GEOM-DRUG dataset has nearly 0% molecule-level stability, so this metric
is generally ignored on GEOM-DRUG [16].

4.2 Results and Analysis

Ring-Structure Domain Adaptive Molecule Generation. In this task, all models were trained with
the same source domain that contains molecules with ring counts ranging from 0 to 3. Subsequently,
their performances were tested for generating molecules with 4 to 8 rings, respectively. We present the
results on 10,000 generated molecules for each ring-count domain in Table 2. For clarity, the generated
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Table 2: Results of molecule proportion in terms of ring-number (P), molecule validity (V), novelty
(N), and success rate (S). The best results are highlighted in bold. QM9 only contains 36 eight-ring
molecules, and the proportion for eight-ring is nearly 0.

Metrics P (%) i m Source Domam P (%) in Target Domains AS (%) MS (%) V(%) N (%) S (%)
Domains 2 5 6 7 Averaged over 9 Domains

QM9 | 102 393 276 151 || 44 2.7 0.6 0.2 0.0 | 99.0 95.2 97.7 - -
EDM{ 105 39.8 28.0 145 4 O 2.9 0.2 0.1 0.0 11.0 9.6 10.4 6.8 6.3
GeoLDMT [51] 120 38.6 27.0 153 22 0.2 0.1 0.0 11.0 9.9 10.4 6.4 59
EDM} 12.1 441 298 118 1.7 0.5 0.0 0.0 0.0 11.0 9.7 10.4 6.8 6.3
GeoLDMi [51] 28 415 321 157 4.7 2.7 0.3 0.1 0.0 10.9 9.1 10.4 6.7 6.2
C-EDM] [16] 989 942 80.8 644 || 126 268 03 0.1 0.0 413 339 38.0 27.3 24.1
C-GeoLDM{ [51] | 97.1 894 742 524 || 223 227 09 0.2 0.0 39.1 31.5 35.7 28.3 25.0
EEGSDE] [3] 984 922 776 582 | 141 176 03 0.0 0.0 39.1 31.1 35.7 272 242
GADM{ [ 999 998 991 97.6 || 925 89.7 787 882 821 | 831 54.0 719 70.3 40.5

t: Models are trained over entire QM9;
1: Models are trained over ring-split QM9 with ring-number from 0-3.
C-: C-EDM and C-GeoL DM are trained with conditioning on ring counts.

target molecule validity, novelty, and success rate are calculated by averaging the corresponding
values from the source domain and 5 target domains. More comprehensive results are presented in
Appendix I.

Table 2 demonstrates that those uncontrollable version of baselines (i.e., EDM and GeoLDM) can
barely generate molecules with 4 to 8 rings — 4.6% at most. Manipulating the generation process
with ring counts can slightly improve out-of-domain generation performance with up to 25% success
rates. In contrast, GADM can achieve a 40.5% success rate. Moreover, we observe that no baselines
can generate 8-ring molecules, including those controllable generation methods (i.e., C-GeoLDM,
C-EDM, and EEGSDE), reflecting the difficulty of generating those complex molecules rare existing
in the original QM9 (only 36 8-ring molecules). Notably, GADM can generate 82.1% portion
of 8-ring domain molecules even though the training data does not contain any of those samples,
showing the significance of using structural-grained representations for controlling the denoising
process of the diffusion models. Specifically, among the generated 10,000 molecules using GADM,
2,388 valid, unique, and novel 8-ring molecules exist. These results verify that GADM can adap-
tively generate 3D molecules from the desired new domains regarding ring-structure variations.

Table 3 presented the statistical results of var- Table 3: Results of molecule proportion in terms

ious methods for generating rare ring number
molecules (ranging from 11 to 14 and 22) on
the large-scale dataset GEOM-DRUG. Notably,
EDM and GeoLDM, trained on the complete

of ring-number (P), atom stability (AS), molecule
validity (V), novelty (N), and success rate (S).
The number of molecules with above 11 rings in
GEOM-DRUG is lower than 100.

dataset, cannot generate molecules with ring
numbers exceeding 10, thus failing to produce

Averaged metrics (%) over 5 Ring Domains (11, 12, 13, 14, and 22)

. Method | P(%) AS(%) V(%) N(%) S (%)
any desired molecules. In contrast, GADM Can  “GEOMDRUG | 00 865 999 - -
generate an average of 13.8% of the desired EDM} [16] 00 00 00 00 00
molecules. Particularly, for molecules with 22~ GeoLDMF [51] | 0.0 0.0 00 00 0.0
rings, of which there are only two in the origi- GADM} | 138 114 110 1338 10.9

 Models are trained on complete GEOM-DRUG.

nal dataset, GADM achieves a remarkable suc- | i -DRU
Models are trained on GEOM-DRUG with ring numbers from 0-10.

cess rate of 13.7% in generating such molecules,
even without training on these two molecules.

Scaffold-Domain Adaptive Molecule Generation. In the task of scaffold-domain adaptive molecule
generation, the baselines are trained on both the entire dataset (1) and solely on the source domain
(1), respectively. In contrast, our GADM is trained exclusively over the source domain dataset.
After training, each model generates 15,000 molecules for the source and target domains I and II,
respectively. The quantitative results using various metrics are presented in Table 4, Table 5 and
Figure 3. We observe that with EDM or GeoLLDM, the scaffold proportion of the generated molecules
indeed mirrors that of the training samples (see proportion and coverage visualization in Figure 3).
However, they all struggle to generate molecules with scaffolds falling into targeted domain I or II;
they can only achieve 3.3% success rates at most (see EDM{ and GeoLDM{ in Table 4). In contrast,
our proposed GADM, trained solely on the source domain, can generate molecules containing the
target scaffolds under the corresponding supervision, achieving at least 95.5% proportion in both new
domains. Note that the target scaffolds were not seen during training.
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Table 4: Results of proportion (P), scaffold coverage (C), molecule validity (V), molecule novelty
(N), and molecule success rate (S). The best results are highlighted in bold.

Domains | Source Domain (%) | Target Domain I (%) | Target Domain II (%)
#Metric | P C vV N S | P C vV N S | P C vV N 8§
Data | 764 100.0 97.7 - - | 1.5 100.0 977 | 12.1 100.0 97.7 - -
EDM{ [16] 799 363 748 488 450 | 109 289 102 6.7 6.1 ‘ 9.2 34.9 8.6 5.6 52
GeoLDM{ [51] | 804 352 756 46,7 43.1 | 10.7 312 10.1 6.2 5.8 8.8 33.5 8.3 5.1 4.7
EDM1 [16] 914 565 832 582 520 59 26.5 53 3.7 33 2.7 17.0 2.4 1.7 1.5
GeoLDMI [51] | 90.6 543 817 57.8 51.0 | 59 26.7 53 3.8 33 ‘ 3.5 19.0 32 23 2.0
GADM{ [992 925 907 676 524|970 971 800 845 689 | 955 857 833 820 658
T Models are trained over the entire QM9 dataset.
 Models are trained only on the source domain, where each scaffold appears at least 100 times.
Table 5: Results of atom stability (AS) and Proportion Scaffold Coverage
molecule stability (MS). The best results are R
highlighted in bold. EDM 1
Domains | Source | Targetl | Targetll GeoLDM t
#Metric(%) | AS MS | AS MS | AS MS GADM #
Data 1990 9521990 952 1]99.0 952 G"?a?g}\gtﬁ
EDM; [16] 789 655|108 89 ‘ 9.1 75 GADM #
GeoLDM{ [51] | 79.5 719 | 106 96 | 87 79 Target I ‘
EDMi [16] 90.4 733 58 4.7 2.6 2.1 0 100% 0 100% 0 100% 0 100%
GeoLDMi [51] | 89.1 175.6 5.8 49 ‘ 3.5 3.0 mm Source Domain Target Domain I Target Domain II]
GADM{ | 961 713 | 89.5 45.6 | 89.0 35.1

Figure 3: Scaffolds Proportion and Coverage.

Moreover, we found that GADM can reach 92.5% coverage for the in-domain generation with the
in-domain supervisor — structural-grained representations from the latent space of EMAE. Notably,
even for target domain II, comprising over 12,000 different rare scaffolds, GADM can achieve
85.7% coverage. Nevertheless, all baselines can only achieve 56.6% coverage at most, indicating the
significance of our EMAE. It is worth noting that GADM does not need any target molecules but
uses the scaffold as the domain supervisor for cross-domain adaptation, bypassing the obstacles due
to data scarcity. GADM improves the molecule novelty and success rate by up to 80.8% regarding
novelty and 65.6% in terms of success rate as compared to the baselines. The atom stability and
molecule stability presented in Table 5 also demonstrates that the designed GADM performs better
on generating chemically stable molecules with desired scaffolds.

Discussion. Our experiments show that existing generative models may still generate a slight portion
of out-of-domain molecules, as shown in Table 2 and 4. This phenomenon could be attributed
to the fact that scaffolds/ring-structures in different domains might be mutually inclusive or share
substructures. Consequently, the generated molecules may contain substructures or compound
substructures derived from the training samples, constituting unseen scaffolds/ring-structures. A
detailed illustration is provided in Appendix K. We want to point out that such out-of-domain
generation is relatively non-trivial. Our proposed GADM underscores the significant potential in
generating molecules with targeted structural variations, including scaffolds and ring-structures.

Limitations. Most generative models, including ours, adopt the EGNN modules to capture the
equivariance of molecules [16, 51]. The model’s memory overhead escalates exponentially with the
size of the input molecules, posing a significant constraint, especially for generating large molecules.
A comprehensive analysis and discussion are furnished in Appendix M.

5 Conclusion

This paper introduced the problem of domain adaptive molecule generation, which entails the ability
of a trained diffusion-based generator to produce 3D molecules for a new domain. To address
this problem, the proposed GADM captures the structural-grained representations of the in-domain
samples using a masked VAE and various masking strategies. The structural-grained representations
then act as domain supervisors to control the denoising process. Thorough experimental studies
have demonstrated that the trained model can adaptively generate target, valid, unique, and novel
molecules, enhancing the success rate by up to 60%. Our work responds positively to the question
posed at the beginning of the abstract and paves the way for practical artificial intelligence-aid
molecule discovery.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main contributions are reflected in the abstract and introduction, and these
claims match theoretical and experimental results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discussed the limitation of the proposed method in Section 4 and Appendix
M.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: This paper propose two theorems, Theorem 3.1 and 3.2, and corresponding
complete proofs are presented in Appendices F and G.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Full algorithm descriptions are provided in Appendix H. Besides, the code and
datasets involved are all publicly available.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: This paper uses two public datasets, QM9 and GEOM-DRUG, which can be
downloaded in QM9: (https://springernature.figshare.com/ndownloader/
files/3195389) and GEOM-DRUG: (https://dataverse.harvard.edu/
file.xhtml?fileId=4360331&version=2.0).

The code is submitted to Supplementary Materials and will be made public upon acceptance
of the paper.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Data splits are discussed in Experiments, and parameters are presented in
Appendix E.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We follow previous works [16, 51] to generate 10,000 molecules for testing to
guarantee the statistical significance of the results.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The information on the computer resources is listed in Appendix E.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Societal impacts are discussed in Appendix N.
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The datasets used in this paper (QM9 and GEOM-DRUG) are public and free
to access.

Guidelines:
» The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Appendix

A QM9 Dataset

QM0 [49] is a comprehensive dataset that provides geometric, energetic, electronic, and thermody-
namic properties for a subset of the GDB-17 database [34], comprising 134 thousand stable organic
molecules with up to nine heavy atoms.

A.1 Scaffold Split QM9

We utilized the open-source software, RDkit [24], to examine the scaffold and ring of each molecule.
QMO dataset ! comprises a total of 130,831 molecules, encompassing 15,661 unique scaffolds.
Molecules lacking a scaffold were denoted as ‘-* and included in the total scaffold count. The dataset
was divided based on scaffold frequency. Specifically, the source subset contained 100,000 molecules
and 1,054 scaffolds. The target I subset included 15,000 molecules and 2,532 scaffolds, while the
target II subset consisted of 15,831 molecules and 12,075 scaffolds.

Figure 4(a) presents the division’s schematic diagram. Figure 4(b) displays the logarithmic histogram
of the scaffolds in each dataset segment. It is evident that the source dataset contains the most frequent
scaffolds, primarily concentrated above 100. The frequency of scaffolds in the target I dataset ranges
between 10 and 100. In contrast, the scaffolds in the target II dataset are primarily concentrated
within 10, with most appearing only once. Figures, SMILES, and frequencies of some example
scaffolds in each sub-dataset are given in Figure 5.

Class I Class 1T Class IIT

15,000 Molecules 15,831 Molecules
2,532 Scaffolds. 12,075 Scaffolds.

(a) The number of molecules and scaffolds in source, target I, and target II of the Scaffold-Split QM9 data set.

107 i i i T T T T T T ; ; ; ; ; ;
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Scaffold ID

(b) Scaffold Logarithmic Histogram of Scaffold-Split QM9

Figure 4: Scaffold-Split QM9

A.2 Ring Number Split QM9

The QM0 dataset could categorize molecules into nine groups based on the number of rings, ranging
from O to 8. As the number of rings increases, the quantity of molecules correspondingly decreases.
We partition the QM9 dataset into two subsets based on ring count. The source dataset comprises
acyclic molecules and those with 1 to 3 rings, while the target dataset includes molecules with 4 to 8
rings. Figure 6 presents a schematic diagram illustrating example molecules with O to 8 rings.

'nhttps://springernature.figshare.com/ndownloader/files/3195389
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Scaffold Split y
Source I e«
Dataset

SMILES Cl=CCcCC1 CIC[NH]CN1 CICC2(C1)CN2 CIC2CINICC21 CI1C2C3CN2C13 CICN1
3722

Frequency 1333 1333 189 316

Scaffold Split
Target
Dataset I

SMILES C1C20C3C1C302 CI1CC(C2CC2)01 CICCICICOC1 C1CC2C3CN2C13 CICCNCCI C1COCCNI1

Frequency 45 56 24

Scaffold Split
Target
Dataset IT

SMILES CIC20CIC2CNICCI CICcCIccIc2ceIc2 CICCICCIC2CC102 cicciocicaccic2 CICN=C(0C2CC2)C1 CICNICCIC2CNIC2

Frequency 1 1 1 1 1 1

Figure 5: Scaffold Examples of QM9 Split by Scaffolds.

Ring-T Ring-I (valid) Ring-1T

5145
50000
10000 3604
30000

20000 1972

10000 5738
46300 32436
1 2

762 223

Figure 6: Ring Examples of QM9 Split by Ring Number.
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B GEOM-DRUG Dataset

GEOM-DRUG (Geometric Ensemble Of Molecules) dataset [1] encompasses around 450,000
molecules, each with an average of 44.2 atoms and a maximum of 181 atoms?.

B.1 Ring Number Split GEOM-DRUG

The GEOM-DRUG dataset classifies molecules into sixteen categories based on the number of rings,
ranging from O to 14 and 22. As the ring count increases, the number of molecules correspondingly
decreases. The dataset is partitioned into two subsets according to ring count: the source dataset,
which includes molecules with 0 to 10 rings and a count exceeding 100, and the target dataset, which
comprises molecules with 11 to 14 and 22 rings. Figure 7 provides a schematic representation of the
molecule distribution by ring number.

Ring Number Frequency Histogram for GEOM-DRUG

1717106 T 1549763
280519 395013
61867
2718
12290

3458
1364

129
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Ring Number

Figure 7: Ring Distribution of GEOM-DRUG dataset.

C Diffusion Models

Given a data point x¢ ~ ¢(X¢) and a variance schedule 31, . . ., S7 that controls the amount of noise
added at each timestep ¢, the diffusion process or forward process gradually add Gaussian noise to
the data point x:

q(xe|xe—1) == N(xe; /1 — Bixy—1, Bi]), (10)

where [31.7 are chosen such that data point x will approximately converge to standard Gaussian, i.e.,
q(x7) =~ N(0,I). Generally, the diffusion process ¢ has no trainable parameters. The denoising
process or reverse process aims at learning a parameterized generative process, which incrementally
denoise the noisy variables x7.; to approximate restore the data point x( in the original data
distribution:

Po(xe—1]x¢) 1= N (x¢—1; po (x4, 1), Xo (x4, 1)), (11)

where the initial distribution p(x;) is sampled from standard Gaussian noise N'(0, I). The means ¢
typically are neural networks such as U-Nets for images or Transformers for text.

The forward process is ¢(x1.7|Xo) is an approximate posterior to the Markov chain, and the reverse
process pg(Xo.7) is optimized by a variational lower bound on the negative log-likelihood of x by:

Po(Xo.1) }
. < E | 1og Po0T) 12
[—logps(x0)] < E, [ & q(x1.7(%o0) "
Po (x4 1|Xt)
=E, | — log p(x log ’ :
q g p(xr) ; Xt|Xt 1) ()

*https://dataverse.harvard.edu/file.xhtml?fileId=4360331&version=2.0
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which is L,p,. To efficiently train the diffusion models, further improvements come to term Ly, by
variance reduction, and thereby Eq. (12) is rewritten as:

T
Loy = EQ[CT + Z L+ ﬁo] (14)
t=2

where L7 = log ‘I(X(Tixlxg), which models the distance between a standard normal distribution and the

final latent variable ¢(x7|xg), since the approximate posterior ¢ has no learnable parameters, so L1
is a constant during training and can be ignored. £y = — log py(xo|x1) models the likelihood of the
data given xg, which is close to zero and ignored as well if 5y ~ 0 and x is discrete.

L in Eq. (14) is the loss for the reverse process and is given by:

L, = Zlog 01 X0, %1) (15)

t>2 pa X¢— 1|Xt)

While in this formulation the neural network directly predicts X, [15] found that optimization is
easier when predicting the Gaussian noise instead. Intuitively, the network is trying to predict which
part of the observation x; is noise originating from the diffusion process, and which part corresponds
to the underlying data point xg. Then sampling x;—1 ~ pgp(x;—1|x;) is to compute

Y

VAt

where o := 1 — 3¢, @y 1= HZ:I a,, and z ~ N(0,T). And thereby Lpy := L is simplified to:
Lom = Exq e, [w(t>||6 - EQ(Xtvt)||2] (17

Xt—1 =

Eg(Xf, )) + OtZ, (16)

where w(t) = % is the reweighting term and could be simply set as 1 with promising
sampling quality, and x; = /X9 + 1 — Q€.

D Model Architecture Details

D.1 Equivaraint Masked Autoencoder

In this work, EMAE considers visible molecular structural geometries as point clouds, without
specifying the connecting bonds. Therefore, in practice, we take the point clouds as fully connected
graph G and model the interactions between all atoms v; € V. Each node v; is embedded with
coordinates x; € R3 and atomic features h; € RY. Then, EMAE are composed of multiple
Equivariant Convolutional Layers, and each single layer is expressed as [35]:

di; = lIxi = ;1%
:(be(hl hly?d?jaaij)
X = x| +Z T J¢x<mz-,j) (18)

Wt = gu(hl, Y ¢i(my;)m;)
JGN()

where [ denotes the layer index, ¢;(m;;) reweights messages passed from different edges in an
attention weights manner, d;; + 1 is normalizing the relative directions x. — xL following previous
methods [35, 16]. All learnable functions, i.e., ¢, ¢, @1, and, ¢;, are parameterized by Multi Layer
Perceptrons (MLPs). Then a complete EGNN model can be realized by stacking L layers such that

and satisfies the required equivariant constraint in Equations 3, 4, and 6.

D.2 Equivaraint Domain Supervised Denoising Neural Networks

The denoising neural network is implemented by multiple equivariant convolutional layers, and the
difference in the Equation 18 is the hidden features h. Due to the diffusion model is conditioned
by fx, fy, from encoder &, the hidden features for our denoising neural network is expressed as
h < [h, fy, f;,], where h are original features of geometric graph and [a, b] is concatenation operation.
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D.3 Multi-Modal Feature Representation of Molecules

Multimodal features of molecules raise concerns for the term £y = — log pp(xg|x1 ) in Equation 14.
For categorical features such as the atom types, this model would however introduce an undesired
bias [16]. For the intermediate variable x;, we subdivide it into z ; and zy, ; in the proposed DM,
which are coordinate variables and atomic attribute variables, respectively.

Coordinate features. First we set 021 « Yy(x¢,t) = f; and add an additional correction term
containing the estimated noise €x o from denoising neural network €. Then continuous positions zx
in p(zx,0|2zx,1) is expressed as:

P(Zx.0|Zx.1) = N (220|251 /1 — 01/Q1€x0,07/a3T) (19)

Atom type features. For categorical features such as the atom type, the aforementioned integer
representation is unnatural and introduces bias. Instead of using integers for these features, we operate
directly on a one-hot representation. Suppose h or zy, ¢ is an array whose values represent atom types
in{ci,...,cq}. Then his encoded with a one-hot function h < h*"*"! such that h{"*t « 1, _,.
and diffusion process over zy, ¢ at timestep ¢ and sampling at final timestep are given as:

4(Zn.t|Zn0) = N (2Znt|a;h" 521) (20)
1+3
P(Zn,0/Zn,1) = C(zn,olpP), P x ) N (u; pig(2zn,1, 1), 07)du (21)

2

where p is normalized to sum to one and C is a categorical distribution.

Atom Charge. Atom charge is the ordinal type of physical quantity, and its sampling process at the
final timestep can be formulated by standard practice [15]:

h+3
p(znolzng) = | N (u; po(zn,1,1),07)du (22)
h—3

Feature Scaling. To normalize the features and make them easier to process for the neural network,
we add weights to different modalities. The relative scaling has a deeper impact on the model: when
the features h are defined on a smaller scale than the coordinates x, the denoising process tends to first
determine rough positions and decide on the atom types only afterward. Empirical knowledge shows
that the weights for coordinate, atom type, and atom charge are 1, 0.25, and 0.1, respectively [16].

E Training Details

Parameters
1. Optimizer: Adam [21] optimizer is used with a constant learning rate of 10~* as our default
training configuration.
2. Batch size: 64.

3. EGNN in DSDM: 9 layers and 256 hidden features for QM9, 4 layers and 256 hidden
features for GEOM-DRUG.

4. EGNN in EMAE: 1 layer and 256 hidden features for the encoder for QM9 and GEOM-
DRUG, 9 layers and 4 layers with 256 hidden features for the decoder for QM9 and
GEOM-DRUG, respectively.

5. Latent dimension of fy, f},: latent dimension is 3 and 1 for fy and f},, respectively.
6. Epoch: 3000 for QM9 and 10 for GEOM-DRUG.
Training

1. GPU: NVIDIA GeForce RTX 3090
2. CPU: Intel(R) Xeon(R) Platinum 8338C CPU
3. Memory: 512 GB
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4. Time: Around 7 days for QM9 and 20 days for GEOM-DRUG.
Specific Parameters 1. On QM9, we train DSDM with 9 layers and 256 hidden features with a batch

size 64; 2. On GEOM-DRUG, we train DSDM with 4 layers and 256 hidden features, with batch size
64;

F Loss of EMAE is SE(3)-Invariant

Proof. Lrmag is SE(3)-invariance

Recall the loss function:
N
Lemak = By, (g, |x,0)Po (X, hfy, fn) — KL[gy (fx, fulx, h)]| HN(.fx,ia fh,i/0,1)] (23)

Our expected outcome is VR, Lemag(x, h) = Lpmae(Rx, h), we have:

,CE]\/[AE(].:{,X7 h)

N
=Eq, (£ fnRx,0)Po (RX, hfy, 1) — KL[gy (fx, fu|Rx, h)|| HN(fx,i; f1,i[0,T)]
i
4 (fx, fn|Rx, h)
va N(fx,i7 fh7i|07 I)
= / q¢ (RRile7 fh|l{Xa h) IOgPﬁ(va h|RR71fx’ fh)
G

RR ., fu|Rx,h
+/10g q(b(]v ) h| X, )
Hi N(fx,imfh,i 071)

- / 46 (R~ "Ex, fu|x, h) log py (x, LR £y, i)
g

R-f,, fu|x, h
o g BB Bl
g Hz N(fx,ia fh,i|071)

- / 46k, fulx, 1) log py (x, hlk. ) - |R|
g
q¢(k7 fh|Xa h)

- / 4o (Fx. £ R, h) log po (Rx, h[fy, fr) + [ log
g g

RR '=1

SE(3) of fx & x

+/log < Letk = R7'fy
g II; N(fxi> fnl0,1)
=Eq, (k,fu|Rx,n)Po (X, hk, i)
N
— KL[gy(k, fulx, 0)|| [V (65 finil0, T)] R|=1
:EEMAE(Xa h)
(24)
O

When input G into the Encoder £, masking M is performed, and we then subtract center of gravity
from x¥ € GY = M(G), and thereby ensure that & receives isotropic geometric graph, and all
together guarantee that the loss of EMAE is SE(3)-invariant.

G Loss of GADM is an SE(3)-Invariant Variational Lower Bound to the
Log-likelihood

First, we present the rigorous statement of the Theorem 3.2 here:
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Theorem G.1. Given predefined and valid {c;}T_,, {B:} 1o, and {~i}L_, Let w(t) satisfies:
Bt

297 (1= Be)(1 - o)

2.w(0) = -1 (26)

Then given the geometric datapoint G = (x,h) € RY *(3+d) | the loss L of the proposed method is
expressed as:

IL.Vtel,....,T),w(t) = (25)

L := Lemae + Lpsom (27)

which satisfies:
1.VR and t, L(x,h) = L(Rx + t,h) (28)
2.L(x,h) > =By oo BB =2, (M(9)) 108 Do (2x, Zn |, )] (29)

And we have log pg(xo, ho) is the marginal distribution of (x, h) under GADM.

The theorem proposed herein posits two distinct assertions. Firstly, Equation 28 illustrates that the loss
function £ is SE(3)-invariant, meaning it remains unchanged under any rotational or translational
transformations. Secondly, Equation 29 suggests that L acts as a variational lower bound for the
log-likelihood. We provide comprehensive proofs for these assertions separately, commencing with
Equation 29.

Proof. L is a variational lower bound of the log-likelihood

Recall the loss function:
L(x,h) =Lemak + Lpspm 30)
N
=Eq, (£, fux.h)P0 (%, hlfic, ) — KL[gg (£, ful5, )| T[NV (freis fnil0, )] (31
+ Egg e, (M@)).crt (1€ — €0(xe, hy, fi, T, 1) [17] (32)
LeMmAE 1s a standard variational autoencoder and has been proven to be a variational lower bound

of the log-likelihood [23]. For simplicity, we denote zx ¢, Zn + as 2, and fy, fi, as f, then we expect
EDSDM has:

log pe(z|f) > KL[g(z1.7|20)||pe(2|f)] (33)
[ po(zo.r|f)
1ng9(Z‘f) ZE(I(ZLT|ZU) 10g m
B p(z71)pe (20|21, f) HZ;Q Po(Zi—1|2¢, )
=Eg(21.7]20) |108 T
q(z1|z0) [[,— QQ(Zt|Zt—1)
| p(zr)pe(zolz1, £) polzi— 1|zt,
=K I lo
9(z1.7]20) |10 q(z1]20) + gH q(z¢|z1—1)

T
p(z7)pe(2o|21, ) po(2zi—1|2¢, )
:Eq(zl::rlzo) log + IOgH o

] q(z1]20) Pt z“;sz\)zi()zt‘zo)
r (34
p(z7)po(zo|z1, f) pe 71|z, )
=Eq(z, 1z |10 + log ———— 2~
9(z2.7|=0) 8 (ZT|ZO Z Zf 1\Zf,Zo)
p(zr)
:Eq(z1|z0) [po(zo|z1,£)] + Eq(zﬂzo) [log q(ZTZo)]

p (Z — |Z f)
z :]E 6 t—1|4t,
q(z¢,2 Z IOg
( ty4at 1| (J) q(Zt |Zt7Z )

=Eq(z1]20) [P0 (20|21, T)] — KL{g(z7[20)[|p(27)]

= Ey(ajz0) KLIg(2e 1|24, 20) [Ipo (211 |2, F)]]
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where we denote KL[q(z¢—1|2¢,20)||po(zi—1|2¢, )] as Lpspm,t—1, then we have:

[32
Lpspm,t—1 = Eennro,1) {2%2(1 — 5:)(1 ) e — €o(zt, fJ)H% (35)

which gives us the weights of w(t) fort =1,...,T.

For term E;(,, |5,)[Po (20|21, f)], we denote as Lpspm,o. With sampling at the final timestep for
different modality features and a normalization constant Z, we have:

1
Lpspm,0 = Eenr0,1) [log z" - 5“5 —€o(z 1, 1)||2] (36)

Since zp ~ N (0,1), we have:

Lospm,r = KL[g(z7|z0)||p(z7)] = 0 (37)
Therefore, we have:
T
Ep<x,h>e{gs},[fx,fh}:sd,(M(g))[10gp9(z|f)} > - ZﬁDSDM,t—l - EDSDM,O = —Lpspm (38)
t=2
O

We then prove Equation 28:

Proof. L is SE(3)-invariance

Our expected outcome is VR, L£(x,h) = L(Rx,h), and VR, Lgmagr(x,h) = Lgmap(Rx,h) is
ensured in Proof. F. For Lpspm, we have:

Lpsom(Rzx 0,2n,0)
T

=Ege, | Y Eo(aRao) KL(2t 1|21, Rzo) [ po (21|24, RE)]] — Eg(zyRao) [P0 (R20]21, Rf)]]
t=2

[ T

Zt 1|q ZthZO)
= —1lo Rzy|z,, Rf
/g ZQ pe Zo_ 1|zt,Rf) gpe( 0| 1 )]

:/ XT: g(RR"'z,_1|g(RR"'z,, Rz)
g

RR1pg(zi—1|RR~ 1z, Rf)

- IOgPG(RZORRIZhRf)] RR =1
=2

:/g Zlog I?— pzfzzml(l:f: 1Zt’f_())) —logpg(z0|R1z1,f)] SE(3) of fx & z;
= q(je—11q(jt, 20) . . 1
=Eg.¢, [Zk’ R po (1[5, ) 10gp9(Z0|J1,f)] Letj: =Rz
=Lpspm(Zx,0,Zh,0)
(39E])
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This section contains two main algorithms of the proposed GADM. Algorithm 1 presents the pseudo
code for training GADM on the source domain data set {Gg}. Algorithm 2 presents the process of
cross-domain adaptive molecule generation using the target’s scaffold/ring.

Algorithm 1: Training GADM

: Input: source geometric data point Gg = (x, h), masked encoder &y, decoder Dy, denoising

network €y

EMAE:

xV hY + M(x,h) // Mask

Ko, tin < Eg(xV, V) // Encode

(€x, €n) ~ N(0,1) // Sample Noise for EMAE

€x — €x — G(ex) // Subtract Center of Gravity

fx,fh < 1+ (€x, €n) © 09 // Reparameterization

DSDM:

t~U(0,T) // Sample Timestep

(ex, €n) ~ N(0,1) // Sample Noise for DSDM
ex — ex — G(ex) // Subtract Center of Gravity
¢ Zxt, Zht < 0g[X, h] + o€ // Diffuse
- %,h « Dy (fx, fn) // Decode
: Optimization
: Lemae < L([%, 0], [x,h]) + KL // L for EMAE

Lpspm < ||€ — €0(Zx.t, Znt, t, Fx, ) || /! L for DSDM
: Loapm < Lemag + Lpspm // Total Loss
: ¢,7, 0 < optimizer(Lgapm, ¢, ¥, 0) // Optimize
: return ¢, 0

Algorithm 2: Adaptive Sampling of GADM

—_

g A A Rl

_
e

—_— =
W N =

Input: target geometric structure G7. = (x7., h’.), masked encoder £y, denoising network eg

By i E(x7, ) // Encode
(ex, €n) ~ N(0,1) // Sample Noise for EMAE
€x +— €x — G(ex) // Subtract Center of Gravity
fu, fh < p+ (€x, €n) ©® 0p // Target Condition
(zx,1,2n1) ~ N(0,I) // Sample Noise for Generation
fortinT, T —1,...,1do
(€x, €n) ~ N(0,I) // Denoising
€x — €x — G(ex) // Subtract Center of Gravity
Tt 121 g (s ) = €07, 2t B, ) + pre
: end for
0 X, h < p(2x,0, Zn,0/2x,1, 20,1, fx, fn)

: return (x, h)
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I Full Results of Ring Adaptive Molecule Generation

We present the detailed quantitative evaluation results of ring adaptive molecule generation tasks
in Table 6. The results show that the proposed method has dominant performance in all metrics,
including target ring number proportion, validity, novelty, and success rate.

It is significant to note that the entire QM9 dataset comprises only 36 eight-ring molecules. When
the proposed algorithm utilizes the ring structures of these 36 8-ring molecules as input, the target
validity reaches an impressive 72.2%, and the novelty is as high as 80.9%. Considering that there
are only 36 fundamental 8-ring structures, the uniqueness is slightly lower (27.4%). Nevertheless,
the generation of 10,000 molecules resulted in 2,388 valid, unique, and entirely novel eight-ring
molecules, which is a substantial breakthrough compared to existing methods (even those models
trained on eight-ring molecules) that failed to discover any new eight-ring molecules.

Table 6: Results of molecule proportion in terms of ring-number (P), molecule validity (V), novelty
(N), and success rate (S). The best results are highlighted in bold. QM9 only contains 36 eight-ring
molecules and the proportion for eight-ring is nearly 0.

0 1 2 3 4 5 6 7 8 | Averaged

Method | P (%) | -
QM9 | 102 393 27.6 151 | 44 27 06 02 00 | -
EDM7 [16] 10.5 398 280 145 | 40 29 02 0.1 0.0 -
GeoLDM{ [51] | 120 38.6 27.0 153 | 4.6 22 02 0.1 0.0 -
EDM1 [16] 12.1 441 298 118 | 1.7 05 0.0 00 0.0 -
GeoLDM1 [51] | 2.8 41,5 321 157 | 4.7 2.7 0.3 0.1 0.0 -
GADMi | 999 998 991 97.6 | 925 89.7 7877 882 82.1 | -

| Target Valid (%)
QM9 | 977 977 977 977 977 977 9777 977 9717 977
EDM{ [16] 10.8 36.1 26.7 139 40 23 02 0.1 0.0 10.4
GeoLDM{ [51] | 11.2 362 252 143 43 20 02 0.1 0.0 10.4
EDM1 [16] 114 414 280 11.1 1.6 05 0.0 00 0.0 10.4
GeoLDMi [51] | 2.7 388 300 147 44 26 03 0.1 0.0 10.4
GADMi | 3.7 914 914 921 853 852 695 825 722 | 779

| Target Novelty (%)
EDM{ [16] 7.1 236 175 9.1 2.6 1.5 0.1 0.1 0.0 6.8
GeoLDM7 [51] | 7.0 224 156 8.9 2.7 1.3 0.1 0.0 0.0 6.4
EDM1 [16] 75 271 183 7.2 1.1 0.3 0.0 00 0.0 6.8
GeoLDM1 [51] | 1.7 250 194 95 2.8 1.7 02 0.1 0.0 6.7
GADMi | 96.6 513 556 602 695 635 715 834 809 | 703

| Success Rate (%)
EDM7 [16] 6.5 219 162 84 2.4 1.4 0.1 0.1 0.0 6.3
GeoLDMT [51] | 64 206 144 82 2.4 1.2 0.1 0.0 0.0 5.9
EDM1 [16] 6.9 251 17.0 6.7 1.0 03 0.0 00 0.0 6.3
GeoLDM:i [51] | 1.6 23.0 178 8.7 2.6 1.5 02 0.1 0.0 6.1
GADM{ | 25.9 434 462 504 538 410 461 341 239 | 405
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J Visualization
In this section, we provide additional visualizations of domain-supervised molecule generation by
GADM for molecule adaptive generation and ring number adaptive generation in Figures 8 and 9

As depicted in the two figures, the model consistently generates realistic molecular geometries with
target scaffolds or ring numbers.

Target Scaffold Generated molecules with target scaffold

Figure 8: Molecules Generated by GADM for Scaffold Adaptive Generation Under The Same Unseen
Scaffold Condition.
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8 Rings

Figure 9: Molecules Generated by GADM for Ring Number Adaptive Generation For Unseen Ring
Numbers

22-ring Molecule in
GEOM-DRUG

22-ring-structure as
Domain prior

Figure 10: Molecules Generated by GADM for Ring Number Adaptive Generation For Unseen Ring
Numbers on GEOM-DRUG Dataset.
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K Scaffolds Ring-Structures

Scaffolds/ring-structures in different domains may be mutually inclusive or share substructures and
the generated molecules may contain sub-structures or mixed structures derived from the training
samples, thereby constituting unseen scaffolds/ring-structures. We present a simple illustration in
Figure 11.

N
’ N
N | N z
z —_ X | I
P I
N NG
Source Scaffold Target Scaffold Source Scaffold Target Scaffold

Figure 11: Existing Methods May Generate Unseen Scaffolds/Ring-structures.

L Related Work

Molecule Generation Models. Prior studies on molecule generation focused on generating molecules
as 2D graphs [19, 27, 37]. However, there has been a growing interest in 3D molecule generation.
G-SchNet [12] and G-SphereNet [28] utilize autoregressive techniques to construct molecules incre-
mentally by progressively connecting atoms or molecular fragments. These frameworks necessitate
either a meticulous formulation of complex action space or action ordering.

More recently, the focus has shifted towards using Diffusion Models (DMs) for 3D molecule
generation [16, 51, 48, 40]. To mitigate the inconsistency of unified Gaussian diffusion across
diverse modalities, a latent space was introduced by [51]. To tackle the atom-bond inconsistency
problem, different noise schedulers were proposed by [30] for various modalities to accommodate
noise sensitivity. However, these algorithms do not account for generating novel molecules outside
the training domain.

Domain Adaptive Generation. Domain adaptive generation, although under-explored, is of
paramount importance, especially considering that molecules generated by machine-learning methods
often exhibit a “striking similarity" [45]. In recent years, some preliminary work has begun to
use reinforcement learning [53] and out-of-distribution control [25] to explore the generation of
novel molecules. However, these methods are still challenging when designing novel molecules
for the target domain. As proposed by [25], MOOD employs an OOD control and integrates a
conditional score-based diffusion scheme to optimize molecules for specific chemical properties.
Similarly, MuDM uses property prediction models to address single and multiple property objectives
in molecule generation [13]. However, these methods fail to generate novel molecules with target
properties that have yet to be learned by either the generative or additional prediction models.

Masked Learning Models. The concept of learning with masking noise, as introduced in denoising
autoencoders [43], serves as an unsupervised method for representation learning [44]. Masked
language models, such as BERT [8] and GPT [5], are notable applications of this approach in natural
language processing. These models function by masking a portion of the data and subsequently
predicting the masked content, thereby facilitating the development of generalizable NLP models.
In the field of computer vision, methodologies adhering to this paradigm selectively apply the ViT
encoder [7] to visible content, yielding a highly generalizable, high-capacity model [14].

The MAE design has been implemented in videos [10, 42], point clouds [29], vision-language [9, 26],
and multiple modalities [2]. In graph learning, the self-supervised MAE for graphs demonstrates
robust generalization to unseen nodes [17]. Moreover, MAE exhibits considerable potential in
skeleton graph and heterogeneous graph learning [52, 41].

Unlike existing methods that pre-train an MAE and fine-tune it for downstream classifica-
tion/regression tasks, we propose an innovative design of an equivariant MAE to generate conditions
with promising generalization for novel molecule generation.
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M Limitations

Given a molecule G = (x € R"*3 h € R"*/). For the EGNN-based generative models, suppose
the total number of layers of EGNNSs used is /, and the hidden feature for EGNN is h, the space
complexity of our model is: O(nnhl). For example, in the GEOM-DRUG data set, if molecules of
180 atoms are processed, EDM, GeoLDM, and the proposed algorithm all require around 3.5GB of
memory for each molecule in one step of optimization, which results in huge overhead for experiments
on large-scale datasets.

N Impact Statements

This paper presents work whose goal is to advance the field of generative Artificial Intelligence (AI) for
scientific fields, such as material science, chemistry, and biology. The obtained experience/knowledge
will greatly boost generative Al technologies in facilitating the process of scientific knowledge
discovery.

Machine learning for molecule generation opens up possibilities for designing molecules beyond
therapeutic purposes, such as the creation of illicit drugs or dangerous substances. The potential for
misuse and unintended consequences necessitates strict ethical guidelines, robust regulation, and
responsible use of these technologies to prevent harm to individuals and society.

O Acronyms List

Acronyms

DSDM Domain Supervised Diffusion Model. 2, 6, 25-29
EMAE Equivariant Masked Autoencoder. 2, 4-6, 9, 24-29
GADM Geometric Adaptive Diffusion Model. 2, 4-9, 27, 29-31

MAE Masked Autoencoder. 2, 5
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