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APPENDIX

A DIFFUSION MODELS

Given a data point x0 → q(x0) and a variance schedule ω1, . . . ,ωT that controls the amount of noise
added at each timestep t, the diffusion process or forward process gradually add Gaussian noise to
the data point x:

q(xt|xt→1) := N (xt;
√

1 ↑ ωtxt→1,ωtI), (10)

where ω1:T are chosen such that data point x will approximately converge to standard Gaussian, i.e.,
q(xT ) ↓ N (0, I). Generally, the diffusion process q has no trainable parameters. The denoising
process or reverse process aims at learning a parameterized generative process, which incremen-
tally denoise the noisy variables xT :1 to approximate restore the data point x0 in the original data
distribution:

pω(xt→1|xt) := N (xt→1;µω(xt, t),!ω(xt, t)), (11)

where the initial distribution p(xt) is sampled from standard Gaussian noise N (0, I). The means µω

typically are neural networks such as U-Nets for images or Transformers for text.

The forward process is q(x1:T |x0) is an approximate posterior to the Markov chain, and the reverse
process pω(x0:T ) is optimized by a variational lower bound on the negative log-likelihood of x0 by:

E[↑ log pω(x0)] ↔ Eq

[
↑ log

pω(x0:T )

q(x1:T |x0)

]
(12)

=Eq



↑ log p(xT ) ↑
T∑

t↑1

log
pω(xt→1|xt)

q(xt|xt→1)



 , (13)

which is Lvlb. To efficiently train the diffusion models, further improvements come to term Lvlb by
variance reduction, and thereby Eq. (12) is rewritten as:

Lvlb = Eq[LT +
T∑

t=2

Lt + L0] (14)

where LT = log q(xT |x0)
pω(xT ) , which models the distance between a standard normal distribution and

the final latent variable q(xT |x0), since the approximate posterior q has no learnable parameters, so
LT is a constant during training and can be ignored. L0 = ↑ log pω(x0|x1) models the likelihood
of the data given x0, which is close to zero and ignored as well if ω0 ↓ 0 and x0 is discrete.

Lt in Eq. (14) is the loss for the reverse process and is given by:

Lt =
T∑

t↑2

log
q(xt→1|x0,xt)

pω(xt→1|xt)
. (15)

While in this formulation the neural network directly predicts x̂0, (Ho et al., 2020) found that opti-
mization is easier when predicting the Gaussian noise instead. Intuitively, the network is trying to
predict which part of the observation xt is noise originating from the diffusion process, and which
part corresponds to the underlying data point x0. Then sampling xt→1 → pω(xt→1|xt) is to compute

xt→1 =
1

↗
εt

(
xt ↑

↗
ωt

↗
1 ↑ ε̄t

ϑω(xt, t)

)
+ ϖtz, (16)

where εt := 1 ↑ ωt, ε̄t :=
∏

t

s=1 εs, and z → N (0, I). And thereby LDM := Lt is simplified to:

LDM = Ex0,ε,t

[
w(t)↘ϑ↑ ϑω(xt, t)↘

2
]

(17)

where w(t) = ϑt

2ϖ2
tϱt(1→ϱ̄t)

is the reweighting term and could be simply set as 1 with promising
sampling quality, and xt =

↗
ε̄tx0 +

↗
1 ↑ ε̄tϑ.

14
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B MODEL ARCHITECTURE DETAILS

B.1 EQUIVARAINT MASKED AUTOENCODER

In this work, EAAE considers visible molecular structural geometries as point clouds, without spec-
ifying the connecting bonds. Therefore, in practice, we take the point clouds as fully connected
graph G and model the interactions between all atoms vi ≃ V . Each node vi is embedded with coor-
dinates xi ≃ R3 and atomic features hi ≃ Rd. Then, EAAE are composed of multiple Equivariant
Convolutional Layers, and each single layer is expressed as (Satorras et al., 2021):

d2
ij

= ↘xl

i
↑ xl

j
↘
2,

mi,j = ϱe(h
l

i
,hl

j
, d2

ij
, aij),

xl+1
i

= xl

i
+

∑

j ↓=i

xl

i
↑ xl

j

dij + 1
ϱx(mi,j)

hl+1
i

= ϱh(hl

i
,

∑

j↔N (i)

ϱi(mij)mij)

(18)

where l denotes the layer index, ϱi(mij) reweights messages passed from different edges in an
attention weights manner, dij + 1 is normalizing the relative directions xl

i
↑ xl

j
following previous

methods (Satorras et al., 2021; Hoogeboom et al., 2022). All learnable functions, i.e., ϱe,ϱx,ϱh,
and, ϱi, are parameterized by Multi Layer Perceptrons (MLPs). Then a complete EGNN model
can be realized by stacking L layers such that and satisfies the required equivariant constraint in
Equations 3, 4, and 6.

B.2 EQUIVARAINT PHYSICAL PRIOR STEERED DENOISING NEURAL NETWORKS

The denoising neural network is implemented by multiple equivariant convolutional layers, and the
difference in the Equation 18 is the hidden features h. Due to the diffusion model is conditioned by
fx, fh from encoder E , the hidden features for our denoising neural network is expressed as h̄ ⇐

[h, fx, fh], where h are original features of geometric graph and [a, b] is concatenation operation.

B.3 MULTI-MODAL FEATURE REPRESENTATION OF MOLECULES

Multimodal features of molecules raise concerns for the term L0 = ↑ log pω(x0|x1) in Equation 14.
For categorical features such as the atom types, this model would however introduce an undesired
bias (Hoogeboom et al., 2022). For the intermediate variable xt, we subdivide it into zx,t and zh,t
in the proposed DM, which are coordinate variables and atomic attribute variables, respectively.

Coordinate Features. First we set ϖ2
t
I ⇐ !ω(xt, t) = ωt and add an additional correction term

containing the estimated noise ωx,0 from denoising neural network ω. Then continuous positions zx
in p(zx,0|zx,1) is expressed as:

p(zx,0|zx,1) = N (zx,0|zx,1/ε1 ↑ ϖ1/ε1ωx,0,ϖ
2
1/ε

2
1I) (19)

Atom Type Features. For categorical features such as the atom type, the aforementioned integer
representation is unnatural and introduces bias. Instead of using integers for these features, we
operate directly on a one-hot representation. Suppose h or zh,0 is an array whose values represent
atom types in {c1, . . . , cd}. Then h is encoded with a one-hot function h ⇐ hone-hot such that
hone-hot

i,j
⇐ 1hi=ci . and diffusion process over zh,t at timestep t and sampling at final timestep are

given as:

q(zh,t|zh,0) = N (zh,t|εth
one-hot,ϖ2

t
I) (20)

p(zh,0|zh,1) = C(zh,0|p), p ⇒

∫ 1+ 1
2

1→ 1
2

N (u;µω(zh,1, 1),ϖ2
1)du (21)

where p is normalized to sum to one and C is a categorical distribution.
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Atom Charge. Atom charge is the ordinal type of physical quantity, and its sampling process at the
final timestep can be formulated by standard practice (Ho et al., 2020):

p(zh,0|zh,1) =

∫ h+ 1
2

h→ 1
2

N (u;µω(zh,1, 1),ϖ2
1)du (22)

Feature Scaling. To normalize the features and make them easier to process for the neural network,
we add weights to different modalities. The relative scaling has a deeper impact on the model:
when the features h are defined on a smaller scale than the coordinates x, the denoising process
tends to first determine rough positions and decide on the atom types only afterward. Empirical
knowledge shows that the weights for coordinate, atom type, and atom charge are 1, 0.25, and 0.1,
respectively (Hoogeboom et al., 2022).

16
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C LOSS OF EMAE IS SE(3)-INVARIANT

Equivariance. Molecules, typically existing within a three-dimensional physical space, are sub-
ject to geometric symmetries, including translations, rotations, and potential reflections. These are
collectively referred to as the Euclidean group in 3 dimensions, denoted as E(3) (Celeghini et al.,
1991). A function F is said to be equivariant to the action of a group G if Tg ⇑ F (x) = F ⇑ Sg(x)
for all g ≃ G, where Sg , Tg are linear representations related to the group element g (Serre et al.,
1977). We consider the special Euclidean group SE(3) for geometric graph generation involv-
ing translations and rotations. Moreover, the transformations Sg or Tg can be represented by a
translation t and an orthogonal matrix rotation R. For a molecule G = ⇓x,h⇔, the node features
h are SE(3)-invariant while the coordinates x are SE(3)-equivariant, which can be expressed as
Rx + t = (Rx1 + t, . . . ,RxN + t).

Proof. LEAAE is SE(3)-invariance

Recall the loss function:

LEAAE = Eqε(fx,fh|xf ,hf )pς(x,h|fx, fh) ↑ KL[qφ(fx, fh|x
f ,hf )||

N∏

i

N (fx,i, fh,i|0, I)] (23)

Our expected outcome is ↖R, LEAAE(x,h,xf ,hf ) = LEAAE(Rx,h,Rxf ,hf ). We have:

LEAAE(Rx,h,Rxf ,hf )

=Eqε(fx,fh|Rxf ,hf )pς(Rx,h|fx, fh) ↑ KL[qφ(fx, fh|Rxf ,hf )||
N∏

i

N (fx,i, fh,i|0, I)]

=

∫

G
qφ(fx, fh|Rxf ,hf ) log pς(Rx,h|fx, fh) +

∫

G
log

qφ(fx, fh|Rxf ,hf )
∏

N

i
N (fx,i, fh,i|0, I)

=

∫

G
qφ(RR→1fx, fh|Rxf ,hf ) log pς(Rx,h|RR→1fx, fh)

+

∫

G
log

qφ(RR→1fx, fh|Rxf ,hf )
∏

N

i
N (fx,i, fh,i|0, I)

RR→1 = I

=

∫

G
qφ(R→1fx, fh|x

f ,hf ) log pς(x,h|R→1fx, fh)

+

∫

G
log

qφ(R→1fx, fh|xf ,hf )
∏

N

i
N (fx,i, fh,i|0, I)

SE(3) of x, fx, & xf

=

∫

G
qφ(k, fh|x

f ,hf ) log pς(x,h|k, fh) · |R|

+

∫

G
log

qφ(k, fh|xf ,hf )
∏

N

i
N (fx,i, fh,i|0, I)

Let k = R→1fx

=Eqε(k,fh|Rxf ,hf )pς(x,h|k, fh)

↑ KL[qφ(k, fh|x
f ,hf )||

N∏

i

N (fx,i, fh,i|0, I)] |R| = 1

=LEAAE(xf ,hf )
(24)

Given the fragment Gf , we subtract the center of gravity from xf
≃ G

f , and thereby ensure that
E receives isotropic geometric graph, and all together guarantee that the loss of EAAE is SE(3)-
invariant.

17
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D LOSS OF GODD IS AN SE(3)-INVARIANT VARIATIONAL LOWER BOUND
TO THE LOG-LIKELIHOOD

First, we present the rigorous statement of the Theorem 3.2 here:

Theorem D.1. Given predefined and valid {εi}
T

i=0, {ωi}
T

i=0, and {ςi}Ti=0 Let w(t) satisfies:

1. ↖t ≃ [1, . . . , T ], w(t) =
ω2
t

2ς2
t
(1 ↑ ωt)(1 ↑ ε2

t
)

(25)

2. w(0) = ↑1 (26)

Then given the geometric datapoint G = ⇓x,h⇔ ≃ RN↗(3+d)
and its subset G

f
⇓xf ,hf

⇔ ≃ RF↗(3+d)

the loss L of the proposed method is expressed as:

L := LEAAE + LPSDM (27)

which satisfies:

1. ↖R and t, L(x,h,xf ,hf ) = L(Rx + t,h,Rxf + t,hf ) (28)

2. L(x,h,xf ,hf ) ↙ ↑Ep→x,h↑↓{G},[fx,fh]=Eε(Gf )[log pω(zx, zh|fx, fh)] (29)

And we have log pω(x0,h0) is the marginal distribution of ⇓x,h⇔ under GODD.

The theorem proposed herein posits two distinct assertions. Firstly, Equation 28 illustrates that the
loss function L is SE(3)-invariant, meaning it remains unchanged under any rotational or transla-
tional transformations. Secondly, Equation 29 suggests that L acts as a variational lower bound for
the log-likelihood. We provide comprehensive proofs for these assertions separately, commencing
with Equation 29.

Proof. L is a variational lower bound of the log-likelihood

Recall the loss function:

L(x,h,xf ,hf ) =LEAAE + LPSDM (30)

=Eqε(fx,fh|xf ,hf )pς(x,h|fx, fh) ↑ KL[qφ(fx, fh|x
f ,hf )||

N∏

i

N (fx,i, fh,i|0, I)]

(31)

+ EG,Eε(Gf ),ε,t

[
↘ω↑ ωω(xt,ht, fx, fh, t)↘

2
]

(32)

LEAAE is a standard variational autoencoder and has been proven to be a variational lower bound of
the log-likelihood (Kingma & Welling, 2014). For simplicity, we denote zx,t, zh,t as zt, and fx, fh
as f , then we expect LPSDM has:

log pω(z|f) ↙ KL[q(z1:T |z0)↘pω(z|f)] (33)

18
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log pω(z|f) ↙Eq(z1:T |z0)

[
log

pω(z0:T |f)

q(z1:T |z0)

]

=Eq(z1:T |z0)


log

p(zT )pω(z0|z1, f)
∏

T

t=2 pω(zt→1|zt, f)

q(z1|z0)
∏

T

t=2 q(zt|zt→1)



=Eq(z1:T |z0)


log

p(zT )pω(z0|z1, f)

q(z1|z0)
+ log

T∏

t=2

pω(zt→1|zt, f)

q(zt|zt→1)



=Eq(z1:T |z0)



log
p(zT )pω(z0|z1, f)

q(z1|z0)
+ log

T∏

t=2

pω(zt→1|zt, f)
q(zt↔1|zt,z0)q(zt|z0)

q(zt↔1|z0)





=Eq(z1:T |z0)


log

p(zT )pω(z0|z1, f)

q(zT |z0)
+

T∑

t=2

log
pω(zt→1|zt, f)

q(zt→1|zt, z0)



=Eq(z1|z0)[pω(z0|z1, f)] + Eq(zT |z0)

[
log

p(zT )

q(zT |z0)

]

+
T∑

t=2

Eq(zt,zt↔1|z0)

[
log

pω(zt→1|zt, f)

q(zt→1|zt, z0)

]

=Eq(z1|z0)[pω(z0|z1, f)] ↑ KL[q(zT |z0)↘p(zT )]

↑

T∑

t=2

Eq(zt|z0)[KL[q(zt→1|zt, z0)↘pω(zt→1|zt, f)]]

(34)

where we denote KL[q(zt→1|zt, z0)↘pω(zt→1|zt, f)] as LPSDM,t→1, then we have:

LPSDM,t→1 = Eω↘N (0,I)

[
ω2
t

2ς2
t
(1 ↑ ωt)(1 ↑ ε2

t
)
↘ω↑ ωω(zt, f , t)↘

2
2

]
(35)

which gives us the weights of w(t) for t = 1, . . . , T .

For term Eq(z1|z0)[pω(z0|z1, f)], we denote as LPSDM,0. With sampling at the final timestep for
different modality features and a normalization constant Z, we have:

LPSDM,0 = Eω↘N (0,I)

[
logZ→1

↑
1

2
↘ω↑ ωω(z, f , 1)↘2

]
(36)

Since zT → N (0, I), we have:

LPSDM,T = KL[q(zT |z0)↘p(zT )] = 0 (37)

Therefore, we have:

Ep→x,h↑↓{G},[fx,fh]=Eε(Gf )[log pω(z|f)] ↙ ↑

T∑

t=2

LPSDM,t→1 ↑ LPSDM,0 = ↑LPSDM (38)

We then prove Equation 28:

Proof. L is SE(3)-invariance

Our expected outcome is ↖R, L(x,h,xf ,hf ) = L(Rx,h,Rxf ,hf ), and ↖R,
LEAAE(x,h,xf ,hf ) = LEAAE(Rx,h,Rxf ,hf ) is ensured in Proof. C. For LPSDM, we
expect ↖R,LPSDM(Rzx,0, zh,0,Rf) = LPSDM(zx,0, zh,0, f) we have:

LPSDM(Rzx,0, zh,0)

=EG,Eε


T∑

t=2

Eq(zt|Rz0)[KL[q(zt→1|zt,Rz0)↘pω(zt→1|zt,Rf)]] ↑ Eq(z1|Rz0)[pω(Rz0|z1,Rf)]


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=

∫

G


T∑

t=2

log
q(zt→1|q(zt,Rz0)

pω(zt→1|zt,Rf)
↑ log pω(Rz0|z1,Rf)



=

∫

G


T∑

t=2

log
q(RR→1zt→1|q(RR→1zt,Rz0)

RR→1pω(zt→1|RR→1zt,Rf)
↑ log pω(Rz0|RR→1z1,Rf)


RR→1 = I

=

∫

G


T∑

t=2

log
q(R→1zt→1|q(R→1zt, z0)

R→1pω(zt→1|R→1zt, f)
↑ log pω(z0|R

→1z1, f)


SE(3) of fx & zt

=EG,Eε


T∑

t=2

log
q(jt→1|q(jt, z0)

R→1pω(zt→1|jt, f)
↑ log pω(z0|j1, f)


Let jt = R→1zt

=LPSDM(zx,0, zh,0, f)
(39)

E TRAINING DETAILS

Parameters

1. Optimizer: Adam (Kingma & Ba, 2015) optimizer is used with a constant learning rate of
10→4 as our default training configuration.

2. Batch size: 64.
3. EGNN in PSDM: 9 layers and 256 hidden features for QM9, 4 layers and 256 hidden

features for GEOM-DRUG.
4. EGNN in EAAE: 1 layer and 256 hidden features for the encoder for QM9 and GEOM-

DRUG, 9 layers and 4 layers with 256 hidden features for the decoder for QM9 and GEOM-
DRUG, respectively.

5. Latent dimension of fx, fh: latent dimension is 3 and 1 for fx and fh, respectively.
6. Epoch: 3000 for QM9 and 10 for GEOM-DRUG.

Training

1. GPU: NVIDIA GeForce RTX 3090
2. CPU: Intel(R) Xeon(R) Platinum 8338C CPU
3. Memory: 512 GB
4. Time: Around 7 days for QM9 and 20 days for GEOM-DRUG.

Specific Parameters 1. On QM9, we train PSDM with 9 layers and 256 hidden features with a
batch size 64; 2. On GEOM-DRUG, we train PSDM with 4 layers and 256 hidden features, with
batch size 64;

F ALGORITHMS

This section contains two main algorithms of the proposed GODD. Algorithm 1 presents the pseudo-
code for training GODD on the in distributional training data set {GI} and corresponding fragment
set {Gf

I
}. Algorithm 2 presents the process of OOD molecule generation using the ODD scaf-

fold/ring G
f

O
.

G QM9 DATASET

QM9 (Ramakrishnan et al., 2014) is a comprehensive dataset that provides geometric, energetic,
electronic, and thermodynamic properties for a subset of the GDB-17 database (Ruddigkeit et al.,
2012), comprising 134 thousand stable organic molecules with up to nine heavy atoms.
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Algorithm 1 Training GODD

1: Input: in-distribution geometric data point GI = ⇓x,h⇔, corresponding fragment Gf

I
, asymmet-

ric encoder Eφ and decoder Dς, denoising network ωω;
2: EAAE:

3: µx, µh ⇐ Eφ(xf ,hf ) // Encode

4: ⇓ωx, ωh⇔ → N (0, I) // Sample Noise for EAAE

5: ωx ⇐ ωx ↑G(ωx) // Subtract Center of Gravity

6: fx, fh ⇐ µ + ⇓ωx, ωh⇔ ∝ ϖ0 // Reparameterization

7: PSDM:

8: t → U(0, T ) // Sample Timestep

9: ⇓ωx, ωh⇔ → N (0, I) // Sample Noise for PSDM

10: ωx ⇐ ωx ↑G(ωx) // Subtract Center of Gravity

11: zx,t, zh,t ⇐ εt[x,h] + ϖtω // Diffuse

12: x̂, ĥ ⇐ Dς(fx, fh) // Decode

13: Optimization

14: LEAAE ⇐ L([x̂, ĥ], [x,h]) + KL // L for EAAE

15: LPSDM ⇐ ↘ω↑ ωω(zx,t, zh,t, t, fx, fh)↘2
// L for PSDM

16: LGODD ⇐ LEAAE + LPSDM // Total Loss

17: ϱ,φ, ↼ ⇐ optimizer(LGODD,ϱ,φ, ↼) // Optimize

18: return ϱ, ↼

Algorithm 2 Adaptive Sampling of GODD

1: Input: OOD fragment Gf

O
= ⇓xf

O
,hf

O
⇔, encoder Eφ, denoising network ωω;

2: µx, µh ⇐ Eφ(xf

O
,hf

O
) // Encode

3: ⇓ωx, ωh⇔ → N (0, I) // Sample Noise for EAAE

4: ωx ⇐ ωx ↑G(ωx) // Subtract Center of Gravity

5: fx, fh ⇐ µ + ⇓ωx, ωh⇔ ∝ ϖ0 // Target Condition

6: ⇓zx,T , zh,T ⇔ → N (0, I) // Sample Noise for Generation

7: for t in T, T ↑ 1, . . . , 1 do

8: ⇓ωx, ωh⇔ → N (0, I) // Denoising

9: ωx ⇐ ωx ↑G(ωx) // Subtract Center of Gravity

10: zx,t→1, zh,t→1 ⇐
1≃

1→ϑt
(⇓zx,t, zh,t⇔ ↑

ϑt↗
1→ϱ2

t

ωω(zx,t, zh,t, t, fx, fh)) + ↽tω

11: end for

12: x,h ⇐ p(zx,0, zh,0|zx,1, zh,1, fx, fh)
13: return ⇓x,h⇔

G.1 SCAFFOLD SPLIT QM9

We utilized the open-source software, RDkit (Landrum et al., 2016), to examine the scaffold and
ring of each molecule. QM9 dataset 1 comprises a total of 130,831 molecules, encompassing 15,661
unique scaffolds. Molecules lacking a scaffold were denoted as ‘-’ and included in the total scaffold
count. The dataset was divided based on scaffold frequency. Specifically, the in-distribution subset
contained 100,000 molecules and 1,054 scaffolds. The OOD I subset included 15,000 molecules
and 2,532 scaffolds, while the OOD II subset consisted of 15,831 molecules and 12,075 scaffolds.

Figure 4(a) presents the division’s schematic diagram. Figure 4(b) displays the logarithmic his-
togram of the scaffolds in each dataset segment. It is evident that the in-distribution dataset contains
the most frequent scaffolds, primarily concentrated above 100. The frequency of scaffolds in the
OOD I dataset ranges between 10 and 100. In contrast, the scaffolds in the OOD II dataset are pri-
marily concentrated within 10, with most appearing only once. Figures, SMILES, and frequencies
of some example scaffolds in each sub-dataset are given in Figure 5.

1https://springernature.figshare.com/ndownloader/files/3195389
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100,000 Molecules
1,054 Scaffolds.

15,000 Molecules
2,532 Scaffolds.

15,831 Molecules
12,075 Scaffolds.

Class I Class II Class III

(a) The number of molecules and scaffolds in distribution, OOD I, and OOD II of the Scaffold-Split QM9
data set.
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(b) Scaffold Logarithmic Histogram of Scaffold-Split QM9

Figure 4: Scaffold-Split QM9

Scaffold Split
Source 
Dataset

C1CN1C1C2C3CN2C13C1C2C1N1CC21C1CC2(C1)CN2C1C[NH]CN1C1=CCCC1SMILES
372224631618913331333Frequency

Scaffold Split
Target 

Dataset I

C1COCCN1C1CCNCC1C1CC2C3CN2C13C1CC1C1COC1C1CC(C2CC2)O1C1C2OC3C1C3O2SMILES
402424567045Frequency

Scaffold Split
Target 

Dataset II

C1CN1CC1C2CN1C2C1CN=C(OC2CC2)C1C1CC1OC1C2CC1C2C1CC1CC1C2CC1O2C1CC1CC1C2CC1C2C1C2OC1C2CN1CC1SMILES
111111Frequency

Figure 5: Scaffold Examples of QM9 Split by Scaffolds.

G.2 RING NUMBER SPLIT QM9

The QM9 dataset could categorize molecules into nine groups based on the number of rings, ranging
from 0 to 8. As the number of rings increases, the quantity of molecules correspondingly decreases.
We partition the QM9 dataset into two subsets based on ring count. The in-distribution dataset
comprises acyclic molecules and those with 1 to 3 rings, while the OOD dataset includes molecules
with 4 to 8 rings. Figure 6 presents a schematic diagram illustrating example molecules with 0 to 8
rings.
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Figure 6: Ring Examples of QM9 Split by Ring Number.

H GEOM-DRUG DATASET

GEOM-DRUG (Geometric Ensemble Of Molecules) dataset (Axelrod & Gómez-Bombarelli, 2022)
encompasses around 450,000 molecules, each with an average of 44.2 atoms and a maximum of 181
atoms2.

H.1 RING NUMBER SPLIT GEOM-DRUG

The GEOM-DRUG dataset classifies molecules into sixteen categories based on the number of rings,
ranging from 0 to 14 and 22. As the ring count increases, the number of molecules correspondingly
decreases. The dataset is partitioned into two subsets according to ring count: the in-distributional
dataset, which includes molecules with 0 to 10 rings and a count exceeding 100, and four OOD
datasets, which comprises molecules with 11 to 14 and 22 rings. Figure 7 provides a schematic
representation of the molecule distribution by ring number.
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Figure 7: Ring Distribution of GEOM-DRUG dataset.

I GEOM-LINKER DATASET

The GEOM-LINKER dataset for linker design is constructed by (Igashov et al., 2024) based on
GEOM-DRUG. The authors decomposed the molecule into three or more fragments with one or
two linkers connecting them. The dataset contains 41,907 molecules and 285,140 fragments, and
the original dataset is randomly split into train (282,602 examples), validation (1,250 examples), and
test (1,288 examples) sets. Atom types considered for this dataset are C, O, N, F, S, Cl, Br, I, and P.

We present the distribution of molecules in GEOM-LINKER according to the number of rings in
Figure 8. The diagram illustrates the molecules with 3 to 5 rings are the majority and molecules

2https://dataverse.harvard.edu/file.xhtml?fileId=4360331&version=2.0
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Figure 8: Ring Distribution of GEOM-LINKER dataset.

with 8 to 12 rings exhibit data sparsity in the whole dataset. Thereby, we split the dataset according
to the ring numbers into in-distribution (0-5 rings, 280,879 samples) and OOD (6-12 rings, 4,263
samples).

J FULL RESULTS OF OOD RING-STRUCTURE MOLECULE GENERATION

We present the detailed quantitative evaluation results of ring adaptive molecule generation tasks in
Tables 8 and 9. The results show that the proposed method has dominant performance in all metrics,
including ring number proportion, validity, novelty, and success rate.

It is significant to note that the entire QM9 dataset comprises only 36 eight-ring molecules. When
the proposed algorithm utilizes the ring structures of these 36 8-ring molecules as input, the target
validity reaches an impressive 72.2%, and the novelty is as high as 80.9%. Considering that there
are only 36 fundamental 8-ring structures, the uniqueness is slightly lower (27.4%). Nevertheless,
the generation of 10,000 molecules resulted in 2,388 valid, unique, and entirely novel eight-ring
molecules, which is a substantial breakthrough compared to existing methods (even those models
trained on eight-ring molecules) that failed to discover any new eight-ring molecules.
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Table 8: Results of molecule proportion in terms of ring-number (P) and molecule validity (V) The
best results are highlighted in bold. QM9 only contains 36 eight-ring molecules and the proportion
for eight-ring is nearly 0.

0 1 2 3 4 5 6 7 8 Averaged
Method P (%) -

QM9 10.2 39.3 27.6 15.1 4.4 2.7 0.6 0.2 0.0 -
EDM† 10.5 39.8 28.0 14.5 4.0 2.9 0.2 0.1 0.0 -
GeoLDM† 12.0 38.6 27.0 15.3 4.6 2.2 0.2 0.1 0.0 -
EDM‡ 12.1 44.1 29.8 11.8 1.7 0.5 0.0 0.0 0.0 -
GeoLDM‡ 2.8 41.5 32.1 15.7 4.7 2.7 0.3 0.1 0.0 -
C-EDM‡ 98.9 94.2 80.8 64.4 12.6 26.8 0.3 0.1 0.0 -
C-GeoLDM‡ 97.1 89.4 74.2 52.4 22.3 22.7 0.9 0.2 0.0 -
EEGSDE‡ 98.4 92.2 77.6 58.2 14.1 17.6 0.3 0.0 0.0 -
MOOD‡ 80.7 87.1 86.1 73.3 34.1 32.3 10.3 0.2 0.0 -
CGD‡ 82.3 84.8 86.2 83.6 34.4 22.4 10.3 10.1 0.0 -
GODD‡ 99.9 99.8 99.1 97.6 92.5 89.7 78.7 88.2 82.1 -

Target Valid (%)
QM9 97.7 97.7 97.7 97.7 97.7 97.7 97.7 97.7 97.7 97.7
EDM† 10.8 36.1 26.7 13.9 4.0 2.3 0.2 0.1 0.0 10.5
GeoLDM† 11.2 36.2 25.2 14.3 4.3 2.0 0.2 0.1 0.0 10.4
EDM‡ 11.4 41.4 28.0 11.1 1.6 0.5 0.0 0.0 0.0 10.4
GeoLDM‡ 2.7 38.8 30.0 14.7 4.4 2.6 0.3 0.1 0.0 10.4
C-EDM‡ 86.6 85.4 74.9 59.8 12.1 23.3 0.2 0.1 0.0 38.0
C-GeoLDM‡ 86.2 79.6 65.8 48.1 20.4 20.7 0.9 0.2 0.0 35.7
EEGSDE‡ 96.7 92.1 77.2 58.0 13.9 17.4 0.3 0.0 0.0 39.5
MOOD‡ 75.5 81.7 80.6 68.9 32.0 30.1 9.6 0.1 0.0 42.1
CGD‡ 77.0 79.6 81.1 78.4 32.3 20.9 9.5 9.5 0.0 43.2
GODD‡ 31.7 91.4 91.4 92.1 85.3 85.2 69.5 82.5 72.2 77.9
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Table 9: Results of molecule proportion in terms of novelty (N) and success rate (S). The best results
are highlighted in bold.

0 1 2 3 4 5 6 7 8 Averaged
Method Target Novelty (%)
EDM† 7.1 23.6 17.5 9.1 2.6 1.5 0.1 0.1 0.0 6.8
GeoLDM† 7.0 22.4 15.6 8.9 2.7 1.3 0.1 0.0 0.0 6.4
EDM‡ 7.5 27.1 18.3 7.2 1.1 0.3 0.0 0.0 0.0 6.8
GeoLDM‡ 1.7 25.0 19.4 9.5 2.8 1.7 0.2 0.1 0.0 6.7
C-EDM‡ 57.1 59.7 54.2 44.2 9.9 20.1 0.2 0.1 0.0 27.3
C-GeoLDM‡ 63.3 61.6 53.3 40.1 17.3 18.3 0.7 0.1 0.0 28.3
EEGSDE‡ 63.9 61.4 53.0 42.5 9.9 14.1 0.3 0.0 0.0 27.2
MOOD‡ 50.0 53.9 53.6 44.4 20.6 20.0 6.3 0.1 0.0 27.6
CGD‡ 51.0 52.5 53.1 51.3 21.0 13.9 6.3 6.2 0.0 28.4
GODD‡ 96.6 51.3 55.6 60.2 69.5 63.5 71.5 83.4 80.9 70.3

Success Rate (%)
EDM† 6.5 21.9 16.2 8.4 2.4 1.4 0.1 0.1 0.0 6.3
GeoLDM† 6.4 20.6 14.4 8.2 2.4 1.2 0.1 0.0 0.0 5.9
EDM‡ 6.9 25.1 17.0 6.7 1.0 0.3 0.0 0.0 0.0 6.3
GeoLDM‡ 1.6 23.0 17.8 8.7 2.6 1.5 0.2 0.1 0.0 6.1
C-EDM‡ 48.1 53.8 50.0 40.5 7.9 16.8 0.2 0.1 0.0 24.1
C-GeoLDM‡ 54.6 54.6 46.9 36.8 15.4 15.6 0.6 0.1 0.0 25.0
EEGSDE‡ 54.7 54.7 46.9 39.5 9.5 12.2 0.2 0.0 0.0 24.2
MOOD‡ 45.9 49.8 49.4 41.0 18.9 18.3 5.8 0.1 0.0 25.5
CGD‡ 46.8 48.5 49.1 47.3 19.5 12.8 5.8 5.7 0.0 26.2
GODD‡ 25.9 43.4 46.2 50.4 53.8 41.0 46.1 34.1 23.9 40.5
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K VISUALIZATION

In this section, we provide additional visualizations of physical prior steered molecule generation
by GODD for OOD scaffold generation and ring number generation in Figures 9 and 10

As depicted in the two figures, the model consistently generates realistic molecular geometries with
OOD scaffolds or ring numbers.

Target Scaffold Generated molecules with target scaffold

Figure 9: Molecules Generated by GODD for Scaffold Adaptive Generation Under The Same Un-
seen Scaffold Condition.
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4 Rings

5 Rings

6 Rings

7 Rings

8 Rings

Figure 10: Molecules Generated by GODD for Ring Number Adaptive Generation For Unseen Ring
Numbers

22-ring Molecule in 
GEOM-DRUG

22-ring-structure as 
Domain prior

GADM

Figure 11: Molecules Generated by GODD for Ring Number Adaptive Generation For Unseen Ring
Numbers on GEOM-DRUG Dataset.
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L RELATED WORK

Molecule Generation Models. Prior studies on molecule generation focused on generating
molecules as 2D graphs (Jin et al., 2018; Liu et al., 2018; Shi et al., 2020). However, there has been a
growing interest in 3D molecule generation. G-SchNet (Gebauer et al., 2019) and G-SphereNet (Luo
& Ji, 2022) utilize autoregressive techniques to construct molecules incrementally by progressively
connecting atoms or molecular fragments. These frameworks necessitate either a meticulous formu-
lation of complex action space or action ordering.

More recently, the focus has shifted towards using Diffusion Models (DMs) for 3D molecule gener-
ation (Hoogeboom et al., 2022; Xu et al., 2023; Wu et al., 2022; Song et al., 2024). To mitigate the
inconsistency of unified Gaussian diffusion across diverse modalities, a latent space was introduced
by (Xu et al., 2023). To tackle the atom-bond inconsistency problem, different noise schedulers were
proposed by (Peng et al., 2023) for various modalities to accommodate noise sensitivity. However,
these algorithms do not account for generating novel molecules outside the training distribution.

Out-of-Distribution Molecule Generation. OOD generation, although under-explored, is of
paramount importance, especially considering that molecules generated by machine-learning meth-
ods often exhibit a “striking similarity” (Walters & Murcko, 2020). In recent years, some pre-
liminary work has begun to use reinforcement learning (Yang et al., 2021) and out-of-distribution
control (Lee et al., 2023) to explore the generation of novel molecules. However, these methods
are still challenging when designing novel molecules in data-sparse regions with fragment shifts.
As proposed by (Lee et al., 2023), MOOD employs an OOD control and integrates a property-
predictor-based diffusion scheme to optimize molecules for specific chemical properties. Similarly,
CGD (Klarner et al., 2024) leverages unlabeled data to improve the generalization of guided diffu-
sion models. However, these predictor-based OOD methods fail to generate novel molecules with
ODD fragments that are sparse for training a classifier.

Fragment-Based Drug Design. The discovery of new molecules is crucial across various fields,
and there are four primary approaches to this task (Murray & Rees, 2009): (1) searching from an
existing molecule, (2) developing from a natural product, (3) high-throughput screening, and (4)
fragment-based drug discovery (FBDD). Among these, FBDD has gained significant importance
and interest over the past decades due to its higher efficiency compared to other methods (Murray
& Rees, 2009). Typically, fragments are selected based on the “rule of three” (Congreve et al.,
2003) criteria and thereby can be grown, linked, or merged to develop potential molecules (Bian &
Xie, 2018). Recently, there has been a growing trend in enhancing FBDD with machine learning
techniques (Wu et al., 2024; Igashov et al., 2024; Guan et al., 2024). However, these methods often
overlook the issue of fragment sparsity in datasets, highlighting the need for an OOD molecular
generative model capable of producing realistic molecules in data-sparse regions.

M IMPACT STATEMENTS

This paper presents work whose goal is to advance the field of generative Artificial Intelligence
(AI) for scientific fields, such as material science, chemistry, and biology. The obtained experi-
ence/knowledge will greatly boost generative AI technologies in facilitating the process of scientific
knowledge discovery.

Machine learning for molecule generation opens up possibilities for designing molecules beyond
therapeutic purposes, such as the creation of illicit drugs or dangerous substances. The potential
for misuse and unintended consequences necessitates strict ethical guidelines, robust regulation, and
responsible use of these technologies to prevent harm to individuals and society.

N ACRONYMS LIST

ACRONYMS

GODD Geometric OOD Diffusion Model. 1–10, 18, 20, 21, 25–27

EAAE Equivariant Asymmetric Autoencoder. 4–6, 9, 15, 17–21
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PSDM Physical Prior Steered Diffusion Model. 6, 18–21
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