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Abstract

Can we train a molecule generator that can generate 3D molecules from a new1

domain, circumventing the need to collect data? This problem can be cast as the2

problem of domain adaptive molecule generation. This work presents a novel3

and principled diffusion-based approach, called GADM, that allows shifting a4

generative model to desired new domains without the need to collect even a single5

molecule. As the domain shift is typically caused by the structure variations of6

molecules, e.g., scaffold variations, we leverage a designated equivariant masked7

autoencoder (MAE) along with various masking strategies to capture the structural-8

grained representations of the in-domain varieties. In particular, with an asymmetric9

encoder-decoder module, the MAE can generalize to unseen structure variations10

from the target domains. These structure variations are encoded with an equivariant11

encoder and treated as domain supervisors to control denoising. We show that, with12

these encoded structural-grained domain supervisors, GADM can generate effective13

molecules within the desired new domains. We conduct extensive experiments14

across various domain adaptation tasks over benchmarking datasets. We show that15

our approach can improve up to 65.6% in terms of success rate defined based on16

molecular validity, uniqueness, and novelty compared to alternative baselines.17

1 Introduction18

Geometric generative models are proposed to approximate the distribution of complex geometries19

and are used to generate feature-rich geometries. They have emerged as a crucial research direction20

in various scientific fields (e.g., material science, biology, and chemistry [16, 47, 50]), attempting to21

facilitate the process of scientific knowledge discovery. In these fields, geometries could be point22

clouds where each point is embedded in the Cartesian coordinates and encompasses rich features.23

For example, 3D molecules can be represented as atomic geometric graphs [16, 51, 40].24

There has been fruitful research progress on 3D molecule generation based on geometric generative25

modeling due to their ability to estimate density and generate feature-rich geometries. Recent26

representative models for generating 3D molecules in silicon include autoregressive [28], flow-27

based models [11], and diffusion models [16]. Among others, diffusion models have demonstrated28

their superior performance in terms of various empirical evaluation metrics, such as stability and29

validity [16]. However, these generative models are trained to mimic the training data distribution,30

limiting their capability within the in-domain generation and manipulation [13], i.e., controllable31

generation.32

With the expressive power of the state-of-the-art diffusion-based generators, can we train a diffusion-33

based molecule generator that can flexibly adapt to a desired new domain where data are scarce34

and difficult to collect? This problem can be cast as a domain adaptive generation problem, whose35

goal is to shift the data distribution of generators to a desired new domain different from what it is36

trained over. In the context of molecule generation, the distribution shift mainly comes from structure37

variations [49, 25]. The structure variation could be the various types of scaffolds or ring-structures.38

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



Table 1: Alternative baselines were
trained with QM9, a canonical molecule
dataset. Source, target I, and target II do-
mains encompass molecules with high-,
low-, and rare-frequency scaffolds, re-
spectively. The generated samples from
EDM and GeoLDM, which are trained
on molecules with source scaffolds, are
dominated by the training scaffold set,
indicating that they can well reflect the
training data distribution.

QM9 Scaffold Propotion (%)
Domains Source Target I Target II

QM9 76.4 11.5 12.1

EDM [16] 90.9 5.9 2.7
GeoLDM [51] 90.6 5.9 3.5

Taking a canonical molecule dataset – QM9 as our running39

example, diverse scaffolds of molecules have varying pro-40

portions in nature [32, 49]. We observed that EDM [16]41

and GeoLDM [51] indeed could capture the training data42

distribution well — generating molecules with scaffolds43

existing in the high-frequency class — but they struggle44

to generate molecules with low-frequency scaffolds (see45

Table 1). Our preliminary study proves the excellent ex-46

pressive capability of the current diffusion-based molecule47

generators. On the other hand, it indicates the difficulty in48

generating molecules deviating from the training data dis-49

tribution. Existing works for domain adaptive generation50

are tailed for specific generation tasks, such as image [39],51

dialog [31], and question-answering generation [54]. As52

far as we know, ours is the first work to consider domain53

adaptive generation for 3D molecules.54

To address the above issues, we develop a new and princi-55

pled diffusion-based generator, called Geometric Adaptive56

Diffusion Model (GADM), that can adaptively synthesize57

3D molecules in the desired new domains. In particular, GADM enables the generation of 3D58

molecules with structural-grained variations adaptively, including the distribution shifts due to scaf-59

fold and ring-structure variations, respectively. The underlying assumption is that if we can capture60

the set of structure variations right, generalizing the unseen ones that ultimately lead to the target61

domain is a much easier process. Using QM9 as an example (see Table 1, source, target I, and62

target II are three domains due to scaffold variations. Our proposed generator GADM is trained with63

source molecules — the high-frequency scaffolds. Once trained, GADM can generate molecules64

with low/rare-frequency scaffolds conditioned on corresponding scaffolds in target I/target II.65

The crux of GADM is to empower the denoising process with domain priors, which is characterized by66

a designated Equivariant Masked Autoencoder (EMAE). Our EMAE is realized with an asymmetric67

encoder-decoder architecture, enabling to capture the domain priors — in-domain structure variations68

and to generalize to out-of-domain structure variations [14]. More specifically, during training, the69

in-domain priors, such as scaffolds or ring-structures from the source domain, are encoded and70

subsequently act as domain supervisors to control the denoising process of Domain Supervised71

Diffusion Model (DSDM). In the generation phase, the generalization capability provided by the72

asymmetric EMAE allows for properly encoding the unseen structure variations, i.e., scaffolds or73

rings from the target domains. These captured target domain priors are used to control the denoising74

process to generate 3D molecules within the desired new domains.75

To ensure that the generated 3D molecules are SE(3)-equivariant, our EMAE employs the well-76

known equivariant graph neural network module to encode the structural-grained domain supervisors.77

Notably, unlike prior domain adaption works [39], GADM does not need additional training for the78

entire adaptive generation process. In a nutshell, our main contributions are delineated as follows.79

First, we pioneer the domain adaptive generation problem in the context of 3D molecule generation.80

Correspondingly, we propose a geometric adaptive diffusion-based generation framework capable of81

adaptively generating target molecules outside the training domain without additional training. In82

particular, we adopt the idea of Masked Autoencoder (MAE) to extract latent features of in-domain83

and out-of-domain supervisors for conditional denoising in diffusion models. Second, we proved that84

the domain supervisor extracted by the designed EMAE is SE(3)-equivariant, ensuring the molecular85

generation is equivariant. Third, to validate the effectiveness of the proposed framework, we compare86

it with EDM [16] and GeoLDM [51] over benchmarking datasets. Extensive experimental results87

demonstrate that the latent features, acting as domain supervisors, empower the diffusion models88

to generate molecules with desired structural variations adaptively. Remarkably, the success rate89

of generated molecules by GADM is improved by up to 65.6% compared with existing methods.90

Our work represents a significant advancement in generating novel molecules that are absent in the91

training samples but exhibit the desired structural variations.92
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Figure 1: The Illustration of Proposed GADM Framework.
During training (gray pipeline): I. Equivariant Masked Autoencoder (EMAE): the equivariant
encoder (E) first maps the domain prior—masked structure (i.e., scaffold/ring)—into the masked latent
features. These latent features would be processed with an equivariant decoder (D) for reconstructing
the original molecule in 3D atomic space. This asymmetric encoder-decoder architecture enables
to capture of the in-domain priors and to generalize to out-of-domain structures; II. Domain Prior-
Supervised Diffusion Model (DSDM): DSDM first diffuses the molecule into noises and then
incorporates the masked latent features as domain supervisor to perform denoising for reconstructing
the input molecules. During generation (red pipeline): EMAE receives the target domain prior
and encodes it as the domain supervisor. Then, DSDM denoises from sampled Gaussian noise under
domain supervision to generate novel and valid molecules with target structure variations.

2 Problem Setup and Preliminaries93

2.1 Problem Definition94

Notations: Let d be the dimensionality of node features; a 3D molecule can be represented as a point95

cloud denoted as G = ⟨x,h⟩, where x = (x1, . . . ,xN ) ∈ RN×3 is the atom coordinate matrix and96

h = (h1, . . . ,hN ) ∈ RN×d is the node feature matrix containing atomic type, charge features, etc.97

For a given molecule G, the scaffold is its structural framework [4], termed as “chemotypes,” which98

could be regarded as a subgraph of the original molecule, represented as Gs = ⟨xs,hs⟩. Except for99

scaffolds, the ring structures are essential in Chemistry and Biology [20, 46, 33], which could also be100

a factor that incurs the distribution shift.101

Domain Adaptive Generation Problem: We consider the problem of domain adaptive generation in102

the following two scenarios, including scaffold-domain and ring-structure-domain adaptive generation,103

respectively. Given a collection of molecules as training samples and corresponding scaffold/ring-104

structure set denoted as {GS}, {GsS}, respectively. For simplicity, we call the training sample domain105

as the source domain. Domain adaptive generation aims to learn a generative model that can generate106

valid and novel molecules falling into a targeted new domain, where corresponding scaffold/ring-107

structure set is {GsT }, and the targeted scaffold/ring-structure set is unseen during training, a.k.a.108

{GsS} ∩ {GsT } = ∅.109

2.2 Preliminaries110

Equivariance. Molecules, typically existing within a three-dimensional physical space, are subject111

to geometric symmetries, including translations, rotations, and potential reflections. These are112

collectively referred to as the Euclidean group in 3 dimensions, denoted as E(3) [6].113

A function F is said to be equivariant to the action of a group G if Tg ◦ F (x) = F ◦ Sg(x) for all114

g ∈ G, where Sg, Tg are linear representations related to the group element g [36]. For geometric115

graph generation, we consider the special Euclidean group SE(3), involving translations and rotations.116

Moreover, the transformations Sg or Tg can be represented by a translation t and an orthogonal117

matrix rotation R. For a molecule G = ⟨x,h⟩, the node features h are SE(3)-invariant while the118

coordinates x are SE(3)-equivariant, which can be expressed as Rx+ t = (Rx1+ t, . . . ,RxN + t).119

Diffusion Models. Diffusion models [38] are latent variable models for learning distributions by120

modeling the reverse of a diffusion process [15]. Given a data point x0 ∼ q(x0) and a variance121

schedule β1, . . . , βT that controls the amount of noise added at each timestep t, the diffusion process122
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or forward process gradually add Gaussian noise to the data point x:123

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI), (1)

Generally, the diffusion process q has no trainable parameters. The denoising process or reverse124

process aims at learning a parameterized generative process, which incrementally denoise the noisy125

variables xT :1 to approximately restore the data point x0 in the original data distribution:126

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)), (2)

where the initial distribution p(xt) is sampled from standard Gaussian noise N (0, I). The loss127

for training diffusion model LDM := Lt is simplified as: LDM = Ex0,ϵ,t

[
∥ϵ− ϵθ(xt, t)∥2

]
, where128

w(t) = βt

2σ2
tαt(1−ᾱt)

is the reweighting term and could be simply set as 1 with promising sampling129

quality, and xt =
√
ᾱtx0 +

√
1− ᾱtϵ. We provide detailed description about diffusion models in130

Appendix C.131

3 Method132

Overview. Our objective is to learn a generator with the source domain with rich data that can133

flexibly adapt to a new domain in a low-data regime. Generally, structure variations, such as scaffold134

or ring-structure variations, are the main cause of the domain shift in the context of molecule135

generation [49, 25]. We particularly focus on the geometric adaptive generation problem where the136

scaffold/ring-structure set of the source domain, represented as {GsS}, and the targeted scaffold/ring-137

structure set from new domains, denoted as {GsT }, are different. In other words, the targeted138

scaffold/ring-structure set of the target domain is unseen during training — {GsS} ∩ {GsT } = ∅.139

With the superior capability of diffusion models for 3D molecule generation, we propose to address140

the geometric domain adaptive molecule generation problem with a diffusion engine. However,141

as illustrated in Section 1, the vanilla diffusion models have difficulty generating out-of-domain142

molecules. In this regard, we propose to incorporate the structure variations of the source domain into143

the denoising process during training and those of target domains into the denoising during generation.144

These structure variations are dubbed as domain priors or domain supervisors. Nevertheless, charac-145

terizing the domain priors that can adapt to new domains is challenging because the domain priors of146

the target domains are not seen during training. Inspired by the impressive generalizability of masked147

autoencoder in both vision and language fields [14, 18], we adopt an asymmetric encoder-decoder148

architecture to capture the domain priors of the source domain and to generalize to unseen structure149

variations from the target domains.150

In what follows, we will elaborate on the design details of equivariant masked autoencoder and151

domain prior-supervised diffusion model in Section 3.1 and Section 3.2, respectively. Then, we will152

briefly summarize the training scheme and domain adaptive molecule generation in Section 3.3. The153

proposed GADM workflow is provided in Figure 1.154

3.1 Equivarient Masked Autoencoder155

Masking. For a given molecule G = ⟨x,h⟩, we apply various masking strategies (M) to derive the156

visible structure GV = ⟨xV ,hV ⟩ ←M(G) for distinct adaptive molecule design tasks, as depicted157

in the right section of Figure 1. In the case of scaffold-domain and ring-domain adaptive design,158

we mask (i.e., remove) the atoms not present on the scaffold/rings. This process is expressed as159

GV ← ⟨x− xs,h− hs⟩.160

Variational Autoencoder. The EMAE comprises an encoder E , which maps visible structure161

GV to a latent space, represented as fx, fh = E(xV ,hV ). Additionally, it includes a decoder D162

that reconstructs the latent representation back to the original molecular space, denoted as x̂, ĥ =163

D(fx, fh).164

Our EMAE reconstructs the input by predicting the coordinates and features of each masked atom.165

The loss function computes the mean squared error (MSE) between the reconstructed and original166

molecules in the original molecular space. The EMAE can be trained by minimizing the reconstruction167

objective, expressed as f(G,D(E(M(G)))). The encoder of the EMAE functions solely on the168

visible structureM(G), while the decoder reconstructs the input from the latent representation to the169

4



Domain 
Supervise

DenoisingTarget Scaffolds
Figure 2: The Illustration of the Adaptive Generation Process with GADM: given a scaffold as the
domain supervisor from a new domain, our trained GADM can generate valid, unique, and novel
molecules containing the target scaffold.

complete molecule G. This asymmetric encoder-decoder design offers promising generalization [14]170

to the latent features. These features serve as domain supervisors and empower the model to generate171

molecules with unseen domain priors.172

Equivarient MAE. However, applying general MAE in the geometric domain is non-trivial. The173

diffusion model within the overall framework operates in 3D molecular space and necessitates174

conditions to be either equivariant or invariant. Therefore, it is crucial to ensure the equivariance of175

the conditions extracted by EMAE. To achieve this, we design our EMAE based on the Equivariant176

Graph Neural Networks (EGNNs) [35], thereby incorporating equivariance into both the encoder177

Eϕ and decoder Dϑ, where ϕ and ϑ are two learnable EGNNs. EMAE ensures that the latent178

representation fx and fx encoded by the encoder from visible structure are 3-D equivariant and k-d179

invariant, respectively. Consequently, EMAE extracts both invariant and equivariant conditions, as180

expressed below:181

Rfx + t, fh =Eϕ(RxV + t,hV ) (3)

Rx̂+ t, ĥ =Dϑ(Rfx + t, fh) (4)

for all rotations R and translations t. Detailed architecture information about EMAE can be found in182

Appendix D. The point-wise latent space adheres to the inherent structure of geometries GV , which183

facilitates learning conditions for the diffusion model and results in high-quality molecule design.184

Following [16, 51], to ensure that linear subspaces with the center of gravity always being zero185

can induce translation-invariant distributions, we define distributions of visible structures xV , latent186

conditions fx, and reconstructed x̂ on the subspace that
∑

i x
V
i (or fx,i and x̂i) = 0. Then the187

encoding and decoding processes can be formulated by qϕ(fx, fh|x,h) = N (Eϕ(M(x,h)), σ0I)188

and pϑ(x,h|fx, fh) =
∏N

i=1 pϑ(xi, hi|fx, fh) and the EMAE can be optimized by:189

LEMAE = Eqϕ(fx,fh|x,h)pϑ(x,h|fx, fh)− KL[qϕ(fx, fh|x,h)||
N∏
i

N (fx,i, fh,i|0, I)], (5)

where −Eqϕ(fx,fh|x,h)pϑ(x,h|fx, fh) is the reconstruction loss and is calculated as L2 norm or190

cross-entropy for continuous or discrete features. KL[qϕ(fx, fh|x,h)||
∏N

i N (fx, fh|0, I]) is a regu-191

larization term between qϕ and standard Gaussians. LEMAE is standard VAE loss and is the variational192

lower bound of log-likelihood. The equivariance of the loss, which is crucial for geometric graph193

generation, is expressed as follows:194

Theorem 3.1. LEMAE is an SE(3)-invariant variational lower bound to the log-likelihood, i.e., for195

any geometries ⟨x,h⟩, we have:196

The theorem ensures that EMAE is equivariant so that the extracted condition satisfies the equivariant197

constraints, thereby ensuring that the conditional denoising of the geometric diffusion model is also198

equivariant. Detailed proof of Theorem 3.1 is given in Appendix F.199

In summary, EMAE first masks the input molecule G, and then inputs the visible structure GV into200

the encoder E to obtain equivariant latent features fx and invariant latent features fh. These features201

have two purposes. One is to continue to be input into the decoder D for reconstruction to constrain202

the latent features. Secondly, it is used as the condition to supervise and control the diffusion model.203

The specific method of the second part will be explained in the following section.204

3.2 Domain Prior-Supervised Diffusion Model205

With the equivariant latent features ⟨fx, fh⟩, now we can utilize these features as domain supervisors206

for reconstructing structures G while still keeping geometric properties. The latent features encoded207
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by the mask encoder from the same molecule serve as the condition for the diffusion model. Such208

a similar manner to self-supervised learning enables the model to generate molecules with target209

structural variations, and thereby, the proposed method can perform adaptive molecule generation.210

Generally, geometric diffusion models are capable of controllable generation with given conditions211

s by modeling conditional distributions p(z|s). This modeling in DMs can be implemented with212

conditional denoising networks ϵθ(z, t, s) with the critical difference that it takes additional inputs s.213

However, an underlying constraint of such use is the assumption that s is invariant. By contrast, a214

fundamental challenge for our method is that the conditions for the DM contain not only invariant215

features fh but also equivariant features fx. This requires the distribution pθ(z0:T ) of our DMs to216

satisfy the critical invariance:217

∀R, pθ(zx, zh, fx, fh) = pθ(Rzx, zh,Rfx, fh). (6)
To achieve this, we should ensure that (1) the initial distribution p(zx,T , zh,T , fx, fh) is invariant,218

which is already satisfied since zx,T is projected down by subtracting its center of gravity after219

sampling from standard Gaussian noise. With the fx, fh is obtained by equivariant Eϕ (Equations 3);220

(2) the conditional reverse processes via θ, which is expressed as pθ(zx,t−1, zh,t−1|zx,t, zh,t, fx, fh),221

are equivariant:222

∀R, pθ(zx,t−1, zh,t−1|zx,t, zh,t, fx, fh) = pθ(Rzx,t−1, zh,t−1, |Rzx,t, zh,t,Rfx, fh), (7)

this can be realized by implementing the denoising dynamics ϵθ with EGNN that satisfy the following223

equivariance:224

∀R and t, Rzx,t−1 + t, zh,t−1 = ϵθ(Rzx,t + t, zh,t,Rfx + t, fh, t), (8)
In order to keep translation invariance, all the intermediate states zx,t, zh,t are also required to lie on225

the subspace by
∑

i zx,t,i = 0 by moving the center of gravity. Analogous to Equation 17, now we226

can train the DSDM by:227

LDSDM = EG,E(M(G)),ϵ,t
[
∥ϵ− ϵθ(zx,t, zh,t, fx, fh, t)∥2

]
(9)

with w(t) simply set as 1 for all steps t.228

3.3 Training and Generation229

Training. The training loss of the entire framework can be formulated as L = LEMAE + LDSDM. To230

make the training loss tractable, we also show that L is theoretically an SE(3)-invariant variational231

lower bound of the log-likelihood and we can have:232

Theorem 3.2. Let L := LEMAE + LDSDM. With certain weights w(t), L is an SE(3)-invariant233

variational lower bound to the log-likelihood.234

Given the above training loss and Theorem 3.2, we can optimize GADM via back-propagation with235

reparameterizing trick [22]. We provide the detailed proof of Theorem 3.2 in Appendix G, and236

a formal description of the optimization procedure in Algorithm 1 in Appendix H. We follow the237

process of EDM [16] regarding the representation for continuous features x and categorical features238

h. For clarity, we provided the details in Appendix D.3.239

Adaptive Molecule Generation. With GADM trained on source dataset {GS} and given a240

scaffold/ring-structure from the target domain, denoted as a GsT , we can perform adaptive molecule241

generation (a scaffold adaptive generative process is illustrated in Figure 2). To sample from242

the model, one first inputs the GsT into the encoder Eϕ and obtains the latent representation of243

GsT denoted as ⟨fx, fh⟩ via reparameterization. With the latent representation of the target do-244

main prior as condition, DSDM first samples zx,T , zh,T ∼ Nx,h(0, I) and then iteratively samples245

zx,t−1, zh,t−1 ∼ pθ(zx,t−1, zh,t−1|zx,t, zh,t, fx, fh). Finally, the output molecule represented as246

⟨x,h⟩ is sampled from p(zx,0, zh,0|zx,1, zh,1, fx, fh). The pseudo-code of the adaptive generation is247

provided in Algorithm 2 in Appendix H.248

4 Experiments249

4.1 Experiment Setup250

Datasets and Tasks. We evaluate over QM9 [32] and the GEOM-DRUG [1]. Specifically, QM9 is a251

standard dataset that contains molecular properties and atom coordinates for 130k 3D molecules with252
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up to 9 heavy atoms and up to 29 atoms, including hydrogens. GEOM-DRUG encompasses around253

450,000 molecules, each with an average of 44 atoms and a maximum of 181. Dataset details and254

experimental parameters are presented in Appendices A, B, and E.255

Ring-Structure-Domain Adaptive Molecule Generation. In this task, ring-structure variations result256

in distribution shifts. We used RDKit [24] to categorize molecules into 9 groups based on the257

number of rings, ranging from 0 to 8. As the number of rings increases, the quantity of molecules258

correspondingly decreases. We partition the QM9 dataset into two subsets based on ring count.259

The source domain comprises molecules and those with 0 to 3 rings, and we consider the target260

domains including molecules with 4 to 8 rings, respectively. Figure 6 in the Appendix presents a261

schematic diagram illustrating example molecules with 0 to 8 rings. The GEOM-DRUG dataset262

contains molecules with 0 to 14 rings and 22 rings. We use the subsets with 0 to 10 rings as the source263

domain and consider five target domains, including 11 to 14 and 22. This is because the number of264

molecules possessing 11 to 14 and 22 rings are all under 100, representing a micro fraction of the265

total molecule count.266

Scaffold-Domain Adaptive Molecule Generation. In this task, scaffold variations incur distribution267

shifts. Similarly, we utilized RDkit [24] to examine the scaffold of each molecule within the QM9268

dataset. Molecules lacking a scaffold were denoted as ‘-’ and were included in the total scaffold269

count. The entire dataset was divided based on scaffold frequency. Specifically, the source domain270

contained 100,000 molecules and 1,054 scaffolds — most scaffolds appeared at least 100 times. The271

target domain I included 15,000 molecules and 2,532 scaffolds, where most scaffold’s frequency is272

between 10 to 100. The target domain II consisted of 15,831 molecules and 12,075 scaffolds; each273

scaffold’s frequency is less than 10. We aim to learn a generative model with the source domain274

training data, which can adaptively generate effective molecules that fall into desired new domains,275

such as target domain I/II.276

Baselines. Our work is the first to consider the problem of domain adaptive generation for 3D277

molecules, leading to the absence of baselines for a comprehensive comparison. As alternatives,278

we employ three state-of-the-art 3D molecule diffusion models, EDM [16], GeoLDM [51] and279

EEGSDE [3], as baselines to validate the efficacy of our proposed GADM. These methods can280

perform controllable generation but can only control the generation process with numerical features.281

Intuitively, the number of rings could be a numerical feature of a molecule. We treat the ring counts282

as one control factor to manipulate the generation process of the baselines, denoted as C-EDM,283

C-GeoLDM, and EEGSDE to verify GADM’s effectiveness in the ring-structure domain adaptive284

generation task (see Table 2).285

Metrics. Our objective is to generate effective 3D molecules in a target new domain. A generated286

sample is effective only when it falls into the target domain while it is valid, unique, and novel287

simultaneously. Therefore, our evaluation metrics can be defined as follows:288

1. Proportion (P): Given a target scaffold/ring set {GsT }, proportion describes the percentage of289

molecules that contain the desired scaffold/ring-structure in {GsT } among generated valid samples; 2.290

Coverage (C): Coverage describes the percentage of scaffolds set of the generated samples (denoted291

as {GsG}) in target scaffolds set {GsT }, which is expressed as C = |{GsG}|/|{GsT }|; 3. Target validity292

(V): The percentage of valid molecules among all the desired molecules, which is measured by293

RDkit [24] and widely used for calculating validity [16, 51]); 4. Target novelty (N): The percentage294

of novel molecules among all the desired valid molecules, the novel molecule is different from295

training samples; 5. Success rate (S): The ratio of generated valid, unique, and novel molecules that296

contain the desired scaffold/ring-structure. 6. Target atom stability (AS): The ratio of atoms that has297

the correct valency with the desired scaffold/ring-structure among all generated molecules. 7. Target298

molecule stability (MS): The ratio of generated molecules contains the desired scaffold/ring-structure,299

and all atoms are stable. GEOM-DRUG dataset has nearly 0% molecule-level stability, so this metric300

is generally ignored on GEOM-DRUG [16].301

4.2 Results and Analysis302

Ring-Structure Domain Adaptive Molecule Generation. In this task, all models were trained with303

the same source domain that contains molecules with ring counts ranging from 0 to 3. Subsequently,304

their performances were tested for generating molecules with 4 to 8 rings, respectively. We present the305

results on 10,000 generated molecules for each ring-count domain in Table 2. For clarity, the generated306
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Table 2: Results of molecule proportion in terms of ring-number (P), molecule validity (V), novelty
(N), and success rate (S). The best results are highlighted in bold. QM9 only contains 36 eight-ring
molecules, and the proportion for eight-ring is nearly 0.

Metrics P (%) in Source Domain P (%) in Target Domains AS (%) MS (%) V (%) N (%) S (%)
Domains 0 1 2 3 4 5 6 7 8 Averaged over 9 Domains

QM9 10.2 39.3 27.6 15.1 4.4 2.7 0.6 0.2 0.0 99.0 95.2 97.7 - -

EDM† [16] 10.5 39.8 28.0 14.5 4.0 2.9 0.2 0.1 0.0 11.0 9.6 10.4 6.8 6.3
GeoLDM† [51] 12.0 38.6 27.0 15.3 4.6 2.2 0.2 0.1 0.0 11.0 9.9 10.4 6.4 5.9

EDM‡ [16] 12.1 44.1 29.8 11.8 1.7 0.5 0.0 0.0 0.0 11.0 9.7 10.4 6.8 6.3
GeoLDM‡ [51] 2.8 41.5 32.1 15.7 4.7 2.7 0.3 0.1 0.0 10.9 9.1 10.4 6.7 6.2

C-EDM‡ [16] 98.9 94.2 80.8 64.4 12.6 26.8 0.3 0.1 0.0 41.3 33.9 38.0 27.3 24.1
C-GeoLDM‡ [51] 97.1 89.4 74.2 52.4 22.3 22.7 0.9 0.2 0.0 39.1 31.5 35.7 28.3 25.0
EEGSDE‡ [3] 98.4 92.2 77.6 58.2 14.1 17.6 0.3 0.0 0.0 39.1 31.1 35.7 27.2 24.2

GADM‡ 99.9 99.8 99.1 97.6 92.5 89.7 78.7 88.2 82.1 83.1 54.0 77.9 70.3 40.5

†: Models are trained over entire QM9;
‡: Models are trained over ring-split QM9 with ring-number from 0-3.
C-: C-EDM and C-GeoLDM are trained with conditioning on ring counts.

target molecule validity, novelty, and success rate are calculated by averaging the corresponding307

values from the source domain and 5 target domains. More comprehensive results are presented in308

Appendix I.309

Table 2 demonstrates that those uncontrollable version of baselines (i.e., EDM and GeoLDM) can310

barely generate molecules with 4 to 8 rings — 4.6% at most. Manipulating the generation process311

with ring counts can slightly improve out-of-domain generation performance with up to 25% success312

rates. In contrast, GADM can achieve a 40.5% success rate. Moreover, we observe that no baselines313

can generate 8-ring molecules, including those controllable generation methods (i.e., C-GeoLDM,314

C-EDM, and EEGSDE), reflecting the difficulty of generating those complex molecules rare existing315

in the original QM9 (only 36 8-ring molecules). Notably, GADM can generate 82.1% portion316

of 8-ring domain molecules even though the training data does not contain any of those samples,317

showing the significance of using structural-grained representations for controlling the denoising318

process of the diffusion models. Specifically, among the generated 10,000 molecules using GADM,319

2,388 valid, unique, and novel 8-ring molecules exist. These results verify that GADM can adap-320

tively generate 3D molecules from the desired new domains regarding ring-structure variations.321

Table 3: Results of molecule proportion in terms
of ring-number (P), atom stability (AS), molecule
validity (V), novelty (N), and success rate (S).
The number of molecules with above 11 rings in
GEOM-DRUG is lower than 100.

Averaged metrics (%) over 5 Ring Domains (11, 12, 13, 14, and 22)
Method P (%) AS (%) V (%) N (%) S (%)

GEOM-DRUG 0.0 86.5 99.9 - -
EDM† [16] 0.0 0.0 0.0 0.0 0.0

GeoLDM† [51] 0.0 0.0 0.0 0.0 0.0
GADM‡ 13.8 11.4 11.0 13.8 10.9

† Models are trained on complete GEOM-DRUG.
‡ Models are trained on GEOM-DRUG with ring numbers from 0-10.

322

Table 3 presented the statistical results of var-323

ious methods for generating rare ring number324

molecules (ranging from 11 to 14 and 22) on325

the large-scale dataset GEOM-DRUG. Notably,326

EDM and GeoLDM, trained on the complete327

dataset, cannot generate molecules with ring328

numbers exceeding 10, thus failing to produce329

any desired molecules. In contrast, GADM can330

generate an average of 13.8% of the desired331

molecules. Particularly, for molecules with 22332

rings, of which there are only two in the origi-333

nal dataset, GADM achieves a remarkable suc-334

cess rate of 13.7% in generating such molecules,335

even without training on these two molecules.336

Scaffold-Domain Adaptive Molecule Generation. In the task of scaffold-domain adaptive molecule337

generation, the baselines are trained on both the entire dataset (†) and solely on the source domain338

(‡), respectively. In contrast, our GADM is trained exclusively over the source domain dataset.339

After training, each model generates 15,000 molecules for the source and target domains I and II,340

respectively. The quantitative results using various metrics are presented in Table 4, Table 5 and341

Figure 3. We observe that with EDM or GeoLDM, the scaffold proportion of the generated molecules342

indeed mirrors that of the training samples (see proportion and coverage visualization in Figure 3).343

However, they all struggle to generate molecules with scaffolds falling into targeted domain I or II;344

they can only achieve 3.3% success rates at most (see EDM‡ and GeoLDM‡ in Table 4). In contrast,345

our proposed GADM, trained solely on the source domain, can generate molecules containing the346

target scaffolds under the corresponding supervision, achieving at least 95.5% proportion in both new347

domains. Note that the target scaffolds were not seen during training.348
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Table 4: Results of proportion (P), scaffold coverage (C), molecule validity (V), molecule novelty
(N), and molecule success rate (S). The best results are highlighted in bold.

Domains Source Domain (%) Target Domain I (%) Target Domain II (%)

# Metric P C V N S P C V N S P C V N S

Data 76.4 100.0 97.7 - - 11.5 100.0 97.7 - - 12.1 100.0 97.7 - -

EDM† [16] 79.9 36.3 74.8 48.8 45.0 10.9 28.9 10.2 6.7 6.1 9.2 34.9 8.6 5.6 5.2
GeoLDM† [51] 80.4 35.2 75.6 46.7 43.1 10.7 31.2 10.1 6.2 5.8 8.8 33.5 8.3 5.1 4.7

EDM‡ [16] 91.4 56.5 83.2 58.2 52.0 5.9 26.5 5.3 3.7 3.3 2.7 17.0 2.4 1.7 1.5
GeoLDM‡ [51] 90.6 54.3 81.7 57.8 51.0 5.9 26.7 5.3 3.8 3.3 3.5 19.0 3.2 2.3 2.0

GADM‡ 99.2 92.5 90.7 67.6 52.4 97.0 97.1 80.0 84.5 68.9 95.5 85.7 83.3 82.0 65.8
† Models are trained over the entire QM9 dataset.
‡ Models are trained only on the source domain, where each scaffold appears at least 100 times.

Table 5: Results of atom stability (AS) and
molecule stability (MS). The best results are
highlighted in bold.

Domains Source Target I Target II
# Metric (%) AS MS AS MS AS MS

Data 99.0 95.2 99.0 95.2 99.0 95.2
EDM† [16] 78.9 65.5 10.8 8.9 9.1 7.5
GeoLDM† [51] 79.5 71.9 10.6 9.6 8.7 7.9
EDM‡ [16] 90.4 73.3 5.8 4.7 2.6 2.1
GeoLDM‡ [51] 89.1 75.6 5.8 4.9 3.5 3.0
GADM‡ 96.1 71.3 89.5 45.6 89.0 35.1

Proportion Scaffold Coverage

QM9

EDM †
GeoLDM †

GADM ‡
Source

GADM ‡
Target I

GADM ‡
Target II

Source Domain Target Domain I Target Domain II

Figure 3: Scaffolds Proportion and Coverage.

Moreover, we found that GADM can reach 92.5% coverage for the in-domain generation with the349

in-domain supervisor — structural-grained representations from the latent space of EMAE. Notably,350

even for target domain II, comprising over 12,000 different rare scaffolds, GADM can achieve351

85.7% coverage. Nevertheless, all baselines can only achieve 56.6% coverage at most, indicating the352

significance of our EMAE. It is worth noting that GADM does not need any target molecules but353

uses the scaffold as the domain supervisor for cross-domain adaptation, bypassing the obstacles due354

to data scarcity. GADM improves the molecule novelty and success rate by up to 80.8% regarding355

novelty and 65.6% in terms of success rate as compared to the baselines. The atom stability and356

molecule stability presented in Table 5 also demonstrates that the designed GADM performs better357

on generating chemically stable molecules with desired scaffolds.358

Discussion. Our experiments show that existing generative models may still generate a slight portion359

of out-of-domain molecules, as shown in Table 2 and 4. This phenomenon could be attributed360

to the fact that scaffolds/ring-structures in different domains might be mutually inclusive or share361

substructures. Consequently, the generated molecules may contain substructures or compound362

substructures derived from the training samples, constituting unseen scaffolds/ring-structures. A363

detailed illustration is provided in Appendix K. We want to point out that such out-of-domain364

generation is relatively non-trivial. Our proposed GADM underscores the significant potential in365

generating molecules with targeted structural variations, including scaffolds and ring-structures.366

Limitations. Most generative models, including ours, adopt the EGNN modules to capture the367

equivariance of molecules [16, 51]. The model’s memory overhead escalates exponentially with the368

size of the input molecules, posing a significant constraint, especially for generating large molecules.369

A comprehensive analysis and discussion are furnished in Appendix M.370

5 Conclusion371

This paper introduced the problem of domain adaptive molecule generation, which entails the ability372

of a trained diffusion-based generator to produce 3D molecules for a new domain. To address373

this problem, the proposed GADM captures the structural-grained representations of the in-domain374

samples using a masked VAE and various masking strategies. The structural-grained representations375

then act as domain supervisors to control the denoising process. Thorough experimental studies376

have demonstrated that the trained model can adaptively generate target, valid, unique, and novel377

molecules, enhancing the success rate by up to 60%. Our work responds positively to the question378

posed at the beginning of the abstract and paves the way for practical artificial intelligence-aid379

molecule discovery.380
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Appendix859

A QM9 Dataset860

QM9 [49] is a comprehensive dataset that provides geometric, energetic, electronic, and thermody-861

namic properties for a subset of the GDB-17 database [34], comprising 134 thousand stable organic862

molecules with up to nine heavy atoms.863

A.1 Scaffold Split QM9864

We utilized the open-source software, RDkit [24], to examine the scaffold and ring of each molecule.865

QM9 dataset 1 comprises a total of 130,831 molecules, encompassing 15,661 unique scaffolds.866

Molecules lacking a scaffold were denoted as ‘-’ and included in the total scaffold count. The dataset867

was divided based on scaffold frequency. Specifically, the source subset contained 100,000 molecules868

and 1,054 scaffolds. The target I subset included 15,000 molecules and 2,532 scaffolds, while the869

target II subset consisted of 15,831 molecules and 12,075 scaffolds.870

Figure 4(a) presents the division’s schematic diagram. Figure 4(b) displays the logarithmic histogram871

of the scaffolds in each dataset segment. It is evident that the source dataset contains the most frequent872

scaffolds, primarily concentrated above 100. The frequency of scaffolds in the target I dataset ranges873

between 10 and 100. In contrast, the scaffolds in the target II dataset are primarily concentrated874

within 10, with most appearing only once. Figures, SMILES, and frequencies of some example875

scaffolds in each sub-dataset are given in Figure 5.
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(a) The number of molecules and scaffolds in source, target I, and target II of the Scaffold-Split QM9 data set.
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Figure 4: Scaffold-Split QM9

876

A.2 Ring Number Split QM9877

The QM9 dataset could categorize molecules into nine groups based on the number of rings, ranging878

from 0 to 8. As the number of rings increases, the quantity of molecules correspondingly decreases.879

We partition the QM9 dataset into two subsets based on ring count. The source dataset comprises880

acyclic molecules and those with 1 to 3 rings, while the target dataset includes molecules with 4 to 8881

rings. Figure 6 presents a schematic diagram illustrating example molecules with 0 to 8 rings.882

1https://springernature.figshare.com/ndownloader/files/3195389
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Figure 5: Scaffold Examples of QM9 Split by Scaffolds.
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Figure 6: Ring Examples of QM9 Split by Ring Number.
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B GEOM-DRUG Dataset883

GEOM-DRUG (Geometric Ensemble Of Molecules) dataset [1] encompasses around 450,000884

molecules, each with an average of 44.2 atoms and a maximum of 181 atoms2.885

B.1 Ring Number Split GEOM-DRUG886

The GEOM-DRUG dataset classifies molecules into sixteen categories based on the number of rings,887

ranging from 0 to 14 and 22. As the ring count increases, the number of molecules correspondingly888

decreases. The dataset is partitioned into two subsets according to ring count: the source dataset,889

which includes molecules with 0 to 10 rings and a count exceeding 100, and the target dataset, which890

comprises molecules with 11 to 14 and 22 rings. Figure 7 provides a schematic representation of the891

molecule distribution by ring number.
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Figure 7: Ring Distribution of GEOM-DRUG dataset.

892

C Diffusion Models893

Given a data point x0 ∼ q(x0) and a variance schedule β1, . . . , βT that controls the amount of noise894

added at each timestep t, the diffusion process or forward process gradually add Gaussian noise to895

the data point x:896

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI), (10)

where β1:T are chosen such that data point x will approximately converge to standard Gaussian, i.e.,897

q(xT ) ≈ N (0, I). Generally, the diffusion process q has no trainable parameters. The denoising898

process or reverse process aims at learning a parameterized generative process, which incrementally899

denoise the noisy variables xT :1 to approximate restore the data point x0 in the original data900

distribution:901

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)), (11)

where the initial distribution p(xt) is sampled from standard Gaussian noise N (0, I). The means µθ902

typically are neural networks such as U-Nets for images or Transformers for text.903

The forward process is q(x1:T |x0) is an approximate posterior to the Markov chain, and the reverse904

process pθ(x0:T ) is optimized by a variational lower bound on the negative log-likelihood of x0 by:905

E[− log pθ(x0)] ≤ Eq

[
− log

pθ(x0:T )

q(x1:T |x0)

]
(12)

=Eq

− log p(xT )−
T∑

t≥1

log
pθ(xt−1|xt)

q(xt|xt−1)

 , (13)

2https://dataverse.harvard.edu/file.xhtml?fileId=4360331&version=2.0
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which is Lvlb. To efficiently train the diffusion models, further improvements come to term Lvlb by906

variance reduction, and thereby Eq. (12) is rewritten as:907

Lvlb = Eq[LT +

T∑
t=2

Lt + L0] (14)

where LT = log q(xT |x0)
pθ(xT ) , which models the distance between a standard normal distribution and the908

final latent variable q(xT |x0), since the approximate posterior q has no learnable parameters, so LT909

is a constant during training and can be ignored. L0 = − log pθ(x0|x1) models the likelihood of the910

data given x0, which is close to zero and ignored as well if β0 ≈ 0 and x0 is discrete.911

Lt in Eq. (14) is the loss for the reverse process and is given by:912

Lt =

T∑
t≥2

log
q(xt−1|x0,xt)

pθ(xt−1|xt)
. (15)

While in this formulation the neural network directly predicts x̂0, [15] found that optimization is913

easier when predicting the Gaussian noise instead. Intuitively, the network is trying to predict which914

part of the observation xt is noise originating from the diffusion process, and which part corresponds915

to the underlying data point x0. Then sampling xt−1 ∼ pθ(xt−1|xt) is to compute916

xt−1 =
1
√
αt

(
xt −

√
βt√

1− ᾱt
ϵθ(xt, t)

)
+ σtz, (16)

where αt := 1− βt, ᾱt :=
∏t

s=1 αs, and z ∼ N (0, I). And thereby LDM := Lt is simplified to:917

LDM = Ex0,ϵ,t

[
w(t)∥ϵ− ϵθ(xt, t)∥2

]
(17)

where w(t) = βt

2σ2
tαt(1−ᾱt)

is the reweighting term and could be simply set as 1 with promising918

sampling quality, and xt =
√
ᾱtx0 +

√
1− ᾱtϵ.919

D Model Architecture Details920

D.1 Equivaraint Masked Autoencoder921

In this work, EMAE considers visible molecular structural geometries as point clouds, without922

specifying the connecting bonds. Therefore, in practice, we take the point clouds as fully connected923

graph G and model the interactions between all atoms vi ∈ V . Each node vi is embedded with924

coordinates xi ∈ R3 and atomic features hi ∈ Rd. Then, EMAE are composed of multiple925

Equivariant Convolutional Layers, and each single layer is expressed as [35]:926

d2ij = ∥xl
i − xl

j∥2,
mi,j = ϕe(h

l
i,h

l
j , d

2
ij , aij),

xl+1
i = xl

i +
∑
j ̸=i

xl
i − xl

j

dij + 1
ϕx(mi,j)

hl+1
i = ϕh(h

l
i,

∑
j∈N (i)

ϕi(mij)mij)

(18)

where l denotes the layer index, ϕi(mij) reweights messages passed from different edges in an927

attention weights manner, dij + 1 is normalizing the relative directions xl
i − xl

j following previous928

methods [35, 16]. All learnable functions, i.e., ϕe, ϕx, ϕh, and, ϕi, are parameterized by Multi Layer929

Perceptrons (MLPs). Then a complete EGNN model can be realized by stacking L layers such that930

and satisfies the required equivariant constraint in Equations 3, 4, and 6.931

D.2 Equivaraint Domain Supervised Denoising Neural Networks932

The denoising neural network is implemented by multiple equivariant convolutional layers, and the933

difference in the Equation 18 is the hidden features h. Due to the diffusion model is conditioned934

by fx, fh from encoder E , the hidden features for our denoising neural network is expressed as935

h̄← [h, fx, fh], where h are original features of geometric graph and [a, b] is concatenation operation.936
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D.3 Multi-Modal Feature Representation of Molecules937

Multimodal features of molecules raise concerns for the term L0 = − log pθ(x0|x1) in Equation 14.938

For categorical features such as the atom types, this model would however introduce an undesired939

bias [16]. For the intermediate variable xt, we subdivide it into zx,t and zh,t in the proposed DM,940

which are coordinate variables and atomic attribute variables, respectively.941

Coordinate features. First we set σ2
t I ← Σθ(xt, t) = βt and add an additional correction term942

containing the estimated noise ϵx,0 from denoising neural network ϵ. Then continuous positions zx943

in p(zx,0|zx,1) is expressed as:944

p(zx,0|zx,1) = N (zx,0|zx,1/α1 − σ1/α1ϵx,0, σ
2
1/α

2
1I) (19)

Atom type features. For categorical features such as the atom type, the aforementioned integer945

representation is unnatural and introduces bias. Instead of using integers for these features, we operate946

directly on a one-hot representation. Suppose h or zh,0 is an array whose values represent atom types947

in {c1, . . . , cd}. Then h is encoded with a one-hot function h← hone-hot such that hone-hot
i,j ← 1hi=ci .948

and diffusion process over zh,t at timestep t and sampling at final timestep are given as:949

q(zh,t|zh,0) = N (zh,t|αth
one-hot, σ2

t I) (20)

p(zh,0|zh,1) = C(zh,0|p), p ∝
∫ 1+ 1

2

1− 1
2

N (u;µθ(zh,1, 1), σ
2
1)du (21)

where p is normalized to sum to one and C is a categorical distribution.950

Atom Charge. Atom charge is the ordinal type of physical quantity, and its sampling process at the951

final timestep can be formulated by standard practice [15]:952

p(zh,0|zh,1) =
∫ h+ 1

2

h− 1
2

N (u;µθ(zh,1, 1), σ
2
1)du (22)

Feature Scaling. To normalize the features and make them easier to process for the neural network,953

we add weights to different modalities. The relative scaling has a deeper impact on the model: when954

the features h are defined on a smaller scale than the coordinates x, the denoising process tends to first955

determine rough positions and decide on the atom types only afterward. Empirical knowledge shows956

that the weights for coordinate, atom type, and atom charge are 1, 0.25, and 0.1, respectively [16].957

E Training Details958

Parameters959

1. Optimizer: Adam [21] optimizer is used with a constant learning rate of 10−4 as our default960

training configuration.961

2. Batch size: 64.962

3. EGNN in DSDM: 9 layers and 256 hidden features for QM9, 4 layers and 256 hidden963

features for GEOM-DRUG.964

4. EGNN in EMAE: 1 layer and 256 hidden features for the encoder for QM9 and GEOM-965

DRUG, 9 layers and 4 layers with 256 hidden features for the decoder for QM9 and966

GEOM-DRUG, respectively.967

5. Latent dimension of fx, fh: latent dimension is 3 and 1 for fx and fh, respectively.968

6. Epoch: 3000 for QM9 and 10 for GEOM-DRUG.969

Training970

1. GPU: NVIDIA GeForce RTX 3090971

2. CPU: Intel(R) Xeon(R) Platinum 8338C CPU972

3. Memory: 512 GB973
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4. Time: Around 7 days for QM9 and 20 days for GEOM-DRUG.974

Specific Parameters 1. On QM9, we train DSDM with 9 layers and 256 hidden features with a batch975

size 64; 2. On GEOM-DRUG, we train DSDM with 4 layers and 256 hidden features, with batch size976

64;977

F Loss of EMAE is SE(3)-Invariant978

Proof. LEMAE is SE(3)-invariance979

Recall the loss function:980

LEMAE = Eqϕ(fx,fh|x,h)pϑ(x,h|fx, fh)− KL[qϕ(fx, fh|x,h)||
N∏
i

N (fx,i, fh,i|0, I)] (23)

Our expected outcome is ∀R, LEMAE(x,h) = LEMAE(Rx,h), we have:981

LEMAE(Rx,h)

=Eqϕ(fx,fh|Rx,h)pϑ(Rx,h|fx, fh)− KL[qϕ(fx, fh|Rx,h)||
N∏
i

N (fx,i, fh,i|0, I)]

=

∫
G
qϕ(fx, fh|Rx,h) log pϑ(Rx,h|fx, fh) +

∫
G
log

qϕ(fx, fh|Rx,h)∏N
i N (fx,i, fh,i|0, I)

=

∫
G
qϕ(RR−1fx, fh|Rx,h) log pϑ(Rx,h|RR−1fx, fh)

+

∫
G
log

qϕ(RR−1fx, fh|Rx,h)∏N
i N (fx,i, fh,i|0, I)

RR−1 = I

=

∫
G
qϕ(R

−1fx, fh|x,h) log pϑ(x,h|R−1fx, fh)

+

∫
G
log

qϕ(R
−1fx, fh|x,h)∏N

i N (fx,i, fh,i|0, I)
SE(3) of fx & x

=

∫
G
qϕ(k, fh|x,h) log pϑ(x,h|k, fh) · |R|

+

∫
G
log

qϕ(k, fh|x,h)∏N
i N (fx,i, fh,i|0, I)

Let k = R−1fx

=Eqϕ(k,fh|Rx,h)pϑ(x,h|k, fh)

− KL[qϕ(k, fh|x,h)||
N∏
i

N (fx,i, fh,i|0, I)] |R| = 1

=LEMAE(x,h)
(24)

982

When input G into the Encoder E , maskingM is performed, and we then subtract center of gravity983

from xV ∈ GV = M(G), and thereby ensure that E receives isotropic geometric graph, and all984

together guarantee that the loss of EMAE is SE(3)-invariant.985

G Loss of GADM is an SE(3)-Invariant Variational Lower Bound to the986

Log-likelihood987

First, we present the rigorous statement of the Theorem 3.2 here:988
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Theorem G.1. Given predefined and valid {αi}Ti=0, {βi}Ti=0, and {γi}Ti=0 Let w(t) satisfies:989

1. ∀t ∈ [1, . . . , T ], w(t) =
β2
t

2γ2
t (1− βt)(1− α2

t )
(25)

2. w(0) = −1 (26)

Then given the geometric datapoint G = ⟨x,h⟩ ∈ RN×(3+d), the loss L of the proposed method is990

expressed as:991

L := LEMAE + LDSDM (27)
which satisfies:992

1. ∀R and t, L(x,h) = L(Rx+ t,h) (28)
2. L(x,h) ≥ −Ep⟨x,h⟩∈{GS},[fx,fh]=Eϕ(M(G))[log pθ(zx, zh|fx, fh)] (29)

And we have log pθ(x0,h0) is the marginal distribution of ⟨x,h⟩ under GADM.993

The theorem proposed herein posits two distinct assertions. Firstly, Equation 28 illustrates that the loss994

function L is SE(3)-invariant, meaning it remains unchanged under any rotational or translational995

transformations. Secondly, Equation 29 suggests that L acts as a variational lower bound for the996

log-likelihood. We provide comprehensive proofs for these assertions separately, commencing with997

Equation 29.998

Proof. L is a variational lower bound of the log-likelihood999

Recall the loss function:1000

L(x,h) =LEMAE + LDSDM (30)

=Eqϕ(fx,fh|x,h)pϑ(x,h|fx, fh)− KL[qϕ(fx, fh|x,h)||
N∏
i

N (fx,i, fh,i|0, I)] (31)

+ EGS ,Eϕ(M(G)),ϵ,t
[
∥ϵ− ϵθ(xt,ht, fx, fh, t)∥2

]
(32)

LEMAE is a standard variational autoencoder and has been proven to be a variational lower bound1001

of the log-likelihood [23]. For simplicity, we denote zx,t, zh,t as zt, and fx, fh as f , then we expect1002

LDSDM has:1003

log pθ(z|f) ≥ KL[q(z1:T |z0)∥pθ(z|f)] (33)
1004

log pθ(z|f) ≥Eq(z1:T |z0)

[
log

pθ(z0:T |f)
q(z1:T |z0)

]
=Eq(z1:T |z0)

[
log

p(zT )pθ(z0|z1, f)
∏T

t=2 pθ(zt−1|zt, f)
q(z1|z0)

∏T
t=2 q(zt|zt−1)

]

=Eq(z1:T |z0)

[
log

p(zT )pθ(z0|z1, f)
q(z1|z0)

+ log

T∏
t=2

pθ(zt−1|zt, f)
q(zt|zt−1)

]

=Eq(z1:T |z0)

log p(zT )pθ(z0|z1, f)
q(z1|z0)

+ log

T∏
t=2

pθ(zt−1|zt, f)
q(zt−1|zt,z0)q(zt|z0)

q(zt−1|z0)


=Eq(z1:T |z0)

[
log

p(zT )pθ(z0|z1, f)
q(zT |z0)

+

T∑
t=2

log
pθ(zt−1|zt, f)
q(zt−1|zt, z0)

]

=Eq(z1|z0)[pθ(z0|z1, f)] + Eq(zT |z0)

[
log

p(zT )

q(zT |z0)

]
+

T∑
t=2

Eq(zt,zt−1|z0)

[
log

pθ(zt−1|zt, f)
q(zt−1|zt, z0)

]
=Eq(z1|z0)[pθ(z0|z1, f)]− KL[q(zT |z0)∥p(zT )]

−
T∑

t=2

Eq(zt|z0)[KL[q(zt−1|zt, z0)∥pθ(zt−1|zt, f)]]

(34)
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where we denote KL[q(zt−1|zt, z0)∥pθ(zt−1|zt, f)] as LDSDM,t−1, then we have:1005

LDSDM,t−1 = Eϵ∼N (0,I)

[
β2
t

2γ2
t (1− βt)(1− α2

t )
∥ϵ− ϵθ(zt, f , t)∥22

]
(35)

which gives us the weights of w(t) for t = 1, . . . , T .1006

For term Eq(z1|z0)[pθ(z0|z1, f)], we denote as LDSDM,0. With sampling at the final timestep for1007

different modality features and a normalization constant Z, we have:1008

LDSDM,0 = Eϵ∼N (0,I)

[
logZ−1 − 1

2
∥ϵ− ϵθ(z, f , 1)∥2

]
(36)

Since zT ∼ N (0, I), we have:1009

LDSDM,T = KL[q(zT |z0)∥p(zT )] = 0 (37)

Therefore, we have:1010

Ep⟨x,h⟩∈{GS},[fx,fh]=Eϕ(M(G))[log pθ(z|f)] ≥ −
T∑

t=2

LDSDM,t−1 − LDSDM,0 = −LDSDM (38)

1011

We then prove Equation 28:1012

Proof. L is SE(3)-invariance1013

Our expected outcome is ∀R, L(x,h) = L(Rx,h), and ∀R, LEMAE(x,h) = LEMAE(Rx,h) is1014

ensured in Proof. F. For LDSDM, we have:1015

LDSDM(Rzx,0, zh,0)

=EG,Eϕ

[
T∑

t=2

Eq(zt|Rz0)[KL[q(zt−1|zt,Rz0)∥pθ(zt−1|zt,Rf)]]− Eq(z1|Rz0)[pθ(Rz0|z1,Rf)]

]
1016

=

∫
G

[
T∑

t=2

log
q(zt−1|q(zt,Rz0)

pθ(zt−1|zt,Rf)
− log pθ(Rz0|z1,Rf)

]

=

∫
G

[
T∑

t=2

log
q(RR−1zt−1|q(RR−1zt,Rz0)

RR−1pθ(zt−1|RR−1zt,Rf)
− log pθ(Rz0|RR−1z1,Rf)

]
RR−1 = I

=

∫
G

[
T∑

t=2

log
q(R−1zt−1|q(R−1zt, z0)

R−1pθ(zt−1|R−1zt, f)
− log pθ(z0|R−1z1, f)

]
SE(3) of fx & zt

=EG,Eϕ

[
T∑

t=2

log
q(jt−1|q(jt, z0)

R−1pθ(zt−1|jt, f)
− log pθ(z0|j1, f)

]
Let jt = R−1zt

=LDSDM(zx,0, zh,0)
(39)

1017
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H Algorithms1018

This section contains two main algorithms of the proposed GADM. Algorithm 1 presents the pseudo1019

code for training GADM on the source domain data set {GS}. Algorithm 2 presents the process of1020

cross-domain adaptive molecule generation using the target’s scaffold/ring.

Algorithm 1: Training GADM
1: Input: source geometric data point GS = ⟨x,h⟩, masked encoder Eϕ, decoder Dϑ, denoising

network ϵθ
2: EMAE:
3: xV ,hV ←M(x,h) // Mask
4: µx, µh ← Eϕ(xV ,hV ) // Encode
5: ⟨ϵx, ϵh⟩ ∼ N (0, I) // Sample Noise for EMAE
6: ϵx ← ϵx −G(ϵx) // Subtract Center of Gravity
7: fx, fh ← µ+ ⟨ϵx, ϵh⟩ ⊙ σ0 // Reparameterization
8: DSDM:
9: t ∼ U(0, T ) // Sample Timestep

10: ⟨ϵx, ϵh⟩ ∼ N (0, I) // Sample Noise for DSDM
11: ϵx ← ϵx −G(ϵx) // Subtract Center of Gravity
12: zx,t, zh,t ← αt[x,h] + σtϵ // Diffuse
13: x̂, ĥ← Dϑ(fx, fh) // Decode
14: Optimization
15: LEMAE ← L([x̂, ĥ], [x,h]) + KL // L for EMAE
16: LDSDM ← ∥ϵ− ϵθ(zx,t, zh,t, t, fx, fh)∥2 // L for DSDM
17: LGADM ← LEMAE + LDSDM // Total Loss
18: ϕ, ϑ, θ ← optimizer(LGADM, ϕ, ϑ, θ) // Optimize
19: return ϕ, θ

1021

Algorithm 2: Adaptive Sampling of GADM
1: Input: target geometric structure GrT = ⟨xr

T ,h
r
T ⟩, masked encoder Eϕ, denoising network ϵθ

2: µx, µh ← Eϕ(xr
T ,h

r
T ) // Encode

3: ⟨ϵx, ϵh⟩ ∼ N (0, I) // Sample Noise for EMAE
4: ϵx ← ϵx −G(ϵx) // Subtract Center of Gravity
5: fx, fh ← µ+ ⟨ϵx, ϵh⟩ ⊙ σ0 // Target Condition
6: ⟨zx,T , zh,T ⟩ ∼ N (0, I) // Sample Noise for Generation
7: for t in T, T − 1, . . . , 1 do
8: ⟨ϵx, ϵh⟩ ∼ N (0, I) // Denoising
9: ϵx ← ϵx −G(ϵx) // Subtract Center of Gravity

10: zx,t−1, zh,t−1 ← 1√
1−βt

(⟨zx,t, zh,t⟩ − βt√
1−α2

t

ϵθ(zx,t, zh,t, t, fx, fh)) + ρtϵ

11: end for
12: x,h← p(zx,0, zh,0|zx,1, zh,1, fx, fh)
13: return ⟨x,h⟩
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I Full Results of Ring Adaptive Molecule Generation1022

We present the detailed quantitative evaluation results of ring adaptive molecule generation tasks1023

in Table 6. The results show that the proposed method has dominant performance in all metrics,1024

including target ring number proportion, validity, novelty, and success rate.1025

It is significant to note that the entire QM9 dataset comprises only 36 eight-ring molecules. When1026

the proposed algorithm utilizes the ring structures of these 36 8-ring molecules as input, the target1027

validity reaches an impressive 72.2%, and the novelty is as high as 80.9%. Considering that there1028

are only 36 fundamental 8-ring structures, the uniqueness is slightly lower (27.4%). Nevertheless,1029

the generation of 10,000 molecules resulted in 2,388 valid, unique, and entirely novel eight-ring1030

molecules, which is a substantial breakthrough compared to existing methods (even those models1031

trained on eight-ring molecules) that failed to discover any new eight-ring molecules.

Table 6: Results of molecule proportion in terms of ring-number (P), molecule validity (V), novelty
(N), and success rate (S). The best results are highlighted in bold. QM9 only contains 36 eight-ring
molecules and the proportion for eight-ring is nearly 0.

0 1 2 3 4 5 6 7 8 Averaged
Method P (%) -

QM9 10.2 39.3 27.6 15.1 4.4 2.7 0.6 0.2 0.0 -
EDM† [16] 10.5 39.8 28.0 14.5 4.0 2.9 0.2 0.1 0.0 -
GeoLDM† [51] 12.0 38.6 27.0 15.3 4.6 2.2 0.2 0.1 0.0 -
EDM‡ [16] 12.1 44.1 29.8 11.8 1.7 0.5 0.0 0.0 0.0 -
GeoLDM‡ [51] 2.8 41.5 32.1 15.7 4.7 2.7 0.3 0.1 0.0 -
GADM‡ 99.9 99.8 99.1 97.6 92.5 89.7 78.7 88.2 82.1 -

Target Valid (%)
QM9 97.7 97.7 97.7 97.7 97.7 97.7 97.7 97.7 97.7 97.7
EDM† [16] 10.8 36.1 26.7 13.9 4.0 2.3 0.2 0.1 0.0 10.4
GeoLDM† [51] 11.2 36.2 25.2 14.3 4.3 2.0 0.2 0.1 0.0 10.4
EDM‡ [16] 11.4 41.4 28.0 11.1 1.6 0.5 0.0 0.0 0.0 10.4
GeoLDM‡ [51] 2.7 38.8 30.0 14.7 4.4 2.6 0.3 0.1 0.0 10.4
GADM‡ 31.7 91.4 91.4 92.1 85.3 85.2 69.5 82.5 72.2 77.9

Target Novelty (%)
EDM† [16] 7.1 23.6 17.5 9.1 2.6 1.5 0.1 0.1 0.0 6.8
GeoLDM† [51] 7.0 22.4 15.6 8.9 2.7 1.3 0.1 0.0 0.0 6.4
EDM‡ [16] 7.5 27.1 18.3 7.2 1.1 0.3 0.0 0.0 0.0 6.8
GeoLDM‡ [51] 1.7 25.0 19.4 9.5 2.8 1.7 0.2 0.1 0.0 6.7
GADM‡ 96.6 51.3 55.6 60.2 69.5 63.5 71.5 83.4 80.9 70.3

Success Rate (%)
EDM† [16] 6.5 21.9 16.2 8.4 2.4 1.4 0.1 0.1 0.0 6.3
GeoLDM† [51] 6.4 20.6 14.4 8.2 2.4 1.2 0.1 0.0 0.0 5.9
EDM‡ [16] 6.9 25.1 17.0 6.7 1.0 0.3 0.0 0.0 0.0 6.3
GeoLDM‡ [51] 1.6 23.0 17.8 8.7 2.6 1.5 0.2 0.1 0.0 6.1
GADM‡ 25.9 43.4 46.2 50.4 53.8 41.0 46.1 34.1 23.9 40.5
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J Visualization1033

In this section, we provide additional visualizations of domain-supervised molecule generation by1034

GADM for molecule adaptive generation and ring number adaptive generation in Figures 8 and 91035

As depicted in the two figures, the model consistently generates realistic molecular geometries with1036

target scaffolds or ring numbers.

Target Scaffold Generated molecules with target scaffold

Figure 8: Molecules Generated by GADM for Scaffold Adaptive Generation Under The Same Unseen
Scaffold Condition.
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4 Rings

5 Rings

6 Rings

7 Rings

8 Rings

Figure 9: Molecules Generated by GADM for Ring Number Adaptive Generation For Unseen Ring
Numbers

22-ring Molecule in 
GEOM-DRUG

22-ring-structure as 
Domain prior

GADM

Figure 10: Molecules Generated by GADM for Ring Number Adaptive Generation For Unseen Ring
Numbers on GEOM-DRUG Dataset.
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K Scaffolds Ring-Structures1038

Scaffolds/ring-structures in different domains may be mutually inclusive or share substructures and1039

the generated molecules may contain sub-structures or mixed structures derived from the training1040

samples, thereby constituting unseen scaffolds/ring-structures. We present a simple illustration in1041

Figure 11.

generate scaffold hierarchies on the basis of structural
relationships. Key developments included the HierS algo-
rithm22 and the conceptually related scaffold tree (ST)
methodology.23 In both cases, the original BM scaffold
definition was modified by including exocyclic double bonds
and double bonded substituents attached to the linkers. HierS
systematically removes fused rings from scaffolds and generates
all smaller ring fragments and their combinations from them.
This gives rise to the formation of networks of scaffolds with
decreasing size and directed edges from the original scaffold
and the compound from which it originates (thereby
establishing a scaffold hierarchy). ST also begins with scaffolds
and decomposes them according to predefined chemical rules
along tree branches (establishing structural relationships) until
only an individual ring remains. In this case, no scaffold
networks are generated. Figure 4 shows a prototypic ST for
three compounds. HierS and ST have provided a basis for
advanced structural classification by mapping of compounds to
scaffold hierarchies. A treelike structure, from which ST
evolved, was also used to generate and organize scaffolds
from natural products,24 hence providing a knowledge base for
natural product-based diversity-oriented synthesis.25

For a systematic analysis of ring substructures in drugs, the
BM scaffold definition was modified by retaining all exocyclic
carbonyl, thiocarbonyl, imine, sulfonyl, and sulfinyl ring
substituents,26 thereby further increasing the chemical

relevance of generated ring components. These scaffolds were
isolated from drugs and subjected to rule-based decomposition
into fused ring systems and individual rings. From a drug set,
1197 unique scaffolds and 351 ring systems were obtained and
901 scaffolds and 204 ring systems were found to occur only
once in a drug. Moreover, only less than 1% of newly approved
drugs contained more than one previously unobserved ring
system. By contrast, 83 of the top 100 most frequently observed
ring systems originated from drugs released before 1983. It is
also worth noting that ∼40% of all drugs did not contain any
sp3 carbon in a ring system. The study revealed that ring
systems were recurrent in drugs and that less than a third of
new drugs contained previously unobserved rings.26

Scaffolds not only can be isolated from known compounds
but also can be designed on the basis of chemical rules. For
example, in another key investigation focusing on ring systems,
nearly 25 000 heteroaromatic ring systems were enumerated
and only less than 2000 of these rings were detected in known
compounds.27 Synthetic feasibility of the remaining hetero-
aromatic rings was investigated, and it was estimated that
∼3000 of these rings could be synthesized,27 which further
expanded synthetically accessible chemical space around
heterocycles.
Going beyond structural investigations, the association of

scaffolds with biological activities was explored. For example,
the knowledge-based concept of privileged substructures was

Figure 4. Scaffold tree. Shown is a prototypic ST for three compounds (A−C from Figure 2) sharing the same BM scaffold. Rings are iteratively
removed from scaffolds (drawn in bold) by applying predefined rules until only a single ring remains.
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For a systematic analysis of ring substructures in drugs, the
BM scaffold definition was modified by retaining all exocyclic
carbonyl, thiocarbonyl, imine, sulfonyl, and sulfinyl ring
substituents,26 thereby further increasing the chemical

relevance of generated ring components. These scaffolds were
isolated from drugs and subjected to rule-based decomposition
into fused ring systems and individual rings. From a drug set,
1197 unique scaffolds and 351 ring systems were obtained and
901 scaffolds and 204 ring systems were found to occur only
once in a drug. Moreover, only less than 1% of newly approved
drugs contained more than one previously unobserved ring
system. By contrast, 83 of the top 100 most frequently observed
ring systems originated from drugs released before 1983. It is
also worth noting that ∼40% of all drugs did not contain any
sp3 carbon in a ring system. The study revealed that ring
systems were recurrent in drugs and that less than a third of
new drugs contained previously unobserved rings.26

Scaffolds not only can be isolated from known compounds
but also can be designed on the basis of chemical rules. For
example, in another key investigation focusing on ring systems,
nearly 25 000 heteroaromatic ring systems were enumerated
and only less than 2000 of these rings were detected in known
compounds.27 Synthetic feasibility of the remaining hetero-
aromatic rings was investigated, and it was estimated that
∼3000 of these rings could be synthesized,27 which further
expanded synthetically accessible chemical space around
heterocycles.
Going beyond structural investigations, the association of

scaffolds with biological activities was explored. For example,
the knowledge-based concept of privileged substructures was

Figure 4. Scaffold tree. Shown is a prototypic ST for three compounds (A−C from Figure 2) sharing the same BM scaffold. Rings are iteratively
removed from scaffolds (drawn in bold) by applying predefined rules until only a single ring remains.
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Figure 11: Existing Methods May Generate Unseen Scaffolds/Ring-structures.
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L Related Work1043

Molecule Generation Models. Prior studies on molecule generation focused on generating molecules1044

as 2D graphs [19, 27, 37]. However, there has been a growing interest in 3D molecule generation.1045

G-SchNet [12] and G-SphereNet [28] utilize autoregressive techniques to construct molecules incre-1046

mentally by progressively connecting atoms or molecular fragments. These frameworks necessitate1047

either a meticulous formulation of complex action space or action ordering.1048

More recently, the focus has shifted towards using Diffusion Models (DMs) for 3D molecule1049

generation [16, 51, 48, 40]. To mitigate the inconsistency of unified Gaussian diffusion across1050

diverse modalities, a latent space was introduced by [51]. To tackle the atom-bond inconsistency1051

problem, different noise schedulers were proposed by [30] for various modalities to accommodate1052

noise sensitivity. However, these algorithms do not account for generating novel molecules outside1053

the training domain.1054

Domain Adaptive Generation. Domain adaptive generation, although under-explored, is of1055

paramount importance, especially considering that molecules generated by machine-learning methods1056

often exhibit a “striking similarity" [45]. In recent years, some preliminary work has begun to1057

use reinforcement learning [53] and out-of-distribution control [25] to explore the generation of1058

novel molecules. However, these methods are still challenging when designing novel molecules1059

for the target domain. As proposed by [25], MOOD employs an OOD control and integrates a1060

conditional score-based diffusion scheme to optimize molecules for specific chemical properties.1061

Similarly, MuDM uses property prediction models to address single and multiple property objectives1062

in molecule generation [13]. However, these methods fail to generate novel molecules with target1063

properties that have yet to be learned by either the generative or additional prediction models.1064

Masked Learning Models. The concept of learning with masking noise, as introduced in denoising1065

autoencoders [43], serves as an unsupervised method for representation learning [44]. Masked1066

language models, such as BERT [8] and GPT [5], are notable applications of this approach in natural1067

language processing. These models function by masking a portion of the data and subsequently1068

predicting the masked content, thereby facilitating the development of generalizable NLP models.1069

In the field of computer vision, methodologies adhering to this paradigm selectively apply the ViT1070

encoder [7] to visible content, yielding a highly generalizable, high-capacity model [14].1071

The MAE design has been implemented in videos [10, 42], point clouds [29], vision-language [9, 26],1072

and multiple modalities [2]. In graph learning, the self-supervised MAE for graphs demonstrates1073

robust generalization to unseen nodes [17]. Moreover, MAE exhibits considerable potential in1074

skeleton graph and heterogeneous graph learning [52, 41].1075

Unlike existing methods that pre-train an MAE and fine-tune it for downstream classifica-1076

tion/regression tasks, we propose an innovative design of an equivariant MAE to generate conditions1077

with promising generalization for novel molecule generation.1078
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M Limitations1079

Given a molecule G = ⟨x ∈ Rn×3,h ∈ Rn×f ⟩. For the EGNN-based generative models, suppose1080

the total number of layers of EGNNs used is l, and the hidden feature for EGNN is h, the space1081

complexity of our model is: O(nnhl). For example, in the GEOM-DRUG data set, if molecules of1082

180 atoms are processed, EDM, GeoLDM, and the proposed algorithm all require around 3.5GB of1083

memory for each molecule in one step of optimization, which results in huge overhead for experiments1084

on large-scale datasets.1085

N Impact Statements1086

This paper presents work whose goal is to advance the field of generative Artificial Intelligence (AI) for1087

scientific fields, such as material science, chemistry, and biology. The obtained experience/knowledge1088

will greatly boost generative AI technologies in facilitating the process of scientific knowledge1089

discovery.1090

Machine learning for molecule generation opens up possibilities for designing molecules beyond1091

therapeutic purposes, such as the creation of illicit drugs or dangerous substances. The potential for1092

misuse and unintended consequences necessitates strict ethical guidelines, robust regulation, and1093

responsible use of these technologies to prevent harm to individuals and society.1094

O Acronyms List1095

Acronyms1096

DSDM Domain Supervised Diffusion Model. 2, 6, 25–291097

EMAE Equivariant Masked Autoencoder. 2, 4–6, 9, 24–291098

GADM Geometric Adaptive Diffusion Model. 2, 4–9, 27, 29–311099

MAE Masked Autoencoder. 2, 51100
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