
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

SCALEFUSION: SCALABLE INFERENCE OF SPATIAL-TEMPORAL DIFFUSION
TRANSFORMERS FOR HIGH-RESOLUTION LONG VIDEO GENERATION

Anonymous Authors1

ABSTRACT
Recent advancements in training diffusion models have made generating high-quality videos possible. Particularly,
the spatial-temporal diffusion transformers (ST-DiTs) emerge as a promising diffusion model architecture for
generating videos of high-resolution (1080p) and long duration (20 seconds). However, the quadratic scaling of
compute cost with respect to resolution and duration, primarily due to spatial-temporal attention layers processing
longer sequences, results in high inference latency of ST-DiTs. This hinders their applicability in time-sensitive
scenarios. Existing sequence parallelism techniques, such as DeepSpeed-Ulysses and RingAttention, are not
optimally scalable for ST-DiT inference across multiple GPU machines due to cross-machine communication
overheads. To address this challenge, we introduce ScaleFusion, a scalable inference engine designed to optimize
ST-DiT inference for high-resolution, long video generation. By leveraging the inherent structure of spatial-
temporal attention layers, ScaleFusion effectively hides cross-machine communication overhead through novel
intra-layer and inter-layer communication scheduling algorithms. This enables strong scaling of 3.60× on 4
Amazon EC2 p4d.24xlarge machines (32 A100 GPUs) against 1 machine (8 A100 GPUs). Our experiments
demonstrate that ScaleFusion outperforms state-of-the-art techniques, achieving an average speedup of 1.36× (up
to 1.58×).

1 INTRODUCTION

High-quality AI-generated videos are becoming increas-
ingly accessible thanks to the recent advancements in video-
related foundation models such as spatial-temporal diffu-
sion transformers (ST-DiTs) (Zheng et al., 2024; Singer
et al., 2022; Ma et al., 2024; Gupta et al., 2023). For ex-
ample, OpenAI’s Sora (Brooks et al., 2024) was the first to
demonstrate the capability of generating 1080p 1-minute-
long photo-realistic videos from text prompts. As ST-DiT
models advance in capability and quality, generating high-
resolution long videos is becoming progressively feasible
for industrial production.

However, serving diffusion models on modern GPUs is com-
putationally expensive, especially when generating high-
resolution long videos. For example, generating a 1080p 4-
second-long video using the OpenSora ST-DiT model (1.1B
parameters) (Zheng et al., 2024) on a single A100 GPU
requires more than 5 minutes. This inference latency has
significantly limited applying generating high-resolution
long videos to time-sensitive use cases. While recent re-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the Machine Learning and
Systems (MLSys) Conference. Do not distribute.

search has explored innovative modeling paradigms to re-
duce inference latency (Song et al., 2022; Lu et al., 2022;
Song et al., 2023; Liu et al., 2022), we propose to address
this challenge through parallel computing, distributing the
ST-DiT’s workloads across multiple GPUs and parallelizing
executions.

Generating high-resolution long videos essentially imposes
long sequence workloads on the spatial and temporal atten-
tion layers of ST-DiTs. Existing optimizations for serving
ST-DiTs employ sequence parallelism (SP) techniques (Liu
et al., 2023; Jacobs et al., 2023) to distribute the work-
loads along sequence dimensions across multiple GPUs
for parallel processing (Fang & Zhao, 2024; Zhao et al.,
2024). However, these methods suffer from high commu-
nication overhead between GPU machines due to lack of
computation-communication overlap. As a result, scaling
these methods to further reduce ST-DiT inference latency
with more compute resources is challenging.

To analyze the communication-overlap challenges of ST-
DiTs, we first examine their computation-communication
pattern. As shown in Figure 1, a typical ST-DiT architecture
consists of alternating spatial and temporal attention lay-
ers. Distributed inference of this model on multiple GPUs
involves sharding the input tensor along the temporal dimen-
sion for parallelizing spatial attention, followed by sharding
along the spatial dimension for parallelizing temporal at-

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

ScaleFusion: Scalable Inference of Spatial-Temporal Diffusion Transformers for High-Resolution Long Video Generation

GPU1 GPU2 GPU3 GPU4

A2A Spatial
Layer

Temporal
LayerT

S

A2A A2A Spatial
Layer

Temporal
LayerA2A…

Back-to-Back Data Dependency

T

SSpatial-Temporal Diffusion Transformer (ST-DiT)

Figure 1. The distributed execution of ST-DiT introduce back-to-
back dependencies.

tention. All-to-All communication collective is inserted
between these two layers to re-shard the tensor (Zhao et al.,
2024). In this distributed computation-communication pat-
tern, each operation is serially depdendent on the comple-
tion of its predecessor. As measured in our experiments,
cross-GPU communication overhead accounts for 30-50%
of the ST-DiT’s end-to-end inference latency when multiple
GPU machines are used, hindering scalability to larger GPU
clusters.

To address this challenge, prior research has explored lossy
techniques to hide communication overhead in the diffu-
sion process for image generation (Li et al., 2024; Wang
et al., 2024). These methods leverage the iterative nature
of diffusion models, utilizing activation values from previ-
ous iteration to compute activations for the current iteration.
While similar approaches could be applied to video genera-
tion, they inevitably compromise visual quality due to the
reliance on stale information. To our knowledge, no existing
method effectively hides communication overhead without
sacrificing video generation quality.

In this work, we identify a fundamental property underlying
the ST-DiT architecture: spatial-temporal independence. We
observe that the spatial attention can be executed indepen-
dently of the temporal dimension, i.e., treating the temporal
dimension as a batch dimension. This property enables the
input tensor to the spatial attention to be partitioned along
the temporal dimension into multiple slices. As a result, the
execution of the spatial attention and subsequent all-to-all
operation can be pipelined across these slices, leading to the
overlap of computation (spatial attention) and communica-
tion (all-to-all). A similar pipeline can be established for
the temporal attention and its associated all-to-all operation.

Specifically, we devise intra- and inter-layer communication
scheduling algorithms to minimize communication over-
head. Intra-layer communication schedules all-to-all oper-
ation for each slice to overlap with its associated compu-
tation layer (spatial or temporal attention) processing the
previous slice. Inter-layer communication further schedules
partial all-to-all operation for each slice to overlap with the
previous computation layer processing the last slice. By
combining these techniques, we significantly reduce the
communication latency when scaling the model to multiple
GPU machines for the inference of ST-DiTs.

We summarize ScaleFusion’s contributions as follows:

Spatial-Temporal
Diffusion Transformer

(ST-DiT)
[B, T, S, C] [B, T, S, C]

Noiset Noiset-1

Next Sampling Step

Text Encoder
Text Embeddings

VAE
Decoder

“Waterfall”

Figure 2. Illustration of video diffusion processes with ST-DiT.

• We analyze and quantify the high communication over-
head of existing works utilizing SP techniques for ac-
celerating the inference of ST-DiTs on multiple GPU
machines, and identify the key property of ST-DiTs:
spatial-temporal independence, which can be leveraged
to reduce the communication overhead.

• We are the first to address the high communication
overhead in the inference of ST-DiTs on multiple GPU
machines and develop ScaleFusion consisting of novel
intra-layer and inter-layer communication schedul-
ing algorithms to achieve optimized computation-
communication overlap.

• We conduct comprehensive benchmarks for ScaleFu-
sion and existing techniques on the inference of Open-
Sora’s ST-DiT model, and demonstrate that ScaleFu-
sion can achieve speedup of 1.40× on average (up to
1.58×) compared to the state-of-the-art work. In addi-
tion, ScaleFusion achieves an average strong scaling
of 3.60× on 4 p4d.24xlarge machines (32 A100
GPUs) and 1.93× on 2 machines (16 A100 GPUs)
against 1 machine (8 A100 GPUs).

2 BACKGROUND

In this section, we briefly introduce the video diffusion
processes, its neural network architectures, and existing
works that run them for distributed inference on multiple
GPU machines.

Video Diffusion Process with Spatial-Temporal Diffu-
sion Transformers Figure 2 illustrates a typical diffusion
process (Rombach et al., 2022; Ho et al., 2022) for video
generation with spatial-temporal diffusion transformers (ST-
DiT). It iteratively denoises a random noise sample through
a sequence of sampling steps, gradually transforming it into
a clean video. The number of sampling steps required varies
depending on the specific methodology for training or infer-
ence, ranging from tens to hundreds. In each sampling step,
a neural network predicts the denoising operation. This neu-
ral network evaluation, which is the major computational
bottleneck, is run for every sampling step. To address this
computational challenge, prior research has primarily fo-
cused on reducing the number of sampling steps through
algorithmic innovations such as training-free methods (Song

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

ScaleFusion: Scalable Inference of Spatial-Temporal Diffusion Transformers for High-Resolution Long Video Generation

[B, T, S/P, C][B, T, S/P, C]

Text Embeddings

Self-Attention
(along the spatial dim)

Temporal-
Distributed:
Every GPU has a
part of temporal
dim and whole
spatial dim

Spatial
Layer

Temporal
Layer

T

S

[B, T/P, S, C]

Spatial
Layer

Temporal
Layer

…

GPU1 GPU2 GPU3 GPU4

Cross
Attn

Self-Attention
(along the temporal dim)

Spatial-
Distributed:
Every GPU has a
part of spatial
dim and whole
temporal dim

All-to-All
(A2A)

[B, T, S/P, C]

Cross
Attn

T

S
All-to-All

(A2A)

T

SL pairs of spatial and temporal layers

All-to-All

T

S

Figure 3. Distributed execution of ST-DiT. For simplicity, the aux-
iliary layers such as layer normalizations are not displayed in the
figure.

et al., 2022; Lu et al., 2022) and novel training paradigms
(Song et al., 2023; Liu et al., 2022). In contrast, our work
aims to accelerate the individual sampling steps by opti-
mizing the inference system of the neural network through
distributed computing.

Among all the neural network architectures for the diffusion
process, ST-DiTs have emerged as a promising architecture
for high-quality video generation in recent years (Brooks
et al., 2024; Ma et al., 2024; Gupta et al., 2023; Yang et al.,
2024; Zheng et al., 2024; Singer et al., 2022). The backbone
of this architecture was initially proposed by ViViT (Arnab
et al., 2021) for video classification tasks. However, the
quadratic compute cost scaling of the attention computation
in spatial and temporal layers with respect to video resolu-
tion and duration poses significant challenges for generating
high-resolution long videos. In this work, we optimize the
distributed inference for the ST-DiT architecture employing
a ViViT backbone with repeated alternating spatial-temporal
attention layers as in Figure 1.

Distributed Inference of ST-DiTs on Multiple GPUs Fig-
ure 3 demonstrates the distributed inference of a typical
ST-DiT containing repeated alternating spatial and temporal
layers on multiple GPUs. As the sizes of the spatial and
temporal and dimensions scale linearly with the resolution
and duration of the videos to be generated, existing systems
utilize sequence parallelism (SP) techniques for accelerating
the generation of high-resolution long videos (Zheng et al.,
2024; Zhao et al., 2024). These systems partition the in-
put tensor along spatial and temporal sequence dimensions,
distributing the resulting sharded tensors across multiple
GPUs for parallel processing. To compute spatial or tempo-
ral attention, which requires global information along the
sequence dimension, communication operations are used to
gather the sharded tensors, enabling the execution of atten-
tion layers. This section reviews the existing state-of-the-art
distributed inference technique proposed by (Zhao et al.,
2024) for ST-DiTs. The discussion of model parallelism

N=1 N=2 N=4
G=2 G=4 G=8 G=16 G=32

0%

20%

40%

60%

80%

100%

Pe
rfo

rm
an

ce
 B

re
ak

do
wn

98% 98% 97%

66%
56%

2% 2% 3%

34%
44%

0

10

20

30

St
ro

ng
 S

ca
lin

g
Sp

ee
du

p

Computation
Communication

DSP
Theoretical

Figure 4. The performance breakdown and strong scaling speedup
when executing ST-DiT with the state-of-the-art work (Zhao et al.,
2024) on single or multiple GPUs, where N represents the number
machines and G represent the total number of GPUs.

techniques for other models is deferred to Section 6.

Consider an input tensor to an ST-DiT model has a shape of
[B, T, S,C], where B denotes batch size, T and S denote
the sizes of temporal and spatial sequence dimension, and
C denotes the size of hidden dimension. Note that the at-
tention computation of spatial and temporal layers occurs
along the dimension of S and T , respectively. To run the
model inference with P GPUs in parallel, the input tensor
is split along the spatial dimension into P shards, each of
which is distributed to a GPU for processing. Note that
each shard has a shape of [B, T, S/P,C]. We name this
layout spatial-distributed. As the execution of the spatial
attention requires a complete spatial sequence dimension,
(Zhao et al., 2024) inserts an all-to-all operation to gather
shards from GPUs along the spatial sequence dimension and
scatter along the temporal sequence dimension, resulting
in a shard of shape of [B, T/P, S,C]. We name this layout
temporal-distributed. Similarly, when executing the follow-
ing temporal layer, a complete temporal sequence dimension
is required. As the input tensor is temporal-distributed after
the spatial layer, another all-to-all operation is inserted to
transform temporal-distributed layout back to the spatial-
distributed layout, by gathering shards from GPUs along
the temporal dimension and scattering along the spatial di-
mension. After the execution of a pair of a spatial layer
and a temporal layer, the output tensor transforms to the
original spatial-distributed layout with the same shape as
the input tensor, i.e., [B, T, S/P,C]. The aforementioned
process repeats for the remaining layers.

3 CHALLENGES & OPPORTUNITIES

While there are works utilizing SP techniques to shard atten-
tion layers across multiple GPUs (Fang & Zhao, 2024; Zhao
et al., 2024), none of them has addressed high communica-
tion overheads when scaling ST-DiT inference across multi-
ple GPU machines to the best of our knowledge. Figure 4

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

ScaleFusion: Scalable Inference of Spatial-Temporal Diffusion Transformers for High-Resolution Long Video Generation

illustrates the computation-communication breakdown of an
existing state-of-the-art work (Zhao et al., 2024) generating
a 1080p 8 second video. While existing SP techniques has
negligible communication overhead (i.e. by only up to 3%)
in single-machine settings, they incur huge communication
overhead when scaling up to multiple machines. Specifi-
cally, these techniques incur 34% time and 44% executing
communication operations in 2-machines and 4-machines
experiments, leading to 1.53× and 1.83× slowdowns com-
pared to the theoretical strong scaling speedups. This is
because GPUs on the same machine are connected with
high-bandwidth interconnects such as NVLink or NVSwitch
(NVIDIA, b) and their bandwidth is much larger than the
cross-machine networks. Thus, even with the state-of-the-
art SP techniques, generating long high-resolution ST-DiT
does not scale efficiently with multiple GPU machines.

To reduce communication overhead, a common wisdom is
to execute the communication operations concurrently with
the computation operations and hide the communication
latency as much as possible (Aminabadi et al., 2022; Huang
et al., 2019; Harlap et al., 2018; Jiang et al., 2024; Jayarajan
et al., 2019). However, hiding the communication overhead
for ST-DiTs is non-trivial. We elucidate the challenges and
opportunities as follows.

Challenge 1: Back-to-back latency between communi-
cation and computation operations. As discussed in
Section 2, ST-DiT contains alternating spatial and tempo-
ral layers and requires all-to-all operations that transform
back and forth between the spatial-distributed layout and
temporal-distributed layout. As shown in Figure 1, since
the input tensor of each all-to-all operation is the output
tensor of its previous spatial/temporal layer, and its output
tensor becomes the input tensor of the next spatial/temporal
layer, executing ST-DiT on multiple GPUs naturally intro-
duce back-to-back dependencies between the communica-
tion operations and computation operations. Therefore, it is
non-trivial to execute communication and computation op-
erations concurrently to hide the communication overhead.

Opportunity 1: Intra-layer communication-computation
overlap. To solve the challenge 1, we observe that the
aforementioned back-to-back dependencies only exist along
the spatial dimension in spatial layers and along the tem-
poral dimension in temporal layers. Thus, the layer com-
putation operations is totally independent along the other
dimension, i.e. temporal dimension in spatial layers and
spatial dimension in temporal layers. As a result, we can
divide the layer execution into slices where the back-to-
back communication-computation dependencies only exist
within each slice. By doing so, we create new opportu-
nities for overlapping the communication operations with
computation operations between different slices.

Challenge 2: Diminishing speedups with an increased

4 8 12 16 20
Number of Slices

4.0

4.5

La
te

nc
y

(s
)

(a) Overlapped
Communication

4 8 12 16 20
Number of Slices

6.0

6.2

6.4

(b) Computation

4 8 12 16 20
Number of Slices

7.0

7.2

(c) Execution
Time

Figure 5. Computation and communication time of sharding the
layer executions with the-state-of-the-art work (Zhao et al., 2024).

1080p 8s1080p 16s1080p 32s1080p 64s 2k 8s 2k 16s 4k 8s 4k 16s
0%

20%

40%

60%

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e 55.6% 57.0% 56.8% 55.6%
62.8% 62.3%

71.2% 70.6%

44.4% 43.0% 43.2% 44.4%
37.2% 37.7%

28.8% 29.4%

Computation
Communication

Figure 6. The breakdown of the execution time of spatial layers and
temporal layers when generating videos with different resolutions
and duration with the state-of-the-art work (Zhao et al., 2024).

number of slices. Figure 5 shows how communication
and communication time vary when sharding the layer ex-
ecution into different number of slices. While increasing
the number of slices allows more communication operations
to be overlapped (Figure 5a), it also increases the computa-
tion overhead (Figure 5b). Since the model is computation
bounded as indicated by Figure 4, the computation overhead
will cause diminished speedups when increasing the number
of slices (Figure 5c). Thus, it is not always beneficial to
overlap more communication operations by increasing the
number of slices.

Opportunity 2: Inter-layer communication-computation
overlap. Figure 6 illustrates the breakdown of the exe-
cution time with the state-of-the-art work on the computa-
tion and communication operations. We observe that the
state-of-the-art implementation of typical video generation
workloads are bounded by computation operations. Thus,
instead of partitioning both the computation and communi-
cation operations by simply increasing the number of slices,
we could avoid computation overhead by only further par-
titioning the communication operations. Even though the
overall communication time could be slightly increased, it
should be beneficial as long as it can be overlapped with
computation operations. Specifically, we consider partition
the communication operations and move part of them to
overlap with the communication operations in the previous
spatial/temporal layer. In this way, we could overlap more
communication operations at no cost of computation over-
head, thus further reducing the communication overhead.

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

ScaleFusion: Scalable Inference of Spatial-Temporal Diffusion Transformers for High-Resolution Long Video Generation

A2A

GPU1 GPU2

GPU3 GPU4

A2A Spatial
Layer

[B, T, S/P, C] [B, T/P, S, C] [B, T, S/P, C]

[B, NT, NS, T/NT, S/NS/P, C]

A2A

Spatial
Layer

[B, NT, NS, T/NT/P, S/NS, C]

T

S

[B, NT, NS, T/NT, S/NS/P, C]

[B, NT, NS, T/NT, S/NS/P, C] [B, NT, NS, T/NT /P, S/NS, C] [B, NT, NS, T/NT, S/NS/P, C]

(a) Execution with Non-Overlapped Communication

(b) Intra-Layer Communication Scheduling Algorithm

(c) Inter-Layer Communication Scheduling Algorithm

×𝐿

All-to-All Lifted to Previous
Spatial/Temporal Layer

A2A

A2A Temporal
Layer

Spatial
Layer

Spatial
Layer

Spatial
Layer A2A

Temporal
Layer

Temporal
Layer

A2A

Temporal
Layer

Temporal
Layer

A2A

T

S

Spatial Layer Execution for Each Temporal Slice

Temporal Layer Execution for Each Spatial Slice

T

S

Figure 7. Overview of ScaleFusion’s key ideas. For simplicity, the
figure demonstrates only the execution of one of the L pairs of
spatial and temporal layers in a ST-DiT.

4 SCALEFUSION

In this work, we propose ScaleFusion, which composes of
intra- and inter-layer communication scheduling algorithms.

4.1 Overview

We delinate the overview of the execution of ST-DiTs on
multiple GPUs with the state-of-the-art existing work (Zhao
et al., 2024) and ScaleFusion in Figure 7. We observe that
the existing work suffer from high communication over-
head, since they do not overlap the all-to-all communication
operations with computations (Figure 7a). Instead, in this
paper we propose the following key principle named spatial-
temporal independence, which allows us to break each tem-
poral and each spatial layer into multiple slices that can be
executed independently. Based on this key principle, we
propose ScaleFusion that composes of intra- and inter-layer
communication scheduling algorithms to achieve efficient
computation and communication overlap when executing
ST-DiTs on multiple GPUs.

Intra-Layer Communication Scheduling Algorithm As
shown in Figure 7b, we schedule communication operations
of each slice concurrently with the computation operations
of the next slice in both spatial and temporal layers and
execute each communication and computation slice in a
pipelined fashion. Specifically, when executing the com-
putation of one slice, we schedule the communication of
the next slice concurrently by leveraging the asynchronous
communication operation. In this way, ScaleFusion is able
to overlap communication with computation between differ-
ence slices.

Inter-Layer Communication Scheduling Algorithm
While intra-layer scheduling algorithm can overlap a large

portion of communication with computation operations, the
communication of the first slice and the computation on the
last slice cannot be overlapped. Note that this issue cannot
be simply solved by increasing the number of slices as it
incurs computation overhead (see Section 5.3 details). We
propose inter-layer communication scheduling algorithm,
which further divide the first communication slice into mul-
tiple partitions, and schedule communication of a few parti-
tions when executing the computation of the last slice in the
previous layer, without blocking the critical execution path.

Through the intra- and inter-layer communication schedul-
ing algorithms, we can achieve almost fully overlapped
communication and thus significantly reduce the communi-
cation overhead.

4.2 Key Principle: Spatial-Temporal Independence

In the execution of a ST-DiT, we identify that the tokens in
temporal dimension are totally independent when executing
attention in spatial layers and similarly the tokens in spatial
dimension are totally independent when executing attention
in temporal layers.

Specifically, assume the input tensor has a shape of
[B, T, S,C], where B, T , S, and C represents the size of
batch, temporal, spatial, and hidden dimensions respectively.
Suppose we have divided the input tensor x along the tem-
poral dimension into three slices, and their corresponding
input tensors are denoted as x:,t1,:, x:,t2,:, and x:,t3,: respec-
tively. Then we can compute the attention in spatial layers
independently and then concatenated together, namely,

SpatialLayer(A2AT→S(catT (x:,t1,:, x:,t2,:, x:,t3,:)))

= catT

A2AT→S(SpatialLayer(x:,t1,:)),

A2AT→S(SpatialLayer(x:,t2,:)),

A2AT→S(SpatialLayer(x:,t3,:))

 (1)

where catT denotes tensor concatenate along the temporal
dimension and A2AT→S denotes the all-to-all operation
that scatters the temporal dimension and gathers the spatial
dimension.

Similarly, for temporal layers, assume we have divided the
input tensors along the spatial dimension into three parti-
tions and denote the corresponding input tensors by x:,:,s1 ,
x:,:,s2 , and x:,:,s3 , then we have,

TemporalLayer(catS(A2AS→T (x:,:,s1 , x:,:,s2 , x:,:,s3)))

= catS

A2AS→T (TemporalLayer(x:,:,s1)),

A2AS→T (TemporalLayer(x:,:,s2)),

A2AS→T (TemporalLayer(x:,:,s3))

 (2)

where catS denotes tensor concatenate along the spatial
dimension and A2AS→T denotes the all-to-all operation
that scatters the spatial dimension and gathers the temporal
dimension.

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

ScaleFusion: Scalable Inference of Spatial-Temporal Diffusion Transformers for High-Resolution Long Video Generation

Thus, instead of execute the spatial or temporal layer on the
whole input tensors, we could divide the input tensors into
multiple slices and execute each slice separately and finally
concatenate the results together. This key principle presents
potential opportunity for overlapping the communication
overhead with computation, for which we propose intra- and
inter-layer scheduling algorithms.

4.3 Intra-Layer Communication Scheduling
Algorithm

As mentioned in Section 2, when executed with multiple
GPUs, each spatial and each temporal layer in ST-DiT incur
an all-to-all operation before the execution of the layer itself.
To hide the latency of all-to-all operations, we leverage
the key principle to divide the layer execution into several
slices. Since the execution of each slice is independent, we
can execute the all-to-all operation and the layer execution
separately of each slice and organize the execution in a way
such that the all-to-all operation execution is overlapped
with the layer computation from the subsequent slice.

Specifically, as shown in Figure 8a, we 1 introduce two
hyper-parameters NT (NT ≤ T) and NS (NS ≤ S), mean-
ing the number of slices in the temporal and the spatial di-
mension respectively. We 2 first rearrange the input tensor
x on each GPU to a shape of [B,NT , NS , T/NT , S/NS/P],
where B, T , S, and C denote the size of batch, temporal,
spatial, and hidden dimension respectively and P denotes
the number of GPUs. Note that T and S do not need to
be divisible by NT or NS . If NT does not divide T or
NS does not divide S, we just evenly split T and S into
NT and NS parts respectively, and simply employ a jagged
tensor to represent x where each x:,i,j could have different
dimensions among all i ∈ [0, NT) and j ∈ [0, NS). When
executing the spatial layers, for communication operations,
we 3 start by only executing the all-to-all operation in the
first temporal slice of a spatial layer. Then, immediately
after the all-to-all operation in the current temporal slice is
finished, we 4 start executing the all-to-all operation in the
following temporal slice. For computation operations, we
simply execute the computation operations in the order of
the temporal slices. To meet the data dependency, we block
the execution of the computation operations until the depen-
dent all-to-all operation has finished. Similarly, for temporal
layers, we 5 execute all all-to-all operations in a back-to-
back manner and we block the execution of the computation
operations until the dependent all-to-all operation is finished.
By dividing the layer execution into different slices, we can
overlap part of the all-to-all operations with the computation
operations and thus reducing the communication overhead.

Ideally, we only have the all-to-all operation in the first
slice and the layer computation operations in the last slice
that are not overlapped. Suppose the communication over-

head is CommT and CommS for temporal layers and
spatial layers respectively. By using the intra-layer com-
munication scheduling algorithm, if the all-to-all opera-
tions in all slices except the last slice are overlapped com-
pletely, we could reduce the communication overhead to
CommT /NT + CommS/NS .

According to the formula above, it is tempting to increase
the number of spatial/temporal slices, since it could further
reduce the communication overhead. However, in practice
we found that using a large number of temporal/spatial slices
leads to many small CUDA kernel launches for the compu-
tation operations, which causes high computation overhead
and in turn slows down the overall execution time (see Sec-
tion 5.3 for details). As a result, simply applying intra-layer
communication scheduling algorithm can only overlap a cer-
tain amount of communication operations without incurring
computation overhead. To solve this issue, we propose the
following inter-layer communication scheduling algorithm
to conduct inter-layer communication-computation overlap.

4.4 Inter-Layer Communication Scheduling
Algorithm

While intra-layer communication scheduling algorithm can
overlap the all-to-all communication operations and the
layer computation operations, the all-to-all operation in the
first slice and the layer computation in the last slice is still
not overlapped. To further reduce the communication over-
head without incurring computation overhead, we introduce
the inter-layer communication scheduling algorithm, which
overlaps part of the all-to-all communication in the first slice
with the computation operations in the last slice.

The key insight behind inter-layer communication schedul-
ing algorithm is that we could lift part of the all-to-all oper-
ations to overlap with the computation operations in the last
slice of the previous spatial or temporal layer. Specifically,
in the execution of a temporal layer, we find that each all-to-
all operation can be further decomposed along the temporal
dimension. For example, assume we have partitioned both
the spatial and temporal dimension into three slices, which
we denote as s1, s2, s3, and t1, t2, t3 respectively. Then, for
each spatial partition si, we can 6 decompose the all-to-all
operation into three partitions,

A2AT→S(catT (x:,t1,si , x:,t2,si , x:,t3,si)))

= catT

A2AT→S(x:,t1,si),

A2AT→S(x:,t2,si),

A2AT→S(x:,t3,si)

 (3)

By doing so, we can 7 lift the first two communication
partitions to overlap with the computation operations in
the last slice of the previous spatial layer. Similarly, in
the execution of a spatial layer, we could also 8 divide
the all-to-all operation in the first temporal slice into three

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

ScaleFusion: Scalable Inference of Spatial-Temporal Diffusion Transformers for High-Resolution Long Video Generation

Only these tensors are conducted in the following A2A ops
The rest are conducted in the A2A op in the next layer

Spatial Slice 3
A2AS→T(y[:, :, s3])

Spatial Slice 1
A2AS→T(y[:, :, s1])

Spatial Slice 2
A2AS→T(y[:, :, s2])

Data Dependencies

Temporal Slice 1
A2AT→S(x[:, t1, :])

Temporal Slice 2
A2AT→S(x[:, t2, :])

Temporal Slice 3
A2AT→S(x[:, t3, :])

A2A

A2A Temporal

A2A Temporal

Overlapped Communication

x: [B, NT, NS, T/NT, S/NS/P, C] y: [B, NT, NS, T/NT/P, S/NS, C] z: [B, NT, NS, T/NT, S/NS/P, C]

Spatial

Spatial

Spatial

A2A

A2A

A2A

Computation of spatial layers are
independent on temporal dimension

Computation of temporal layers are
independent on spatial dimension

Temporal

Each GPU has the whole
spatial dimension

Each GPU has the whole
temporal dimension

T

S S

T

Temporal Slice 2
catS(x[:, t2, s1], x[:, t2, s2],

 A2AT→S(x[:, t2, s3])

Spatial Slice 3
A2AS→T(y[:, :, s3])

T

S

Temporal Slice 3
A2AT→S(x[:, t3, :])

Temporal

Temporal

x: [B, NT, NS, T/NT, S/NS/P, C] y: [B, NT, NS, T/NT/P, S/NS, C] z: [B, NT, NS, T/NT, S/NS/P, C]

Spatial

Spatial

SpatialA2A

Temporal

Spatial Slice 2
catT(y[:, t1, s2], y[:, t2, s2],

 A2AS→T(y[:, t3, s2]) A2A

All-to-All Lifted to Prior Spatial/Temporal Layer

(a)

(b)

Tensors not Participating in the Following A2A Operator

Temporal Slice 1
catS(x[:, t1, s1], x[:, t1, s2],

 A2AT→S(x[:, t1, s3])

Only these tensors are conducted in the following A2A ops
The rest are conducted in the A2A op in the next layer

LS

LT

2

3

4 5

1

7

68

9

Spatial Slice 1
catT(y[:, t1, s1], y[:, t2, s1],

 A2AS→T(y[:, t3, s1])

GPU1 GPU2
GPU3 GPU4

S

T

The 1st Temporal Slice on GPU1

T

S

T

S

The 1st Spatial Slice on GPU1

Figure 8. Illustration of (a) the intra-layer communication scheduling algorithm and (b) the inter-layer communication scheduling
algorithm within one spatial layer and a (subsequent) temporal layer of a ST-DiT, when configuring NT = NS = 3.

partitions along the spatial dimension. Namely, for each
temporal partition ti, we have,

A2AS→T (catS(x:,ti,s1 , x:,ti,s2 , x:,ti,s3)))

= catS

A2AS→T (x:,ti,s1),

A2AS→T (x:,ti,s2),

A2AS→T (x:,ti,s3)

 (4)

And we can also 9 lift two communication partitions to
overlap with the computation operations in the last slice of
the previous temporal layer. Note that this process is only
not applicable at the first (spatial) layer of ST-DiTs, sim-
ply because there is no previous temporal layer to overlap
with. However, its communication overhead is negligible
compared to the end-to-end execution time of the whole
model.

In ScaleFusion, we design the inter-layer communication
algorithm that generalizes the above example by defining
another two hyperparameters, LT and LS , representing the
numbers of the all-to-all operation partitions in the first
slice of each spatial/temporal layer lifted to overlap with
the computation operations in the last slice of the previ-
ous temporal/spatial layer. The example above is a special
case of inter-layer communication scheduling algorithm by
choosing LT = LS = 2. Intuitively, LT and LS controls
the amount of communication operations in the first slice
of the spatial/temporal layer that are lifted to the previous
layer. With a larger value of LT and LS , we have more
communication operations in the spatial/temporal moved to
the previous temporal/spatial layer. Besides, by choosing
a different LT and LS , ScaleFusion is adaptable to differ-
ent video generation workloads. If the temporal layer has

longer computation time than the spatial layer, we choose
LT ≥ LS , which creates more opportunities to overlap com-
munication operations with computation operations in the
temporal layer. On the other hand, if the spatial layer has
longer computation time, we simply choose LT < LS .

Note that the inter-layer communication scheduling algo-
rithm can not only further overlap the communication oper-
ations that are not able to be overlapped by the intra-layer
communication scheduling algorithm, it will not increase
the computation overhead when applied on top of the intra-
layer communication scheduling algorithm since we do not
increase the number of partitions of computation operations.
Thus, applying the inter-layer communication scheduling
algorithm on top of the intra-layer computation scheduling
algorithm can solve both challenge 1 and challenge 2 as
described in Section 3.

Specifically, if the computation operations in each slice
takes longer time than the communication operations,
by using inter-layer communication scheduling algo-
rithm, we can reduce the communication overhead to
(CommT + CommS)/NSNT , since the only communi-
cation operations that are not overlapped with computations
are the first spatial/temporal communication partition in the
first slice of each temporal/spatial layer.

Additionally, by slicing the all-to-all operations, we also
reduce the peak memory usage (see Section 5.2 for details).
This is because each all-to-all operation requires a tempo-
rary buffer to receive the tensor values from other GPUs.
Therefore, by dividing the all-to-all operations in different
slices, we can release the corresponding temporary buffer af-

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

ScaleFusion: Scalable Inference of Spatial-Temporal Diffusion Transformers for High-Resolution Long Video Generation

ter each slice of the all-to-all operation is finished, resulting
in lower peak memory usages.

Overall, ScaleFusion maximally overlaps the communica-
tion operations with the computation operations in all evalu-
ated video generation workloads, reduce the communication
cost and peak memory footprint, and thus enable efficient
high resolution long video generation on multiple GPUs.

5 EVALUATION

5.1 Experiment Setups

Baselines We compare ScaleFusion with two existing
implementations for ST-DiT: (1) OpenSora uses DeepSpeed-
Ulysses (Jacobs et al., 2023) utilizing all-to-all operation to
transpose between the head and the spatial dimensions; (2)
DSP (Zhao et al., 2024) proposes a new SP technique that
reduces communication volume by transposing between the
temporal and spatial dimensions.

Hardware & Software We conduct all experiments on
Amazon p4d.24xlarge machines that are commonly
used in practice for large model inference. Each machine
is equipped with 8 NVIDIA A100 GPUs (40 GiB) with
NVIDIA Driver 535.183.01, CUDA 12.2, NCCL v2.19.3
and PyTorch v2.2.2 installed. The GPUs within the same
machine are connected with NVSwitch (NVIDIA, b) and
the machines are connected by AWS Elastic Fabric Adapter
(AWS) with 400 Gbps cross-machine network bandwidth.

Neural Networks We adopt the open-source implemen-
tation of ST-DiT, OpenSora v1.2 (Zheng et al., 2024) with
memory efficient attention enabled (Dao et al., 2022; Dao,
2023), as our codebase for all experiments.

Measurements For runtime latency measurement, we
gather the traces produced by NVIDIA Nsight System
(NVIDIA, a) when running each experiments. Then cal-
culate the runtime and detailed performance breakdown
through analyzing the traces. Note that the end-to-end per-
formance includes all communication and computation op-
erations in the ST-DiT. Particularly, it includes the commu-
nication operation of the first partition of the first (spatial)
layer when using ScaleFusion. For the theoretical lower
bound time (if presented), we simply use the minimum
time among all methods in single-machine experiments. In
multi-machine experiments, the theoretical lower bound is
the single-machine scaling time divided by the number of
machines. For peak memory usage measurement, we use
torch.cuda.max memory reserved.

Hyperparameter Choices We use NT = NS = 4 and
LT = 1 and LS = 3 by default since we found these hyper-
parameters can already hide the communication overhead
pretty well in all our experiments with a variety of video gen-
eration workloads, as discussed in Section 5.3. However, we

also make ScaleFusion configurable by providing interfaces
that allow users to set these hyperparameters flexibly.

5.2 End-to-End Performance Evaluation

Figure 9 shows the end-to-end performance of prior works
and ScaleFusion. We show normalized speedups of Scale-
Fusion over OpenSora (OS), DSP (DSP), and ScaleFusion
with only intra-layer communication scheduling algorithm
(SO), and we show the exact latency numbers for Scale-
Fusion (SF) on their corresponding the bar labels. Note
that the OpenSora default implementation (OS) cannot scale
up to 4 GPU machines. This is because OpenSora uses
DeepSpeed-Ulysses (Jacobs et al., 2023) whose parallelism
are limited by the number of heads. Since the benchmarked
ST-DiT has a small number of heads (i.e., 16), OpenSora’s
ST-DiT cannot scale up to more than 16 GPUs and thus is
not feasible to run on 4 machines of 32 GPUs. We make the
following conclusions.

Comparison to Prior Works We found that both Open-
Sora and DSP have high communication overhead, which is
not hided by the computation. In contrast, ScaleFusion can
almost hide all communication costs and achieves a superior
speedup by 1.32× on average (up to 1.52×) in 2-machines
experiments, and by 1.40× on average (up to 1.58×) in 4-
machines experiments over the state-of-the-art work (Zhao
et al., 2024). Besides, we also found that as the videos
become longer and longer, ScaleFusion can achieve more
speedup over prior works, demonstrating its effectiveness
for speeding up long high-resolution video generation.

Strong Scaling In our experiments, strong scaling mea-
sures the inference speedup as the number of GPUs in-
creases while maintaining a constant workload. We found
that prior works suffer from high communication overhead
when scaling up to more than one GPU machines. In con-
trast, ScaleFusion has minimum communication overhead
in all scenarios with an average strong scaling of 1.93× in
the experiments of 2 machines and 3.60× of 4 machines
against 1 machine.

Speedup Breakdown We observe that using only the
intra-layer communication scheduling algorithm can pro-
vide 1.26× speedup on average (up to 1.41×), and enabling
inter-layer communication scheduling algorithms can pro-
vide another 1.08× speedup on average (up to 1.13×) on
top of the intra-layer communication scheduling algorithm.
Thus, we conclude that both the intra- and inter-layer com-
munication scheduling algorithms are needed to achieve the
best performance in ScaleFusion.

Peak Memory Usage We conclude that while both Open-
Sora and DSP suffers from out-of-memory (OOM) errors
when generating high resolution or long video generation
(e.g. when generating 4k videos for 16 seconds), ScaleFu-

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

ScaleFusion: Scalable Inference of Spatial-Temporal Diffusion Transformers for High-Resolution Long Video Generation

N=1 N=2 N=4
OSDSPSO SF OSDSPSO SF OSDSPSO SF

0

1

2

3

La
te

nc
y

(s
)

8s 1080p
1.05×

0.97×0.99×3.2s

2.19×

1.30×

1.06×1.7s

N/A

1.36×
1.13×0.99s

0

20

40

N=1 N=2 N=4
OSDSPSO SF OSDSPSO SF OSDSPSO SF

0

2

4

6

16s 1080p
1.06×

0.99×0.99×6.3s

2.28×

1.34×

1.06×3.3s

N/A

1.44×
1.11×1.8s

0

20

40

N=1 N=2 N=4
OSDSPSO SF OSDSPSO SF OSDSPSO SF

0

5

10

32s 1080p
1.06×1.06×

0.99×11s

2.29×

1.38×

1.08×5.7s

N/A

1.48×
1.12×3.1s

0

20

40

N=1 N=2 N=4
OSDSPSO SF OSDSPSO SF OSDSPSO SF

0

10

20

30 64s 1080p

× ×

0.99×24s

2.35×

1.52×

1.08×12s

N/A

1.58×
1.12×6.4s

0

20

40

M
em

or
y

(G
iB

)

N=1 N=2 N=4
OSDSPSO SF OSDSPSO SF OSDSPSO SF

0

2

4

6

8

La
te

nc
y

(s
)

8s 2k1.04×
0.99×0.99×7.9s

2.01×

1.27×

1.04×4.2s

N/A

1.33×
1.10×2.3s

0

20

40

N=1 N=2 N=4
OSDSPSO SF OSDSPSO SF OSDSPSO SF

0

5

10

15
16s 2k1.05×

1.12×

0.99×16s
2.05×

1.29×

1.05×8.2s

N/A

1.42×
1.10×4.3s

0

20

40

N=1 N=2 N=4
OSDSPSO SF OSDSPSO SF OSDSPSO SF

0

10

20

8s 4k1.03×
1.09×

0.99×23s

1.72×

1.20×
1.03×12s

N/A

1.26×
1.08×6.1s

0

20

40

N=1 N=2 N=4
OSDSPSO SF OSDSPSO SF OSDSPSO SF

0

10

20

30

40
16s 4k

× ×

0.94×
47s

1.72×

1.31×

1.04×23s

N/A

1.31×
1.07×12s

0

20

40

M
em

or
y

(G
iB

)

Computation Only Overlapped Communication Only Theoretical Lower Bound Max Memory Limit Peak Memory Usage

Figure 9. The end-to-end performance of ScaleFusion compared to prior works, where “×” denotes OOM errors, “N/A” means not
applicable, and N represents the number of GPU machines. OS stands for OpenSora implementation with DeepSpeed-Ulysses (Jacobs
et al., 2023), DSP stands for the dynamic sequence parallelism (Zhao et al., 2024), SO and SF stands for ScaleFusion (this work) with
only intra-layer communication scheduling algorithm enabled and with both intra- and inter-layer communication scheduling algorithms
enabled, respectively.

sion can generate such videos without hitting OOM errors.
ScaleFusion achieves a 1.28× peak memory usage reduc-
tion on average (up to 1.43×) compared to OpenSora and
1.87× reduction on average (up to 2.33×) compared to DSP.

Overall, we conclude that ScaleFusion can achieve a signifi-
cant speedup over all prior works, minimize the communi-
cation overhead, and thus enable efficient high-resolution
long video generation.

5.3 Sensitivity Study on ScaleFusion’s
Hyperparameters

Intra-Layer Communication Scheduling Algorithm Fig-
ure 10 shows how the computation time and the non-
overlapped communication time varies across different num-
ber of slices with only intra-layer scheduling algorithm en-
abled. We make three conclusions from the figure. First,
we conclude that sharding the layer execution into multiple
slices incurs both computation and communication overhead
(Figure 10a and 10b) that increases with a larger number of
slices. Second, we find that non-overlapped communication
time is decreasing with larger number of slices (Figure 10c).
This is because only the first all-to-all operation in the first
slice of each layer is not overlapped which decreases with an
increasing number of slices. Third, we notice that while the
total time is not always decreasing with a larger number of
slices (Figure 10d). Compared to the default hyperparame-
ters we are using, i.e. NT = NS = 4, the best configuration
only brings an additional speedup of 2.7% on average. Thus,
we conclude that simply varying its hyperparameters cannot
achieve the same level of speedup compared to the case

where both intra- and inter-layer communication scheduling
algorithms are enabled, i.e. by 1.08× speedup on average.

Inter-Layer Communication Scheduling Algorithm For
inter-layer communication scheduling algorithm, we always
set LT = 1 and vary LS since the computation operations
in temporal layers are always shorter than the spatial layers
in all experiments based on our measurements. Thus, it
is always beneficial to lift communication operations from
temporal layers to spatial layers but not the other way.

Figure 11 illustrates how the overall execution time varies
with different hyperparameters in ScaleFusion. Compared
to the default hyperparameters we are using, i.e. NT =
NS = 4, LT = 1, LS = 3, the best configuration only
brings 0.7% speedup on average. Thus, we conclude that
while the inter-layer communication scheduling algorithm
is sensitive to the specific hyperparameters, simply using the
ScaleFusion’s default hyperparameters can achieve close-to-
optimal performance across a variety of scenarios.

6 RELATED WORKS

Sequence Parallelism To efficiently serving transformer-
based large foundation models on multiple GPUs with long
sequence length, different SP techniques have been studied
to efficiently distribute the execution of attention layers on
multiple GPUs.

DeepSpeed-Ulysses (Jacobs et al., 2023) leverages all-to-
all operation to gather and scatter tensors between se-
quence and attention head dimensions without computation-

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

ScaleFusion: Scalable Inference of Spatial-Temporal Diffusion Transformers for High-Resolution Long Video Generation

4 8 12 16 20

2.9
3.0
3.1 32s 1080p

(a) Computation

4 8 12 16 20

2.3
2.4
2.5 32s 1080p

(b) Communication

4 8 12 16 20

0.4

0.6 32s 1080p

(c) Non-Overlapped
Communication

4 8 12 16 20

3.35
3.40 32s 1080p

(d) Execution
Time

4 8 12 16 20
6.0
6.2
6.4 64s 1080p

4 8 12 16 20

5.0

5.2
64s 1080p

4 8 12 16 20
0.5

1.0
64s 1080p

4 8 12 16 20

7.0

7.2 64s 1080p

4 8 12 16 20

2.1
2.2
2.3 8s 2k

4 8 12 16 20

1.35
1.40
1.45 8s 2k

4 8 12 16 20

0.4

0.5 8s 2k

4 8 12 16 20

2.55
2.60
2.65 8s 2k

4 8 12 16 20

4.1
4.2
4.3 16s 2k

4 8 12 16 20

2.6

2.7 16s 2k

4 8 12 16 20
0.4
0.5
0.6 16s 2k

4 8 12 16 20
4.65

4.70

4.75 16s 2k

4 8 12 16 20

5.7
5.8
5.9 8s 4k

4 8 12 16 20

2.5
2.6
2.7 8s 4k

4 8 12 16 20
0.7

0.8

0.9 8s 4k

4 8 12 16 20
6.55
6.60
6.65 8s 4k

4 8 12 16 20

11.4

11.6 16s 4k

4 8 12 16 20

5.0

5.1
16s 4k

4 8 12 16 20

1.0

1.2
16s 4k

4 8 12 16 20

12.5

12.6

12.7
16s 4k

Number of Slices

La
te

nc
y

(s
)

Figure 10. Performance of ScaleFusion with different number of
slices when only intra-layer communication scheduling algorithm
is enabled. The X-axis ticks reprsent NT = NS . The star stands
for the optimal configuration.

communication overlap. RingAttention (Liu et al., 2023)
divides the query, key, and value tensors along the sequence
dimension into multiple partitions and assigns each partition
to a single GPU. RingAttention sends and receives each
key and value tensor partition from and to its neighboring
GPU in a ring-like manner and executes the computation
concurrently with the current key and value tensor partition.
While RingAttention can overlap the computation with com-
munication, the communication volume is much larger than
DeepSpeed Ulysses. This limits its scalability on multi-
ple GPU machines where the inter-machine bandwidth is
constrained. DSP (Zhao et al., 2024) optimizes attention
operations with multiple sequence dimensions and proposes
to apply a similar idea to DeepSpeed-Ulysses. It uses all-to-
all operation to gather and scatter tensors between different
sequence dimensions. However, unlike ScaleFusion, these
two techniques still incur high communication overhead in
end-to-end inference.

Pipeline Parallelism Pipeline parallelism (PP) (Huang
et al., 2019; Jayarajan et al., 2019; Harlap et al., 2018)
partition models into subsets of layers and assign the subsets
to multiple GPUs. In execution, PP shards the input tensor
along the batch dimension into micro-batches. Each GPU
processes one micro-batch and transfers the output to the
next GPU in a pipelined manner to keep all GPUs busy. PP
works orthogonal with ScaleFusion, since both the inter-
and the intra-layer communication scheduling algorithm do

4 Slices 6 Slices 8 Slices
1 2 3 4 1 2 3 4 5 6 1 2 3 4 5 6 7 8

3.25
3.50
3.75 32s 1080p

4 Slices 6 Slices 8 Slices
1 2 3 4 1 2 3 4 5 6 1 2 3 4 5 6 7 8

2.3

2.4

2.5 8s 2k

4 Slices 6 Slices 8 Slices
1 2 3 4 1 2 3 4 5 6 1 2 3 4 5 6 7 8

6.2

6.4 8s 4k

4 Slices 6 Slices 8 Slices
1 2 3 4 1 2 3 4 5 6 1 2 3 4 5 6 7 8

6.5

7.0

7.5
64s 1080p

4 Slices 6 Slices 8 Slices
1 2 3 4 1 2 3 4 5 6 1 2 3 4 5 6 7 8

4.3

4.4

4.5 16s 2k

4 Slices 6 Slices 8 Slices
1 2 3 4 1 2 3 4 5 6 1 2 3 4 5 6 7 8

11.8

12.0

12.2 16s 4k

Number of Slices and Partitions

La
te

nc
y

(s
)

Figure 11. The end-to-end execution time of ScaleFusion with
different number of slices when both intra- and inter-layer commu-
nication scheduling algorithms are enabled. The first level ticks of
X-axis represent LS and the second level ticks denotes the number
of slices, i.e., NT = NS . The star stands for the optimal configu-
ration.

not modify the batch dimension and thus can be applied in
conjunction with PP.

Lossy Optimizations for Diffusion Models To reduce
the communication overhead, prior works have found that
diffusion models are resilient to stale inputs, meaning that
even if using the outdated input tensors from previous sam-
pling step, diffusion models can still generate images with
good quality (Li et al., 2024; Wang et al., 2024). This prop-
erty breaks the data dependency between consecutive layers,
therefore allows concurrent executions of computation and
communication to hide communication overhead. However,
the accuracy of these methods decrease with an increasing
number of GPUs. This is because using more devices im-
plies a larger portion of input tensors are outdated. The
quality of the generated contents could further degrade with
more GPUs (Table 1 in Li et al. (2024)). Thus, directly
applying these methods to ST-DiTs suffers from degraded
quality in practice when scaling up to a large number of
GPUs. In contrast, ScaleFusion offer lossless algorithm for
the distributed inference of ST-DiTs while achieving strong
scalability on multiple GPU machines.

7 CONCLUSION

In this paper, we propose ScaleFusion to optimize com-
munication overhead in ST-DiTs. We identify the spatial-
temporal independence that has not been utilized in prior
works. We propose both intra-layer and inter-layer com-
munication scheduling algorithms to miminize the com-
munication overhead through computation-communication
overlap. Our evaluations show that ScaleFusion can achieve
an average speedup of 1.36× (up to 1.58×) speedup com-
pared to prior works. We conclude that ScaleFusion can
significantly reduce the communication overhead and scale
distributed inference ST-DiTs to multiple GPU machines
for high-resolution long video generation.

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

ScaleFusion: Scalable Inference of Spatial-Temporal Diffusion Transformers for High-Resolution Long Video Generation

REFERENCES

Aminabadi, R. Y., Rajbhandari, S., Zhang, M., Awan, A. A.,
Li, C., Li, D., Zheng, E., Rasley, J., Smith, S., Ruwase,
O., and He, Y. Deepspeed inference: Enabling efficient
inference of transformer models at unprecedented scale,
2022. URL https://arxiv.org/abs/2207.0
0032.

Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M.,
and Schmid, C. Vivit: A video vision transformer, 2021.
URL https://arxiv.org/abs/2103.15691.

AWS. Elastic Fabric Adapter. URL https://aws.am
azon.com/hpc/efa/.

Brooks, T., Peebles, B., Holmes, C., DePue, W., Guo, Y.,
Jing, L., Schnurr, D., Taylor, J., Luhman, T., Luhman,
E., Ng, C., Wang, R., and Ramesh, A. Video generation
models as world simulators. 2024. URL https://op
enai.com/research/video-generation-m
odels-as-world-simulators.

Dao, T. Flashattention-2: Faster attention with better par-
allelism and work partitioning, 2023. URL https:
//arxiv.org/abs/2307.08691.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness, 2022. URL https://arxiv.org/ab
s/2205.14135.

Fang, J. and Zhao, S. Usp: A unified sequence parallelism
approach for long context generative ai, 2024. URL
https://arxiv.org/abs/2405.07719.

Gupta, A., Yu, L., Sohn, K., Gu, X., Hahn, M., Fei-Fei, L.,
Essa, I., Jiang, L., and Lezama, J. Photorealistic video
generation with diffusion models, 2023. URL https:
//arxiv.org/abs/2312.06662.

Harlap, A., Narayanan, D., Phanishayee, A., Seshadri, V.,
Devanur, N., Ganger, G., and Gibbons, P. Pipedream:
Fast and efficient pipeline parallel dnn training, 2018.
URL https://arxiv.org/abs/1806.03377.

Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi, M.,
and Fleet, D. J. Video diffusion models. In Koyejo, S.,
Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and
Oh, A. (eds.), Advances in Neural Information Processing
Systems, volume 35, pp. 8633–8646. Curran Associates,
Inc., 2022. URL https://proceedings.neurip
s.cc/paper_files/paper/2022/file/392
35c56aef13fb05a6adc95eb9d8d66-Paper-C
onference.pdf.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, M. X.,
Chen, D., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., and Chen,

Z. Gpipe: Efficient training of giant neural networks
using pipeline parallelism, 2019. URL https://arxi
v.org/abs/1811.06965.

Jacobs, S. A., Tanaka, M., Zhang, C., Zhang, M., Song,
S. L., Rajbhandari, S., and He, Y. Deepspeed ulysses:
System optimizations for enabling training of extreme
long sequence transformer models, 2023. URL https:
//arxiv.org/abs/2309.14509.

Jayarajan, A., Wei, J., Gibson, G., Fedorova, A., and Pekhi-
menko, G. Priority-based parameter propagation for
distributed dnn training. In Talwalkar, A., Smith, V.,
and Zaharia, M. (eds.), Proceedings of Machine Learn-
ing and Systems, volume 1, pp. 132–145, 2019. URL
https://proceedings.mlsys.org/paper_
files/paper/2019/file/3ed923f9f88108
cb066c6568d3df2666-Paper.pdf.

Jiang, C., Tian, Y., Jia, Z., Zheng, S., Wu, C., and Wang,
Y. Lancet: Accelerating mixture-of-experts training via
whole graph computation-communication overlapping,
2024. URL https://arxiv.org/abs/2404.1
9429.

Li, M., Cai, T., Cao, J., Zhang, Q., Cai, H., Bai, J., Jia, Y., Li,
K., and Han, S. Distrifusion: Distributed parallel infer-
ence for high-resolution diffusion models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 7183–7193, June 2024.

Liu, H., Zaharia, M., and Abbeel, P. Ring attention with
blockwise transformers for near-infinite context, 2023.
URL https://arxiv.org/abs/2310.01889.

Liu, X., Gong, C., and Liu, Q. Flow straight and fast:
Learning to generate and transfer data with rectified flow,
2022. URL https://arxiv.org/abs/2209.0
3003.

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu, J.
Dpm-solver: A fast ode solver for diffusion probabilistic
model sampling in around 10 steps, 2022. URL https:
//arxiv.org/abs/2206.00927.

Ma, X., Wang, Y., Jia, G., Chen, X., Liu, Z., Li, Y.-F., Chen,
C., and Qiao, Y. Latte: Latent diffusion transformer for
video generation, 2024. URL https://arxiv.org/
abs/2401.03048.

NVIDIA. NVIDIA NSight Systems, a. URL https:
//developer.nvidia.com/nsight-systems.

NVIDIA. NVLink and NVLink Switch, b. URL https:
//www.nvidia.com/en-us/data-center/nv
link/.

https://arxiv.org/abs/2207.00032
https://arxiv.org/abs/2207.00032
https://arxiv.org/abs/2103.15691
https://aws.amazon.com/hpc/efa/
https://aws.amazon.com/hpc/efa/
https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2405.07719
https://arxiv.org/abs/2312.06662
https://arxiv.org/abs/2312.06662
https://arxiv.org/abs/1806.03377
https://proceedings.neurips.cc/paper_files/paper/2022/file/39235c56aef13fb05a6adc95eb9d8d66-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/39235c56aef13fb05a6adc95eb9d8d66-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/39235c56aef13fb05a6adc95eb9d8d66-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/39235c56aef13fb05a6adc95eb9d8d66-Paper-Conference.pdf
https://arxiv.org/abs/1811.06965
https://arxiv.org/abs/1811.06965
https://arxiv.org/abs/2309.14509
https://arxiv.org/abs/2309.14509
https://proceedings.mlsys.org/paper_files/paper/2019/file/3ed923f9f88108cb066c6568d3df2666-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2019/file/3ed923f9f88108cb066c6568d3df2666-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2019/file/3ed923f9f88108cb066c6568d3df2666-Paper.pdf
https://arxiv.org/abs/2404.19429
https://arxiv.org/abs/2404.19429
https://arxiv.org/abs/2310.01889
https://arxiv.org/abs/2209.03003
https://arxiv.org/abs/2209.03003
https://arxiv.org/abs/2206.00927
https://arxiv.org/abs/2206.00927
https://arxiv.org/abs/2401.03048
https://arxiv.org/abs/2401.03048
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

ScaleFusion: Scalable Inference of Spatial-Temporal Diffusion Transformers for High-Resolution Long Video Generation

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models, 2022. URL https://arxiv.org/
abs/2112.10752.

Singer, U., Polyak, A., Hayes, T., Yin, X., An, J., Zhang,
S., Hu, Q., Yang, H., Ashual, O., Gafni, O., Parikh, D.,
Gupta, S., and Taigman, Y. Make-a-video: Text-to-video
generation without text-video data, 2022. URL https:
//arxiv.org/abs/2209.14792.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models, 2022. URL https://arxiv.org/
abs/2010.02502.

Song, Y., Dhariwal, P., Chen, M., and Sutskever, I. Consis-
tency models, 2023. URL https://arxiv.org/ab
s/2303.01469.

Wang, J., Fang, J., Li, A., and Yang, P. Pipefusion:
Displaced patch pipeline parallelism for inference of
diffusion transformer models, 2024. URL https:
//arxiv.org/abs/2405.14430.

Yang, Z., Teng, J., Zheng, W., Ding, M., Huang, S., Xu,
J., Yang, Y., Hong, W., Zhang, X., Feng, G., et al.
Cogvideox: Text-to-video diffusion models with an ex-
pert transformer. arXiv preprint arXiv:2408.06072, 2024.

Zhao, X., Cheng, S., Chen, C., Zheng, Z., Liu, Z., Yang,
Z., and You, Y. Dsp: Dynamic sequence parallelism for
multi-dimensional transformers, 2024. URL https:
//arxiv.org/abs/2403.10266.

Zheng, Z., Peng, X., Yang, T., Shen, C., Li, S., Liu, H., Zhou,
Y., Li, T., and You, Y. Open-sora: Democratizing efficient
video production for all, March 2024. URL https:
//github.com/hpcaitech/Open-Sora.

https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2209.14792
https://arxiv.org/abs/2209.14792
https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/2303.01469
https://arxiv.org/abs/2303.01469
https://arxiv.org/abs/2405.14430
https://arxiv.org/abs/2405.14430
https://arxiv.org/abs/2403.10266
https://arxiv.org/abs/2403.10266
https://github.com/hpcaitech/Open-Sora
https://github.com/hpcaitech/Open-Sora

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

ScaleFusion: Scalable Inference of Spatial-Temporal Diffusion Transformers for High-Resolution Long Video Generation

A PSEUDO-CODE IMPLEMENTATION

Algorithm 1 ScaleFusion’s implementation on each GPU.

Inputs: The input tensor x of shape [B, T, S/P,C], the
video diffusion modelM, the number of temporal and
spatial slices, NT and NS , and the number of partitions
of the first temporal/spatial slice LT and LS .

Outputs: The output tensor of shape [B, T, S/P,C].
1: Create an empty tensor y of shape [B, T/P, S,C]
2: Rearrange x to shape [B,NT , NS , T/NT , S/NS/P,C]
3: Rearrange y to shape [B,NT , NS , T/NT /P, S/NS , C]
4: for i ∈ [0, NS) do
5: for j ∈ [0, LT) do
6: ES

j,i ← ASYNCA2AT→S(x:,j,i)

7: for SpatialLayer, TemporalLayer inM do
8: for i ∈ [LT , NT) do
9: for j ∈ [LS , NS) do

10: ES
i,j ← ASYNCA2AT→S(x:,i,j)

11: for i ∈ [0, NT) do
12: tmp← catS(Wait(ES

i,0, . . . , E
S
i,SN−1))

13: y:,i,: ← SPATIALLAYER(tmp)
14: for j ∈ [0, LS) do
15: ET

i,j ← ASYNCA2AS→T (y:,i,j)

16: for i ∈ [LS , NS) do
17: for j ∈ [LT , NT) do
18: ET

j,i ← ASYNCA2AS→T (x:,j,i)

19: for i ∈ [0, NS) do
20: tmp← catT (WAIT(ET

0,i, . . . E
T
NT−1,i))

21: x:,:,i ← TEMPORALLAYER(tmp)
22: if TemporalLayer is the last layer ofM then
23: break
24: for j ∈ [0, LT) do
25: ES

j,i ← ASYNCA2AT→S(x:,j,i)

26: Rearrange x to shape [B, T, S/P,C]
27: return x

Algorithm 1 describes the pseudo-code of ScaleFusion’s im-
plementation. To support asynchronous all-to-all operations,
we create one CUDA stream for computation operations
and another CUDA stream for communication operations.
For simplicity, we abstract out our implementation in a way
where that calling an asynchronous all-to-all operation pro-
duces a CUDA event by waiting on which we can block the
default CUDA stream (i.e. the computation stream) and get
the return value of the all-to-all operation. Particularly, in
the code each ES

i,j and each ET
i,j denotes a CUDA event

that represents the status of the (asynchronous) all-to-all
operation scheduled for the spatial or the temporal layer
respectively.

Specifically, to keep the algorithm implementation and our
description clean, we initiate the first layer’s communication

in line 4 to line 6 as if we had a previous temporal layer.
For each spatial layer of the video diffusion model, we
first initiate the communication that has not handled in the
last temporal layer (line 8 to line 10). Then, we wait on
all the events and concatenate the result tensors along the
spatial dimension (line 12) and execute the spatial layer
(line 13). We will then start conduct all-to-all operation for
the next temporal layer on the output tensor y according to
the inter-layer communication scheduling algorithm (line
14 to line 15). The execution of temporal layers would be
similar except that if it is the last layer, we do not conduct
communication for the next spatial layer (line 22).

Note that our implementation does not explicitly ensure the
execution order of all-to-all operations. This is because by
default each CUDA stream will execute each kernel in the
kernel launch order and we only use one CUDA stream for
all NCCL kernels (i.e. all-to-all operations). Thus, as long
as we launch the communication operation in order, we do
not have to synchronize between different communication
operations to ensure the execution order.

