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SUPPLEMENTARY MATERIAL

We provide a detailed supplementary to help readers further understand our work and make this
paper more convincing. The supplementary materials are organized as follows:

• Appendix A: DDPMs Trained from Scratch
A detailed illustration of DDPMs trained from scratch on limited data. Experiment setups,
training details, qualitative and quantitative evaluation are provided.

• Appendix B: More Details of Employed Losses
Introduction of the variational lower bound loss (Kingma et al., 2021) and prior preserva-
tion loss (Ruiz et al., 2023) proposed in prior works and employed by DomainStudio.

• Appendix C: Evaluation Metrics
Detailed explanations of the metrics used in the quantitative evaluation of DomainStudio.

• Appendix D: Additional Quantitative Evaluation
The quantitative evaluation of DomainStudio compared with baselines under a series of
unconditional and text-to-image generation setups, as supplements to Sec. 4.2.

• Appendix E: Additional Ablation Analysis
The ablation analysis of each component in DomainStudio, as supplements to Sec. 4.3.

• Appendix F: Limitations and Societal Impact
The limitations and societal impact of DomainStudio.

• Appendix G: Personalization of DomainStudio
The personalization of DomainStudio achieves domain-driven and subject-driven image
generation at the same time using two sets of reference data. Methods and visualized
samples are provided.

• Appendix H: More Details of Implementation
The implementation of DomainStudio and baselines is introduced in detail.

• Appendix I: Unconditional Source Models
The training details, visualized samples, and quantitative evaluation of the source models
trained on FFHQ (Karras et al., 2020b) and LSUN Church (Yu et al., 2015).

• Appendix J: Inspiration of DomainStudio
The inspiration of DomainStudio design is discussed.

• Appendix K: DDPM Adaptation Process Analysis
Visualized samples across different training iterations to show the domain adaptation pro-
cess qualitatively.

• Appendix L: Additional Comparison with Related Works
Comparison between DomainStudio and other related works.

• Appendix M: Additional Visualized Samples
More visualized samples are shown, including the few-shot datasets used in this paper and
the visualized results of DomainStudio under unconditional and text-to-image generation
setups.

• Appendix N: Computational Cost
The computational cost of DomainStudio compared with DDPM-based baselines.

Reproducibility: See the code provided in the submitted compressed file.
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A DDPMS TRAINED FROM SCRATCH

We make the first attempt to evaluate the performance of DDPMs trained from scratch as data be-
come scarce. We first train DDPMs on small-scale datasets containing various numbers of images
from scratch. We analyze generation diversity to study when do DDPMs overfit as training sam-
ples decrease. We sample 10, 100, and 1000 images from FFHQ-babies (Babies), FFHQ-sunglasses
(Sunglasses) (Ojha et al., 2021), and LSUN Church (Yu et al., 2015) respectively as small-scale
training datasets. The image resolution of all the datasets is set as 256× 256. We follow the model
setups in prior works (Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021) used for LSUN 2562

(Yu et al., 2015) and use a learning rate of 1e-4 and a batch size of 48.

In our experiments, the smaller datasets are included in the larger datasets. For example, the 1000-
shot Sunglasses datasets include all the images in 100-shot and 10-shot Sunglasses. Similarly, all
the images in 10-shot Sunglasses are included in 100-shot Sunglasses as well. We train DDPMs for
40K iterations (about 20 hours on ×8 NVIDIA RTX A6000 GPUs) on datasets containing 10 or 100
images. While for datasets containing 1000 images, DDPMs are trained for 60K iterations (about
30 hours on ×8 NVIDIA RTX A6000 GPUs).

Qualitative Evaluation Compared with the generated images shown in Fig. 10, it can be seen that
DDPMs trained from scratch need enough training samples to synthesize diverse results and avoid
replicating the training samples. They overfit and tend to replicate training samples when datasets
are limited to 10 or 100 images. Since some training samples are flipped in the training process
as a step of data augmentation, we can also find some generated images symmetric to the training
samples. For datasets containing 1000 images, DDPMs can generate diverse samples following
similar distributions of training samples instead of replicating them. The overfitting problem is
relatively alleviated. However, the generated samples are coarse and lack high-frequency details
compared with training samples.

Quantitative Evaluation LPIPS (Zhang et al., 2018a) is proposed to evaluate the perceptual dis-
tances (Johnson et al., 2016) between images. We propose a Nearest-LPIPS metric based on LPIPS
to evaluate the generation diversity of DDPMs trained on small-scale datasets. More specifically,
we first generate 1000 images randomly and find the most similar training sample having the lowest
LPIPS distance to each generated sample. Nearest-LPIPS is defined as the LPIPS distances be-
tween generated samples and the most similar training samples in correspondence averaged over all
the generated samples. If a generative model reproduces the training samples exactly, the Nearest-
LPIPS metric will have a score of zero. Larger Nearest-LPIPS values indicate lower replication rates
and greater diversity relative to training samples.

We provide the Nearest-LPIPS results of DDPMs trained from scratch on small-scale datasets in
the top part of Table 3. For datasets containing 10 or 100 images, we have lower Nearest-LPIPS
values. While for datasets containing 1000 images, we get measurably improved Nearest-LPIPS
values. To avoid the influence of generated images symmetric to training samples, we flip all the
training samples as supplements to the original datasets and recalculate the Nearest-LPIPS metric.
The results are listed in the bottom part of Table 3. With the addition of flipped training samples, we
find apparently lower Nearest-LPIPS values for datasets containing 10 or 100 images. However, we
get almost the same Nearest-LPIPS results for DDPMs trained on larger datasets containing 1000
images, indicating that these models can generate diverse samples different from the original or
symmetric training samples.

Number of Samples Babies Sunglasses Church
10 0.2875 0.3030 0.3136
100 0.3152 0.3310 0.3327
1000 0.46580.46580.4658 0.48190.48190.4819 0.57070.57070.5707

10 (+ flip) 0.1206 0.1217 0.0445
100 (+ flip) 0.1556 0.1297 0.1177
1000 (+ flip) 0.46110.46110.4611 0.47260.47260.4726 0.56250.56250.5625

Table 3: Nearest-LPIPS (↑) results of DDPMs trained from scratch on several small-scale datasets.
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Figure 10: Samples produced by DDPMs trained from scratch on small-scale datasets, including Babies, Sun-
glasses, and LSUN Church containing 10, 100, and 1000 images.

To sum up, it becomes harder for DDPMs to learn the representations of datasets as training data
become scarce. When trained on limited data from scratch, DDPMs fail to match target data distri-
butions exactly and cannot produce high-quality and diverse samples.

B MORE DETAILS OF EMPLOYED LOSSES

Variational Lower Bound Loss (Lvlb) In Ho et al. (2020), the variance Σθ(xt, t) is fixed as a
constant σ2

t I, where σ2
t = βt and is not learned. The network is only trained to learn the model

mean µθ(xt, t) through predicting noises with ϵθ(xt, t). Following works (Kingma et al., 2021)
propose to optimize the variational lower bound (VLB) and guide the learning of Σθ(xt, t) with an
additional optimization term Lvlb as follows:

Lvlb : = L0 + L1 + ...+ LT−1 + LT , (17)
L0 : = −log pθ(x0|x1), (18)

Lt−1 : = DKL(q(xt−1|xt, x0) || pθ(xt−1|xt)), (19)
LT : = DKL(q(xT |x0) || p(xT )). (20)

We set the weight of Lvlb as 0.001 to avoid it from overwhelming the other losses.

Prior Preservation Loss (Lpr) DreamBooth (Ruiz et al., 2023) generates source samples xpr with
randomly sampled Gaussian noises and the source text condition csou using the pre-trained text-
to-image model. Then the pre-trained encoder E is employed to compress xpr to latent codes zpr.
DreamBooth proposes a class-specific prior preservation loss as follows to relieve overfitting for
subject-driven generation by preserving the information of source samples:

Lpr = Et,zpr
t ,csou,ϵpr ||ϵsou(z

pr
t , csou)− ϵada(z

pr
t , csou)||2. (21)

DomainStudio employs the prior preservation loss Lpr to maintain the source samples produced by
adapted models during the few-shot fine-tuning process. We follow DreamBooth to set its weight as
1 for fair comparison.
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Datasets FFHQ →
Babies

FFHQ →
Sunglasses

FFHQ →
Raphael’s paintings

TGAN (Wang et al., 2018) 0.510± 0.026 0.550± 0.021 0.533± 0.023
TGAN+ADA (Karras et al., 2020a) 0.546± 0.033 0.571± 0.034 0.546± 0.037
FreezeD (Mo et al., 2020) 0.535± 0.021 0.558± 0.024 0.537± 0.026
MineGAN (Wang et al., 2020) 0.514± 0.034 0.570± 0.020 0.559± 0.031
EWC (Li et al., 2020) 0.560± 0.019 0.550± 0.014 0.541± 0.023
CDC (Ojha et al., 2021) 0.583± 0.014 0.581± 0.011 0.564± 0.010
DCL (Zhao et al., 2022b) 0.579± 0.018 0.574± 0.007 0.558± 0.033
AdAM (Zhao et al., 2022a) 0.573± 0.016 0.559± 0.017 0.551± 0.033
RICK (Zhao et al., 2023) 0.589± 0.010 0.591± 0.030 0.582± 0.028
Fine-tuned DDPMs 0.513± 0.026 0.527± 0.024 0.466± 0.018
DomainStudio (ours) 0.599± 0.0240.599± 0.0240.599± 0.024 0.604± 0.0140.604± 0.0140.604± 0.014 0.594± 0.0220.594± 0.0220.594± 0.022

Datasets FFHQ →
Sketches

LSUN Church →
Haunted houses

LSUN Church →
Landscape drawings

TGAN (Wang et al., 2018) 0.394± 0.023 0.585± 0.007 0.601± 0.030
TGAN+ADA (Karras et al., 2020a) 0.427± 0.022 0.615± 0.018 0.643± 0.060
FreezeD (Mo et al., 2020) 0.406± 0.017 0.558± 0.019 0.597± 0.032
MineGAN (Wang et al., 2020) 0.407± 0.020 0.586± 0.041 0.614± 0.027
EWC (Li et al., 2020) 0.430± 0.018 0.579± 0.035 0.596± 0.052
CDC (Ojha et al., 2021) 0.454± 0.017 0.620± 0.029 0.674± 0.024
DCL (Zhao et al., 2022b) 0.461± 0.021 0.616± 0.043 0.626± 0.021
AdAM (Zhao et al., 2022a) 0.424± 0.018 0.584± 0.031 0.694± 0.026
RICK (Zhao et al., 2023) 0.443± 0.025 0.622± 0.021 0.694± 0.031
Fine-tuned DDPMs 0.473± 0.022 0.590± 0.045 0.666± 0.044
DomainStudio (ours) 0.495± 0.0240.495± 0.0240.495± 0.024 0.628± 0.0290.628± 0.0290.628± 0.029 0.715± 0.0340.715± 0.0340.715± 0.034

Table 4: Intra-LPIPS (↑) results of DDPM-based approaches and GAN-based baselines on 10-shot uncondi-
tional image generation tasks adapted from the source datasets FFHQ and LSUN Church. Standard deviations
are computed across 10 clusters (the same number as training samples). DomainStudio outperforms modern
GAN-based approaches and achieves state-of-the-art performance in generation diversity.

C EVALUATION METRICS

We follow CDC (Ojha et al., 2021) to use Intra-LPIPS for generation diversity evaluation. To be
more specific, we generate 1000 images and assign them to one of the training samples with the
lowest LPIPS (Zhang et al., 2018a) distance. Intra-LPIPS is defined as the average pairwise LPIPS
distances within members of the same cluster averaged over all the clusters. If a model exactly
replicates training samples, its Intra-LPIPS will have a score of zero. Larger Intra-LPIPS values
correspond to greater generation diversity.

FID (Heusel et al., 2017) is widely used to evaluate the generation quality of generative models by
computing the distribution distances between generated samples and datasets. However, FID would
become unstable and unreliable when it comes to datasets containing a few samples (e.g., 10-shot
datasets used in this paper). Therefore, we provide FID evaluation using relatively richer datasets
including Sunglasses and Babies, which contain 2500 and 2700 images for unconditional image
generation.

Given a text prompt like “a [V] volcano” in representation of adapted samples, we use the text
prompt “a volcano” to compute CLIP-Text to evaluate the subject preservation in domain-driven
generation. Apart from CLIP-text, we add a CLIP-Image metric to measure the domain consistency
of DomainStudio on T2I generation. CLIP-Image is defined as the average pairwise cosine similarity
between the CLIP embeddings of training and generated samples. CLIP-Image may be unbiased
when the model is overfitting. For example, if a model exactly replicates training samples, its CLIP-
Image will have the highest score of 1. We provide CLIP-Image results as reference.

The noise inputs are fixed for DDPM-based and GAN-based approaches respectively to synthesize
samples for fair comparison of generation quality and diversity.
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Method TGAN TGAN+ADA FreezeD MineGAN EWC CDC DCL AdAM RICK Ours
Babies 104.79 102.58 110.92 98.23 87.41 74.39 52.56 48.43 39.3939.3939.39 48.92
Sunglasses 55.61 53.64 51.29 68.91 59.73 42.13 38.01 28.03 25.2225.2225.22 34.75

Table 5: FID (↓) results of DomainStudio compared with GAN-based baselines under unconditional adaptation
from FFHQ to 10-shot Babies and Sunglasses.

Datasets Van Gogh
houses

Wrecked
trains

Ink painting
volcanoes

Metrics CLIP-Text
LoRA (Hu et al., 2021) 0.269± 0.012 0.199± 0.018 0.292± 0.018
Textual Inversion (Gal et al., 2022) 0.259± 0.011 0.243± 0.024 0.244± 0.019
DreamBooth (Ruiz et al., 2023) 0.262± 0.035 0.267± 0.013 0.275± 0.020
DomainStudio (ours) 0.276± 0.0280.276± 0.0280.276± 0.028 0.271± 0.0410.271± 0.0410.271± 0.041 0.301± 0.0240.301± 0.0240.301± 0.024
Metrics CLIP-Image
LoRA (Hu et al., 2021) 0.773± 0.032 0.689± 0.069 0.668± 0.062
Textual Inversion (Gal et al., 2022) 0.763± 0.022 0.737± 0.0350.737± 0.0350.737± 0.035 0.658± 0.023
DreamBooth (Ruiz et al., 2023) 0.569± 0.039 0.557± 0.011 0.600± 0.086
DomainStudio (ours) 0.789± 0.0240.789± 0.0240.789± 0.024 0.600± 0.068 0.676± 0.0910.676± 0.0910.676± 0.091

Table 6: CLIP-Text (↑) and CLIP-Image results of DomainStudio compared with LoRA, Textual Inversion, and
DreamBooth on text-to-image generation tasks. DomainStudio outperforms baselines on text alignment.

D ADDITIONAL QUANTITATIVE EVALUATION

We add earlier baselines in this section for more complete quantitative evaluation, including un-
conditional GAN-based methods TGAN (Wang et al., 2018), TGAN+ADA (Karras et al., 2020a),
FreezeD (Mo et al., 2020), MineGAN (Wang et al., 2020), EWC (Li et al., 2020), and T2I method
LoRA (Hu et al., 2021) based on Stable Diffusion (Rombach et al., 2022).

Unconditional Image Generation We provide the Intra-LPIPS results of DomainStudio under a
series of 10-shot adaptation setups in Table 4. DomainStudio realizes a superior improvement of
Intra-LPIPS compared with directly fine-tuned DDPMs. Besides, DomainStudio outperforms state-
of-the-art GAN-based approaches under all the employed adaptation setups, indicating its strong
capability of maintaining generation diversity.

As shown by the FID results in Table 5, DomainStudio performs better on learning target distribu-
tions from limited data than most prior GAN-based approaches. Despite its outstanding FID results,
RICK still fails to avoid generating unnatural deformation and blurs like prior GAN-based methods.
DomainStudio achieves better visual effects, as shown in Fig. 24 and 26. We only provide the FID
results on Babies and Sunglasses since we have no access to enough samples to support stable and
reliable FID evaluation for other datasets.

T2I Generation We report the CLIP-based metrics of DomainStudio compared with LoRA (Hu
et al., 2021), Textual Inversion (Gal et al., 2022), and DreamBooth (Ruiz et al., 2023) in Table 6.
DomainStudio achieves better results of CLIP-Text than baselines, indicating its ability to synthesize
images consistent with text prompts while adapting to target domains. As for CLIP-Image results,
DomainStudio also outperforms baselines on several benchmarks. Textual Inversion achieves the
best image alignment on 10-shot Wrecked trains since it overfits to the few-shot car samples
instead of synthesizing train samples consistent with the text prompt.

In Table 7, we provide Intra-LPIPS results of DomainStudio and baselines to evaluate the generation
diversity. DomainStudio achieves state-of-the-art performance when generating adapted samples
sharing the same category of subjects with training samples like Van Gogh houses and Wrecked cars.
Although Textual Inversion and LoRA achieve better generation diversity in terms of Intra-
LPIPS on adapted samples like Watercolor pandas and temples, it fails to produce samples
sharing styles with training samples and containing subjects consistent with text prompts, as
shown in Fig. 7, 8, 29, and 32.
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Datasets Van Gogh
houses

Watercolor
pandas

Watercolor
temples

LoRA (Hu et al., 2021) 0.578± 0.029 0.606± 0.018 0.602± 0.019
Textual Inversion (Gal et al., 2022) 0.480± 0.235 0.744± 0.0310.744± 0.0310.744± 0.031 0.763± 0.0330.763± 0.0330.763± 0.033
DreamBooth (Ruiz et al., 2023) 0.558± 0.009 0.450± 0.099 0.553± 0.082
DomainStudio (ours) 0.588± 0.0120.588± 0.0120.588± 0.012 0.519± 0.014 0.544± 0.010

Datasets Wrecked
cars

Wrecked
houses

Ink painting
volcanoes

LoRA (Hu et al., 2021) 0.593± 0.011 0.606± 0.014 0.580± 0.053
Textual Inversion (Gal et al., 2022) 0.612± 0.024 0.624± 0.015 0.648± 0.0380.648± 0.0380.648± 0.038
DreamBooth (Ruiz et al., 2023) 0.534± 0.027 0.601± 0.034 0.535± 0.049
DomainStudio (ours) 0.636± 0.0120.636± 0.0120.636± 0.012 0.628± 0.0170.628± 0.0170.628± 0.017 0.633± 0.029

Table 7: Intra-LPIPS (↑) results of DomainStudio compared with LoRA, Textual Inversion, and DreamBooth
on T2I generation tasks.

E ADDITIONAL ABLATION ANALYSIS

We provide detailed ablation analysis of the weight coefficients of Limg , Lhf , and Lhfmse using
10-shot FFHQ → Babies (unconditional) as an example. Intra-LPIPS and FID are employed for
quantitative evaluation.

We first ablate λ2, the weight coefficient of Limg . We adapt the source model to 10-shot Babies
without Lhf and Lhfmse. The quantitative results are listed in Table 8. Corresponding generated
samples are shown in Fig. 11. When λ2 is set as 0.0, the directly fine-tuned model produces coarse
results lacking high-frequency details and diversity. With an appropriate choice of λ2, the adapted
model achieves greater generation diversity and better learning of target distributions under the guid-
ance of Limg . Too large values of λ2 make Limg overwhelm Lsimple and prevent the adapted model
from learning target distributions, leading to degraded generation quality and diversity. The adapted
model with λ2 value of 2.5 gets unnatural generated samples even if it achieves the best FID result.
We recommend λ2 ranging from 0.1 to 1.0 for the unconditional adaptation setups used in our paper
based on a comprehensive consideration of the qualitative and quantitative evaluation.

Figure 11: Visualized ablations of λ2, the weight co-
efficient of Limg on 10-shot FFHQ → Babies.

Figure 12: Visualized ablations of λ3, the weight co-
efficient of Lhf on 10-shot FFHQ → Babies.

21



Under review as a conference paper at ICLR 2024

λ2 Intra-LPIPS (↑) FID (↓)
0.0 0.520± 0.026 114.95
0.004 0.531± 0.031 92.87
0.02 0.544± 0.026 85.11
0.1 0.558± 0.033 75.17
0.5 0.572± 0.0270.572± 0.0270.572± 0.027 71.77
1.0 0.560± 0.034 74.68
2.5 0.543± 0.038 64.0864.0864.08
5.0 0.537± 0.028 69.18

Table 8: Intra-LPIPS (↑) and FID (↓) results of
adapted models trained on 10-shot FFHQ → Babies
with different λ2, the weight coefficient of Limg .

λ3 Intra-LPIPS (↑) FID (↓)
0.0 0.572± 0.027 71.77

0.004 0.576± 0.034 66.4866.4866.48
0.02 0.581± 0.045 72.67
0.1 0.589± 0.047 70.75
0.5 0.592± 0.0310.592± 0.0310.592± 0.031 70.40
1.0 0.583± 0.032 68.06
2.5 0.577± 0.032 71.69
5.0 0.591± 0.031 71.20

Table 9: Intra-LPIPS (↑) and FID (↓) results of
adapted models trained on 10-shot FFHQ → Babies
with different λ3, the weight coefficient of Lhf .

Next, we ablate λ3, the weight coefficient of Lhf with λ2 set as 0.5. The quantitative results are listed
in Table 9. Corresponding generated samples are shown in Fig. 12. Lhf guides adapted models to
keep diverse high-frequency details learned from source samples for more realistic results. Lhf

helps the adapted model enhance details like clothes and hairstyles and achieves better FID and
Intra-LPIPS, indicating improved quality and diversity. Too large values of λ3 make the adapted
model pay too much attention to high-frequency components and fail to produce realistic results
following the target distributions. We recommend λ3 ranging from 0.1 to 1.0 for the unconditional
adaptation setups used in our paper.

Finally, we ablate λ4, the weight coefficient of Lhfmse, with λ2 and λ3 set as 0.5. The quantitative
results are listed in Table 10. Corresponding generated samples are shown in Fig. 13. Lhfmse guides
the adapted model to learn more high-frequency details from limited training data. Appropriate
choice of λ4 helps the adapted model generate diverse results containing rich details. Besides,
the full DomainStudio approach achieves state-of-the-art results of FID and Intra-LPIPS on 10-
shot FFHQ → Babies (see Table 4 and 5). Similar to λ2 and λ3, too large values of λ4 lead to
unreasonable results deviating from the target distributions. We recommend λ4 ranging from 0.01
to 0.08 for the unconditional adaptation setups in this paper. Results in Fig. 11, 12, and 13 are
synthesized from fixed noise inputs.

Figure 13: Visualized ablations of λ4, the weight
coefficient of Lhfmse on 10-shot FFHQ → Babies.

λ4 Intra-LPIPS (↑) FID (↓)
0.0 0.592± 0.031 70.40
0.01 0.594± 0.038 66.31
0.05 0.599± 0.024 48.9248.9248.92
0.08 0.607± 0.025 55.88
0.1 0.603± 0.031 59.28
0.5 0.612± 0.0230.612± 0.0230.612± 0.023 70.26

Table 10: Intra-LPIPS (↑) and FID (↓) results of
adapted models trained on 10-shot FFHQ → Babies
with different λ4, the weight coefficient of Lhfmse.

In addition, we add the visualized ablations of DomainStudio on T2I generation using houses in
the ink painting style as an example in Fig. 9. Without relative distances preservation and high-
frequency details enhancement, DomainStudio degrades to DreamBooth (Ruiz et al., 2023), which
is designed to preserve key features of the subjects in training samples. As a result, it overfits and
fails to achieve domain-driven generation. DomainStudio without high-frequency details enhance-
ment applies pairwise similarity loss to relieve overfitting and guide adapted models to learn the
knowledge of target domains while preserving source subjects corresponding to text prompts. The
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full DomainStudio approach adds high-frequency details enhancement and preserves more details
learned from source and training samples.

F LIMITATIONS AND SOCIETAL IMPACT

Limitations Despite the compelling results of our approach, it still has some limitations. All the
datasets used for unconditional image generation in this paper share the resolution of 256 × 256.
The experiments of DomainStudio are conducted on NVIDIA RTX A6000 GPUs (48 GB memory
of each). However, the batch size on each GPU is still limited to 3. Therefore, it is challenging to
expand our approach to larger image resolution. We will work on more lightweight few-shot image
generation approaches for unconditional DDPMs. Despite that, the datasets used in this paper have
larger resolution than many unconditional DDPM-based works (Giannone et al., 2022; Nichol &
Dhariwal, 2021; Austin et al., 2021; Chen et al., 2023; Kingma et al., 2021; Zhang et al., 2022)
which use datasets with resolution 32 × 32 and 64 × 64. For T2I generation, DomainStudio based
on Stable Diffusion (Rombach et al., 2022) can synthesize images with super-resolution (512 × 512
or 1024 × 1024).

Besides, DomainStudio is trained on individual categories of subjects separately in this paper. In
our experiments, we find that the adapted T2I models can also generate samples in target domains
with other different subjects. Taking Fig. 7 as an example, the adapted models trained with the
text prompt “A car in the [V] style” can produce some high-quality samples with other text prompts
like “A temple in the [V] style.” It indicates that the adapted T2I models generalize the concept of
“the [V] style” across different subjects. However, we find that the generation quality of different
subjects is not stable enough. Therefore, we still recommend independently training adapted models
for the target subject to achieve more stable generation quality. We perceive the stable generalization
of the domains learned from few-shot data across diverse subjects as future work. In addition,
we recommend users to adjust the hyperparameters of the proposed optimization losses to achieve
compelling results for different target domains.

Furthermore, this paper implements conditional DomainStudio based on T2I diffusion models. We
will consider realizing conditional DomainStudio using varieties of prompts based on GLIGEN (Li
et al., 2023) and ControlNet (Zhang & Agrawala, 2023) in future work.

Societal Impact DomainStudio proposed in this work could be applied to provide additional data
for corner cases needed by downstream tasks and improve the efficiency of artistic creation by
synthesizing images containing diverse subjects and sharing similar styles with training samples.
We recognize that DomainStudio has potential risks of being misused to imitate existing works
without permission since it only needs a few samples as training data.

G PERSONALIZATION OF DOMAINSTUDIO

DomainStudio is designed to realize domain-driven generation, which differs from modern subject-
driven approaches like DreamBooth (Ruiz et al., 2023) and Textual Inversion (Gal et al., 2022). In
this section, we further explore the personalization of DomainStudio to satisfy both domain-driven
and subject-driven requests. Given two sets of images as reference for the target subject and domain
respectively, we combine the proposed DomainStudio with DreamBooth to personalize domain-
driven image generation.

The overview of the personalization of DomainStudio is illustrated in Fig. 14. Taking a personalized
cat in the watercolor style as an example, we use text prompts: “a cat”, “a [V] cat”, and “a [V] cat in
the [S] style” corresponding to the source samples, personalized subject, and personalized subject
in the target domain.

We denote the encoded text prompts of source samples, personalized subjects, and personalized
subjects in target domains as csou, csub, and cdom. We have the reconstruction loss for the domain
reference samples x0 ∼ q(x0) and subject reference images x1 ∼ q(x1) as follows:

Ldom
simple = Et,z0

t ,cdom,ϵ0 ||ϵada(z0t , t, cdom)− ϵ0||2, (22)

Lsub
simple = Et,z1

t ,csub,ϵ1 ||ϵada(z
1
t , t, csub)− ϵ1||2, (23)
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Figure 14: Overview of the personalization of DomainStudio. We combine DomainStudio with DreamBooth
to achieve personalized domain-driven image generation.

where z0t and ϵ0 represent the noised compressed latent codes of domain reference samples and
corresponding noises, z1t and ϵ1 represent the noised compressed latent codes of subject reference
samples and corresponding noises, as shown in Fig. 14.

The pairwise similarity loss is computed between personalized subjects and personalized subjects
in target domains. We build probability distributions using batches of denoised latent codes of per-

sonalized subjects
{
z̃1,nada

}N

n=0
and denoised latent codes of personalized subjects in target domains{

z̃0,nada

}N

n=0
as shown in Eq. 24 and 25 and get the image-level pairwise similarity loss as shown in

Eq. 26.

pdomi = sfm(
{
sim(D(z̃0,iada), D(z̃0,jada)

}
∀i ̸=j

), (24)

psubi = sfm(
{
sim(D(z̃1,iada), D(z̃1,jada))

}
∀i ̸=j

), (25)

Lper
img = Et,z0

t ,z
1
t ,ϵ

0,ϵ1

∑
i

DKL(p
dom
i ||psubi ). (26)

Similarly, the probability distributions and pairwise similarity loss for high-frequency components
are defined as Eq. 27, 28, and 29. The high-frequency reconstruction loss between personalized
subjects and personalized subjects in target domains is defined as Eq. 30.

pfdom
i = sfm(

{
sim(hf(D(z̃0,iada)), hf(D(z̃0,jada)))

}
∀i̸=j

), (27)

pfsub
i = sfm(

{
sim(hf(D(z̃1,iada)), hf(D(z̃1,jada)))

}
∀i̸=j

), (28)

Lper
hf = Et,z0

t ,z
1
t ,ϵ

0,ϵ1

∑
i

DKL(pf
dom
i ||pfsub

i ), (29)

Lper
hfmse = Et,z0

t .z
1
t ,ϵ

0,ϵ1 ||hf(D(z̃0ada))− hf(x0)||2. (30)
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Figure 15: Samples produced by the personalization of DomainStudio using different sets of images as refer-
ence.

The overall optimization target of personalized DomainStudio can be expressed as:

Lper = Ldom
simple + Lsub

simple + λ12Lpr + λ2Lper
img + λ3Lper

hf + λ4Lper
hfmse. (31)

We empirically find that the setups of hyperparameters used for T2I adaptation setups (see Sec 3)
also work well for the personalized DomainStudio.

We provide several personalized domain-driven generation samples containing diverse subjects and
styles in Fig. 15. Our approach successfully adapts the personalized subject to target domains under
the guidance of few-shot reference images. For instance, we adapt the reference dog and cat to the
watercolor style (first row of Fig. 15). Besides, we synthesize the reference vase and teapot in Van
Gogh’s style using 10-shot Van Gogh houses as domain reference (second row of Fig. 15). The
reference sloth plushie and dog are adapted to the ink painting style (third row of Fig. 15).

H MORE DETAILS OF IMPLEMENTATION

H.1 GAN-BASED BASELINES

We employ several GAN-based few-shot image generation approaches as baselines for comparison
with the proposed DomainStudio approach. Here we provide more details of these baselines. We
implement all these approaches based on the same codebase of StyleGAN2 (Karras et al., 2020b).
The source models are fine-tuned directly on the few-shot training datasets to realize TGAN (Wang
et al., 2018). TGAN+ADA applies ADA (Karras et al., 2020a) augmentation method to the TGAN
baseline. For FreezeD (Mo et al., 2020), the first 4 high-resolution layers of the discriminator are
frozen following the ablation analysis provided in their work. The results of MineGAN (Wang
et al., 2020), CDC (Ojha et al., 2021), AdAM (Zhao et al., 2022a), and RICK (Zhao et al., 2023)
are produced through their official implementation. As for EWC (Li et al., 2020) and DCL (Zhao
et al., 2022b), we implement these approaches following formulas and parameters in their papers
since there is no official implementation. These GAN-based approaches are designed for generators
(Wang et al., 2020; Li et al., 2020; Ojha et al., 2021; Zhao et al., 2022b;a; 2023) and discriminators
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(Karras et al., 2020a; Mo et al., 2020; Zhao et al., 2022b; 2023) specially and cannot be expanded
to DDPMs directly.

H.2 HAAR WAVELET TRANSFORMATION

Haar wavelet transformation contains four kernels including LLT , LHT , HLT , HHT , where L
and H represent the low and high pass filters, respectively:

LT =
1√
2
[1, 1], HT =

1√
2
[−1, 1]. (32)

Fig. 16 visualizes several examples of Haar wavelet transformation. The low-frequency components
LL contain the fundamental structures of images. High-frequency components including LH, HL,
and HH contain rich details like contours and edges in images.

Figure 16: Visualization of the low and high-frequency components obtained with Haar wavelet transformation
using images from Babies and Sunglasses as examples. LL represents the low-frequency components, and
LH+HL+HH represents the sum of the high-frequency components.

H.3 UNCONDITIONAL DDPMS

We follow the model setups of DDPMs used in prior works (Nichol & Dhariwal, 2021) for LSUN
2562 (Yu et al., 2015) datasets. All the DDPM-based models used in this paper are implemented
based on the same codebase (Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021) and share the
same model structure for fair comparison under different adaptation setups and optimization targets.
All the source and training datasets are modified to the resolution of 256×256. The adapted models
of DomainStudio are trained for 3K-5K iterations with a batch size of 24 on ×8 NVIDIA RTX
A6000 GPUs. We use a max diffusion step T of 1000 and a dropout rate of 0.1. The models are
trained to learn the variance with Lvlb. The Adam optimizer (Kingma & Ba, 2014) is employed to
update the trainable parameters. We set the learning rate as 0.001 and apply the linear noise addition
schedule. Besides, we use half-precision (FP16) binary floating-point format to save memory and
make it possible to use a larger batch size in our experiments (batch size 6 for directly fine-tuned
DDPMs and batch size 3 for DomainStudio per NVIDIA RTX A6000 GPU). All the results produced
by DDPM-based models in this paper follow the sampling process proposed in Ho et al. (2020)
(about 21 hours needed to generate 1000 samples on a single NVIDIA RTX A6000 GPU) without
any fast sampling methods (Song et al., 2021; Zhang et al., 2022; Lu et al., 2022a;b; Zhang & Chen,
2022; Karras et al., 2022). The weight coefficient λ2, λ3, and λ4 are set as 0.5, 0.5, 0.05 for the
quantitative evaluation results of DomainStudio listed in Table 4 and 5.

H.4 T2I DDPMS

The adapted models of DomainStudio are trained for 1200-1500 iterations with a batch size of 4 on
a single NVIDIA RTX A6000 GPU. We follow DreamBooth (Ruiz et al., 2023) to set the learning
rates of DomainStudio ranging from 1e-6 to 5e-6. LoRA (Hu et al., 2021) uses the learning rate of
1e-4 and trains adapted models for 500 iterations. Experiments of DreamBooth and DomainStudio
share the same hyperparameters in training for fair comparison. Textual Inversion (Gal et al., 2022)
sets the learning rate as 5e-4 and trains text prompts for 2K-3K iterations. The image resolution
used for training is 256×256. When predicting the original images with the predicted noises, we
can choose to follow Eq. 3 or to use DDIM (Zhang et al., 2022) sampling method to generate
samples for computing pairwise similarity losses and high-frequency reconstruction losses. DDIM
sampling needs more computational cost and achieves higher-quality samples.
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Figure 17: Samples produced by unconditional DDPMs trained on FFHQ 2562 (Karras et al., 2020b) (300K
iterations) and LSUN Church 2562 (Yu et al., 2015) (250K iterations).

I UNCONDITIONAL SOURCE MODELS

We train DDPMs on FFHQ 2562 (Karras et al., 2020b) and LSUN Church 2562 (Yu et al., 2015)
from scratch for 300K iterations and 250K iterations as source models for DDPM adaptation, which
cost 5 days and 22 hours, 4 days and 22 hours on ×8 NVIDIA RTX A6000 GPUs, respectively.
Samples produced by these two source models can be found in Fig. 17.

Models FFHQ LSUN Church
StyleGAN2 0.6619± 0.0581 0.7144± 0.0537
DDPM 0.6631± 0.05920.6631± 0.05920.6631± 0.0592 0.7153± 0.05130.7153± 0.05130.7153± 0.0513

Table 11: Average pairwise LPIPS (↑) results of 1000 samples produced by StyleGAN2 and DDPMs trained
on FFHQ 2562 and LSUN Church 2562.

We randomly sample 1000 images with these two models to evaluate their generation diversity using
the average pairwise LPIPS (Zhang et al., 2018a) metric, as shown in Table 11. For comparison, we
also evaluate the generation diversity of the source StyleGAN2 (Karras et al., 2020b) models used
by GAN-based baselines (Wang et al., 2018; Karras et al., 2020a; Mo et al., 2020; Wang et al., 2020;
Li et al., 2020; Ojha et al., 2021; Zhao et al., 2022b). DDPMs trained on FFHQ 2562 and LSUN
Church 2562 achieve generation diversity similar to the widely-used StyleGAN2 models.

Models FFHQ LSUN Church
StyleGAN2 7.71 8.09
DDPM 7.007.007.00 6.066.066.06

Table 12: FID (↓) results of StyleGAN2 and DDPMs
trained on FFHQ 2562 and LSUN Church 2562.

Besides, we sample 5000 images to evaluate
the generation quality of the source models us-
ing FID (Heusel et al., 2017). As shown in
Table 12, DDPM-based source models achieve
FID results similar to StyleGAN2 on the source
datasets FFHQ 2562 and LSUN Church 2562.

J INSPIRATION OF DOMAINSTUDIO

J.1 PAIRWISE SIMILARITY LOSS

The proposed pairwise similarity loss designed for DDPMs is mainly inspired by the methods in
contrastive learning (Oord et al., 2018; He et al., 2020; Chen et al., 2020) and CDC (Ojha et al.,
2021), as discussed in Sec. 3.1.

It is worth noting that our approach is different from prior works, which contributes to the novelty of
this work. GAN-based approaches depend on perceptual features in the generator and discriminator
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to compute similarity and probability distributions. As for the proposed DomainStudio approach,
the predicted input images x̃0 calculated in terms of xt and ϵθ(xt, t) (Equation 3) are applied in
replacement of perceptual features used for GANs. Besides, the high-frequency components of x̃0

are applied to pairwise similarity loss calculation for high-frequency details enhancement. Domain-
Studio directly uses image-level information to preserve the relative pairwise distances between
adapted samples and during domain adaptation. Moreover, DomainStudio is compatible with both
unconditional and T2I generation while prior GAN-based methods are totally unconditional.

We tried to use features in diffusion processes (Design A) and images of several diffusion steps
(Design B) for pairwise similarity loss calculation. As shown in Table 13 (FID evaluation on FFHQ
→ Sunglasses, Intra-LPIPS evaluation on 10-shot FFHQ → Sunglasses), the proposed loss design
using image-level information directly is simple, effective, inexpensive, and achieves the best quality
and diversity. Here we do not include high-frequency details enhancement for fair comparison.

Method FID (↓) Intra-LPIPS (↑) Time / 1K iterations (↓)
Ours 37.9237.9237.92 0.59± 0.020.59± 0.020.59± 0.02 34min34min34min
Design A 40.30 0.55± 0.03 52min
Design B 58.28 0.57± 0.06 38min

Table 13: Quantitative evaluation comparison between different designs for the pairwise similarity loss.

Figure 18: Samples synthesized by CDC (Ojha et al., 2021) using image-level information on 10-shot FFHQ
→ Sunglasses and FFHQ → Babies.

As illustrated in Sec. 4, DomainStudio synthesizes more realistic images with fewer blurs and
artifacts and achieves better generation diversity than current state-of-the-art GAN-based approaches
(Ojha et al., 2021; Zhao et al., 2022b). We also try to use image-level information to replace the
perceptual features for the GAN-based approach CDC (Ojha et al., 2021). However, we fail to
avoid generating artifacts or achieve higher generation quality, as shown in Fig. 18. The proposed
image-level pairwise similarity loss matches better with DDPMs than GANs.

J.2 HIGH-FREQUENCY RECONSTRUCTION LOSS

DDPMs learn target distributions mainly through mean values of predicted noises using the
reweighted loss function (Equation 1). As a result, it is hard for DDPMs to learn high-frequency
distributions from limited data, as shown in the smooth samples produced by models trained on
limited data from scratch in Fig. 10. Therefore, we propose Lhfmse to strengthen the learning of
high-frequency details from limited data during domain adaptation.

J.3 PRIOR PRESERVATION LOSS IN DOMAINSTUDIO

For unconditional image generation, we directly use samples produced from source models as refer-
ence to keep the diversity of adapted samples. For T2I generation, we employ the prior preservation
loss proposed in DreamBooth (Ruiz et al., 2023) to avoid overfitting of source prompts (e.g., “a
house”), based on which DomainStudio guides adapted models to maintain the diversity of subjects
in adapted samples. In the training process, the original Stable Diffusion model (Rombach et al.,
2022) is employed to generate source samples before fine-tuning adapted models. When fine-tuning
adapted models, the original models are no longer needed. The prior preservation loss is equivalent
to the reconstruction loss of source samples. Both source and adapted samples used for pairwise
similarity losses (Eq. 7 and 12) computation are produced by adapted models with different text
prompts. As a result, only adapted models are needed during the fine-tuning process, which saves
GPU memory occupancy and improves training efficiency.
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Figure 19: Samples produced by DomainStudio trained for different iterations on 10-shot FFHQ → Babies.
All the visualized samples of different models are synthesized from fixed noise inputs.

J.4 FULL APPROACH

Prior GAN-based approaches like CDC (Ojha et al., 2021) and DCL (Zhao et al., 2022b) aim to
build a one-to-one correspondence between source and adapted samples. However, DomainStudio
focuses on maintaining the distributions of subjects in source samples and generating realistic and
diverse results following target distributions. Building one-to-one correspondences between source
and adapted samples is not the first consideration of DomainStudio. As illustrated in Sec. 3, since
we cannot build cross-domain correspondence with fixed noise inputs due to different conditions,
we directly use randomly denoised samples to build probability distributions for T2I generation and
also achieve diverse and high-quality results. Besides, the high-frequency reconstruction loss (Eq.
13 and 14) also influences the one-to-one correspondence between source and adapted samples.

K DDPM ADAPTATION PROCESS ANALYSIS

This paper concentrates on the challenging few-shot generation tasks. When fine-tuning pre-trained
DDPMs on target domains using limited data directly, too many iterations lead to overfitting and
seriously degraded diversity. Fine-tuned models trained for about 10K iterations almost exclusively
focus on replicating the training samples. Therefore, we train the directly fine-tuned DDPMs for
3K-4K iterations to adapt source models to target domains and maintain diversity. However, the
directly fine-tuned DDPMs still generate coarse samples lacking details.

In Fig. 19, we provide samples produced by DomainStudio trained for different iterations on 10-
shot FFHQ → Babies. We apply fixed noise inputs to different models for comparison. As the
iterations increase, the styles of the generated images become closer to the training samples. Images
synthesized from the same noise inputs as Fig. 20 are included in red boxes. In addition, the
detailed evaluation of cosine similarity is added in Fig. 21. The source samples are adapted to the
target domain while keeping relatively stable cosine similarity. Compared with the directly fine-
tuned DDPMs, DomainStudio has a stronger ability to maintain generation diversity and achieve
realistic results containing rich details. Nonetheless, too many iterations still lead to the replication
of training samples. Therefore, we recommend choosing suitable iterations for different adaptation
setups (e.g., 4K-5K iterations for 10-shot FFHQ → Babies) to adapt the pre-trained models to target
domains naturally and guarantee the high quality and great diversity of generated samples.
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Figure 20: Two samples synthesized from fixed noise inputs by the directly fine-tuned DDPM on 10-shot FFHQ
→ Babies become more and more similar throughout training, as shown by the increasing cosine similarity
computed with RGB values.

Figure 21: Two samples synthesized from fixed noise inputs by DomainStudio on 10-shot FFHQ → Babies.
DomainStudio keeps the relative pairwise distances during domain adaptation and achieves diverse results
containing high-frequency details.

L ADDITIONAL COMPARISON WITH RELATED WORKS

Moon et al. (2022) investigates unconditional DDPMs fine-tuned with 800-1K images, which is a
lot more than our work. In addition, we also explore DDPMs trained from scratch with extremely
limited data.

ZADIS (Sohn et al., 2023b) and StyleDrop (Sohn et al., 2023a) are contemporary to this paper
and share similar targets with the proposed DomainStudio approach. ZADIS is based on MaskGIT
(Chang et al., 2022) and learns visual prompts for target domains/styles. In this way, ZADIS realizes
compositional image synthesis with disentangled prompts for style and subjects. StyleDrop is based
on MUSE (Chang et al., 2023) and synthesizes images with user-provided styles using reference im-
ages and descriptive style descriptors for training under the guidance of CLIP (Radford et al., 2021)
scores and human feedback. DomainStudio is designed for DDPMs and compatible with typical
unconditional DDPMs (Sohl-Dickstein et al., 2015; Ho et al., 2020) and modern large T2I models
like Stable Diffusion (Rombach et al., 2022). DomainStudio aims to learn the domain knowledge
from training samples, which may be artistic styles or properties like sunglasses. In addition, Do-
mainStudio is also qualified for personalized domain-driven generation, as shown in Appendix G. In
addition, Custom Diffusion (Kumari et al., 2023) also provides some examples of learning artistic
styles. As shown in their paper, Custom Diffusion tends to combine the instances in style reference
images with target instances mentioned in text prompts directly like Textual Inversion (Gal et al.,
2022) and DreamBooth (Ruiz et al., 2023). When learning both styles and concepts, Custom Dif-
fusion fails to preserve key features of learned concepts or adapt learned concepts to target styles
naturally. The personalized DomainStudio approach achieves apparently better results.

M ADDITIONAL VISUALIZED SAMPLES

Unconditional Image Generation We show all the 10-shot datasets used in this paper for uncon-
ditional few-shot image generation tasks in Fig. 22, including 4 target domains corresponding to
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Figure 22: All the 10-shot datasets used for unconditional image generation, including 4 target domains corre-
sponding to FFHQ and 2 target domains corresponding to LSUN Church.

Figure 23: Unconditional image generation samples comparison between DomainStudio and directly fine-tuned
models.

the source datasets FFHQ (Karras et al., 2020b) and 2 target domains corresponding to the source
datasets LSUN Church (Yu et al., 2015).

We visualize the samples of DomainStudio on 10-shot FFHQ → Babies, FFHQ → Sketches, and
LSUN Church → Haunted houses in the bottom row of Fig. 23. DomainStudio produces more
diverse samples containing richer high-frequency details than directly fine-tuned DDPMs. For ex-
ample, DomainStudio generates babies with various detailed hairstyles and facial features.

Besides, we provide image generation samples of GAN-based baselines and DDPM-based ap-
proaches on 10-shot FFHQ → Sunglasses, FFHQ → Babies, FFHQ → Raphael’s paintings, and
LSUN Church → Landscape drawings in Fig. 24 26, 27, and 28 as supplements to Fig. 5. All
the samples of GAN-based approaches are synthesized from fixed noise inputs (rows 1-9). Sam-
ples of the directly fine-tuned DDPM and DomainStudio are synthesized from fixed noise inputs
as well (rows 10-11). DDPMs are more stable and less vulnerable to overfitting than GANs. Di-
rectly fine-tuned GANs easily overfit and tend to generate samples similar to training samples when
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Figure 24: 10-shot unconditional image generation samples on FFHQ → Sunglasses.

Figure 25: 10-shot unconditional image generation samples of DomainStudio compared with AdAM and RICK
on FFHQ → Sunglasses. Samples of AdAM and RICK are directly borrowed from the publications.

training data is limited (see samples of TGAN (Wang et al., 2018)). Directly fine-tuned DDPMs
can still keep a measure of generation diversity under the same conditions. Besides, DDPM-based
approaches relieve the generation of blurs and artifacts. However, directly fine-tuned DDPMs tend
to produce too smooth results lacking high-frequency details and still face diversity degradation.
DomainStudio generates more realistic results containing richer high-frequency details than GAN-
based baselines under all these unconditional adaptation setups. We further provide comparison
between our approach and visualized samples provided in AdAM (Zhao et al., 2022a) and RICK
Zhao et al. (2023) in Fig. 25. We find incomplete structures of sunglasses and unnatural blurs and
artifacts in the background and human faces in the samples of AdAM and RICK. DomainStudio
avoids these problems and achieves better visual effects.
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Figure 26: 10-shot unconditional image generation samples on FFHQ → Babies.

When the source and training samples are unrelated in unconditional image generation, Domain-
Studio is designed to preserve the subjects in source samples, leading to a target different from
GAN-based few-shot image generation methods. As shown by the adaptation of LSUN Church →
Landscape drawings in Fig. 28, DomainStudio preserves diverse church structures and adapts them
to the style of landscape drawings. GAN-based baselines fail to adapt to the target domain naturally,
resulting in low-quality samples full of blurs and artifacts.

T2I Generation As illustrated in Sec. 4, DomainStudio is capable of adapting the subjects prompted
in text prompts to the style of few-shot training samples. However, baselines like DreamBooth (Ruiz
et al., 2023) and Textual Inversion (Gal et al., 2022) fail to produce reasonable adapted samples.
Similar phenomena can be found for baselines trained on 10-shot Wrecked cars and 4-shot Water-
color paintings, as shown in Fig. 29 and 30. Textual Inversion synthesizes car samples with text
prompts of train or house. DreamBooth overfits and generates samples similar to few-shot data. It
generates train and house samples containing wrecked cars instead of wrecked trains and houses
like DomainStudio. In addition, we add “haunted” samples containing subjects including houses,
temples, cars, and buses produced by adapted models trained through DomainStudio using 10-shot
Haunted houses as training data in Fig. 31. We employ LoRA (Hu et al., 2021) as another baseline
and provide the qualitative results in Fig. 32. LoRA also suffers from overfitting or underfitting in
domain-driven generation like DreamBooth.

Fig. 33 shows the results of DomainStudio on T2I generation using a single image as training data.
It’s hard to define the target domain accurately with a single image. We recommend using 4-10
images to realize diverse, high-quality, and stable domain-driven T2I generation.
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Figure 27: 10-shot unconditional image generation samples on FFHQ → Raphael’s paintings.

N COMPUTATIONAL COST

Unconditional DDPMs The computational cost of unconditional DDPMs and DomainStudio ap-
proach are listed in Table 14. DomainStudio costs 24.14% more training time than the original
unconditional DDPMs. DDPMs trained from scratch need about 40K iterations to achieve reason-
able results, even if they can only replicate the training samples. DomainStudio utilizes models
pre-trained on related source datasets to accelerate convergence (about 3K-5K iterations) and sig-
nificantly improve generation quality and diversity. Compared with directly fine-tuned DDPMs,
DomainStudio is not overly time-consuming and achieves more realistic results.

T2I DDPMs Here we only count the time of fine-tuning models. The computational cost of gen-
erating source samples is not included. The computational cost of LoRA Hu et al. (2021), Textual
Inversion (Gal et al., 2022), DreamBooth (Ruiz et al., 2023), and DomainStudio on T2I generation
are listed in Table 15. DomainStudio needs image-level information during training, while Dream-
Booth only needs latent-level computation. It makes DomainStudio more time-consuming. How-
ever, DomainStudio tackles a different task of domain-driven generation and achieves compelling
results with acceptable computational cost. Building pairwise similarity losses based on the latent
space may be a promising direction to accelerate the training of DomainStudio on T2I models.
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Figure 28: 10-shot unconditional image generation samples on LSUN Church → Landscape drawings.

Figure 29: Qualitative comparison of domain-driven T2I generation trained on 10-shot Wrecked cars.

Approaches Time Cost
DDPMs 29 min
DomainStudio 36 min

Table 14: The time cost of directly fine-
tuning and DomainStudio trained for 1K it-
erations on ×8 NVIDIA RTX A6000 GPUs
(image resolution: 256× 256).

Approaches Time Cost
LoRA (Hu et al., 2021) 4 min
Textual Inversion (Gal et al., 2022) 22 min
DreamBooth (Ruiz et al., 2023) 7 min
DomainStudio 15 min

Table 15: The time cost of Textual Inversion, DreamBooth,
and DomainStudio trained for 1K iterations on a single
NVIDIA RTX A6000 GPU (image resolution: 256× 256).
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Figure 30: Qualitative comparison of domain-driven T2I generation trained on 4-shot Watercolor paintings.

Figure 31: Visualized samples of DomainStudio trained on 10-shot Haunted houses.

Figure 32: Qualitative comparison between LoRA, DreamBooth, and DomainStudio.
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Figure 33: 1-shot T2I generation samples of DomainStudio using different source samples.
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