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ABSTRACT

The transferability of deep neural networks (DNNs) has made significant progress
in image and language processing. However, due to the heterogeneity among ta-
bles, such DNN bonus is still far from being well exploited on tabular data predic-
tion (e.g., regression or classification tasks). Condensing knowledge from diverse
domains, language models (LMs) possess the capability to comprehend feature
names from various tables, potentially serving as versatile learners in transferring
knowledge across distinct tables and diverse prediction tasks, but their discrete text
representation space is inherently incompatible with numerical feature values in
tables. In this paper, we present TP-BERTa, a specifically pre-trained LM for tab-
ular data prediction. Concretely, a novel relative magnitude tokenization converts
scalar numerical feature values to finely discrete, high-dimensional tokens, and
an intra-feature attention approach integrates feature values with the correspond-
ing feature names. Comprehensive experiments demonstrate that our pre-trained
TP-BERTa leads the performance among tabular DNNs and is competitive with
Gradient Boosted Decision Tree models in typical tabular data regime.

1 INTRODUCTION

Tabular data, a common data form, is pivotal in various fields such as medical trial predictions (Has-
san et al., 2020) and financial risk detection (Aziz et al., 2022). The remarkable successes of deep
neural networks (DNNs) in computer vision (CV) and natural language processing (NLP) have
spurred interest in applying DNNs to tabular data for tasks like classification or regression (Popov
et al., 2020; Song et al., 2019; Wang et al., 2021; Chen et al., 2023b), which also pave the road for
cross-modality processing. However, most current research on tabular data relies on fully super-
vised paradigms (Arik & Pfister, 2021; Gorishniy et al., 2021; Somepalli et al., 2022; Li et al., 2023;
Hollmann et al., 2023), and with typically limited data available for DNNs in this regime, Gradient
Boosted Decision Trees (GBDTs) (Chen & Guestrin, 2016; Ke et al., 2017; Prokhorenkova et al.,
2018) continue to outperform these paradigms (Grinsztajn et al., 2022).

As widely evidenced in the CV and NLP fields, the transferability of DNNs consistently brought
about substantial performance boosts and decreased data demands in downstream tasks (Devlin
et al., 2018; Xie et al., 2020; He et al., 2020). However, how to utilize the transferability of DNNs
on tabular data is still much under-explored. One major obstacle is the feature heterogeneity among
tables (Borisov et al., 2022; Yan et al., 2023; Chen et al., 2022). Unlike images, which often exhibit
similar feature distributions (e.g., consistent pixel intensity ranges and color distributions) (Chen
et al., 2023a), structured tables inherently contain diverse columns and feature spaces, leading to
considerable heterogeneity and feature space shifts between pre-training and downstream datasets.

Related Work. Recent studies highlight the importance of tabular transfer learning, with initial
efforts like TransTab (Wang & Sun, 2022) and XTab (Zhu et al., 2023) utilizing shared Transformer
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blocks in the FT-Transformer architecture (Gorishniy et al., 2021) for cross-table learning. TransTab
focused on clinical trial tables with common feature names, facilitating partially overlapped feature
embeddings, whereas XTab explored a broader domain with dataset-specific encoders. However,
neither achieved comprehensive knowledge transfer, resulting in moderate pre-training performance.
The advancements in language models (LMs) have demonstrated their capability to act as common-
sense knowledge bases (Petroni et al., 2019; Jiang et al., 2020; Gao et al., 2021; Zha et al., 2023).
Through self-supervised pre-training on extensive domain-agnostic corpora, LMs can implicitly cap-
ture associations among different words or phrases, showcasing potential as tabular transfer agents
with their inherent support for feature name processing within a unified language space. Despite
this potential, early attempts of applying LMs to tabular prediction were limited to synthetic table
generation (e.g., missing value imputation) and faced challenges. GReaT (Borisov et al., 2023)
and TapTap (Zhang et al., 2023) fine-tuned GPT-2 (Radford et al., 2019) on simply templated ta-
ble texts, treating numerical values as strings, which led to insensitivity to such values (Qian et al.,
2023). A contemporary work (Ye et al., 2024) developed a BERT-based model (CT-BERT) using
a large tabular database and similar techniques to TransTab. However, these studies overlooked the
customization of LMs for understanding continuous numerical values, which is a critical aspect of
tables and presents challenges to LMs due to their inherent complexity and rarity (Qian et al., 2023).

To unlock LMs’ power and take a pioneering step on LM-based tabular transfer learning, in this
paper, we propose a tailored pre-trained LM for tabular prediction based on RoBERTa (Liu et al.,
2019), called the Tabular Prediction adapted BERT approach (TP-BERTa). TP-BERTa maintains
the strengths of LMs as well as possessing the sensitivity to numeric features. Specifically, TP-
BERTa discretizes numerical feature values as relative magnitude tokens (RMT) in order to treat
them as some meaningful words in the LM’s vocabulary. The design of relative magnitude tokens
enables the LM to perceive relative value magnitudes in the language space. In this way, we decouple
the representations of feature names and numerical values (compared to FT-Transformer, TransTab,
and CT-BERT), preserving the semantic signal of feature names. Further, we develop a shared intra-
feature attention (IFA) module to attentively fuse the embeddings of a feature’s name and value into
a single vector. IFA retains the text order in a feature name, and outputs a vector for each feature
name-value pair to the subsequent LM process to achieve feature order-agnostic prediction.

We pre-train TP-BERTa on numerous large tabular datasets (101 binary classification and 101 re-
gression datasets), and provide three versions (i.e., pre-trained on only classification tasks, or only
regression tasks, or both). We conduct evaluations on extensive downstream datasets: (1) perfor-
mance comparison with classical GBDTs, advanced deep tabular models, and cross-table models
shows that our TP-BERTa (the pre-trained versions on a single task type, with default hyperparam-
eters) outperforms the other tabular DNNs and is competitive with GBDTs in the overall rank on
145 downstream datasets; (2) comparison with two existing numerical encoding strategies (Borisov
et al., 2023; Ye et al., 2024) shows that our RMT adaption achieves average AUC improvements
of 12.45% and 3.44% on significantly changed (i.e., with AUC variation over 0.5%) downstream
binary classification datasets, respectively; (3) ablation on table-specific designs for LM adaption.

Contributions. In a nutshell, our work offers: (1) A pre-trained LM for tabular data: dealing
with fundamental difficulties in LM adaption to tabular data (i.e., numeric feature handling and tab-
ular feature organization), we develop LM-based tabular DNNs and pre-train a tabular-data-tailored
LM called TP-BERTa; (2) superior performances: comparisons with various existing methods on
145 downstream datasets demonstrate that pre-trained LMs can outperform common tabular DNNs
and are competitive with GBDTs in typical tabular regime; (3) in-depth analysis: multi-facet com-
parison implies that TP-BERTa has a data appetite of informative discrete features, and key ablation
experiments show that our RMT and IFA adaptions are successful.

2 TP-BERTA: TABULAR PREDICTION ADAPTED BERT APPROACH

Our proposed TP-BERTa is built on the basis of RoBERTa (Liu et al., 2019) as default. Its model
architecture and key components (the relative magnitude tokenization approach and intra-feature
attention module) are shown in Fig. 1. Below we introduce our novel (i) relative magnitude to-
kenization (RMT) for numerical value representation, (ii) intra-feature attention (IFA) module for
feature name-value matching before the LM processing, and (iii) the overall pre-training paradigm.
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2.1 RELATIVE MAGNITUDE TOKENIZATION

Tabular features can be roughly categorized into continuous type (i.e., numerical features) and dis-
crete type (categorical, binary, or string features). Although discrete feature values with clear seman-
tics (e.g., “male” and “female” are values of a discrete feature “gender”) can be naturally understood
by LMs, it is still difficult to make numerical features fully understandable to LMs due to their wide
range of values and counter-intuitive meanings of exact numerical values. In this section, we present
a novel Relative Magnitude Tokenization (RMT) approach to boost numerical value understanding.

Numerical Discretization. Our RMT process is inspired by classical works on feature binning
(Dougherty et al., 1995; Gorishniy et al., 2022) that utilized discretization techniques for numerical
features. To deal with diverse labeled tabular datasets, we adopt a target-aware binning method
similar to (Gorishniy et al., 2022). Specifically, the “C4.5 Discretization” algorithm (Kohavi &
Sahami, 1996) is applied to each numerical feature by recursively splitting its value range guided by
its label. This process is equivalent to building a decision tree, and continuous values are grouped
into corresponding tree leaves. The boundary values of all the leaves are used to split the value range
into multiple bins. Each numerical value is converted to its bin index after discretization, as:

e(i) = C4.5(x(i),train,y(i),train), (1)

BinIndex(x(i)
j ) ≡ k, (2)

where x(i),train is the vector of the i-th numerical feature values in the training set, y(i),train is the
corresponding labels, e(i) denotes the vector of leaf node boundary values (in ascending order), x(i)

j

is the i-th feature value of sample j, and k is its bin index if e(i)k ≤ x
(i)
j < e

(i)
k+1. In TP-BERTa, we set

the maximum numerical bin (magnitude token) number (denoted as nbin) to 256 (i.e., 0 ≤ k < 256),
unless otherwise specified. A bin index represents a relative magnitude in the value range.

Magnitude Tokenization. To transform numerical values into the language space, we treat the
numerical bins as new words. Specifically, nbin additional tokens are added to the RoBERTa vo-
cabulary with randomly initialized token embeddings. Each numerical value is discretized with a
feature-specific C4.5 process and mapped to these shared magnitude tokens. Since there may be a
large number of values in a single numerical bin, the final token embedding of a numerical value is its
corresponding bin token embedding multiplied with the value itself, i.e., RMT(x(i)

j ) ≡ Eextra
:,k ×x

(i)
j ,

where Eextra
:,k denotes the k-th embedding of the RoBERTa additional vocabulary for the numeri-

cal magnitude. These embeddings are shared across any numerical features or datasets that purely
represent relative magnitudes with word vectors. Just as LMs show general capability of language
modeling based on reasonable pair-wise word similarity, we seek to make the designed “magni-
tude embeddings” follow a similar relationship. Hence, we devise a magnitude-aware triplet loss to
regularize the learning process of the magnitude embeddings. We formulate the regularization as:

Lreg = max(d(f(k1), f(k2))− d(f(k1), f(k3)) +m(k1, k2, k3), 0),

s.t. | k1 − k2 | < | k1 − k3 |, (3)

f(k) = LayerNorm(Linear(Eextra
:,k )), (4)

m(k1, k2, k3) =
| k1 − k3 | − | k1 − k2 |

nbin
, (5)

where k1, k2, and k3 are three bin indices, and d(x,y) is the L2 distance between vectors x and y.
In a nutshell, this regularization process assists to pull the embedding of a bin close to the embedding
of a nearby one, while pushing away from the embedding of a bin far away from it, serving as an
auxiliary loss to help embedding learning for magnitude tokens.

Tabular Feature Pre-processing. A tabular sample may contain features of different types. We
process each feature i by simply concatenating the embeddings of its feature name (Ename

i ∈ Rl1×d)
and value (Evalue

i ∈ Rl2×d), i.e., Ei = Ename
i ⊗ Evalue

i , where d is the hidden dimension of the
RoBERTa embeddings, l1 is the token length of the feature name, and l2 is the length of the feature
value. Notably, l2 ≡ 1 for numerical features. As for categorical features, we convert their values
into structured texts (e.g., value “0” of the feature “gender” is mapped to “male”). Note that we do
not distinguish binary and categorical ones in this paper since they are both converted to meaningful
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Figure 1: Illustrating the TP-BERTa workflow. “BP” in the input table denotes the feature name
text “blood pressure”. The rectangles with “B”, “P”, and “Gender” (“G”) represent word embed-
ding of “blood”, “pressure”, and “gender”, respectively. In the RMT process, numerical values are
discretized by the feature-specific C4.5 decision tree. In the IFA process, “MT#i” indicates the i-th
magnitude token. All numerical features share these MT embeddings for magnitude representation.
“MHSA” is a shared multi-head self-attention across all features for feature refinement.

texts. Some datasets contain string features, such as a feature “movie comment” with unstructured
texts. We process the values of these feature types in the same way as for feature names.

2.2 INTRA-FEATURE ATTENTION MODULE

Previous attempts of using LMs to process tables still face three lingering issues. (1) Targets in tab-
ular predictions are independent of feature permutations, while LMs inherently process texts with
positional encoding since positions of linguistic units matter. (2) When we simply feed all fea-
ture values with names into a vanilla LM (e.g., “[Gender] is female, [Blood Pressure] is 123.8”), it
likely increases the training difficulty of LMs since they have to understand the correctly matched
name-value pairs of features and learn to alleviate interference from other features. However, fully
connected attention mechanism (commonly adopted in auto-encoder LMs) makes it inevitable to
generate mismatched name-value signal. (3) Feeding the whole templated text can incur compu-
tation burden caused by excessively long sequences when the feature amount is large. Recently, a
solution was given for issue (1) by augmenting a sample with copies of different feature permuta-
tions (Borisov et al., 2023), and position encoding was directly dropped and text order of feature
names was ignored (Ye et al., 2024). But, they all neglected issues (2) and (3). Hence, we develop
the intra-feature attention (IFA) module for feature refinement before feeding features to the LM.

IFA is essentially a single multi-head self-attention (MHSA) module shared across all features and
datasets. It accepts embeddings of a feature name-value pair and fuses them into a single vector. We
formulate the process of IFA fusion on a single feature i as:

H(i) = eCLS ⊗E(i), (6)

Q(i) = W T
q (H

(i) + P (i)), K(i) = W T
k (H

(i) + P (i)), V (i) = W T
v H

(i), (7)

Ĥ(i) = MHSA(Q(i),K(i),V (i)), ĥ(i) ≡ Ĥ
(i)
:,Index(CLS), (8)

where E(i) ∈ R(l1+l2)×d is concatenation of name-value embeddings, eCLS ∈ R1×d is the [CLS]
embedding, Wq,Wk, and Wv ∈ Rd×d are transformations for query, key, and value vectors, and
P (i) ∈ R(1+l1+l2)×d is position embeddings. IFA uses the output vector at the [CLS] position
ĥ(i) as refined feature information and feeds it to the subsequent RoBERTa. It can be clearly seen
that information from both the name and value is included in ĥ(i), and information from other
feature names or values cannot corrupt feature i’s representation. As shown in Fig. 1(IFA process),
the positions of the [CLS] token and magnitude token are assigned to id 0, and those of feature
names are from 1 to l1. This design aims to make the [CLS] token pay more attention to values
(which are probably more important for prediction) as well as keeping the text order of feature
names. Notably, we remove position encoding on value vectors (see Eq. (7)); the key reason for
this is to protect magnitude token embeddings from the impact of embeddings at a constant id
position (e.g., position id 0). Since magnitude embeddings are randomly initialized and intentionally
regularized to represent the meaning of the relative magnitude carefully, a constant signal may distort
the representations and thus make the embedding learning process more difficult.
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2.3 OVERALL TRAINING PARADIGM

After features are processed by the IFA module, an n-feature sample is organized as the concatena-
tion of feature vectors and a [CLS] embedding to be the RoBERTa input, i.e., X ≡ eCLS⊗ĥ1⊗ĥ2⊗
· · ·⊗ ĥn ∈ R(1+n)×d, which is computation-friendly. Since the text order of feature names has been
considered in ĥi, we can avoid position encoding in this step, and achieve feature order-agnostic
prediction. The prediction is based on the [CLS] output of the RoBERTa-Encoder, as:

ŷm = PredictionHead(m)(RoBERTa-Encoder(X(m)):,Index(CLS)), (9)
PredictionHead(x) = Dropout(Linear1(Tanh(Linear2(x)))), (10)

where X(m) represents the input from the m-th task (dataset), and we use task-specific prediction
heads PredictionHead(m), the shared RoBERTa, and the IFA module (constituting TP-BERTa) to
perform supervised pre-training on extensively large tabular datasets. The final pre-training loss
consists of supervised loss and regularization loss (see Eq. (3)), as:

L = Lsup + λLreg, (11)

where for the supervised loss Lsup, we use binary cross entropy loss for binary classification tasks
and mean squared error loss for regression tasks. We keep a constant weight λ ≡ 0.1 in pre-
training. For downstream tasks, ordinary finetune is adopted only with Lsup. We exclude multi-class
datasets in this work as in (Grinsztajn et al., 2022), for the reasons: (1) they can be decomposed into
multiple binary classification tasks, (2) the trends on binary classification can essentially reflect the
classification ability, and (3) multi-class datasets are not very common in tabular dataset collections.

3 EXPERIMENTS

We first compare our TP-BERTa with classical and advanced tabular prediction models, including
(1) the dominating GBDTs, (2) advanced deep tabular models, and (3) recent open-source cross-
table models or pre-trained tabular models. We utilize extensive downstream datasets, and analyze
the huge potential of our pre-trained LM, TP-BERTa, as a powerful tabular prediction learner from
the data perspective (Sec. 3.2). Based on that, we further demonstrate how the encoding strategy of
numerical values impacts the LMs’ performances, and discuss why they were neglected in previous
tabular prediction research (Sec. 3.3). Transferability evaluations (Sec. 3.4) and design ablations
(Sec. 3.5) are conducted to reflect the generalization capability and rational adaption of TP-BERTa.

3.1 EXPERIMENTAL DETAILS

Datasets. We leverage the high-quality large semantic tabular database TabPertNet (Ye et al., 2024).
Datasets with at least 10,000 samples and no more than 32 features are taken for pre-training, and
datasets with fewer than 10,000 samples are collected as downstream tasks (following the same “typ-
ical tabular data” settings of “medium-sized dataset regime” and “not high dimensional” in (Grin-
sztajn et al., 2022)). We strictly remove the same datasets in the database and make sure that no
subset of pre-training datasets (e.g., a small version of a large dataset) appears in the downstream
ones. Since LMs are fueled by meaningful texts, we manually exclude datasets with uninformative
feature names (e.g., feature names like “v1, v2, x1, x2”) or unmappable categorical features (e.g.,
a feature “job” with values “0, 1, 2”). Note that those excluded datasets can still benefit from our
model with simple feature preprocessing with their corresponding data dictionaries. In total, our
pre-training datasets consist of 101 binary classification datasets and 101 regression datasets with
about 10 million samples, and our downstream datasets consist of 80 binary classification datasets
and 65 regression datasets. Detailed dataset statistics are provided in Appendix B.

Pre-training Details. Since our work does not focus on the curriculum learning issue, we warp all
the datasets into a large data-loader, which provides a data batch from a randomly selected dataset
per training step. Each dataset is learned with a dataset-specific prediction head and the shared TP-
BERTa (see Sec. 2.3). Because the massive LM is likely to overfit a single dataset, we use 5% of
the training data as the validation set. For binary classification, we keep the same label distributions
for the training set and validation set. Pre-training is conducted on four NVIDIA A100 Tensor Core
GPUs, with a total batch size of 512 per step. We reuse the weights of the RoBERTa-base as the
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Table 1: The average values (standard deviations) of all method ranks on the dataset collections of
two task types. “(d)” in the “Baselines” means using default hyperparameters, and “(t)” for using
tuned ones. “Oursj” is TP-BERTa pre-trained on both binary classification and regression tasks, and
“Ourss” contains two models pre-trained on the corresponding single-type tasks separately. “All”
denotes rank information calculated on all the datasets, α is the amount ratio of categorical features
and numerical ones in a dataset, and β is the ratio of the Shapley value sums between the two feature
types. α or β provides a reference on the dominating feature type in tabular data: “α ≥ 1” represents
that only the datasets with their α ≥ 1 are considered (similar denotations are for the others). The
top performances are marked in bold, and the second best ones are underlined. We present feature
type distribution statistics, α and β formulation, and the original performances in Appendix B.

Baselines 80 downstream binary classification tasks 65 downstream regression tasks
All α > 0 α ≥ 1 α = 0 β > 0 β > 0.5 All α > 0 α ≥ 1 α = 0 β > 0 β > 0.5

XGBoost(d) 7.7(4.0) 7.8(4.1) 9.2(4.0) 6.8(3.5) 8.2(4.1) 8.3(3.9) 7.7(4.4) 7.7(4.6) 7.3(4.1) 7.8(4.0) 8.0(4.7) 9.2(4.3)
CatBoost(d) 6.7(4.1) 6.8(4.0) 7.4(4.0) 6.0(4.6) 7.0(4.1) 6.8(4.2) 5.5(2.7) 5.5(2.6) 5.5(2.7) 5.6(3.0) 5.5(2.7) 5.8(3.2)
FTT(d) 7.1(3.5) 7.0(3.5) 6.6(3.5) 6.9(3.6) 6.9(3.6) 7.2(3.6) 7.8(2.7) 7.8(2.5) 8.2(3.0) 7.6(3.2) 8.0(2.6) 8.3(1.3)
TransTab(d) 11.0(4.5) 11.2(4.5) 11.2(4.1) 10.2(4.6) 11.6(4.3) 11.7(4.2) 12.1(4.0) 12.1(3.8) 13.3(2.2) 12.4(4.5) 12.0(4.0) 13.6(1.2)

XGBoost(t) 6.2(4.1) 6.3(4.1) 6.5(4.3) 5.9(4.2) 6.5(4.2) 6.7(4.5) 4.5(3.7) 4.3(3.8) 3.3(3.3) 5.0(3.5) 4.7(3.9) 4.1(3.2)
CatBoost(t) 5.9(3.8) 6.3(3.9) 7.1(4.1) 4.9(3.1) 6.4(3.9) 6.4(4.1) 5.5(3.6) 5.7(3.6) 5.8(3.5) 4.9(3.7) 5.7(3.7) 6.1(3.8)
MLP(t) 8.6(4.0) 8.9(3.9) 8.7(4.1) 8.5(4.1) 8.5(3.9) 8.3(4.1) 8.5(3.6) 8.8(3.4) 9.3(3.2) 7.6(4.1) 9.0(3.4) 7.5(3.8)
AutoInt(t) 8.0(3.5) 7.8(3.3) 7.4(3.4) 8.6(4.0) 7.7(3.4) 7.7(3.2) 8.3(3.0) 8.6(3.0) 8.5(2.7) 7.4(3.1) 8.3(3.0) 8.2(3.2)
DCNv2(t) 7.9(3.9) 8.0(3.9) 8.4(3.8) 7.9(4.0) 7.7(3.9) 8.8(3.3) 8.4(3.4) 8.4(3.5) 8.5(3.1) 8.5(3.2) 8.4(3.5) 7.2(3.5)
TabNet(t) 12.1(3.5) 12.4(3.3) 12.7(2.7) 11.5(4.2) 12.3(3.4) 12.3(3.8) 12.6(3.6) 13.2(2.6) 13.1(2.4) 10.5(5.1) 13.5(1.9) 14.1(1.4)
SAINT(t) 8.2(3.8) 8.0(3.7) 8.1(4.1) 8.7(4.2) 7.9(3.8) 7.5(3.9) 7.6(3.8) 7.3(3.9) 7.7(3.3) 8.4(3.7) 6.6(3.6) 7.2(3.0)
FTT(t) 6.8(3.5) 6.8(3.6) 6.5(3.4) 6.2(3.3) 6.9(3.6) 6.9(3.9) 7.9(3.4) 7.6(3.3) 7.7(3.1) 9.0(3.4) 7.2(3.0) 6.8(3.2)
XTab(t) 9.8(4.0) 9.7(4.0) 8.9(3.8) 10.5(4.1) 9.4(4.0) 9.9(3.7) 12.4(2.8) 12.5(2.8) 13.3(1.6) 12.0(3.0) 12.4(2.9) 13.1(1.8)

Oursj (d) 8.4(4.5) 7.7(4.5) 7.0(5.0) 9.9(4.1) 7.9(4.6) 7.0(4.7) 6.9(4.6) 6.3(4.4) 4.8(3.9) 8.5(5.0) 6.5(4.5) 5.2(3.9)
Ourss(d) 5.8(4.0) 5.1(3.9) 4.4(3.3) 7.5(3.7) 5.2(4.1) 4.5(3.4) 4.3(2.8) 4.1(2.6) 3.9(2.4) 4.8(3.4) 4.3(2.7) 3.6(2.8)

starting point, and follow similar pre-training settings of RoBERTa (Liu et al., 2019): We use a total
of 30 training epochs, with a linear warm-up for the first 6% of steps, followed by a linear decay to
0. The best checkpoint is saved by the average validation loss over all the datasets. We provide three
TP-BERTa versions: pre-trained on only binary classification tasks, or only regression tasks, or both
types. More detailed pre-training information and analysis are given in Appendix D.

Compared Methods. We compare our TP-BERTa with (1) the representative non-deep learning
models XGBoost (Chen & Guestrin, 2016) and CatBoost (Prokhorenkova et al., 2018); (2) known
DNNs including MLP, TabNet (Arik & Pfister, 2021), AutoInt (Song et al., 2019), DCNv2 (Wang
et al., 2021), FT-Transformer (FTT) (Gorishniy et al., 2021), and SAINT (Somepalli et al., 2022);
(3) the recent open-source cross-table model TransTab (Wang & Sun, 2022) and pre-trained model
XTab (Zhu et al., 2023). We split each finetune dataset ((64%, 16%, 20%) for training, validation,
and testing separately), and keep the same label distribution in each split on binary classification.

Hyperparameter Tuning & Finetune. We implement our TP-BERTa with PyTorch and the Hug-
gingFace Transformers package on Python 3.8. All the models are finetuned on NVIDIA RTX 3090.
In training, we uniformly use a training batch size of 64 for all the DNNs. Since the LM takes an in-
creased training time, we directly set fixed hyperparameters on the pre-trained TP-BERTa across all
the downstream datasets without tuning. For the other DNNs, the optimizer is AdamW (Loshchilov
& Hutter, 2019) with the default configuration except for the learning rate and weight decay rate. We
follow the hyperparameter spaces from the original work for SAINT. For TransTab, we use its default
hyperparameters without cross-table pre-training because it originally required partially overlapped
medical tables. For XTab, we follow its settings that report the score of the best pre-trained check-
point on the validation set, with other hyperparameters kept fixed. For XGBoost, CatBoost, and the
other DNNs, we follow the default (for GBDTs and FT-Transformer) and tuning settings provided
in (Gorishniy et al., 2021). Hyperparameter search is performed with the Optuna library (Akiba
et al., 2019). More detailed information of hyperparameters is provided in Appendix E.

3.2 ARE PRE-TRAINED TP-BERTA GREAT TABULAR PREDICTION LEARNERS?

Overall Comparison. Table 1 reports the means and standard deviations of model ranks on two
dataset collections. As expected, a similar trend as shown in (Grinsztajn et al., 2022) is attained:
GBDTs (i.e., XGBoost and CatBoost) still outperform classical and advanced DNNs in typical tabu-
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Figure 2: Rank variation curve plots of several representative models with respect to variations of
some feature type characteristics. Each point represents a set of datasets in a range of α or β.

lar regime (specified in “Datasets”of Sec. 3.1). Yet, it is worth noting that the pre-trained TP-BERTa
exhibits a significantly different progress and competitive performances. This notable improvement
may be attributed to the generalization ability of the pre-trained LMs (e.g., GPT-3 (Brown et al.,
2020)). A medium-sized dataset (with < 10K points and low-dimensional features) may not have
sufficient information for non-pre-trained DNNs, while LMs are able to leverage semantic infor-
mation from feature names and structured values. Besides, our RMT approach further enables the
LMs to handle numerical values in the language space (Sec. 3.3 discusses the necessity of RMT).
Few previous deep tabular models were evaluated in such data settings, and this is the first time an
extensive comparison on typical tabular data is brought to the forefront. As for cross-table models,
TransTab was inspired by overlapped columns between pre-training datasets and downstream ones,
which can benefit on domain datasets (e.g., medical tables), but general tables can contain many
features from various domains, thus constraining its application. XTab adopted dataset-specific
featurizers, though a Transformer backbone is shared; it misses the inherent relationship between
features of different datasets and learns the feature embeddings from scratch, which may be trapped
in insufficiently generalized data patterns. TP-BERTa is able to exploit feature semantics, e.g., the
patterns learned on feature values “male & female” in pre-training can be inherently transferred to
“boy & girl” by LMs without compulsory need for overlapped features or dataset-specific encoders.

Comparison from the Feature Perspectives. Since LMs typically operate on discrete texts, we
further investigate from the perspective of feature type distributions. We report ranks among the
datasets with various feature type distributions in Table 1. One can see that TP-BERTa achieves
stably better performances (both “Oursj” and “Ourss’) when the categorical feature type gradually
becomes dominating (a larger α or β). This can be intuitively explained by LMs’ ability to un-
derstand meaningful structured values (as discrete strings). Even among the datasets with at least
one categorical feature (α > 0), TP-BERTa still leads the performances on both task types (also
shown in Fig. 2). However, if all features are numerical (α = 0), TP-BERTa performs inferiorly.
This may be due to its LM nature that precision loss in numerical representation is inevitable. For
a more detailed illustration, we show in Fig. 2 rank variation curve plots across datasets grouped in
different ranges of feature type distributions. Overall, TP-BERTa is stably promising when discrete
features begin to dominate in the datasets, while for purely numerical datasets, GBDTs or FTT are
still better choices (especially for classification tasks). Since there can exist useless tabular features,
we introduce the ratio of Shapley value sums between categorical and numerical features (i.e., β,
the right column of Fig. 2); an expected smoother trend that TP-BERTa performs better on datasets
with larger β is observed. Additionally, we empirically observe: (1) XGBoost highly relies on hy-
perparameter tuning and thus performs unstably (shown in its standard deviations and Fig. 2); (2) in
contrast, CatBoost, just using default hyperparameters, is often a good choice, especially on datasets
in which categorical features dominate (the same was suggested in (Prokhorenkova et al., 2018)).

Comparison from the Data Volume Perspective. We show rank variations on data volumes in the
Appendices (Fig. 5). Similar to studying the feature type distribution effects, we examine the trend
in two dataset groups (β < 0.1 and β ≥ 0.1). In the typical tabular regime, the choices are mostly
influenced by the distributions, while from the data scale dimension, no special trend is observed.
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Table 2: Performance changes on encoding strategy substitution and IFA ablation using 80 binary
classification datasets. The column “|∆| ≤ 0.5%” denotes the number of datasets with AUC vari-
ation less than 0.5% (these datasets are called “insignificantly changed datasets” due to different
random seeds); the other “∆” columns use similar denotations. “Avg. diff.” means the average per-
formance difference on significantly changed datasets. “Avg. training time ratio” is the average ratio
of training time compared to using the IFA module. Appendix 11 gives more detailed performances.

Comparison (numerical encoding strategies)

Substitution |∆| ≤ 0.5% ∆ < −0.5% ∆ > 0.5% Avg. diff.

Value2Str (Borisov et al., 2023) 16 54 10 -12.45%
VMFE (Ye et al., 2024) 34 36 10 -3.44%

Ablation (w/o IFA module)

Avg. training
time ratio |∆| ≤ 0.5% ∆ < −0.5% ∆ > 0.5% Avg. diff.

1.32 14 52 14 -4.17%

Joint Task Type Pre-training. A more expensive TP-BERTa version is conducted on “Oursj”
by pre-training on binary classification and regression tasks jointly. A similar trend as “Ourss”
is observed, with a stably inferior performance. This may be due to: (1) incompatible natures of
classification and regression tasks, (2) the dataset-specific head pre-training strategy is unsuitable
for the combined patterns of classification and regression, or (3) a more powerful base LM is needed
for such complicated data configuration. This will become a part of our future study.

Takeaway. We empirically show a strong potential for well-adapted LMs to fill the void of previous
DNN-based tabular learners under typical tabular data settings, and demonstrate the capability of
TP-BERTa to handle tabular prediction tasks, especially those with informative categorical features,
which can help architecture selection based on feature type characteristics in future studies.

3.3 WHY WERE LMS NEGLECTED ON TABULAR PREDICTION?

Only a few previous studies directly employed LM-based learners for tabular prediction tasks. Their
numerical encoding strategies can be categorized into: (1) value string methods (directly treating
numerical values as strings, e.g., GReaT (Borisov et al., 2023) and TapTap (Zhang et al., 2023));
(2) value-multiplied feature name embeddings (e.g., CT-BERT (Ye et al., 2024), FTT (Gorishniy
et al., 2021), and TransTab (Wang & Sun, 2022)). Besides, they all fed a longer templated table
text to LMs, which may further incur a heavy training burden. In this section, we compare our
RMT approach with two other strategies, and conduct ablation study on the intra-feature attention
(IFA) module to demonstrate that refining single-feature information before the LM processing is a
better and computation-friendly adaption. Since each pre-training round is costly and is equivalent
to evaluation under the same condition, we use the non-pre-trained TP-BERTa (initialized with the
RoBERTa weights) for the subsequent comparison and ablation studies (marked in the Appendix
tables). To show a more clear and quantifiable comparison, we conduct our analysis on the binary
classification datasets (Table 2). To alleviate the impact of performance fluctuations caused by
random seeds, we exclude the datasets on which the performance changes are insignificant (the
column “|∆| ≤ 0.5%”) in average difference calculation (the column “Avg. diff.”). The following
sections use a similar analysis method. We present the detailed results in the Appendices (Table 11).

Numerical Encoding Strategy Comparison. After directly substituting RMT with “value string”
(Value2Str) or “value-multiplied feature name embeddings” (VMFE), changes in performance are
observed (the upper half of Table 2). Both the previous strategies hurt AUC scores on most signifi-
cantly changed datasets with average declines of 12.45% and 3.44%, respectively. There are still 10
datasets with better performances on both substitutions. This is probably due to insufficient embed-
ding learning: Since in non-pre-trained TP-BERTa, magnitude embeddings are randomly initialized,
direct finetune on downstream tasks faces a risk of data inadequacy to learn precise representations.

IFA Module Ablation. Performances and training time changes are reported in the lower half of
Table 2, by removing IFA and directly feeding all feature names and values to the LM as done
in previous works. A noticeable performance degradation occurs on 52 datasets (∆ < −0.5%)
with an average AUC decline of 4.17% (on 52 + 14 = 66 datasets). This indicates that LMs
are likely to be confused when they process a pile of unmatched feature name-value texts, giving
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Table 3: Performance changes by comparing the pre-trained TP-BERTa with (1) TP-BERTa ran-
domly initialized and (2) TP-BERTa initialized with the RoBERTa weights. “Avg. diff.” is calcu-
lated by excluding the datasets with |∆| ≤ 0.5%.

Comparison (w/ no pre-training) using 80 binary classification datasets

Initialization |∆| ≤ 0.5% ∆ < −0.5% ∆ > 0.5% ∆ < −3% ∆ > 3% Avg. diff.

Random 29 41 10 26 5 -3.16%
RoBERTa 26 35 19 21 6 -2.79%

them additional burden to learn correct matchings while fully connected attention in Transformer-
based LMs interacts a name with values from other features. The IFA module explicitly fuses the
name-value pair of a single feature into a vector before passing it to the LM, guarding against
noisy interactions from other features. Besides, a shorter input sequence length (equal to the feature
amount) accelerates learning (e.g., see the 1.32 average training time ratio without IFA in Table 2).

Since TP-BERTa adopts both magnitude-aware numerical encoding and intra-feature pre-processing
before the LM process, it acquires a significantly better ability as well as friendly computation cost,
becoming competitive with GBDTs and other deep models. Our comparison shows that simply
treating tables as normal texts can pose difficulties for LMs to understand structured tabular features,
thus decreasing their potential on high-precision demanding tasks such as tabular predictions.

3.4 TP-BERTA TRANSFERABILITY ON TABULAR DATA

Table 3 reports performance changes by comparing the non-pre-trained TP-BERTa (initialized by
random weights or RoBERTa weights) with the pre-trained one (“Ourss” in Table 1). Overall, over
3% AUC increase is attained on 26 (comparing to random weights) and 21 (comparing to RoBERTa
weights) datasets using pre-training, and the average improvement on significantly changed datasets
is 3.16% and 2.79%, respectively. It seems that using the RoBERTa weights is better than random
weights, as LM weights have inherently entailed meaningful semantic knowledge. A more signifi-
cant leap can be achieved by further pre-training on extensive tabular data. This indicates that LMs
are also effective in transferring tabular data knowledge and suitable for cross-table pre-training.

3.5 THE NECESSITY OF OTHER DESIGN DETAILS

Since there are several key differences in our TP-BERTa design compared to the common
Transformer-based LMs, we further examine their necessity by ablation studies. By evaluating
different magnitude token numbers (nbin = 256 as default), we find that using 128 and 32 tokens
yields an average AUC decline of 2.06% and 3.59%, respectively. This indicates that a larger nbin
for numerical value representation benefits performances on most datasets, while a few tables favor
a smaller nbin, which may be due to over-representation of excessive magnitude tokens. The detailed
results with analysis are presented in Appendix C, which further discusses the regularization efforts
on magnitude embeddings of the magnitude-aware triplet loss function (Eq. (3)) and the func-
tion of removing position encoding for value vectors (Eq. (7)). We find that the magnitude-aware
triplet loss function potentially facilitates fast convergence and over-fitting reduction.

4 CONCLUSIONS AND FUTURE WORK

This paper undertook the first study of the substantial difficulties of continuous value representation
and tabular feature organization in building LM-based tabular DNNs. We designed and deployed
two bespoke adaptions, relative magnitude tokenization and intra-feature attention, to explore the
possibilities of using pre-trained LMs on tabular prediction tasks. Our proposed TP-BERTa exhibits
unprecedented progress over various non-LM DNNs, and is competitive with GBDTs under the
typical tabular prediction regime, contributing a powerful DNN alternative for typical tabular data.

While our approach has significantly improved the performance of language models in handling
numerical features in tables, TP-BERTa currently excels more on tables dominated by categorical
features. Besides, it was witnessed that some tables prefer a small magnitude token number. We
will conduct more endeavors on better numerical representation in future tabular prediction studies.
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A LIMITATIONS

Since our TP-BERTa relies on the semantic knowledge of LMs to transfer feature patterns from
pre-training feature names to downstream ones, it implicitly requires meaningful and clear feature
semantics. However, in the real world, there always exist tables with unclear feature names or values,
such as quantum physics experiment tables containing lots of uncommon quantum descriptor feature
names and medical domain substituting specific feature values with meaningless encoding to protect
patient privacy. This suggests that LM-based tabular DNNs cannot take their inherent advantages of
feature semantic understanding in privacy-sensitive (e.g., federated learning) or semantic-incomplete
(missing original meanings in data collection) tables. For an uncommon domain, LMs pre-trained on
domain corpora may be utilized as base models. Besides, LMs own a larger space of parameters and
hyperparameters, making them more time-consuming in hyperparameter tuning with a potentially
higher performance ceiling compared to non-LM tabular DNNs. Hence, we directly finetune TP-
BERTa with default hyperparameters for fairness of time, in which case it can achieve adequate
results with less time than other tuned methods.

B DATASET INFORMATION AND MAIN EXPERIMENTAL DETAILS

We provide detailed information of the pre-training datasets in Table 6 and detailed information
of the downstream datasets in Table 7 and Table 9. Detailed baseline performances are given in
Table 8 and Table 10. To represent distributions of feature types in a dataset, we define α as the
feature amount ratio between the categorical type and numerical type. Since there exist datasets
with usefulness features, we further define β as the Shapley value (calculated with default XGBoost
in Appendix E) sum ratio between categorical features and numerical features. These are used as
references of feature type characteristics. Specifically, α and β of the i-th dataset are formulated as:

αi =
#Cat.(i)

#Num.(i)
, (12)

βi =

∑
f∈Cat.(i) Shapley value(f)∑
f∈Num.(i) Shapley value(f)

. (13)

We exclude datasets with pure categorical features to avoid zero division, while as an LM, TP-
BERTa can inherently handle discrete features. We provide the dataset frequency in different feature
type distribution ranges in Table 4.

Table 4: Dataset frequency of two downstream collections in several feature type distribution ranges.

Collection β = 0 β ∈ (0, 0.5) β ∈ [0.5, 1.0) β ≥ 1.0

80 binary classification datasets 24 33 7 16
65 regression datasets 24 28 4 9

C RESULTS AND ANALYSIS OF OTHER DESIGN COMPARISONS

The Number of Magnitude Tokens. In Sec. 2.1, we set the maximum number of magnitude tokens,
nbin = 256, for TP-BERTa. In fact, the C4.5 decision tree splits the value range in a greedy fashion,
and the actual number of leaves can be less than 256 (e.g., a small dataset with less than 256 points).
Hence, we choose a conservative method to balance between “not too many new words to learn” and
“enough precision for relative magnitude representation”. In Table 5, we present the performance
changes by setting nbin to 32 and 128 separately. As expected, the overall performance gradually
drops when using a smaller token number to represent the numerical value magnitude. We find
that some datasets favor a smaller nbin, which may be attributed to over-representation of too many
magnitude tokens. Thus, a better solution is to set a large nbin for pre-training in order to enhance
the upper limit of magnitude representation capability, and search for a reasonable dataset-specific
nbin on downstream tasks.

12



Published as a conference paper at ICLR 2024

Regularization on Magnitude Embeddings. Since all the magnitude embeddings are randomly
initialized, in Sec. 2.1, we propose a magnitude-aware triplet loss (see Eq. (3)) to assist the learning
process. Fig. 3 presents the validation AUC curves of several datasets on using our regularization
or not using it during finetuning, which shows that the designed regularization provides a potential
of fast convergence and overfitting reduction. We use the triplet loss only in pre-training for a
smoother and accelerated learning, and exclude it in actual finetune because the loss has converged
in pre-training.

No Position Encoding for Value Vectors. In Eq. (7), we explicitly remove position encoding in
value vectors of self-attention since position embeddings may distort randomly initialized magnitude
embedding learning. Table 5 shows a major performance decline when adding position encoding.
The reason for this probably lies in semantic corruption of magnitude tokens, since numerical values
need precise representations to convey magnitude information.

Table 5: Performance changes with respect to using different magnitude token numbers (the default
is nbin = 256; see Sec. 2.1) and position encoding in value vectors (see Eq. (7)).

Comparison (magnitude token numbers) using 80 binary classification datasets

Substitution |∆| ≤ 0.5% ∆ < −0.5% ∆ > 0.5% Avg. diff.

nbin = 32 27 40 13 -3.59%
nbin = 128 42 26 12 -2.06%

Ablation (w/ value vector position encoding)

80 binary classification
datasets

|∆| ≤ 0.5% ∆ < −0.5% ∆ > 0.5% Avg. diff.

36 31 13 -2.35%

Figure 3: Comparison of using regularization or not using it during finetuning on the non-pre-trained
TP-BERTa. The validation AUC curves of several representative binary classification datasets show
that the effect of the magnitude-aware triplet loss (see Eq. (3)) is to help quick convergence and avoid
potential overfitting of TP-BERTa. In experiments, we use this regularization only in pre-training to
smooth and accelerate the learning process.
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D PRE-TRAINING DETAILS

Starting Point. We reuse the weights of the RoBERTa-base with the HuggingFace Transformers
API. The additional nbin magnitude embeddings and the IFA module are randomly initialized.

Runtime Environment. Pre-training is conducted with PyTorch version 1.9.0, CUDA version 11.3,
and HuggingFace Transformers package version 4.18.0, using 4 NVIDIA A100 PCIe 40GB and 2
Intel 6248R 48C@3.0GHz.

Pre-training Process. We pre-train three versions of TP-BERTa: pre-training only on binary clas-
sification datasets, or only on regression datasets (these two versions constitute “Ourss” in Table 1),
or jointly pre-training on both types (“Oursj” in Table 1). These three versions share the same
maximum epoch number of 30 and the total batch size of 512, using the best average validation
loss across all the datasets to save the checkpoint. The same pre-training learning rate and linear
decay in (Liu et al., 2019) are used. The pre-training on binary classification tasks and regression
tasks took 72 hours and 98 hours respectively, and the one on both types of tasks took 143 hours.
We provide several loss curves during pre-training in Fig. 6 and validation metric curves on several
pre-training datastes in Fig. 7.

Analysis. In most cases, the TP-BERTa version pre-trained jointly on both task types yields sightly
lower validation scores on the pre-training datasets compared to the two TP-BERTa versions pre-
trained on a single task type (see Fig. 7), and the gap is more noticeable on binary classification
datasets. This probably leads to a smaller overall rank difference between Oursj and Ourss on
regression tasks (see Table 1).

E HYPERPARAMETER TUNING

For the baselines of XGBoost, CatBoost, MLP, AutoInt, DCNv2, TabNet, and FT-Transformer, we
reuse the implementations, default settings, and hyperparameter search spaces in (Gorishniy et al.,
2021). For SAINT, the hyperparameter space in (Somepalli et al., 2022) is used. For TransTab
and XTab, we follow the same settings as in (Zhu et al., 2023), using the default hyperparameters
in (Wang & Sun, 2022) for TransTab and the best checkpoint on the validation set for XTab. As for
TP-BERTa (including the joint pre-trained version “Oursj” and the single pre-trained one “Ours”),
we keep the default hyperparameters of 1e-5 learning rate without weight decay. All the baselines
use AdamW (Loshchilov & Hutter, 2019) as the optimizer and the Optuna-driven tunning.

F INTERPRETABILITY OF RMT

In Fig. 4, we visualize the TP-BERTa’s 256 magnitude tokens by directly applying t-SNE algorithm
using scikit-learn package (with default function parameters). Interestingly, even if we have ran-
domly placed them in the language space at first, after pre-training a clear inherent distribution is
captured, all tokens lie on a highly regular manifold and successfully maintain an intuitive assump-
tion that the embedding of a numerical value should close to the embedding of a nearby one. This
empirically demonstrates the TP-BERTa is sensitive to the numerical value magnitudes and benefits
from the captured regular relationship among the relative magnitudes, which interprets its significant
progress on the existing LM-based tabular models (e.g., directly treating values as raw strings).

Figure 4: The t-SNE visualization of 256 magnitude token embeddings before and after pre-training.
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Figure 5: Rank change curve plots of several representative models with variations of data volume
(N ). We divide the datasets into two groups (the first column is for “β > 0.1” and the second
column is for “β ≤ 0.1”) to alleviate the impact from the feature type distributions. The split value
0.1 is chosen by keeping a roughly equal number of datasets in both groups.

Figure 6: The average validation loss curves and regularization loss (Eq. (3)) curves in pre-training.
“TP-BERTa(single, binclass)” and “TP-BERTa(single, regression)” are the two versions separately
pre-trained on binary classification datasets and regression ones (constituting “Ourss” in Table 1);
“TP-BERTa(joint)” is the version pre-trained on both task types (“Oursj” in Table 1).

G EVALUATIONS ON OTHER DATA SCENARIOS

G.1 IMBALANCED LABEL DISTRIBUTION

To inspect the performances on imbalanced datasets, we create pivot tables by filtering datasets
whose minor-class proportions, i.e., p = min(#positive,#negative)/#sample, are less than 1/3
(32 datasets), 1/5 (18 datasets), 1/8 (12 datasets), 1/20 (4 datasets) from 80 binary classification
datasets. The results are reported in the upper part of Table 15. It is obvious that TP-BERTa outper-
forms baselines in moderate class-imbalance situations. In the extremely imbalanced situations (4
datasets, with p < 0.05), GBDTs showcase dominating performances, but TP-BERTa still outper-
forms most DNN approaches. Perhaps this is attributed to TP-BERTa leveraging the transferability
and semantic understanding capabilities of the language model, thus resulting in consistent perfor-
mance across various levels of data imbalance.

G.2 MULTI-CLASS CLASSIFICATION

We additionally experiment on 32 downstream multi-class datasets from the database, the data statis-
tics and results are reported in Table 12 and the middle part of Table 15 respectively, and the TP-
BERTa used here is the version pre-trained on 101 binary classification datasets.
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Figure 7: Validation score curves in AUC and RMSE on several pre-training datasets.

G.3 MEDICAL APPLICATIONS

Medical data and labels hold inherently greater value than those from other domains. Therefore, we
further inspect whether our pre-trained model can achieve notable performance on medical domain
tasks, such as patient risk prediction and clinical trial outcome prediction, by leveraging knowledge
learned and transferred from diverse domains, which typically offer more cost-effective data sources.
We identified and filtered out all 25 medical tasks from 145 main experiment downstream datasets
(statistics and results are given in Table 13 and Table 14). Refer to the bottom row of Table 14, the
results indicate that the pre-trained TP-BERTa model significantly outperforms Gradient Boosting
Decision Trees (GBDTs) and other Deep Neural Networks (DNNs) that are trained in the supervision
manner and undergo meticulous hyperparameter tuning. However, our TP-BERTa achieved this
without the need for hyperparameter tuning.

The noteworthy performance suggests that we can harness more affordable data sources to alleviate
reliance on costly healthcare data in clinical practice. This illuminates a promising pathway towards
reducing the need for extensive medical data and expediting the development of algorithms for
healthcare applications.
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Table 6: Statistics of 101 binary classification datasets and 101 regression datasets for pre-training.

Task Type Binary classification Regression
ID Dataset name # samples # num. features # cat. features Dataset name # samples # num. features # cat. features

0 1969 CPS1988 28155 3 3 Aemf1 41714 7 11
1 ai4i2020 10000 5 6 1656 Candy-crush 16865 1 2
2 Rain in Australia 100000 13 7 2137 house sales 21613 12 3
3 airline passenger 100000 4 18 avocado sales 18249 9 4
4 AV Healthcare 100000 4 11 2198 turing binary 10000 19 3
5 0074 BNG(tic-tac 39366 0 9 BNG(echoMonths) 17496 6 3
6 Bank Customer Churn 10000 4 6 2664 diamonds 53940 6 3
7 Bank Marketing 45211 7 9 BNG(lowbwt) 31104 2 7
8 Travel Insurance 63326 4 5 1295 delays zurich 27327 9 7
9 bank 11162 7 9 Brazilian houses 10692 5 3
10 0634 mozilla4 15545 3 1 CPS1988 28155 2 4
11 bank customer survey 45211 7 9 1728 HSI-Futures 87645 5 0
12 0080 BNG(vote) 100000 0 16 Customer-Churn 10000 4 10
13 Bank marketing data 45211 7 9 2672 kings county 21613 13 8
14 2149 electricity 38474 7 1 dataset sales 10738 4 10
15 BNG(breast-w) 39366 9 0 2707 seattlecrime6 52031 3 1
16 2668 cps88wages 28155 3 3 diamonds 53940 6 3
17 campaign33 12870 6 9 elevators 16599 14 4
18 0677 COMET MC SAMPLE 89640 2 1 fifa 18063 5 0
19 Candidate Selection 73147 1 11 houses 20640 8 0
20 2683 electricity 38474 7 0 1781 SDSS-16 100000 11 3
21 Cardio Disease 70000 6 6 house sales reduced 21613 12 6
22 0710 Agrawal1 100000 6 3 1799 NSE-Stocks-Data 100000 8 1
23 Car Insurance Claim 10000 3 14 transactions 100000 2 2
24 2687 Diabetes130US 71090 5 2 kc final 21613 12 6
25 Churn Modelling 10000 4 6 WorkersCompensation 100000 4 6
26 MonkeyPox33 25000 0 9 MAMe dataset 37407 2 3
27 0948 COMET MC SAMPLE 100000 2 0 1870 product 11385 4 15
28 Classification 88858 4 4 MiamiHousing2016 13932 13 3
29 2724 shrutime 10000 4 6 NewFuelCar 36203 15 2
30 classifying document 11539 4 1 socal2 15474 3 1
31 1249 sf-police 100000 1 4 star classification 100000 10 3
32 customer airways 50000 4 7 stats 10000 7 2
33 0137 BNG(labor) 100000 6 9 0678 BNG(auto price) 100000 13 1
34 diabetes prediction 100000 4 4 1319 house sales 21613 12 6
35 Employee-Turnover-at 34452 8 1 1946 avocado sales 18249 9 4
36 filtered customer 49982 4 7 0682 BNG(lowbwt) 31104 2 7
37 1294 airlines 26969 3 2 1362 pm25dataset 43800 5 3
38 flight delays train 100000 2 4 0684 BNG(autoPrice) 100000 14 0
39 Warehouse block 10999 3 7 2062 black friday 100000 1 8
40 Fraud 100000 6 2 0685 BNG(pharynx) 100000 1 9
41 1366 bankmarketing 41188 5 15 0688 BNG(echoMonths) 17496 6 3
42 fusion experiment 100000 16 2 1509 california 20640 8 0
43 Phishing websites 95910 5 5 0690 100000 2 7
44 Health Insurance Lead 50882 5 7 1510 fifa 18063 5 0
45 0158 BNG(heart 100000 6 7 2131 houses 20640 8 0
46 Horse Racing 38248 1 3 0875 nfl games 16274 6 2
47 1414 AI4I2020 10000 5 6 1576 Earthquakes 20648 3 0
48 Hotel Reservations 36275 5 12 0880 dataset sales 10738 4 10
49 1465 credit 16714 7 3 1587 elevators 16599 14 2
50 HR Analysis Case 54808 4 8 0932 mlr rpart rng 92067 7 2
51 1511 electricity 38474 7 1 1595 Oranges-vs. 10000 4 1
52 income evaluation 32561 5 9 0940 seattlecrime6 52358 2 4
53 Preprocessed Shopee 73539 14 6 1596 Cinema-Tickets 100000 10 2
54 Janatahack cross 100000 5 5 1030 100000 4 6
55 PS 20174392719 100000 6 2 1639 Melbourne 13580 8 9
56 JanataHack Machine 100000 5 6 1107 rainfall 16755 1 2
57 pulsar data train 12528 8 0 2134 Brazilian 10692 5 3
58 L&T Vehicle Loan 100000 18 13 1140 exercises 15000 5 1
59 0160 BNG(hepatitis) 100000 6 13 1644 Credit-Risk 32581 6 5
60 law-school-admission 20800 3 8 1245 Production 50625 12 0
61 new train 32950 4 11 1368 IMDb-Ratings 67408 1 0
62 1550 credit 16714 7 3 1645 Sloan-Digital 100000 12 3
63 League of Legends 48651 10 4 1415 beijing-pm2.5 43824 8 3
64 mlbootcamp5 train 70000 5 6 1649 Tamilnadu-Crop 13266 2 4
65 Run or walk 88588 6 0 1452 gender-by-name 100000 1 1
66 salary 32561 5 9 1466 post-operative 65532 10 1
67 0474 houses 20640 8 0 1453 metro 48204 3 4
68 Server Logs 100000 4 2 1465 internet 65532 10 1
69 0046 100000 0 16 1552 100000 6 0
70 Success of Bank 30477 1 6 1561 Complete 100000 6 0
71 term deposit 31647 7 9 1587 Intel-Stock 10361 5 0
72 0050 BNG(breast 100000 0 9 1611 Advertising 16288 3 11
73 0077 BNG(heart 100000 0 13 1612 Historical 100000 5 1
74 0079 100000 0 19 1613 COVID-19 70464 7 0
75 1020 Run or walk 88588 6 0 1646 COVID19-Dataset 34862 11 1
76 1254 Case-Study 20000 4 5 1671 COVID-19-Mexico 92320 3 1
77 1375 MAGIC-Gamma 19020 9 0 1675 COVID19-cases-by 26144 3 0
78 1406 law-school 20800 3 8 1679 COVID-19-Rio-de 37272 2 1
79 1569 COVID-19-World 97606 1 1 1697 AMD-Stock-Prices 10361 5 0
80 1571 Temperature 97606 1 1 1704 House-Rent-in 10692 4 7
81 1584 Towards-Data 46079 3 0 1760 BSE-30-daily 73066 5 1
82 1598 Churn-for-Bank 10000 4 6 1783 Covid-19 56717 7 0
83 1621 The-Bread 20507 1 2 1830 Football 37147 1 4
84 1630 Default-of 30000 14 9 1853 Crowdedness-at 62184 3 6
85 1633 Medical 100000 1 9 1858 Worldwide-Meat 13760 1 3
86 1662 Toronto-COVID-19 14911 0 12 1860 Worldwide-Crop 21165 1 3
87 1668 Census 100000 6 8 1904 Apple-Complete 10015 5 0
88 1690 Malware 43293 4 0 1905 New-Delhi-Rental 17890 7 4
89 1707 Employee 34452 8 1 2135 Bike Sharing 17379 4 2
90 1761 Binary-Dataset 11000 9 5 2136 nyc-taxi-green 100000 8 1
91 1832 Bank-Marketing 11162 7 9 2140 13932 12 1
92 1919 Diabetes-130 100000 2 22 2145 Brazilian houses 10692 5 3
93 1934 Diabetes-130 100000 2 19 2167 Intersectional 10000 13 5
94 2176 NewspaperChurn 15855 2 14 2654 naval propulsion 11934 12 2
95 2178 Churn Telco 100000 12 6 2659 video 68784 10 8
96 2181 Bank marketing 45211 7 9 2673 brazilian 10692 3 6
97 2701 BitcoinHeist 24780 7 0 2704 Intersectional 11000 13 6
98 2726 Insurance 23548 3 7 2711 medical charges 100000 3 0
99 2734 airlines 100000 3 2 2746 click prediction 39926 2 3

100 2736 Shipping 10999 2 7 2749 amazon employee 32769 7 1
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Table 7: Statistics of 80 downstream binary classification datasets.

ID Dataset name # samples # num. # cat. α Num. Shapely sum Cat. Shapely sum β

0 BankNoteAuthentication 1372 4 0 0.00 9.21 0.00 0.00
1 bt dataset t3 1644 17 0 0.00 6.05 0.00 0.00
2 0292 cpu small 8192 12 0 0.00 7.61 0.00 0.00
3 0312 cpu act 8192 21 0 0.00 7.39 0.00 0.00
4 0345 delta ailerons 7129 5 0 0.00 3.98 0.00 0.00
5 0356 delta elevators 9517 6 0 0.00 3.83 0.00 0.00
6 0406 visualizing 111 3 0 0.00 0.69 0.00 0.00
7 0419 pm10 500 7 0 0.00 1.06 0.00 0.00
8 0435 strikes 625 6 0 0.00 4.73 0.00 0.00
9 0437 quake 2178 3 0 0.00 0.33 0.00 0.00

10 0445 arsenic-male 559 4 0 0.00 1.35 0.00 0.00
11 0446 arsenic-female 559 4 0 0.00 1.28 0.00 0.00
12 0447 arsenic-female 559 4 0 0.00 1.70 0.00 0.00
13 0509 pollen 3848 5 0 0.00 0.11 0.00 0.00
14 1201 Gender 3168 20 0 0.00 6.34 0.00 0.00
15 1600 VulNoneVul 5692 16 0 0.00 0.91 0.00 0.00
16 1006 Titanic 2201 3 0 0.00 1.57 0.00 0.00
17 1592 Diabetes-Data 768 8 0 0.00 1.69 0.00 0.00
18 0424 autoPrice 159 14 1 0.07 2.99 0.00 0.00
19 audit data 776 23 3 0.13 5.29 0.00 0.00
20 audit risk 776 23 3 0.13 5.29 0.00 0.00
21 new model 400 10 3 0.30 5.83 0.00 0.00
22 trial 776 7 10 0.39 5.29 0.00 0.00
23 1333 ricci vs 118 3 2 0.67 3.66 0.00 0.00
24 1619 NBA-2k20-player 439 4 10 2.50 1.51 0.01 0.01
25 1458 kdd ipums la 97 5188 17 3 0.18 4.73 0.03 0.01
26 1736 combined-wine 6497 10 2 0.20 11.77 0.09 0.01
27 1759 Red–White-wine 6497 10 2 0.20 11.77 0.09 0.01
28 1578 kdd ipums la 97 5188 17 3 0.18 5.10 0.05 0.01
29 0526 colleges aaup 1161 13 2 0.15 8.10 0.09 0.01
30 1408 national 4908 6 10 1.67 7.25 0.10 0.01
31 0284 bank8FM 8192 7 1 0.14 6.78 0.15 0.02
32 Customer Behaviour 400 2 1 0.50 2.94 0.15 0.05
33 2306 electricity seed 2000 7 1 0.14 3.94 0.22 0.06
34 0546 analcatdata 132 2 1 0.50 3.81 0.22 0.06
35 2304 electricity seed 2000 7 1 0.14 3.25 0.23 0.07
36 2308 electricity seed 2000 7 1 0.14 4.37 0.32 0.07
37 1461 heart-failure 299 7 5 0.71 4.47 0.37 0.08
38 2392 airlines seed 3 2000 3 4 1.33 0.45 0.04 0.09
39 2390 airlines seed 1 2000 3 4 1.33 0.32 0.03 0.09
40 0124 analcatdata 100 2 7 3.50 3.11 0.27 0.09
41 2305 electricity seed 2000 7 1 0.14 4.08 0.37 0.09
42 2389 airlines seed 0 2000 3 4 1.33 0.34 0.04 0.11
43 2393 airlines seed 4 2000 3 4 1.33 0.44 0.05 0.12
44 0541 plasma retinol 315 10 3 0.30 2.62 0.37 0.14
45 NFL 3477 10 7 0.70 1.69 0.25 0.15
46 1142 Sick numeric 3772 6 23 3.83 4.07 0.68 0.17
47 2703 compas-two 4966 2 9 4.50 0.86 0.16 0.19
48 0885 compas-two 5278 2 11 5.50 1.00 0.19 0.19
49 2391 airlines seed 2 2000 3 4 1.33 0.20 0.04 0.19
50 0400 analcatdata 4052 1 6 6.00 4.62 1.01 0.22
51 2621 sf-police 2000 4 4 1.00 0.49 0.11 0.23
52 b depressed 1429 12 9 0.75 0.89 0.25 0.28
53 2619 sf-police 2000 4 4 1.00 0.83 0.23 0.28
54 2620 sf-police 2000 4 4 1.00 0.99 0.34 0.34
55 Breast Cancer 4024 5 10 2.00 2.15 0.81 0.37
56 1512 eye movements 7608 17 5 0.29 1.94 0.74 0.38
57 0472 analcatdata 364 23 9 0.39 1.21 0.68 0.56
58 0555 socmob 1156 1 4 4.00 2.69 1.51 0.56
59 2622 sf-police 2000 4 4 1.00 0.55 0.36 0.66
60 loan train 614 4 7 1.75 0.34 0.22 0.67
61 TravelInsurancePrediction 1987 1 7 7.00 0.78 0.56 0.72
62 1742 Loan 614 4 7 1.75 0.60 0.48 0.79
63 1635 Is-this-a-good 1723 4 9 2.25 0.62 0.56 0.89
64 0948 Ishwar 2205 17 4 0.24 3.34 3.70 1.11
65 piracydataset 1423 1 3 3.00 0.18 0.27 1.47
66 1752 Wisconsin 699 2 8 4.00 1.85 3.06 1.66
67 1413 shill-bidding 6321 7 4 0.57 1.59 3.58 2.25
68 Employee 500 1 11 11.00 0.16 0.44 2.81
69 0446 newton hema 140 2 1 0.50 0.34 1.00 2.92
70 Bank Personal Loan 5000 6 6 1.00 0.23 0.68 2.93
71 UniversalBank 5000 6 6 1.00 0.23 0.68 2.93
72 1011 cleve 303 5 8 1.60 0.84 2.76 3.29
73 1898 Personal-Loan 5000 6 6 1.00 0.19 0.72 3.85
74 1564 Mammographic 830 1 4 4.00 0.48 2.22 4.65
75 1692 Gender 5001 1 6 6.00 0.55 6.31 11.57
76 diabetes data upload 520 1 15 15.00 0.24 5.48 22.64
77 1451 early-stage 520 1 15 15.00 0.22 5.75 26.47
78 1774 Early-Stage 520 1 15 15.00 0.22 5.75 26.47
79 0408 pharynx 195 2 8 4.00 0.04 1.32 33.20
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Table 8: AUC scores (the higher the better) of the baselines on 80 binary classification datasets.

ID XGB(d) Cat(d) FTT(d) Trans(d) XGB(t) Cat(t) MLP(t) Auto(t) DCN(t) Tab(t) SAI(t) FTT(t) XTab(t) Oursj (d) Ourss(d)

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9958 1.0000 1.0000 0.9999 0.9983 1.0000 0.9977 1.0000 1.0000
1 0.9955 0.9973 0.9981 0.8258 0.9981 0.9991 0.9976 0.9934 0.9951 0.9968 0.9945 0.9959 0.9849 0.9878 0.9964
2 0.9800 0.9810 0.9763 0.9763 0.9781 0.9790 0.9769 0.9756 0.9769 0.9702 0.9769 0.9779 0.9711 0.9688 0.9698
3 0.9857 0.9880 0.9854 0.6031 0.9856 0.9869 0.9869 0.9855 0.9859 0.9782 0.9851 0.9849 0.9797 0.9836 0.9811
4 0.9801 0.9806 0.9771 0.9787 0.9802 0.9803 0.9788 0.9777 0.9793 0.9759 0.9780 0.9785 0.9771 0.9769 0.9680
5 0.9379 0.9488 0.9496 0.7148 0.9427 0.9477 0.9470 0.9474 0.9437 0.9478 0.9508 0.9490 0.9496 0.9413 0.9426
6 0.6894 0.6439 0.6818 0.7121 0.6629 0.7083 0.6553 0.6288 0.6326 0.7879 0.8636 0.7955 0.7197 0.7045 0.6818
7 0.6238 0.6331 0.5882 0.5550 0.6327 0.5532 0.5986 0.5794 0.5302 0.5038 0.4478 0.5862 0.5458 0.5822 0.5886
8 0.9946 1.0000 0.9898 0.9429 0.9995 1.0000 0.9562 0.9626 0.9749 0.9501 0.9997 0.9985 0.7788 0.9954 0.9905
9 0.5351 0.5499 0.5395 0.5288 0.5588 0.5397 0.5343 0.5225 0.5377 0.5187 0.5356 0.5429 0.5214 0.4909 0.5510

10 0.8000 0.9009 0.7514 0.8860 0.8636 0.9009 0.6897 0.9028 0.6374 0.5495 0.5617 0.7626 0.8262 0.5477 0.7607
11 0.8333 0.7747 0.7682 0.8216 0.7435 0.8542 0.7650 0.7878 0.8333 0.7041 0.7266 0.7643 0.5798 0.7904 0.7806
12 0.8738 0.8912 0.9144 0.8981 0.9398 0.9062 0.8275 0.9815 0.8333 0.9537 0.8241 0.7708 0.8796 0.7593 0.9248
13 0.5112 0.4660 0.4777 0.4768 0.4578 0.4918 0.5220 0.5112 0.4778 0.4840 0.4866 0.5238 0.5026 0.4802 0.4966
14 0.9922 0.9942 0.9933 0.9947 0.9953 0.9945 0.9925 0.9912 0.9951 0.9906 0.9942 0.9932 0.9935 0.9863 0.9927
15 0.7458 0.7384 0.7232 0.5608 0.8093 0.7780 0.8552 0.7804 0.8424 0.6157 0.7254 0.7974 0.7878 0.7742 0.7615
16 0.7582 0.7510 0.7613 0.6336 0.7597 0.7520 0.7605 0.7451 0.7606 0.7170 0.7536 0.7528 0.7450 0.7609 0.7609
17 0.7672 0.7556 0.8031 0.3363 0.7778 0.8134 0.7887 0.7830 0.8002 0.7087 0.7894 0.7957 0.7841 0.7604 0.7913
18 0.9870 0.9827 0.9827 0.9957 0.9805 0.9957 0.8788 0.9654 0.9740 0.5390 0.9827 0.9913 0.9177 0.9913 0.9827
19 1.0000 1.0000 1.0000 0.9679 1.0000 0.9918 0.9991 0.9997 0.9995 0.9995 0.9995 1.0000 0.9848 0.9998 1.0000
20 1.0000 1.0000 1.0000 0.9638 1.0000 1.0000 0.9988 0.9997 0.9993 0.9862 0.9995 1.0000 0.9848 0.9998 1.0000
21 0.9997 0.9970 0.9840 0.9847 1.0000 0.9980 0.9687 0.9833 0.9753 0.9280 0.9807 0.9673 0.9773 0.9807 0.9933
22 1.0000 1.0000 0.9986 1.0000 1.0000 1.0000 0.9921 1.0000 0.9798 0.9901 0.9993 1.0000 1.0000 1.0000 1.0000
23 1.0000 1.0000 0.9860 1.0000 1.0000 1.0000 0.9091 0.8951 0.9930 0.8182 0.9930 0.9930 0.5664 1.0000 1.0000
24 0.7500 1.0000 0.9244 0.9186 1.0000 0.6047 0.8314 0.8488 0.8721 0.6105 0.8721 0.8779 0.8953 0.9767 0.9826
25 0.9421 0.9355 0.9346 0.3702 0.9441 0.9428 0.9437 0.9433 0.9432 0.9381 0.9427 0.9420 0.9400 0.9333 0.9332
26 0.9997 0.9986 0.9997 0.3612 0.9971 0.9995 0.9948 0.9992 0.9998 0.9974 0.9973 0.9950 0.9965 0.9921 0.9934
27 0.9997 0.9986 0.9997 0.6377 0.9966 0.9987 0.9974 0.9936 0.9997 0.9991 0.9978 0.9982 0.9965 0.9921 0.9934
28 0.9447 0.9521 0.9461 0.4090 0.9499 0.9535 0.9477 0.9501 0.9481 0.9310 0.9504 0.9524 0.9478 0.9478 0.9480
29 0.9989 0.9988 0.9999 0.5117 0.9989 0.9989 0.9982 0.9972 0.9999 0.9892 0.9996 0.9998 0.9947 0.9980 0.9982
30 0.9992 1.0000 1.0000 0.6133 1.0000 1.0000 0.9998 0.9999 0.9999 0.9994 1.0000 1.0000 1.0000 0.9991 1.0000
31 0.9871 0.9896 0.9915 0.7284 0.9897 0.9900 0.9900 0.9906 0.9900 0.9884 0.9910 0.9905 0.9908 0.9829 0.9817
32 0.9097 0.9043 0.9405 0.8864 0.9344 0.8905 0.9412 0.9209 0.9351 0.8627 0.9364 0.9459 0.9486 0.9317 0.9331
33 0.8896 0.8638 0.8653 0.8750 0.8817 0.8756 0.8447 0.8478 0.8409 0.8174 0.8736 0.8533 0.8258 0.8784 0.9007
34 0.9568 0.9907 0.9259 0.9753 0.9136 0.9105 0.9383 0.9506 0.8889 0.7469 0.8827 0.9321 0.9630 0.9198 0.9383
35 0.9048 0.9059 0.9033 0.5467 0.8953 0.9083 0.8733 0.8814 0.8764 0.8606 0.8944 0.8994 0.8431 0.8926 0.9088
36 0.8625 0.8682 0.8402 0.8474 0.8739 0.8717 0.8542 0.8440 0.8400 0.8266 0.8484 0.8305 0.8386 0.8695 0.8861
37 0.8440 0.8408 0.8588 0.8691 0.8383 0.8652 0.9076 0.8883 0.8909 0.6059 0.8691 0.8896 0.7343 0.8228 0.8691
38 0.5884 0.6124 0.5844 0.5935 0.6117 0.6036 0.5811 0.5676 0.5720 0.5644 0.5679 0.5868 0.5962 0.6826 0.6581
39 0.5332 0.5566 0.5621 0.5359 0.6241 0.5820 0.5359 0.5275 0.5508 0.5357 0.5298 0.5677 0.5522 0.6754 0.6791
40 0.9375 0.8802 0.8958 0.9479 0.9062 0.9427 0.9375 0.9062 0.9167 0.5365 0.9167 0.8958 0.5938 0.9062 0.8958
41 0.9066 0.9246 0.8934 0.5660 0.9076 0.9235 0.8915 0.9071 0.9017 0.8829 0.8989 0.8892 0.8824 0.8900 0.9268
42 0.5892 0.5849 0.5962 0.5770 0.6269 0.5815 0.4876 0.6031 0.5734 0.5798 0.5038 0.5827 0.5801 0.6324 0.6586
43 0.5224 0.5322 0.5615 0.5583 0.5984 0.5467 0.6129 0.5774 0.5797 0.5412 0.5644 0.5620 0.5621 0.6326 0.6379
44 0.4393 0.5278 0.4352 0.3796 0.4928 0.5149 0.5319 0.4630 0.5484 0.3858 0.4115 0.5473 0.3405 0.4712 0.6235
45 0.7199 0.7399 0.7263 0.5494 1.0000 0.7390 0.7392 0.7315 0.7395 0.6997 0.7323 0.7321 0.7247 0.9984 1.0000
46 0.9749 0.9981 0.9958 0.9895 0.9914 0.9985 0.9169 0.9910 0.9466 0.9389 0.9879 0.9916 0.9238 0.9941 0.9914
47 0.7327 0.7440 0.7486 0.3895 0.7438 0.7421 0.7480 0.7476 0.7454 0.7351 0.7465 0.7459 0.7362 0.7360 0.7417
48 0.7277 0.7465 0.7431 0.4310 0.7443 0.7423 0.7419 0.7442 0.7471 0.7202 0.7445 0.7420 0.7403 0.7371 0.7394
49 0.6119 0.6010 0.5831 0.5516 0.6833 0.6159 0.6005 0.6028 0.6008 0.5267 0.5983 0.5946 0.5699 0.6772 0.6904
50 0.9895 0.9826 0.9987 0.9984 0.9784 0.9925 0.9983 0.9941 0.9988 0.9981 0.9986 0.9988 0.9974 0.9879 0.9934
51 0.4981 0.5017 0.5462 0.4683 0.5198 0.5284 0.4549 0.5541 0.5934 0.4994 0.4391 0.5473 0.5629 0.4746 0.5879
52 0.4950 0.4454 0.4959 0.4417 0.4472 0.4775 0.4767 0.4699 0.5004 0.5194 0.5371 0.4529 0.4813 0.4796 0.5722
53 0.5554 0.5003 0.5252 0.5308 0.5090 0.5268 0.5216 0.5525 0.5257 0.5099 0.5102 0.5513 0.5690 0.4710 0.5565
54 0.5750 0.4937 0.5169 0.4915 0.4638 0.4635 0.4691 0.5360 0.4604 0.4976 0.4681 0.5109 0.5251 0.5274 0.5120
55 0.8442 0.8492 0.8534 0.5585 0.8539 0.8559 0.8478 0.8524 0.8507 0.8341 0.8359 0.8552 0.8532 0.8269 0.8500
56 0.6902 0.6711 0.6454 0.5343 0.7063 0.6714 0.6461 0.6402 0.6482 0.5782 0.6363 0.6504 0.6067 0.6605 0.6684
57 0.5330 0.4243 0.5183 0.5443 0.5852 0.5791 0.5087 0.4765 0.5426 0.6304 0.5522 0.5583 0.5617 0.5296 0.5496
58 0.9660 0.9700 0.9659 0.9749 0.9829 0.9724 0.9689 0.9695 0.9700 0.9634 0.9687 0.9607 0.9748 0.9660 0.9663
59 0.5465 0.4897 0.5107 0.5335 0.6006 0.5257 0.4395 0.5394 0.5513 0.4878 0.4994 0.5575 0.4985 0.5309 0.5524
60 0.4938 0.5557 0.5279 0.5452 0.7488 0.4689 0.5638 0.5619 0.5570 0.4949 0.5839 0.5285 0.4833 0.7452 0.7746
61 0.7901 0.7735 0.7714 0.6366 0.7538 0.7793 0.7891 0.7426 0.7699 0.6888 0.7913 0.7842 0.7664 0.8041 0.7749
62 0.5556 0.4751 0.5526 0.4780 0.7785 0.5559 0.6361 0.5656 0.5774 0.4913 0.5858 0.5889 0.5553 0.7517 0.7398
63 0.5738 0.6122 0.6419 0.4686 0.7312 0.6330 0.6010 0.6473 0.6187 0.4893 0.6345 0.6642 0.6382 0.7299 0.6957
64 0.9964 0.9961 0.9923 0.3536 0.9939 0.9936 0.9882 0.9892 0.9861 0.9774 0.9866 0.9867 0.9708 0.9938 0.9860
65 0.5359 0.5948 0.6022 0.6065 0.5429 0.5506 0.5948 0.6076 0.6361 0.5353 0.6215 0.6077 0.6092 0.6179 0.6363
66 0.9955 0.9946 0.9962 0.5170 0.9903 0.9975 0.9966 0.9952 0.9946 0.9665 0.9966 0.9982 0.9921 0.9857 0.9993
67 0.9996 0.9998 0.9982 0.2496 0.9924 0.9998 0.9994 0.9985 0.9991 0.9975 0.9985 0.9963 0.9966 0.9944 0.9965
68 0.4410 0.5181 0.4709 0.4035 0.4859 0.4599 0.4990 0.5452 0.4637 0.5873 0.4328 0.4456 0.5725 0.5516 0.5110
69 0.6429 0.6480 0.6276 0.6837 0.6378 0.6990 0.5204 0.6429 0.6429 0.5561 0.5204 0.5714 0.4847 0.6224 0.7908
70 0.5824 0.6047 0.6122 0.5235 0.5928 0.5999 0.5915 0.6056 0.5897 0.5733 0.6103 0.5967 0.5956 0.5446 0.6168
71 0.5824 0.6047 0.6122 0.4710 0.6074 0.6038 0.6127 0.5859 0.5799 0.5750 0.5879 0.6152 0.5956 0.5446 0.6168
72 0.8290 0.8474 0.8160 0.8398 0.7668 0.8139 0.8409 0.8561 0.8398 0.6742 0.8539 0.8593 0.8182 0.8658 0.8939
73 0.6363 0.6324 0.6348 0.4712 0.6107 0.6183 0.6421 0.6200 0.6121 0.5887 0.6074 0.6384 0.6179 0.6075 0.6334
74 0.8780 0.8833 0.8887 0.8718 0.8792 0.8930 0.7521 0.8833 0.8776 0.8417 0.8784 0.8791 0.8630 0.8889 0.8813
75 0.9978 0.9984 0.9961 0.1167 0.9972 0.9980 0.9964 0.9951 0.9959 0.9950 0.9958 0.9959 0.9960 0.9972 0.9963
76 0.9973 0.9984 0.9984 0.2641 0.9902 0.9941 0.9891 0.9973 0.9785 0.9031 0.9988 0.9988 0.9742 0.9922 0.9973
77 0.9842 0.9924 0.9984 0.7633 0.9906 0.9912 0.9723 0.9668 0.9621 0.9676 0.9902 0.9840 0.9828 0.9844 0.9906
78 0.9842 0.9924 0.9984 0.9859 0.9891 0.9988 0.9777 0.9902 0.9773 0.8660 0.9965 0.9863 0.9828 0.9844 0.9906
79 0.7667 0.7306 0.7778 0.7639 0.7819 0.7639 0.7778 0.6972 0.8028 0.5306 0.6972 0.7556 0.5194 0.8806 0.8306
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Table 9: Statistics of the 65 downstream regression datasets.

ID Dataset name # samples # num. # cat. α Num. Shapely sum Cat. Shapely sum β

0 my csv-3-10-2022-10-35 10 7 1 0.14 0.95 0.00 0.00
1 0237 arsenic-female 559 4 0 0.00 0.20 0.00 0.00
2 0251 arsenic-male 559 4 0 0.00 0.19 0.00 0.00
3 0258 no2 500 7 0 0.00 1.46 0.00 0.00
4 0259 strikes 625 6 0 0.00 0.34 0.00 0.00
5 ph-data 653 3 0 0.00 1.07 0.00 0.00
6 0925 Concrete Data 1030 8 0 0.00 1.57 0.00 0.00
7 1065 hungarian 522 19 0 0.00 1.21 0.00 0.00
8 1260 optical 640 5 4 0.80 0.23 0.00 0.00
9 1331 dataset time 9 2178 3 0 0.00 0.17 0.00 0.00

10 1464 dow-jones-index 750 6 9 1.50 0.63 0.00 0.00
11 1564 Concrete 1005 8 0 0.00 1.56 0.00 0.00
12 1623 GameStop 4773 5 0 0.00 0.90 0.00 0.00
13 1624 Alcohol 1549 5 1 0.20 1.07 0.00 0.00
14 1769 Facebook 2076 5 0 0.00 2.07 0.00 0.00
15 1845 Predict-Amazon 349 6 0 0.00 0.48 0.00 0.00
16 1869 Bitcoin-Stock 2397 5 0 0.00 0.98 0.00 0.00
17 1874 Goodreads 1234 5 3 0.60 0.33 0.00 0.00
18 1901 Netflix-10-Year 4581 5 0 0.00 3.52 0.00 0.00
19 2644 concrete 1030 8 0 0.00 1.57 0.00 0.00
20 User Knowledge 403 4 0 0.00 0.85 0.00 0.00
21 wines SPA 6331 4 6 1.50 0.38 0.00 0.00
22 World Population Live 234 11 3 0.27 0.89 0.00 0.00
23 1222 premier league 2565 19 0 0.00 0.73 0.00 0.00
24 real estate listings 4942 7 2 0.29 1.66 0.00 0.00
25 1228 Premier League 2961 13 3 0.23 0.94 0.01 0.02
26 1594 Spotify—All-Time 1994 9 4 0.44 0.59 0.01 0.02
27 1878 COVID 2580 2 3 1.50 0.42 0.01 0.03
28 1848 Minneapolis-Air 4790 4 12 3.00 0.84 0.02 0.03
29 1712 Running-Log 689 1 15 15.00 0.74 0.02 0.03
30 1900 Another-Dataset 1538 4 3 0.75 1.02 0.04 0.04
31 0988 test data 200 10 1 0.10 0.99 0.04 0.04
32 0274 kdd coil 3 316 8 3 0.38 0.83 0.04 0.05
33 0235 plasma retinol 315 10 3 0.30 1.09 0.08 0.07
34 0272 kdd coil 1 316 8 3 0.38 0.86 0.08 0.10
35 0279 kdd coil 5 316 8 3 0.38 0.42 0.05 0.12
36 0364 sleuth case2002 147 2 4 2.00 0.44 0.06 0.14
37 0117 fruitfly 125 2 2 1.00 0.18 0.03 0.16
38 0273 kdd coil 2 316 8 3 0.38 0.75 0.13 0.17
39 1755 Detailed 148 5 8 1.60 0.14 0.02 0.17
40 1417 ibm-employee 1470 11 21 1.91 1.02 0.18 0.17
41 1118 jura 359 8 9 1.12 0.88 0.18 0.20
42 1266 CSM 196 10 2 0.20 0.66 0.14 0.21
43 0911 forest fires 517 8 4 0.50 0.48 0.11 0.24
44 1528 1197 6 8 1.33 1.14 0.30 0.27
45 1449 garments-worker 1197 6 8 1.33 1.14 0.30 0.27
46 0907 UCI-student 395 3 29 9.67 0.90 0.24 0.27
47 1267 autoMpg 392 4 1 0.25 0.77 0.21 0.27
48 1787 Lisbon-House 246 5 10 2.00 0.78 0.22 0.28
49 0149 socmob 1156 1 4 4.00 0.47 0.13 0.28
50 1640 Calculate 1030 7 1 0.14 1.20 0.37 0.31
51 mechanical analysis 927 7 3 0.43 0.96 0.39 0.40
52 1890 ECDC-daily-data 9370 3 6 2.00 0.45 0.27 0.58
53 thyroidDF 9172 7 23 3.29 0.45 0.33 0.72
54 0261 analcatdata 108 1 2 2.00 0.46 0.36 0.78
55 2168 Intersectional 1000 13 5 0.38 0.68 0.55 0.80
56 0130 breastTumor 286 2 7 3.50 0.28 0.30 1.07
57 1616 myiris 150 2 2 1.00 0.38 0.63 1.67
58 0226 analcatdata 468 1 2 2.00 0.31 0.59 1.95
59 1660 Swiss-banknote 200 5 1 0.20 0.44 0.89 2.00
60 0225 veteran 137 2 5 2.50 0.08 0.20 2.68
61 1591 Superstore 9800 1 15 15.00 0.06 0.25 4.19
62 0125 pharynx 195 2 8 4.00 0.14 0.93 6.76
63 1872 Forest-Surfaces 8111 1 2 2.00 0.03 0.21 6.83
64 0211 analcatdata 365 1 2 2.00 0.07 0.88 12.12
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Table 10: RMSE scores (the lower the better) of the baselines on the 65 regression datasets.

ID XGB(d) Cat(d) FTT(d) Trans(d) XGB(t) Cat(t) MLP(t) Auto(t) DCN(t) Tab(t) SAI(t) FTT(t) XTab(t) Oursj (d) Ourss(d)

0 0.2767 0.6728 2.2553 2.6559 0.1703 0.7471 27.4815 3.1905 49.2778 63.9863 2.3226 7.0454 4.5402 0.9395 0.2629
1 0.0437 0.0210 0.0326 0.0638 0.0469 0.0178 0.0159 0.0121 0.0438 0.0600 0.0402 0.0356 0.0551 0.0239 0.0087
2 0.0485 0.0230 0.0402 0.0640 0.0293 0.0262 0.0732 0.0292 0.0420 0.0508 0.0540 0.0418 0.0580 0.0095 0.0124
3 0.1045 0.1003 0.1141 0.1384 0.0966 0.1045 0.1101 0.1085 0.1076 0.1482 0.1098 0.1081 0.1376 0.1021 0.0987
4 0.0650 0.0559 0.0601 0.0615 0.0568 0.0550 0.0569 0.0587 0.0635 0.0933 0.0601 0.0561 0.0634 0.0662 0.0602
5 0.0938 0.0843 0.0633 0.2166 0.0757 0.0819 0.0692 0.0683 0.0718 0.1657 0.0679 0.0694 0.1839 0.0717 0.0654
6 0.0633 0.0645 0.0720 0.1581 0.0583 0.0619 0.0761 0.0695 0.0839 0.0865 0.0775 0.0756 0.1192 0.0604 0.0623
7 0.0883 0.0793 0.0897 0.0815 0.0738 0.0798 0.0783 0.0815 0.0801 0.0784 0.0772 0.0911 0.0861 0.1109 0.0860
8 0.0129 0.0103 0.0106 0.0317 0.0099 0.0166 0.0090 0.0135 0.0092 0.0337 0.0421 0.0077 0.0387 0.0221 0.0101
9 0.1964 0.1963 0.1934 0.1930 0.1944 0.1966 0.1935 0.1937 0.1944 0.1953 0.1937 0.1946 0.1985 0.1946 0.1919

10 0.1829 0.1872 0.1930 0.1979 0.0256 0.1996 0.1937 0.2054 0.1967 0.2321 0.2005 0.2094 0.2006 0.0284 0.0258
11 0.0543 0.0533 0.0525 0.1517 0.0522 0.0501 0.0534 0.0724 0.0581 0.0815 0.0616 0.0670 0.1024 0.0652 0.0528
12 0.0036 0.0048 0.0109 0.0246 0.0056 0.0065 0.0127 0.0147 0.0048 0.0047 0.0110 0.0106 0.0122 0.0125 0.0086
13 0.0842 0.0815 0.0767 0.1392 0.0504 0.0807 0.0789 0.0798 0.0809 0.0916 0.0885 0.0824 0.0929 0.0516 0.0519
14 0.0599 0.0586 0.0600 0.0623 0.0603 0.0585 0.0578 0.0592 0.0588 0.0557 0.0599 0.0605 0.0608 0.0612 0.0596
15 0.1579 0.1512 0.1614 0.1345 0.1577 0.1598 0.1405 0.1407 0.1579 0.2415 0.1330 0.1615 0.1505 0.1675 0.1412
16 0.0446 0.0457 0.0454 0.0612 0.0450 0.0451 0.0485 0.0454 0.0456 0.0456 0.0476 0.0458 0.0492 0.0441 0.0450
17 0.0444 0.0551 0.0499 0.0617 0.0453 0.0444 0.0505 0.0595 0.0576 0.0228 0.0635 0.0562 0.0580 0.0500 0.0418
18 0.0449 0.0461 0.0464 0.0490 0.0447 0.0443 0.0464 0.0460 0.0430 0.0399 0.0479 0.0473 0.0466 0.0469 0.0466
19 0.0647 0.0663 0.0741 0.1567 0.0636 0.0606 0.0709 0.0722 0.1010 0.0903 0.0788 0.0807 0.1191 0.0607 0.0603
20 0.1997 0.2029 0.2453 0.2619 0.1955 0.2330 0.2584 0.2631 0.2747 0.3839 0.2695 0.2450 0.3013 0.2358 0.2236
21 0.1877 0.1851 0.1908 0.2548 0.0000 0.1852 0.1880 0.1912 0.1864 0.1879 0.1898 0.1914 0.2348 0.0022 0.0062
22 0.0116 0.0188 0.0276 0.2094 0.0067 0.0177 0.0381 0.0534 0.0379 0.2869 0.0668 0.0395 0.3815 0.0291 0.0201
23 0.8140 0.7873 0.7922 0.8318 0.7909 0.7801 0.8105 0.8053 0.8007 0.8305 0.7969 0.7871 0.7897 0.8205 0.8049
24 0.0085 0.0113 0.0159 0.0359 0.0081 0.0120 0.0275 0.0118 0.0384 0.0172 0.0042 0.0053 0.0270 0.0234 0.0138
25 0.1126 0.1134 0.1169 0.1362 0.1096 0.1128 0.1212 0.1208 0.1212 0.1290 0.1201 0.1165 0.1236 0.1223 0.1154
26 0.1493 0.1459 0.1435 0.1530 0.1197 0.1519 0.1429 0.1447 0.1457 0.1527 0.1452 0.1445 0.1521 0.1401 0.1416
27 0.0255 0.0292 0.0271 0.0491 0.0076 0.0315 0.0290 0.0256 0.0327 0.0403 0.0282 0.0276 0.0372 0.0098 0.0091
28 0.0039 0.0065 0.0057 0.1089 0.0001 0.0088 0.0331 0.0266 0.0512 0.0762 0.0560 0.0129 0.0998 0.0078 0.0034
29 0.0368 0.0383 0.0763 0.1682 0.0173 0.0292 0.0865 0.0778 0.1080 0.0946 0.0803 0.0762 0.1125 0.0222 0.0268
30 0.0944 0.0931 0.0972 0.1924 0.0891 0.0938 0.0979 0.0966 0.1010 0.1024 0.0925 0.0945 0.1066 0.0964 0.0973
31 0.1123 0.1369 0.1484 0.1681 0.1435 0.1281 0.1382 0.1513 0.1341 0.3639 0.1392 0.1542 0.2728 0.1286 0.1457
32 0.1875 0.1706 0.1744 0.1742 0.1751 0.1717 0.1809 0.1686 0.1711 0.2828 0.1689 0.1766 0.1942 0.1882 0.1759
33 0.1661 0.1376 0.1341 0.1322 0.1374 0.1415 0.1214 0.1428 0.1264 0.5017 0.1280 0.1279 0.1277 0.1328 0.1219
34 0.2195 0.2013 0.2080 0.2103 0.2011 0.2007 0.2074 0.2088 0.2203 0.4179 0.2053 0.2100 0.2151 0.1942 0.2051
35 0.1111 0.0899 0.0899 0.1047 0.0929 0.0861 0.0896 0.0895 0.0919 0.6213 0.0929 0.0957 0.1249 0.0886 0.0800
36 0.1617 0.1259 0.1313 0.1621 0.1541 0.1438 0.1431 0.1602 0.1411 1.3354 0.1253 0.1411 0.1759 0.1402 0.1314
37 0.2394 0.2299 0.2490 0.2217 0.2324 0.2211 0.2271 0.2317 0.2134 0.5368 0.2154 0.2308 0.2676 0.2171 0.2143
38 0.1372 0.1265 0.1333 0.1414 0.1259 0.1352 0.1328 0.1382 0.1328 0.4135 0.1348 0.1430 0.1387 0.1392 0.1238
39 0.1797 0.1785 0.1759 0.1797 0.1757 0.1816 0.1853 0.1807 0.1796 0.2113 0.1782 0.1781 0.1828 0.1740 0.1765
40 0.1161 0.1092 0.1204 0.1753 0.1126 0.1077 0.1319 0.1234 0.1291 0.1255 0.1374 0.1178 0.1346 0.1074 0.1133
41 0.0820 0.0860 0.1074 0.1286 0.0779 0.0759 0.0970 0.0872 0.1175 0.3678 0.0901 0.0958 0.1544 0.1232 0.0839
42 0.1703 0.1688 0.1845 0.1687 0.1992 0.1698 0.1768 0.1738 0.1893 0.4934 0.1632 0.1725 0.2052 0.1765 0.1766
43 0.0644 0.0352 0.0359 0.0340 0.0414 0.0359 0.0367 0.0381 0.0403 0.0398 0.0332 0.0357 0.0352 0.0480 0.0349
44 0.1624 0.1648 0.1849 0.1887 0.1598 0.1580 0.1796 0.1707 0.1715 0.1773 0.1709 0.1708 0.1736 0.1779 0.1703
45 0.1624 0.1617 0.1823 0.1905 0.1606 0.1587 0.1732 0.1780 0.1705 0.1748 0.1680 0.1753 0.1736 0.1797 0.1770
46 0.0916 0.0868 0.1171 0.2099 0.0854 0.0935 0.2327 0.1063 0.1129 0.6702 0.1000 0.0993 0.2362 0.1064 0.0920
47 0.0733 0.0688 0.0729 0.1690 0.0743 0.0636 0.0852 0.0890 0.0850 0.6521 0.0761 0.0753 0.1715 0.0673 0.0573
48 0.0426 0.0341 0.0401 0.0757 0.0335 0.0363 0.0426 0.0376 0.0414 0.1592 0.0384 0.0398 0.1718 0.0322 0.0370
49 0.0450 0.0506 0.0433 0.0791 0.0275 0.0488 0.0550 0.0539 0.0490 0.0554 0.0542 0.0584 0.0748 0.0388 0.0424
50 0.0633 0.0645 0.0753 0.1614 0.0709 0.0613 0.0825 0.0815 0.0812 0.0886 0.0830 0.0834 0.1517 0.0649 0.0654
51 0.0039 0.1243 0.0307 1.6139 0.0287 0.0216 0.2794 0.3480 0.2718 0.4515 0.1540 0.0550 1.7042 0.1288 0.0130
52 0.0226 0.0203 0.1333 0.1496 0.0006 0.0137 0.1360 0.1362 0.1367 0.1387 0.1349 0.1350 0.1413 0.0040 0.0033
53 0.2271 0.2252 0.2396 0.2509 0.2226 0.2255 0.2454 0.2406 0.2452 0.2449 0.2399 0.2399 0.2463 0.2267 0.2310
54 0.1869 0.1830 0.2006 0.2109 0.1860 0.1765 0.2039 0.2036 0.1969 0.4114 0.1936 0.2350 0.2492 0.1827 0.1753
55 0.2009 0.1874 0.1881 0.2098 0.1863 0.1887 0.1883 0.1917 0.1852 0.2159 0.1894 0.1858 0.1884 0.1878 0.1825
56 0.2165 0.1997 0.1848 0.2058 0.1931 0.2070 0.1770 0.1876 0.1825 0.8456 0.1792 0.1780 0.1961 0.1847 0.1722
57 0.1328 0.1093 0.1109 0.2342 0.1176 0.1091 0.1102 0.1070 0.1134 1.1641 0.1028 0.1075 0.4013 0.1070 0.1074
58 0.0797 0.0861 0.1018 0.1726 0.0821 0.0828 0.0904 0.0873 0.0883 0.1127 0.0923 0.0850 0.1843 0.1020 0.0845
59 0.1146 0.1056 0.1198 0.1772 0.1073 0.1095 0.1107 0.1339 0.1185 0.6438 0.1195 0.1257 0.2053 0.1371 0.1134
60 0.1412 0.1102 0.1115 0.1119 0.1108 0.1083 0.1109 0.1073 0.1110 0.2060 0.1116 0.1106 0.1909 0.1101 0.1117
61 0.0290 0.0279 0.0302 0.0306 0.0194 0.0281 0.0302 0.0301 0.0302 0.0304 0.0301 0.0302 0.0302 0.0201 0.0283
62 0.2379 0.2117 0.2059 0.2656 0.1957 0.2078 0.1921 0.2054 0.2015 0.3927 0.1880 0.1976 0.2418 0.1778 0.1815
63 0.0974 0.0959 0.0957 0.0985 0.0005 0.0958 0.0957 0.0961 0.0956 0.0965 0.0956 0.0957 0.0967 0.0033 0.0029
64 0.1295 0.1128 0.1174 0.2165 0.1118 0.1191 0.1098 0.1176 0.1089 0.5817 0.1180 0.1110 0.2256 0.1256 0.1106
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Table 11: Detailed AUC scores (the higher the better) of key ablations, design comparison, and
transferability evaluations on 80 binary classification datasets. “nbin32/128” means the group
“nbin = 32/128” in Table 5; “w/ VPos” is for the ablation “w/ Value Vector Position Encoding”
in Table 5; “rand. init.” and “LM init.” denote the non-pre-trained TP-BERTa initialized with
random weights or RoBERTa weights in Table 3, respectively.

ID Ourss Value2Str VMFE w/o IFA nbin32 nbin128 w/ VPos rand. init. LM init.

0 1.0000 0.4772 1.0000 0.9927 0.9960 0.9998 1.0000 0.9996 1.0000
1 0.9964 0.9947 0.9927 0.9908 0.9961 0.9989 0.9992 0.9948 0.9964
2 0.9698 0.9476 0.9758 0.9641 0.9720 0.9747 0.9716 0.9711 0.9698
3 0.9811 0.9603 0.9850 0.9705 0.9831 0.9809 0.9829 0.9789 0.9811
4 0.9680 0.9486 0.9759 0.9684 0.9723 0.9748 0.9727 0.9767 0.9680
5 0.9426 0.9233 0.9436 0.9273 0.9453 0.9468 0.9476 0.9263 0.9426
6 0.6818 0.3182 0.6364 0.7955 0.7500 0.7209 0.7348 0.6770 0.6818
7 0.5886 0.5670 0.4506 0.3345 0.3569 0.5882 0.3645 0.5490 0.5886
8 0.9905 0.9959 0.9826 0.9864 1.0000 1.0000 0.9980 0.9690 0.9905
9 0.5510 0.5177 0.5266 0.4991 0.4993 0.5129 0.5102 0.5322 0.5510

10 0.7607 0.9103 0.7121 0.7944 0.7196 0.7196 0.7252 0.7032 0.7607
11 0.7806 0.7148 0.8652 0.7617 0.7415 0.8756 0.8639 0.8568 0.7806
12 0.9248 0.8588 1.0000 0.7500 0.8333 0.7870 0.7778 0.7639 0.9248
13 0.4966 0.5220 0.4696 0.4848 0.4790 0.5041 0.4982 0.4927 0.4966
14 0.9927 0.8353 0.9890 0.9716 0.9903 0.9854 0.9893 0.9850 0.9927
15 0.7615 0.7744 0.8039 0.7576 0.7321 0.7857 0.8199 0.7310 0.7615
16 0.7609 0.6946 0.7406 0.7522 0.7344 0.7432 0.7042 0.7546 0.7609
17 0.7913 0.4376 0.8013 0.7593 0.7869 0.7978 0.8019 0.8094 0.7913
18 0.9827 0.7446 0.9221 0.9134 0.9524 0.9670 0.9784 0.9957 0.9827
19 1.0000 0.9928 0.9997 0.9991 0.9993 0.9997 1.0000 1.0000 1.0000
20 1.0000 0.9928 0.9997 0.9991 0.9993 0.9997 1.0000 1.0000 1.0000
21 0.9933 1.0000 0.9593 0.9573 0.9480 0.9587 0.9820 0.9283 0.9933
22 1.0000 1.0000 0.9898 0.9958 1.0000 1.0000 1.0000 0.9988 1.0000
23 1.0000 0.5594 0.8531 0.9091 1.0000 0.9881 0.9860 0.9860 1.0000
24 0.9826 0.1453 1.0000 0.8488 0.9826 1.0000 0.9709 1.0000 0.9826
25 0.9332 0.9320 0.9349 0.9235 0.9308 0.9357 0.9367 0.9377 0.9332
26 0.9934 0.9933 0.9997 0.9955 0.9944 0.9976 0.9980 0.9945 0.9934
27 0.9934 0.9919 0.9997 0.9955 0.9944 0.9976 0.9980 0.9945 0.9934
28 0.9480 0.9427 0.9472 0.9296 0.9478 0.9470 0.9447 0.9493 0.9480
29 0.9982 0.9224 0.9988 0.9815 0.9858 0.9983 0.9983 0.9981 0.9982
30 1.0000 0.9964 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
31 0.9817 0.6191 0.9911 0.9428 0.9884 0.9879 0.9875 0.9860 0.9817
32 0.9331 0.6457 0.9473 0.9513 0.9114 0.9263 0.9432 0.8738 0.9331
33 0.9007 0.6072 0.8543 0.7766 0.8300 0.8440 0.8586 0.8216 0.9007
34 0.9383 0.2037 0.8519 0.8457 0.7284 0.8235 0.9321 0.9198 0.9383
35 0.9088 0.7756 0.8811 0.7911 0.8476 0.8273 0.8705 0.8591 0.9088
36 0.8861 0.5068 0.8362 0.7728 0.8401 0.8488 0.8478 0.8101 0.8861
37 0.8691 0.6842 0.8947 0.6932 0.8870 0.8937 0.8845 0.8221 0.8691
38 0.6581 0.4719 0.6522 0.6273 0.6461 0.6560 0.6193 0.6689 0.6581
39 0.6791 0.5478 0.5846 0.6393 0.6032 0.6151 0.6410 0.6411 0.6791
40 0.8958 0.6354 0.8958 0.6979 0.6458 0.7525 0.7292 0.8854 0.8958
41 0.9268 0.5266 0.8810 0.8151 0.8806 0.8838 0.8807 0.8254 0.9268
42 0.6586 0.4899 0.5874 0.5691 0.6007 0.5717 0.5934 0.6119 0.6586
43 0.6379 0.5617 0.5873 0.6137 0.5342 0.5801 0.5762 0.6132 0.6379
44 0.6235 0.5154 0.4979 0.5288 0.4434 0.5586 0.4733 0.5576 0.6235
45 1.0000 1.0000 1.0000 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000
46 0.9914 0.6934 0.9481 0.9643 0.9531 0.9512 0.9592 0.9373 0.9914
47 0.7417 0.6849 0.7469 0.7299 0.6542 0.7436 0.7464 0.7460 0.7417
48 0.7394 0.6721 0.7420 0.7268 0.7390 0.7392 0.7415 0.7402 0.7394
49 0.6904 0.5299 0.6325 0.6442 0.6970 0.6831 0.5610 0.6490 0.6904
50 0.9934 0.9972 0.9901 0.9944 0.9977 0.9841 0.9929 0.9959 0.9934
51 0.5879 0.5592 0.5999 0.5600 0.5358 0.5067 0.4994 0.5348 0.5879
52 0.5722 0.5010 0.4719 0.4118 0.3831 0.5470 0.4023 0.5291 0.5722
53 0.5565 0.5221 0.4739 0.5545 0.5098 0.5060 0.5286 0.5431 0.5565
54 0.5120 0.5182 0.5621 0.5671 0.4543 0.5958 0.5408 0.5830 0.5120
55 0.8500 0.8108 0.8333 0.7965 0.8407 0.8386 0.8425 0.8150 0.8500
56 0.6684 0.5308 0.5094 0.5293 0.5026 0.5106 0.5141 0.6288 0.6684
57 0.5496 0.4739 0.4574 0.4565 0.4243 0.4243 0.4870 0.4652 0.5496
58 0.9663 0.9780 0.9669 0.9588 0.9737 0.9702 0.9520 0.9570 0.9663
59 0.5524 0.4111 0.5270 0.5027 0.4856 0.4799 0.5246 0.4905 0.5524
60 0.7746 0.5551 0.5963 0.5845 0.6789 0.7161 0.7872 0.8322 0.7746
61 0.7749 0.7707 0.7379 0.7933 0.7251 0.7343 0.7881 0.7502 0.7749
62 0.7398 0.7492 0.4601 0.6762 0.7111 0.7005 0.7513 0.7793 0.7398
63 0.6957 0.7381 0.7408 0.7421 0.7484 0.7567 0.7252 0.7473 0.6957
64 0.9860 0.9059 0.9849 0.9752 0.9836 0.9864 0.9823 0.9820 0.9860
65 0.6363 0.5912 0.5420 0.5906 0.6227 0.6525 0.6200 0.5833 0.6363
66 0.9993 0.9980 0.9798 0.9973 0.9808 0.9966 0.9989 0.9964 0.9993
67 0.9965 0.9992 0.9993 0.9954 0.9995 0.9985 0.9996 0.9994 0.9965
68 0.5110 0.4187 0.4610 0.4530 0.6178 0.4275 0.4241 0.4215 0.5110
69 0.7908 0.4949 0.5255 0.6276 0.4949 0.4949 0.5204 0.5408 0.7908
70 0.6168 0.5201 0.5000 0.5383 0.4992 0.5361 0.6095 0.6134 0.6168
71 0.6168 0.5201 0.5000 0.5383 0.4992 0.5161 0.6095 0.6034 0.6168
72 0.8939 0.6997 0.7154 0.7208 0.7468 0.6071 0.6814 0.8019 0.8939
73 0.6334 0.5164 0.5096 0.5081 0.5401 0.6203 0.5632 0.6067 0.6334
74 0.8813 0.8731 0.8617 0.8586 0.8834 0.8833 0.8784 0.8840 0.8813
75 0.9963 0.9957 0.9966 0.9934 0.9962 0.9958 0.9966 0.9980 0.9963
76 0.9973 0.9832 0.9914 0.8734 0.9844 0.9918 0.9917 0.9887 0.9973
77 0.9906 0.9773 0.9718 0.8812 0.9879 0.9825 0.9802 0.9871 0.9906
78 0.9906 0.9773 0.9718 0.8812 0.9879 0.9825 0.9802 0.9871 0.9906
79 0.8306 0.5500 0.6417 0.5361 0.7306 0.8083 0.6333 0.8194 0.8306
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Table 12: Statistics of additional 32 downstream multi-class classification datasets.

ID Dataset name # samples # num. # cat.

0 Iris 150 4 0
1 AI index db 62 8 3
2 all data updated 1275 11 11
3 milknew 1059 2 5
4 fitz undersampled 4515 0 3
5 0181 bridges 105 2 9
6 Life expectancy 223 3 1
7 0901 iris-example 150 4 0
8 0238 pbcseq 1945 12 6
9 1420 burst-header 1075 19 2
10 0540 MyIris 150 4 0
11 0659 151 3 2
12 1400 iriiiiiis 150 4 0
13 0941 TEST10e627dcde 150 4 0
14 0829 150 4 0
15 0968 iris 150 4 0
16 1261 Heart-Disease 303 5 5
17 1748 Sales DataSet of 1000 2 9
18 2754 124 0 19
19 1310 penguins 344 4 2
20 1402 iris test 150 4 0
21 1604 iris reproduced 150 4 0
22 1607 Indian-Liver 583 9 2
23 1620 myiris 150 3 0
24 2215 Iris 150 4 0
25 0882 JuanFeldmanIris 150 4 0
26 1191 Students 480 4 12
27 1127 mom 140 2 1
28 1394 IRIS-flower 150 4 0
29 1618 aaaa 150 4 0
30 1738 StocksData 600 3 2
31 1811 Pokemon-with 1017 9 3

Table 13: Statistics of 25 medical domain datasets. “bin@10” denotes the dataset corresponds to the
one with ID 10 in the downstream binary classification collection, and “reg@1” means the dataset
corresponds to the one with ID 1 in the downstream regression collection.

ID Dataset name # samples # num. # cat.

bin@10 0445 arsenic-male 559 4 0
bin@11 0446 arsenic-female 559 4 0
bin@12 0447 arsenic-female 559 4 0
bin@17 1592 Diabetes-Data 768 8 0
bin@44 0541 plasma retinol 315 10 3
bin@52 b depressed 1429 12 9
bin@55 Breast Cancer 4024 5 10
bin@66 1752 Wisconsin 699 2 8
bin@69 0446 newton hema 140 2 1
bin@72 1011 cleve 303 5 8
bin@74 1564 Mammographic 830 1 4
bin@76 diabetes data upload 520 1 15
bin@77 1451 early-stage 520 1 15
bin@78 1774 Early-Stage 520 1 15
bin@79 0408 pharynx 195 2 8
reg@1 0237 arsenic-female 559 4 0
reg@2 0251 arsenic-male 559 4 0
reg@33 0235 plasma retinol 315 10 3
reg@41 1118 jura 359 8 9
reg@52 1890 ECDC-daily-data 9370 3 6
reg@53 thyroidDF 9172 7 23
reg@55 2168 Intersectional 1000 13 5
reg@56 0130 breastTumor 286 2 7
reg@60 0225 veteran 137 2 5
reg@62 0125 pharynx 195 2 8
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Table 14: Results of the baselines on 25 medical domain datasets. The average rank verifies that our
approach performs the best.
ID XGB(d) Cat(d) FTT(d) Trans(d) XGB(t) Cat(t) MLP(t) Auto(t) DCN(t) Tab(t) SAI(t) FTT(t) XTab(t) Ourss(d)

bin@10 0.8000 0.9009 0.7514 0.8860 0.8636 0.9009 0.6897 0.9028 0.6374 0.5495 0.5617 0.7626 0.8262 0.7607
bin@11 0.8333 0.7747 0.7682 0.8216 0.7435 0.8542 0.7650 0.7878 0.8333 0.7041 0.7266 0.7643 0.5798 0.7806
bin@12 0.8738 0.8912 0.9144 0.8981 0.9398 0.9062 0.8275 0.9815 0.8333 0.9537 0.8241 0.7708 0.8796 0.9248
bin@17 0.7672 0.7556 0.8031 0.3363 0.7778 0.8134 0.7887 0.7830 0.8002 0.7087 0.7894 0.7957 0.7841 0.7913
bin@44 0.4393 0.5278 0.4352 0.3796 0.4928 0.5149 0.5319 0.4630 0.5484 0.3858 0.4115 0.5473 0.3405 0.6235
bin@52 0.4950 0.4454 0.4959 0.4417 0.4472 0.4775 0.4767 0.4699 0.5004 0.5194 0.5371 0.4529 0.4813 0.5722
bin@55 0.8442 0.8492 0.8534 0.5585 0.8539 0.8559 0.8478 0.8524 0.8507 0.8341 0.8359 0.8552 0.8532 0.8500
bin@66 0.9955 0.9946 0.9962 0.5170 0.9903 0.9975 0.9966 0.9952 0.9946 0.9665 0.9966 0.9982 0.9921 0.9993
bin@69 0.6429 0.6480 0.6276 0.6837 0.6378 0.6990 0.5204 0.6429 0.6429 0.5561 0.5204 0.5714 0.4847 0.7908
bin@72 0.8290 0.8474 0.8160 0.8398 0.7668 0.8139 0.8409 0.8561 0.8398 0.6742 0.8539 0.8593 0.8182 0.8939
bin@74 0.8780 0.8833 0.8887 0.8718 0.8792 0.8930 0.7521 0.8833 0.8776 0.8417 0.8784 0.8791 0.8630 0.8813
bin@76 0.9973 0.9984 0.9984 0.2641 0.9902 0.9941 0.9891 0.9973 0.9785 0.9031 0.9988 0.9988 0.9742 0.9973
bin@77 0.9842 0.9924 0.9984 0.7633 0.9906 0.9912 0.9723 0.9668 0.9621 0.9676 0.9902 0.9840 0.9828 0.9906
bin@78 0.9842 0.9924 0.9984 0.9859 0.9891 0.9988 0.9777 0.9902 0.9773 0.8660 0.9965 0.9863 0.9828 0.9906
bin@79 0.7667 0.7306 0.7778 0.7639 0.7819 0.7639 0.7778 0.6972 0.8028 0.5306 0.6972 0.7556 0.5194 0.8306
reg@1 0.0437 0.0210 0.0326 0.0638 0.0469 0.0178 0.0159 0.0121 0.0438 0.0600 0.0402 0.0356 0.0551 0.0087
reg@2 0.0485 0.0230 0.0402 0.0640 0.0293 0.0262 0.0732 0.0292 0.0420 0.0508 0.0540 0.0418 0.0580 0.0124
reg@33 0.1661 0.1376 0.1341 0.1322 0.1374 0.1415 0.1214 0.1428 0.1264 0.5017 0.1280 0.1279 0.1277 0.1219
reg@41 0.0820 0.0860 0.1074 0.1286 0.0779 0.0759 0.0970 0.0872 0.1175 0.3678 0.0901 0.0958 0.1544 0.0839
reg@52 0.0226 0.0203 0.1333 0.1496 0.0006 0.0137 0.1360 0.1362 0.1367 0.1387 0.1349 0.1350 0.1413 0.0033
reg@53 0.2271 0.2252 0.2396 0.2509 0.2226 0.2255 0.2454 0.2406 0.2452 0.2449 0.2399 0.2399 0.2463 0.2310
reg@55 0.2009 0.1874 0.1881 0.2098 0.1863 0.1887 0.1883 0.1917 0.1852 0.2159 0.1894 0.1858 0.1884 0.1825
reg@56 0.2165 0.1997 0.1848 0.2058 0.1931 0.2070 0.1770 0.1876 0.1825 0.8456 0.1792 0.1780 0.1961 0.1722
reg@60 0.1412 0.1102 0.1115 0.1119 0.1108 0.1083 0.1109 0.1073 0.1110 0.2060 0.1116 0.1106 0.1909 0.1117
reg@62 0.2379 0.2117 0.2059 0.2656 0.1957 0.2078 0.1921 0.2054 0.2015 0.3927 0.1880 0.1976 0.2418 0.1815

rank 8.3(3.0) 6.2(3.4) 6.1(2.8) 10.9(3.7) 6.5(3.6) 4.8(3.7) 8.1(3.8) 6.6(3.5) 7.5(3.8) 12.0(3.1) 7.7(3.7) 6.3(3.3) 10.6(3.0) 3.5(2.8)

Table 15: The average values (standard deviations) of all method ranks under several data sce-
narios. We use the TP-BERTa version pre-trained on 101 binary classification datasets (i.e., “TP-
BERTa(single, binclass)”) under imbalanced binary classification and multi-class classification set-
tings.

Models: XGB(d) Cat(d) FTT(d) Trans(d) XGB(t) Cat(t) MLP(t) Auto(t) DCN(t) Tab(t) SAI(t) FTT(t) Xtab(t) Ours(d)

Imbalanced binary classification

p < 1/3 7.9(4.0) 8.0(4.3) 6.6(3.6) 10.6(4.7) 6.9(4.6) 6.4(4.2) 8.5(4.3) 7.4(3.5) 6.6(4.0) 11.2(4.2) 8.6(3.5) 6.6(3.7) 9.0(4.0) 6.2(4.0)
p < 1/5 8.1(4.2) 8.1(4.4) 6.8(2.9) 10.3(4.4) 7.0(5.1) 6.4(4.8) 10.1(4.0) 6.0(3.3) 7.2(4.3) 10.9(4.2) 10.1(3.6) 7.1(3.6) 7.8(4.2) 5.2(3.2)
p < 1/8 8.0(4.1) 7.3(4.6) 6.9(3.2) 10.2(4.2) 6.0(4.9) 6.7(4.7) 10.1(4.6) 5.5(3.5) 8.3(4.4) 10.8(3.9) 11.0(2.3) 6.8(3.5) 7.7(4.2) 5.5(3.1)
p < 1/20 10.0(2.5) 5.8(4.5) 8.3(4.0) 8.0(4.8) 3.1(1.4) 7.6(5.3) 9.0(5.4) 4.8(4.8) 8.6(4.5) 11.0(6.0) 11.9(1.7) 8.5(4.1) 6.8(1.7) 6.3(3.2)

32 additional multi-class classficaition tasks

rank 5.8(2.3) 7.0(3.1) 6.4(2.9) 6.7(3.7) 4.9(3.6) 7.1(3.5) 7.3(4.2) 8.7(3.2) 7.1(3.3) 13.4(1.6) 7.8(3.3) 5.9(3.4) 12.7(2.4) 5.1(2.2)
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