
Under review as a conference paper at ICLR 2023

A EXTENDED RELATED WORK

Bayesian Gaussian linear models This work builds on the rich literature of Bayesian linear
regression (Gull, 1989; Bishop, 2006; Rasmussen & Williams, 2006). Specifically, we present
a stochastic approximation to the iterative algorithm for hyperparameter selection introduced by
(Mackay, 1992) and extended by Tipping (2001); Tipping & Faul (2003); Wipf & Nagarajan (2007);
Antorán et al. (2022c). Analytical tractability makes linear models ubiquitous in machine learning,
with applications in genomics (Runcie et al., 2021), reinforcement learning (Ash et al., 2022), and
pandemic modelling (Nicholson et al., 2022), among others. Alas, linear models are held back by
a cost of inference cubic in the number of parameters when expressed in primal form, or cubic in
the number of observations for the dual (i.e. kernelised or Gaussian Process) form. Additionally,
for non-Gaussian likelihoods, e.g. in classification, inference is no longer closed form. The most
common approximations used in these settings are Laplace’s method (Mackay, 1992) and variational
inference (Hensman et al., 2013). Khan et al. (2019) and Adam et al. (2021) show that every Gaussian
approximation corresponds to the true posterior of a surrogate regression problem with the same
features, a fact which we use in this work to apply sample-then-optimise to Laplace posteriors.

Sample-then-optimise Papandreou & Yuille (2010); de G. Matthews et al. (2017) phrase sampling
from a conjugate Gaussian-linear model as solving a perturbed quadratic optimisation problem. This
method has been applied for uncertainty estimation in non-linearised NNs by Osband et al. (2018;
2021), and Pearce et al. (2020), although in this setting it does not draw exact posterior samples.
In this work, we show sample-then-optimise to be the primal form of Matheron’s rule (Journel &
Huijbregts, 1978; Hoffman & Ribak, 1991), a method for updating jointly Gaussian samples into
conditional samples, which was recently repopularised by Wilson et al. (2020).

Linearised neural networks Introduced by Mackay (1992), these are an approximation yielding
closed-form errorbars for Laplace posteriors. Lawrence (2000) and Ritter et al. (2018) found the
Laplace approximation to underperform without the linearisation step. Khan et al. (2019) and
Immer et al. (2021b) re-popularised the linearisation step by showing that it improves the quality of
uncertainty estimates. Kristiadi et al. (2020) show that the Laplace approximation is sufficient to
resolve certain pathologies of point-estimated NNs’ predictions. Immer et al. (2021a) and Antorán
et al. (2022a;c) explore the linear model’s evidence for model selection. Daxberger et al. (2021b) and
Maddox et al. (2021) introduce subnetwork and finite differences approaches, respectively, for faster
inference with the linearised model. This line of work is intimately related to the neural tangent kernel
(Jacot et al., 2018; Lee et al., 2019; Novak et al., 2020) in which NNs are linearised at initialisation.

The g-prior, originally introduced by Zellner (1986), consists of a centred Gaussian with covariance
matching the inverse of the Fisher information matrix. Resultantly, the g-prior ensures inferences
are independent of the units of measurement of the covariates (Minka, 2000). Since then, it has
extensively used in the context of model selection for generalised linear models (Liang et al., 2008;
Bové & Held, 2011; Baragatti & Pommeret, 2012). In the large-scale setting, we overcome the
computational intractability of the Fisher by diagonalising the g-prior while preserving its invariance
property.

B MODEL EVIDENCE LOWER BOUND AND THE EFFECTIVE DIMENSION

B.1 EQUIVALENT FORMULATIONS OF EFFECTIVE DIMENSION

We begin by relating two standard forms of effective dimension, which we use throughout. Starting
with the form standard in the kernel-based literature (that without an explicit d

0 dependence),

� = Tr {(A + M)�1
M} = Tr {(I + A

�1
M)�1

A
�1

M} = Tr {I � (I + A
�1

M)�1} (18)

= d
0 � Tr {A(A + M)�1}, (19)

we have arrived at the form used within the finite-dimensional linear modelling literature (Mackay,
1992; Wipf & Nagarajan, 2007; Maddox et al., 2020).

15

Under review as a conference paper at ICLR 2023

B.2 DERIVATION OF M AS A LOWER BOUND ON THE MODEL EVIDENCE

Let p✓ be the Lebesgue density of N (�✓, B
�1), P = N (0, A

0�1) and Q = N (✓̄, (M + A
0)�1).

Then,

log p(Y ; A0) = log

Z
p✓(Y)dP = log

Z
p✓(Y)

dP

dQ
dQ �

Z
log

p✓(Y)

dP

dQ

�
dQ (20)

=

Z
log p✓(Y)dQ� D(Q||P). (21)

where D denotes the KL-divergence. Starting with the first term,
Z

log p✓(Y)dQ =
1

2

Z
�n log 2⇡ + log detB� (Y � �✓)TB(Y � �✓)dQ (22)

=
1

2
[�n log 2⇡ + log detB]� 1

2

Z
(Y � �✓)TB(Y � �✓)dQ, (23)

and expanding the quadratic form,
Z

(Y � �✓)TB(Y � �✓)dQ = Y
TBY � 2Y

TB�

Z
✓dQ +

Z
✓
T�TB�✓dQ (24)

= Y
TBY � 2Y

TB�✓̄ +

Z
✓
T
M✓dQ. (25)

To handle the final integral, consider that

� = Tr {M(M + A
0)�1} (26)

= Tr {M

Z
(✓ � ✓̄)(✓ � ✓̄)T dQ} (27)

= �Tr {M ✓̄✓̄
T } + Tr {M

Z
✓✓

T
dQ} (28)

= �✓̄
T
M ✓̄ +

Z
✓
T
M✓dQ, (29)

and thus
Z

log p✓(Y)dQ =
1

2

⇥
log detB� n log 2⇡ � (Y � �✓̄)TB(Y � �✓̄)� �

⇤
(30)

= log p✓̄(Y)� 1

2
�. (31)

The KL between two multivariate Gaussians is a standard result, yielding

D(Q||P) =
1

2

⇥
� log detA0 + log det(M + A

0)� d
0 + ✓̄

T
A

0
✓̄ + Tr {A

0(M + A
0)�1}

⇤
(32)

=
1

2

⇥
� log detA0 + log det(M + A

0) + ✓̄
T
A

0
✓̄ � �

⇤
, (33)

where we used that � = d
0 � Tr {A

0(M + A
0)�1}.

Putting together (31) and (33), we obtain

log p(Y ; A0) � log p✓̄(Y)� 1

2
log det(A0�1

M + I)� 1

2
k✓̄k2A0 = M(A0), (34)

which is the stated result up to taking C = log p✓̄(Y).

B.3 FIRST ORDER OPTIMALITY CONDITION FOR M

Consider the derivative of M. We have,

rM(A) = �1

2

⇥
rk✓̄k2A +r log det(A + M)�r log detA

⇤
, (35)

16

Under review as a conference paper at ICLR 2023

where we expanded log det(I + A
�1

M) = log det(A + M) � log detA. Taking the respective
derivatives and setting equal to zero at A, this leads to the condition

✓̄✓̄
T = (I � (I + A

�1
M)�1)A�1

. (36)

Post-multiplying by A and applying the push-through identity, we obtain

✓̄✓̄
T
A = M(A + M)�1

. (37)

For the above to hold, it is necessary that the traces of both sides are equal. Thus,

k✓̄k2A = Tr {✓̄✓̄
T
A} = Tr {M(A + M)�1} = �, (38)

which is the stated first order optimality condition, up to a cyclic permutation.

B.4 M-STEP FOR FEATURE-WISE REGULARISATION STRENGTHS

We can leverage the primal form expression for the effective dimension given in Appendix B.1 to
extend the above first order optimality condition to the feature-wise regulariser setting.

Consider a sub-vector of our weight vector contiguous between the ith and jth weights written as
✓̄i:j . Note that we only choose contiguous weights for notational convenience but it is not necessary
to do so in general.

The first order condition from Appendix B.3 is satisfied if for any i, j with i < j we have

↵k✓̄i:jk2 = |j � i|� ↵

jX

k=i

[(A + M)�1]kk := �i:j , (39)

and thus we may update the regulariser for each separate sub-vector as ↵ = �i:j/k✓̄i:jk2.

C ANALYSIS OF LOSSES AND LOSS GRADIENT ESTIMATOR VARIANCES

C.1 ON LOSS MINIMA

The losses L and L
0 are strictly convex, thus to confirm they have the same unique minimum, it

suffices to consider the respective first order optimality conditions, rL(⇣) = 0 and rL
0(⇣ 0) = 0.

We have,
rL(⇣) = �TB(�⇣ � E) + A(⇣ � ✓

0), (40)

and

rL
0(⇣ 0) = �TB�⇣

0 + A(⇣ 0 �A
�1�TBE � ✓

0) (41)

= �TB(�⇣
0 � E) + A(⇣ 0 � ✓

0) (42)

Thus ⇣ = ⇣
0 almost surely. Moreover, L

0(z) = L(z) + C for all z, for C a constant independent of z.

To determine the distribution of ⇣, note that it is a linear transformation of zero-mean Gaussian
random variables, and thus itself a zero-mean Gaussian random variable. Rearranging the first order
optimality condition, we find that

⇣ = H
�1(�TBE + A✓

0). (43)

Thus

E[⇣⇣
T] = H

�1E[(�TBE + A✓
0)(�TBE + A✓

0)T]H�1 (44)

= H
�1

�
�TBE[EET]B� + AE[✓0✓0]A + 2�TBE[E(✓0)T]A

�
H

�1 (45)

= H
�1(�TB� + A)H�1 = H

�1
HH

�1 = H
�1

. (46)

And so ⇣ ⇠ N (0, H
�1) = ⇧0 as claimed.

17

Under review as a conference paper at ICLR 2023

C.2 LOSS GRADIENT VARIANCE CONDITION

Taking j ⇠ Unif({1, . . . , n}), the gradient estimators for the data-dependent terms of L and L
0 are

ĝ = nrk�(xj)z � "jk2Bj
= n�(xj)

T
Bj(�(xj)z � "j) (47)

and
ĝ
0 = nrk�(xj)zk2Bj

= n�(xj)
T
Bj�(xj)z, (48)

respectively. Their variances are related as

Var(ĝ) = Var(n�(xj)
T
Bj(�(xj)z � "j)) (49)

= Var(n�(xj)
T
Bj�(xj)z) + Var(n�(xj)

T
Bj"j)

� 2Cov(n�(xj)
T
Bj�(xj)z, n�(xj)

T
Bj"j) (50)

= Var(ĝ0) + Var(n�(xj)
T
Bj"j)� 2Cov(n�(xj)

T
Bj�(xj)z, n�(xj)

T
Bj"j) (51)

Evaluating the variance and covariance, we have

Var
�
n�(xj)

T
Bj"j

�
= nVar(�TBE) (52)

and
Cov(n�(xj)

T
Bj�(xj)z, n�(xj)

T
Bj"j) = nCov(�TB�z, �TBE), (53)

and thus
Varĝ � Varĝ0 = n

⇥
Var(�TBE)� 2Cov(�TB�z, �TBE)

⇤
=: n�. (54)

C.3 CONDITION AT CONVERGENCE

Now consider Tr � for z = ⇣ ⇠ ⇧0, the optimum of both L and L
0. From the first order optimality

condition,
⇣ = H

�1(�TBE + A✓
0). (55)

Proceeding to rearrange the condition at z = ⇣,

Tr � = Tr {E�TBE(�TBE � 2�TB�⇣)T } (56)

= Tr {E�TBE(�TBE � 2�TB�H
�1(�TBE + A✓

0))T } (57)

= Tr {E�TBE(�TBE � 2�TB�H
�1(�TBE + AE[✓0]))T } (58)

= Tr {E�TBE(�TBE � 2�TB�H
�1�TBE)T }, (59)

= Tr {�TBE[EET](B�� 2B�H
�1�TB�)}, (60)

= Tr {�TB�(I � 2H
�1�TB�)} (61)

where we substituted in the definition of ⇣, then used that E and ✓
0 are independent, and that

E[✓0] = 0, and finally that E[EET] = B�1.

Writing M = �TB� and recalling that H = (M + A), we have

Tr � = Tr {M(I � 2(M + A)�1
M)}, (62)

= Tr {M(I � 2(A�1
M + I)�1

A
�1

M)}, (63)

= Tr {M(I � 2(I � (A�1
M + I)�1)}, (64)

= Tr {M(�I + 2(M + A)�1
A)} (65)

= �Tr {M} + 2Tr {M(M + A)�1
A}, (66)

where we have used that (A�1
M + I)�1

A
�1

M = I � (A�1
M + I)�1 for the fourth equality.

Now consider the isotropic prior case A = ↵I and recall the effective dimension is written as
� = Tr {M(M + A)�1}. The above implies Tr � > 0 if and only if 2↵� > Tr �TB�.

18

Under review as a conference paper at ICLR 2023

C.4 ANALYSING CONDITION AT CONVERGENCE

To gain some intuition for the condition at convergence, denote by �1, . . . , �d0 the eigenvalues of M

(with multiplicity). We can use these to restate the condition as

2↵� = 2↵

d0X

j=1

�j

�j + ↵
>

d0X

j=1

�j = Tr {M}. (67)

This formulation of effective dimension gives an interpretation of a soft count of the number of
dimensions for which �j is larger than ↵; in that sense, �j measures how well determined the
corresponding dimension of the weight vector ✓ is by the observed data. From here, note that

2↵�j

�j + ↵
> min{�j , ↵}, (68)

and thus it is sufficient for Tr � > 0 to hold at convergence that ↵ > �j for all j (but, of course, not
necessary), yielding the intuition that L

0 is preferred when the problem is heavily regularised.

D DUAL FORM OF THE SAMPLE-THEN-OPTIMISE LOSS: MATHERON’S RULE

Both losses L and L
0 result in a random variable ⇣ ⇠ ⇧0 given by

⇣ = H
�1(�TBE + A✓

0). (69)

Recalling that H = A+�TB� and using the push-through identity, we can express ⇣ equivalently as

⇣ = H
�1((H � �TB�)✓0 + �TBE) (70)

= ✓
0 + H

�1�TB(E � �✓
0) (71)

= ✓
0 + A

�1(I + �TB�A
�1)�1�TB(E � �✓

0) (72)

= ✓
0 + A

�1�TB(I + �A
�1�TB)�1(E � �✓

0) (73)

= ✓
0 + A

�1�T (B�1 + �A
�1�T)�1(E � �✓

0) (74)

Now taking a sample of the posterior Gaussian process evaluated at input x to be G = �(x)⇣ and the
corresponding sample of the prior process to be G0 = �(x)✓0, premultiplying the above expression
by �(x) we obtain

G = G0 + �(x)A�1�T (B�1 + �A
�1�T)�1(E � �✓

0) (75)

which is Matheron’s rule.

E RESOLVING FEATURE SCALE INDETERMINACIES IN THE NN JACOBIAN
WITH THE G-PRIOR

Antorán et al. (2022c) show that for NNs with normalisation layers, the Jacobian features �(·) =
rwf(w̄, ·) corresponding to each NN layer are scaled arbitrarily. To illustrate this, we divide the NN
linearisation point into the concatenation of two weight vectors w̄ = [w̄0, w̄1]. We assume the layer
containing w̄0 is followed by a normalisation layer, but not that containing w̄1, which leads to the
invariance

f([kw̄0, w̄1], ·) = f([w̄0, w̄1], ·) (76)
for all k > 0.

While f is invariant to this scaling, the Jacobian feature embeddings �(·) = rwf(w̄, ·) are not. We
separate the embeddings as

�(x) = [�0(·), �1(·)] = [rw0f(w̄, ·),rw1f(w̄, ·)]. (77)

Antorán et al. (2022c) show that, given a reference pair ([w̄0, w̄1], [�0(x), �1(x)]), and for w̄0

normalised, scaling w̄0 by k results in the pair ([kw̄0, w̄1], [k�1
�0(x), �1(x)]). Thus, using a single

prior precision parameter, the regularisation strength applied to the weights multiplying �0(x) relative

19

Under review as a conference paper at ICLR 2023

to those multiplying �1(x) will increase with k. The value of k, the scale of the linearisation point,
depends on exogenous factors such as learning rate or batch size—and importantly is independent of
the data, since it does not affect the output.

One way to resolve this is to assign the weights w̄0 and w̄1 separate regularisation parameters and
learn these using the EM procedure outlined in Section 2. However, instead, consider using the g-prior
normalised features �

0 introduced in Section 4.3, and specifically, the scaling vector corresponding
to normalised and non-normalised components s = [s0, s1]. For a reference pair ([w̄0, w̄1], [s0, s1])
and for w̄0 normalised, the k-scaled pair is ([kw̄0, w̄1] and

[diag(k�1�T
0 B�0k

�1)�� 1
2 , diag(�T

1 B�1)
�� 1

2] = [ks0, s1]

where � denotes an elementwise power. Since the k-scaled features are [k�1
�0(·), �1(·)], when

applying the g-prior normalisation we recover a feature vector independent of k. This resolves the
aforementioned pathology.

F A PRACTICAL IMPLEMENTATION OF SAMPLE-BASED INFERENCE AND
HYPERPARAMETER LEARNING FOR LINEARISED NEURAL NETWORKS

Algorithm 1 provides a high level overview of the procedure used for our experiments. This appendix
expands on this, providing fully detailed algorithms for both sampled linearised Laplace applied to
classification networks and the kernelised version of the method that we use for tomographic image
reconstruction.

Image classification Algorithm 2 provides an algorithm for linearised Laplace inference using
the stochastic EM iteration presented in Section 3 for hyperparameter selection and the g-prior
normalisation described in Section 4.3. Therein, µ denotes the softmax function. The curvature of
the cross entropy loss at xi, denoted Bi, is given by Bi = diag(pi)� pip

T
i for pi = µ(f(w̄, xi)) our

neural network’s predictive probabilities. The notation � refers to the elementwise product and to the
elementwise power when used in an exponent. We refer to the Cholesky factorisation of a positive
definite matrix as its 1/2th power.

In order to limit computational cost, we sample the stochastic regularisation terms (✓nj), per (7), only
once at the start. Not resampling these at each E step results in the optima of the sampling objective
being close for successive iterations. This comes at the cost of a small bias in our estimator which we
find to be negligible in practise. We separate (✓nj) into a sum consisting of a prior sample from (✓0j)

and a data dependent term, denoted (✓0j). The former scales with ↵
�1/2 while the latter with ↵

�1 so
this allows us to update each term in closed form each time ↵ changes. We initialise our samples at
(✓0j) at the first EM iteration. We warm-start the posterior mode ✓̄ at the previous solution between
iterations, initialising it to zero for the first iteration. We estimate the g-prior scaling vector s by
noting that it relates to ✓

0
1 as s = ↵

�1 (E[✓01 � ✓
0
1])

��1/2.

We optimise both our samples ⇣ and posterior mean ✓̄ using stochastic gradient descent with a
Nesterov momentum parameter of 0.9. We find that Polyak averaging is very effective at reducing
gradient variance when optimising the sampling objective (per Dieuleveut et al., 2017). However, it
has two limitations 1) it slows down optimisation, increasing the number of steps needed 2) it doubles
the memory requirement needed to store posterior samples. This decreases the number of samples
that can be optimised in parallel on a single hardware accelerator. Instead we employ a linear learning
rate decay schedule, which we find to work nearly as well while not increasing computational burden.
The regularised classification loss L is non-quadratic and thus Polyak averaging is no longer optimal
(Bach, 2014). Thus here we also employ a linear learning rate decay schedule. For optimising both
the sampling and classification loss objectives we find that gradient clipping helps prevent oscillations
at the start of training and as a result speeds up convergence.

The key hyperparameters of our algorithm are the number of samples to draw for the EM iteration,
the number of EM steps to run, and SGD hyperparameters: learning rate, linear decay rate, number
of steps, batch-size and gradient clipping. Empirically, we find that at most 5 EM steps are necessary
for hyperparameter convergence and that as little as 3 samples can be used for the algorithm without
degrading performance. Choosing SGD hyperparameters is more complicated. However, we are aided
by the fact that lower loss values correspond to more precise posterior mean and sample estimates.

20

Under review as a conference paper at ICLR 2023

Algorithm 2: Sampling-based linearised Laplace inference for image classification
Inputs: Linearised network h, linearisation point w̄, observations x1, . . . , xn, negative

log-likelihood function `, initial precision ↵ > 0, number of samples k

Function B(i):
pi µ(h(w̄, xi))
return diag(pi)� pip

T
i

for j = 1, . . . , k do
✓
0
j ⇠ N (0, ↵

�1
I)

✓
0
j ↵

�1
Pn

i=1 �(xi)T "j where "j ⇠ N (0, B(i))
⇣j ✓

0
j

✓̄ 0

s ↵
�1

h
1
k

Pk
j=1 ✓

0�2
j

i��1/2

while ↵ has not converged do
for j = 1, . . . , k do

⇣j SGDz

�
k�(s� z)k2B + ↵kz � ✓

0
j � (s� ✓

0
j)k22, init=⇣j

�

✓̄ SGD✓

�Pn
i=1 `(yi, h((s� ✓), xi) + ↵k✓k22, init=✓̄

�

�̂ 1
k

Pk
j=1

Pn
i=1 k(⇣j � s)T�(xi)TB(i)

1
2 k22

↵
0 �̂/k✓̄k22

for j = 1, . . . , k do
✓
0
j

p
↵
↵0 ✓

0
j

✓
0
j ↵

↵0 ✓
0
j

↵ ↵
0

Output: Optimised precision ↵ and weight samples ⇣1, . . . , ⇣k

Algorithm 3: Kernelised sampling-based linearised NN inference for CT reconstruction
Inputs: Linearised network h, linearisation point w̄, measurements Y , discrete Radon transform

U , U-Net Jacobian �, initial precision ↵ > 0, number of samples k, noise precision B

Function Kvp(v, ↵, U�, s, B�1):
return U�(↵�1diag(s�2))�T

U
T
v + B�1

v

s (
P

i<m(Ui�)�2)�1/2

while ↵ has not converged do
P Compute-preconditioner(Kvp)
for j = 1, . . . , k do

⇣
0
j U�(s� ✓

0
j) + Ej where Ej ⇠ N (0, B�1) and ✓

0
j ⇠ N (0, A

�1)

cj CG
�
Kvp, ⇣

0
j , precond.=P

�

⇣j ⇣
0
j � U�(↵�1diag(s�2))�T

U
Tcj

� U(�w̄ � f(w̄))
c CG (Kvp, Y +�, precond.=P)
✓̄ s� ↵

�1�T
U

Tc
�̂ 1

k

Pk
j=1 kU�(s� ⇣j)k22

↵
0 �̂/k✓̄k2

↵ ↵
0

Output: Optimised precision ↵

21

Under review as a conference paper at ICLR 2023

As a result, we can tune these parameters on the train data, no validation set is required. The specific
hyperparameter values used in our experiments are provided in Appendix G.

A final thing to note is that due to the presence of normalisation layers and a dense final layer, for
our classification networks, the constant-in-✓ terms cancel in the linearised model and we are left
with h(✓, x) = �(x)✓ (Antorán et al., 2022c). In our algorithm, this fact is only relevant to the
computation of the posterior mode ✓̄ as the optima of L(h(✓, ·)).

Tomographic reconstruction Algorithm 3 is the kernelised version of algorithm 2 that we use for
tomographic reconstruction. This problem is described in detail in Appendix G.3.

Distinctly from the image classification setting, tomographic reconstruction is a regression problem
for which we use a Gaussian likelihood with fixed noise precision B = I . The linear model’s loss
function L is thus quadratic and the Laplace approximation is not needed. Both the sample loss and
the linear model’s loss can be optimised in closed form by solving a linear system of equations given
by the observation covariance, i.e. the kernel matrix, U�(↵�1diag(s�2))�T

U
T + B�1 where the

linear operator U represents the discrete Radon transform and combines with the U-Net Jacobian to
build the feature embedding U�.

We solve against the kernel matrix using the preconditioned conjugate gradient (CG) method de-
scribed by Gardner et al. (2018). As a preconditioner, we compute a 400-dimensional randomised
eigendecomposition (alg. 5.6 in Halko et al., 2011) preconditioner, which we invert using the
Woodbury identity. We find the preconditioner to provide important speedups to CG convergence and
we re-estimate it after every hyperparameter update. Both computing the preconditioner and running
preconditioned CG optimisation only interact with the kernel matrix by computing its products with
vectors. Our algorithm defines our kernel vector product Kvp routine explicitly, as it is central to our
implementation. We find that the GPyTorch CG implementation does not benefit from warm-starting
the solution vector. Consequently, we re-draw prior and noise samples (✓0, E) at every E-step.

Similarly to image classification, the key hyperparameters are the number of samples to draw for
the EM iteration, the number of EM steps to run, and CG optimisation hyperparameters. Again, the
number of samples can be kept low (e.g. 2) and we find around 5 steps to suffice for convergence
of the prior precision ↵. The key conjugate gradients hyperparameters are the tolerance at which to
stop optimisation and the maximum number of optimisation steps if the tolerance is not reached. We
provide our choices in Appendix G.3 but note that our use of a large preconditioner results in CG
always hitting the desired low error tolerance within 10 steps and never stopping due to reaching the
maximum number of steps. In turn, this makes our kernelised EM algorithm notably faster than its
primal form SGD-based counterpart.

A particularity of this setting is that the U-Net does not have a dense final layer. As a result, the
constant-in-✓ terms in the linearised function h do not cancel (see Section 4.1), leading to the
appearance of the target offset term � when solving for the posterior mean.

G EXPERIMENTAL DETAILS

In this appendix we provide experimental details and hyperparameter settings omitted from the main
text.

G.1 MNIST EXPERIMENTS

MNIST m=10 way classification experiments were performed using the LeNet-style CNN archi-
tectures of increasing size employed by Antorán et al. (2022c): “LeNetSmall” (d0=14634), “LeNet”
(d0=29226) and “LeNetBig” (d0=46024). We note that these models contain batch normalisation
layers. Each model was trained with using SGD with momentum of 0.9 for 90 epochs with a learning
rate drop of a factor of 10 every 30 epochs. The MNIST dataset was downloaded from PyTorch
torchvision. We employ standard per-channel mean and std-dev standardisation preprocessing
and two pixel shift and crop data augmentation. For posterior mode optimisation and sampling, we do
not perform data augmentation as to avoid cold posterior effects (Izmailov et al., 2021). The details of
our SGD approaches to convex optimisation for obtaining posterior modes and samples are as follows

22

Under review as a conference paper at ICLR 2023

• Posterior mode optimisation: The linearised NN weights are trained using SGD with a
Nesterov momentum coefficient of 0.9, and batch size 1000 for 40 epochs. We clip gradients
to a maximum norm of 1. We use an initial learning rate of 1e � 2 when using standard
isotropic or layerwise Gaussian priors, and 1 for the g-prior. We employ a linear decay
schedule that reduces the lr by a factor of 330 over the first 75% of the training procedure
and holds it constant afterwards.

• Sampling: We optimise 32 samples in parallel using SGD with Nesterov momentum
(=0.9) and a batch size of 1000 for 20 epochs. For standard Gaussian priors (isotropic and
layerwise), we use a learning rate of 2e�1, whereas for the g-prior, we find a higher learning
rate of 200 to work best.

Hyperparameter optimisation: We tuned the learning rate, decay schedule and gradient clipping
strength using a rough grid search over multiple orders of magnitude. We chose the settings that
reached the lowest loss values. These can be evaluated with just the train set. We chose the largest
batch size that could accommodate optimising 32 samples in parallel on a single hardware accelerator.
We note that posterior mode and sample optimisation converge in less than half of the total epochs
we use for their optimisation. The numbers of epochs chosen were set to be large enough to ensure
convergence and not tuned. A decrease in computational cost can likely be achieved by stopping
sample optimisation earlier.

Baseline methods. For the comparison of learning a single precision hyperparameter and layerwise
hyperparameters in Figure 3, we extend the M-step update to as ↵l = �l/k✓̄lk2

2 where l indexes each
layer’s attributes, as done in (Mackay, 1992; Tipping, 2001). For the MAP, diagonal covariance
and KFAC covariance baselines, we use the same pre-trained models when possible (i.e. not for the
ensembles or dropout baselines). Since all baselines share the same linearisation point, they also
share the same mean predictions. Differences in performance among baselines are thus only due to
differences in uncertainty estimation. The diagonal approximation to the covariance is constructed
by first computing the diagonal of the Hessian M and the inverting it. For the KFAC covariance
approximation, we exploit the equivalency between the Generalised Gauss Newton matrix (i.e. the
Hessian of the linear model h) and the Fisher information matrix for exponential family likelihoods
(i.e. the categorical). This allows us to formulate the Hessian as an expectation of likelihood gradients,
which in turn we approximate using a single sample per training observation, as in (Daxberger et al.,
2021a). For completeness, we also state the probit approximation for sampled predictive posteriors
over logits. For input x and samples ⇣i, . . . , ⇣k, the predictive probability for class i 2 k1, . . . , mk is
given by

softmax

0

@f(w̄, x)� (1 +
⇡

2k

X

j<k

(�(x)⇣j)
�2)��0.5

1

A

i

.

G.2 CIFAR100 CLASSIFICATION

CIFAR100 m=100 way classification experiments were performed using ResNet18 mod-
els (d0 ⇡ 11M) with specific architecture details matching the PyTorch torchvision
implementation. We train these models using SGD with momentum of 0.9 for 300 epochs. The
starting lr is 0.1 and we reduce it by a factor of 10 every 100 epochs. The CIFAR100 dataset was
also downloaded using torchvision and our data preprocessing and augmentation also follow
the default implementation from this library. For posterior mode optimisation and sampling, we do
not perform data augmentation. The SGD details used to solve the convex optimisation problems
required for obtaining posterior modes and drawing samples are as follows

• Posterior mode optimisation: The linearised NN weights are trained using SGD with
Nesterov momentum (=0.9) and a batch size of 2000 for 40 epochs. We employ a linear
decay learning rate schedule with an initial learning rate of 1e�1. It is decreased by a factor
of 330 over the first 75% of training, and then held constant. We also employ gradient
clipping with maximum norm= 0.1.

• Sampling: We optimise 6 samples in parallel using SGD with Nesterov momentum (=0.9)
and a batch size 100 for 20 epochs. All other details match those of posterior mode
optimisation.

23

https://pytorch.org/vision/main/models.html
https://pytorch.org/vision/main/models.html

Under review as a conference paper at ICLR 2023

Upon convergence of the EM algorithm, we draw 64 further samples using the optimal prior precision
by following the optimisation procedure described above. We initialise these samples at prior samples
drawn with the optimised prior precision.

Hyperparameter optimisation: We tuned the learning rate, decay rate and gradient clipping strength
using a rough grid search over orders of magnitude. We also chose the largest batch size that for
which we could simultaneously optimise 6 samples in parallel on a single hardware accelerator.
Similarly to the MNIST experiments, we did not optimise the number of optimisation epochs and
instead chose large values that would ensure convergence. It is likely that our EM iteration can be
sped up by decreasing the duration of the convex optimisation routines.

Details for baselines and hyperparameters not mentioned explicitly in this subsection match those
given for MNIST in the previous subsection.

G.2.1 EFFICIENT -ADIC SAMPLING

Osband et al. (2022; 2021) introduced dyadic test input sampling (= 2) as a practical way of
evaluating joint predictions in discriminative tasks. This method samples = 2 random anchor
points from the test dataset, and then randomly resamples them to create a batch of size ⌧ = 10. Test
log-likelihood is evaluated jointly for each batch as

log

Z
exp

0

@
X

i⌧

`(yi, f(✓, xi))

1

A d⇧,

for f the model being evaluated and ⇧ its posterior distribution over model parameters. This quantity
can be estimated with posterior samples ⇣1, . . . , ⇣k ⇠ ⇧ as

log
1

k

X

jk

exp

0

@
X

i⌧

`(yi, f(⇣j , xi))

1

A .

We extend this evaluation approach to larger and ⌧ values without increasing computational cost.
We randomly sample integers {b1, . . . , b} such that they sum to ⌧ , i.e

P
i ki = ⌧ . The joint

log-likelihood over the batch of size ⌧ with unique datapoints can then be estimated as

log
1

k

X

jk

exp

0

@
X

l

bl`(yl, f(⇣j , xl))

1

A .

where the inner sum is over the distinct elements in the batch instead of the “total batch size” ⌧ . This
is equivalent to the formulation proposed in Osband et al. (2022) for dyadic sampling, when = 2
and ⌧ = 10. We note that it is not possible to achieve augmented dyadic sampling, as described in
(Osband et al., 2021), with this approach. However the authors mention that there is not a significant
difference in the relative performance of methods when using augmented dyadic sampling compared
to regular dyadic sampling. We introduce a final step however, which is to repeat the computation for
multiple shuffles (10) of the test dataset. This eliminates variance in our results from the choice of
the observations which get grouped together in each batch.

G.3 TOMOGRAPHIC RECONSTRUCTION

Problem setup Tomographic reconstruction consists in solving a linear inverse problem in imaging
where we observe a set of measurements y 2 Rm, which we assume to be generated as y = Ux

⇤ + ⌘

for U 2 Rm⇥d the discrete Radon transform, x
⇤ 2 Rd the image to reconstruct and ⌘ ⇠ N (0, I)

random noise. We have m⌧ d, making the problem underconstrained. Our specific tomographic
reconstruction task closely follows the one from Barbano et al. (2021). We perform a sparse-view
reconstruction of an image of a slice of a walnut from a sub-sampled set of measurements. Specifically,
from the full measurement set of (Der Sarkissian et al., 2019a), which containing scans at 1200
equidistant angles over [0, 360�), we choose our measurement set by subsampling angles by a factor
of either 10x or 20x, leading to measurements of size m = 15360 or m = 7680. As in Barbano et al.
(2021); Antorán et al. (2022b), we reduce the original 3D scan geometry to the 2D slice of interest by
selecting the relevant subset of measurement pixels. We assemble the Radon operator U as a sparse
matrix taking in an image of resolution (501px)2 and outputting a measurement tensor coherent with
the described geometry.

24

Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0

posterior credible interval

0.0

0.2

0.4

0.6

0.8

1.0

em
pi

ri
ca

lc
ov

er
ag

e

Image reconstruction predicted error vs empirical error

sampled lin. U-Net
lin. U-Net
MCDO U-Net

0.0 0.2 0.4 0.6 0.8 1.0

predicted probability

0.0

0.2

0.4

0.6

0.8

1.0

em
pi

ri
ca

la
cc

ur
ac

y

CIFAR100 predicted probability vs empirical accuracy

KFAC
MAP
Ensemble (5)
Sampling-MC

Figure 8: Left: empirical coverage of test targets for posterior credible intervals of increasing width
for our U-net tomographic reconstruction experiment (Section 5.3). Right: confidence vs accuracy
plot (also known as a reliability diagram) for our CIFAR100 classification experiment (Section 5.2).

Methods To provide a reconstruction, we use the Deep Image prior (Ulyanov et al., 2020) which
trains the parameters w 2 Rd0

of a fully convolutional U-Net autoencoder f : Rd0 ! Rd, where the
input is fixed and thus absent from our notation, until a satisfactory reconstruction f(w̄) is obtained.
The U-Net network architecture is the one proposed in (Baguer et al., 2020). The optimisation of the
U-Net parameters follows Barbano et al. (2021). To estimate the uncertainty in this reconstruction,
we linearise the U-Net around w̄, as described in Section 4.1. This leaves us with a model affine
in the parameters and with design matrix U� 2 Rm⇥d0

. We may now proceed with linear model
inference. While (Antorán et al., 2022b) use the traditional EM iteration described in Section 2, we
use the sample-based one from Section 3. For evaluation, we use the non-sparse reconstruction (using
1200 angles) provided by (Der Sarkissian et al., 2019a) as the ground truth image x

⇤. To evaluate
joint log-likelihoods we estimate the predictive covariance matrix for patches of neighbouring pixels
using samples. Covariance matrix estimates from samples are known to be unreliable. We use the
stabilised formulation of (Maddox et al., 2019): ⌃̂ = 1

2k

hPk
j=1 x̂

2
j + x̂j x̂

T
j

i
for (x̂j)kj=1 samples

from the predictive posterior over a patch. We then construct predictive distributions over pixels as
N (f(w̄), ⌃̂).

Hyperparameters We employ a low CG tolerance of 1e� 3 and a maximum number of iterations
of 150, which is never reached in practise as the error tolerance level is always hit in less steps.

H CALIBRATION OF PREDICTIVE DISTRIBUTIONS

This appendix evaluates the calibration of the predictive distributions provided by the methods
under consideration in our CIFAR100 classification experiment (Section 5.2) and U-net image
reconstruction experiment (Section 5.3).

For classification, we separate our predicted probabilities into 10 equal width bins between 0 and 1.
For each bin, we plot the proportion of targets that coincide with the class for which the predicted
probability falls into the bin. This is shown on the right hand side of Figure 8. Consistent with the
results from the main text, KFAC overestimates uncertainty at all confidence levels whereas MAP
underestimates it. Both sample-based linearised Laplace and ensembling show significantly improved
calibration. While ensembles show a small amount of uncertainty overestimation consistently, our
method underestimates uncertainty for low predicted probabilities and overestimates it for large
predicted probabilities.

For image reconstruction regression, we first compute normalised residuals by subtracting our
predictions from the targets and dividing by the predictive standard deviation. Our predictive
distribution for these normalised residuals is the centered unit variance Gaussian. We consider
posterior credible intervals centered at 0 and of increasing width and plot the proportion of test points

25

Under review as a conference paper at ICLR 2023

Table 3

 MAP Ensemble (5) KFAC Sampling KFAC-LL * subnetwork *
marginal LL 1 -1.40 ± 0.00 -0.90 ± 0.00 -1.12 ± 0.01 -1.07 ± 0.01 -1.06 ± 0.01 -1.21 ± 0.01

joint LL

2 -13.97 ± 0.01 -6.86 ± 0.01 -4.92 ± 0.04 -5.14 ± 0.04 -5.41 ± 0.05 -8.38 ± 0.07
3 -27.89 ± 0.03 -14.17 ± 0.03 -10.83 ± 0.12 -10.77 ± 0.09 -11.15 ± 0.12 -16.59 ± 0.13
4 -41.83 ± 0.03 -22.29 ± 0.04 -19.02 ± 0.22 -18.04 ± 0.18 -18.21 ± 0.18 -25.47 ± 0.18
5 -55.89 ± 0.02 -31.07 ± 0.09 -29.40 ± 0.40 -26.75 ± 0.26 -26.50 ± 0.26 -34.91 ± 0.30

that fall within them in the left side plot of Figure 8. We find dropout inference to underestimate
the magnitude of the residuals across all credible interval widths. Linearised inference with a single
EM step, as in (Antorán et al., 2022b), consistently overestimates uncertainty. Our approach, which
performs 5 steps of EM, overestimates uncertainty, but to a much smaller degree, presenting the
best overall calibration. The latter two approaches consist of the same model but with different
regularisation strength. The difference between the two reveals the paramount importance of tuning
the prior precision hyperparameter well.

I ADDITIONAL EXPERIMENTS

I.1 CIFAR100 CLASSIFICATION

Additional Baselines for marginal LL. In the main text, we report the predictive uncertainty of
our method versus point-estimated NNs (MAP), 5 ensembles of point-estimate NNs (Ensemble 5),
and a KFAC estimate (KFAC). Here, we report further comparisons with other baselines standard-in-
literature: a diagonal approximation of the Laplace covariance matrix (diag), a Laplace approximation
over a selected subnetwork of the original NN (subnetwork*), and a Laplace approximation over
the last-layer of the NN further approximated by a KFAC matrix (KFAC-LL*). We distinguish the
last two methods in a separate category (*), since these methods require cross-validation with a
held-out set in order to tune hyperparameters. For these methods, we use 50 held-out points from
the test set, and evaluate on the remaining 9950 points. Figure 9 shows that somewhat surprisingly,
KFAC-LL performs quite competitively with our approach, and even with deep ensembles. However,
it is constrained to require a cross-validation set in order to tune hyperparameters.

Predictive uncertainty vs number of samples. In the main text, we report predictive performance
for our method with 64 samples. However, it is possible that drawing many samples can be computa-
tionally expensive. We compare the quality of predictive uncertainty obtained on the in-distribution
test set and 5 corruptions vs the number of samples used for estimating the predictive variance, and
results are shown in Figure 10.

Additional baselines for joint LL. Similar to the marginal predictions, we also report KFAC-LL and
subnetwork inference as two additional baselines for -adic sampling in Table 3. KFAC-LL is once
again quite competitive with our approach, but requires a held-out validation set.

I.2 TOMOGRAPHIC RECONSTRUCTION

Measuring prediction calibration Figure 11 and Figure 12 are complementary to Figure 6 and
Figure 7, and report EM iteration and performance for m=15360. In Figure 13 and Figure 14, we
show additional insights on the calibration of the uncertainty estimates obtained via the proposed
method when compared to the MCDO approach.

26

Under review as a conference paper at ICLR 2023

0 1 2 3 4 5

Corruption severity

�5

�4

�3

�2

�1

te
st

LL

KFAC
MAP
MC Dropout
Ensemble (5)
diag
KFAC-LL *
subnetwork*
Sampling-MC
Sampling-Probit

Figure 9: Performance under distribution shift for ResNet18 and CIFAR100. We add additional
baselines to Figure 5: MC Dropout and diag-Laplace. We also add KFAC-LL and subnetwork
inference, methods that require a held-out validation set to tune hyperparameters. Finally we report
Sampling-MC, the predictive uncertainty obtained by our method using an MC estimate of the
predictive distribution.

4 8 16 36 48 64

�1.6

�1.4

�1.2

te
st

LL

Split 0

4 8 16 36 48 64

�2.2

�2.0

�1.8

te
st

LL

Split 1

4 8 16 36 48 64

�3.00

�2.75

�2.50

�2.25

te
st

LL

Split 2

4 8 16 36 48 64

samples

�3.5

�3.0

�2.5

te
st

LL

Split 3

4 8 16 36 48 64

samples

�4.5

�4.0

�3.5

�3.0

te
st

LL

Split 4

4 8 16 36 48 64

samples

�5

�4

te
st

LL

Split 5

Sampling-Probit
Sampling-MC

Figure 10: Predictive Performance for CIFAR100 vs the number of samples used. The Probit approx-
imation tends to require fewer samples to estimate the marginal variance, but is more underconfident
under distribution shift. On the other hand, estimating the predictive distribution using an MC esti-
mate (Sampling-MC) results in better performance in-distribution, however it requires more samples
in order to predict uncertainty under distribution shift.

27

Under review as a conference paper at ICLR 2023

0 2 4

EM steps

1.0

1.1

1.2

1.3

1.4

1.5

pr
io

rp
re

c.
�

⇥106

2 samples
4 samples
16 samples
256 samples

1 2 3 4 5

EM steps

7 ⇥ 102

8 ⇥ 102

ef
f.

di
m

�̂

1 2 3 4 5

EM steps

2.26

2.28

2.30

2.32

2.34

m
ar

gi
na

lL
L

2 4 6 8 10

patch-size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

jo
in

tL
L

MCDO-UNet
sampl.-lin.-UNet

Figure 11: Sample-based EM iteration convergence for tomographic reconstruction given m = 15360.
The prior precision ↵, the effective dimension �̂, and the marginal LL as a function of the EM step
along showing marginal and joint LL for different patch-size.

x�

sa
m

pl
.-l

in
.-U

N
et

|x� � f (w̄)| std-dev

M
C

D
O

-U
N

et

|x� � f (w̄)| std-dev

0.15

0.30

0.45

0.15

0.30

0.03

0.06

0.09

Figure 12: Absolute error computed between the reconstructed Walnut given m = 15360 and the
ground-truth for both lin.-DIP and MCDO-DIP along showing respective uncertainty estimates.

0.0 0.1 0.2 0.3 0.4 0.5

10�3

10�2

10�1

100

101

de
ns

ity

|x� � f (w̄)|
std-dev (sampl.-lin.-UNet)

0.0 0.1 0.2 0.3 0.4

10�3

10�2

10�1

100

101

102

de
ns

ity

|x� � f (w̄)|
std-dev (MCDO-UNet)

Figure 13: Histogram of the absolute error computed between the reconstructed Walnut given
m = 7680 and the ground-truth for both lin.-DIP and MCDO-DIP, and of the respective standard
deviations.

0.0 0.1 0.2 0.3 0.4 0.5
10�4

10�3

10�2

10�1

100

101

de
ns

ity

|x� � f (w̄)|
std-dev (sampl.-lin.-UNet)

0.0 0.1 0.2 0.3 0.4

10�3

10�2

10�1

100

101

102

de
ns

ity

|x� � f (w̄)|
std-dev (MCDO-UNet)

Figure 14: Histogram of the absolute error computed between the reconstructed Walnut given
m = 15360 and the ground-truth for both lin.-DIP and MCDO-DIP, and of the respective standard
deviations.

28

