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1 REPRODUCIBILITY STATEMENT

The supplementary material includes the implementation codes for our proposed framework, TARNet, and CITA.

2 CAUSAL INFERENCE: AN EXAMPLE

Let X ∈ X be the features (e.g., age, height, weight), the treatment assignment A ∈ {0, 1} be the indicator representing if
the subject received vaccine 0 or 1. The mortality outcome is denoted by Y ∈ Y .

The main challenge of causal inference arises from the absence of counterfactual observations. We do not observe the
outcomes of individuals upon receiving treatment 1 if they have received treatment 0 and vice versa. The subjects who
received vaccine 1 may differ significantly from those who received treatment 0. This issue is called selection bias. For
instance, older people are more likely to receive the treatment than young people). Thus, estimating the counterfactual
effects is challenging due to the unbalance between the treatment groups.

Let f̂(x, a) be a hypothesis modeling the outcome for an individual x if he/she received treatment a. The factual loss is
defined as follows:

ϵF (f̂) =

∫
X×{C,B}×Y

lf̂ (x, a, y) p(x, a, y)dxdady (1)

By Bayes rule, we can write the factual loss as

ϵF (f̂)

=

∫
X×Y

lf̂ (x, a = 0, y) p(x, y|A = 0)p(A = 0)dxdy+∫
X×Y

lf̂ (x, a = 1, y) p(x, y|A = 1)p(A = 1)dxdy

= p(A = 0)

∫
X×Y

lf̂ (x, a = 0, y) p(x, y|A = 0)dxdy+

(1− p(A = 0))

∫
X×Y

lf̂ (x, a = 1, y) p(x, y|A = 1)dxdy

= p(A = 0)ϵA=0
F (f̂) + (1− p(A = 0)) ϵA=0

F (f̂)

We define the factual loss for the group who received vaccine 0 as follows:
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Table 1: The settings to generate IHDP datasets

Dataset µ ω
IHDP (Base) (0.6, 0.1, 0.1, 0.1, 0.1) 4
IHDP 1 (0.61, 0.09, 0.1, 0.1, 0.1) 4.1
IHDP 2 (0.62, 0.08, 0.1, 0.1, 0.1) 4.2
IHDP 3 (0.63, 0.07, 0.1, 0.1, 0.1) 4.3
IHDP 4 (0.64, 0.06, 0.1, 0.1, 0.1) 4.4
IHDP 5 (0.65, 0.05, 0.1, 0.1, 0.1) 4.5
IHDP 6 (0.66, 0.04, 0.1, 0.1, 0.1) 4.6
IHDP 7 (0.67, 0.03, 0.1, 0.1, 0.1) 4.7
IHDP 8 (0.68, 0.02, 0.1, 0.1, 0.1) 4.8
IHDP 9 (0.69, 0.01, 0.1, 0.1, 0.1) 4.9

ϵA=0
F (f̂) =

∫
X×Y

lf̂ (x, a = 0, y) p(x, y|A = 0)dxdy (2)

Similarly, the factual loss for the group who received vaccine 1 is described as:

ϵA=1
F (f̂) =

∫
X×Y

lf̂ (x, a = 1, y) p(x, y|A = 1)dxdy (3)

Consider a parallel universe where the treatment assignments are flipped (i.e., those who received vaccine 1 receive vaccine
0 and vice versa). The performance of our hypothesis f̂ in this scenario is the counterfactual loss, defined as follows:

ϵCF (f̂) =

∫
X×{0,1}×Y

lf̂ (x, a, y) p(x, 1− a, y)dxdady (4)

3 DATASETS AND EXPERIMENTS DESCRIPTIONS

3.1 DATASETS

IHDP The IHDP dataset was first introduced by Hill [2011] based on real covariates available from the Infant Health
and Development Program (IHDP), studying the effect of development programs on children. The features in this dataset
come from a Randomized Control Trial. The potential outcomes were simulated using Setting B. The dataset consists of 747
individuals (e.g., 139 in the treatment group and 608 in the control group), each with 25 features. The potential outcomes
are generated as follows:

Y0 ∼ N (exp(βT · (X +W )), 1)

and

Y1 ∼ N (βT (X +W )− ω, 1)

where W has the same dimension as X with all entries equal 0.5 and ω = 4. The regression coefficient β, a vector of
length 25, is randomly sampled from a categorical distribution with the support (0, 0.1, 0.2, 0.3, 0.4) and the respective
probabilities µ = (0.6, 0.1, 0.1, 0.1, 0.1). The dataset generated according to these parameters is referred to as the base
dataset.

Additionally, we generate 9 additional datasets by introducing 9 new settings. These settings, which are constructed by
varying µ and ω, are shown in Table 1. Each of these generated datasets consists of 747 individuals (e.g., 139 in the treatment
group and 608 in the control group).



Jobs The Jobs dataset [LaLonde, 1986] consists of 619 observations. In this experiment, the causal inference task aims to
learn the effect of participation in a specific professional training program on landing a job in the following three years.
Here, we generate a family of related datasets by randomly reverting the original treatment assignments (i.e., 0 ↔ 1) with
the probability p ∈ {0 = 0/9, 1/9, 2/9, 3/9, 4/9, 5/9, · · · , 9/9 = 1}. The dataset corresponding to p = 0 is considered
the original dataset, and the dataset with p = 1 has all treatment assignments reversed. We select the original Jobs dataset,
introduced in [LaLonde, 1986] as the base dataset for our experiments.

Twins The Twins dataset Louizos et al. [2017] is based on the collected birthday data of twins born in the United States
from 1989 to 1991. It is assumed that twins share significant parts of their features. Consider the scenario where one of the
twins was born heavier than the other as the treatment assignment. The outcome is whether the baby died in infancy (i.e.,
mortality). Here, the twins are divided into two groups: the treatment and the control groups. The treatment group consists
of heavier babies from the twins. On the other hand, the control group consists of lighter babies from the twins. All given
observations from this dataset are considered factual.

We first construct a base dataset by selecting a set of 2000 pairs of twins from the original dataset [Louizos et al., 2017].
Each individual is assigned to the treatment group according to a Bernoulli experiment with the probability of q = 0.75. In
an analogous manner to that of the Jobs dataset, we generate a family of related datasets by randomly reverting the treatment
assignments of the base dataset (i.e., 0 ↔ 1) with corresponding probabilities p ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, · · · , 1}. For
instance, to generate dataset i = 1, 2, · · · , 11, we revert the individual treatment assignments in the base dataset using the
Bernoulli experiment with the probability of pi = (i− 1)/10. In particular, p = 0 corresponds to the original dataset, while
p = 1 corresponds to all treatment assignments reverted.

RKHS In this experiment, we generate 100 Reproducing Kernel Hilbert Space (RKHS) datasets, each having 2000 data
points. Next, we generate the treatment and the control populations X1, X0 ∈ R4 respectively from Gaussian distributions
N (µ1, I4) and N (µ0, I4) for each dataset. We sample µ1 ∈ R4 and µ0 ∈ R4 respectively according to Gaussian distributions
N (eee, I4) and N (−eee, I4) where eee = [1, 1, 1, 1]T .

Subsequently, we generate the potential outcome functions f0 and f1 with a Radial Basis Function (RBF) kernel K(·, ·),
described as follows:

Let γ0, γ1 ∈ R4 be two vectors sampled from N (7eee, I4) and N (9eee, I4), respectively. Let λ ∈ N be sampled uniformly from
{10, 11, . . . , 99, 100}. For j ∈ {0, 1}:

1. We sample mj ∈ N according to the Poisson distribution with parameter λ (i.e., Pois)

2. For every i ∈ {1, . . . ,mj}, we sample xi
j according to N (γj , I4)

3. The potential outcome functions fj , j = 0, 1 are constructed as fj(·) =
∑mj

i=1 K(xi
j , ·)

Given the potential outcome functions fj , j ∈ {0, 1}, the corresponding potential outcomes Y0 and Y1 are generated by:

Y0(x) = f0(x), for every x ∈ R4,

and
Y1(x) = f1(x), for every x ∈ R4.

We will refer to the first constructed dataset above as the base dataset. Here, all the generated potential outcome functions
are in the same RKHS.

Heat (Physics) Consider a hot object left to cool off over time in a room with temperature T (0). A person will likely
suffer a burn if he/she touches the object at time u.

The causal inference task of interest is the effect of room temperature T (0) on the probability of suffering a burn. This family
consists of 20 datasets; each includes 4000 observations (e.g., 2000 in the control group and 2000 in the treatment group).
The treatment in our setting is a = 1 when T (0) = 5, and a = 0 when T (0) = 25. The touching times of the treatment and
control groups are sampled from two Chi-squared distributions χ2(5) and χ2(2), respectively, to introduce artificial bias.

From the solution to Newton’s Heat Equation [Winterton, 1999], the underlying causal structure is governed by the following
equation:

T (u) = C · exp(−ku) + T (0)



where T (u) is the temperature at time u and C, k are constants. Let T0 = 25, C = 75 for the control groups and
T0 = 5, C = 95 for the treatment groups in the datasets. We choose 20 values of k = {0.5, · · · , 2} uniformly spaced in
[0.5, 2]. For each value of k, we generate a new dataset. The dataset corresponding to k = 0.5 is referred to as the base
dataset.

Let T 0(u) and T 1(u) denote the temperature at time u for the control and treatment groups, respectively. The potential
outcomes Y0(u) and Y1(u) corresponding to the probability of suffering a burn at time t for the control and treatment groups
are described as follows:

Yj(u) = max

(
1

75
(T j(u)− 25), 0

)

Movement (Physics) Consider a free-falling object encountering air resistance. Opening the parachute can change the air
resistance and control the descent velocity. The causal inference task of interest is the effect of the air resistance (e.g., with
a = 1 or without parachute a = 0) on the object’s velocity at different times.

In this experiment, the family of datasets is generated, consisting of 12 datasets. Each dataset includes 4000 observations
(e.g., 2000 in the treatment group and 2000 in the control group). The covariate is the time u. The outcome is the velocity at
time u. The times of the treatment and control groups are sampled from two Chi-squared distributions χ2(2) and χ2(5),
respectively, to create artificial bias.

The underlying causal structure is governed by an ordinary differential equation (ODE) with the following analytical solution
describing the velocity of a person at time u:

v(u) =
g

C
+ (v(0)− g

C
)e−Cu (5)

where g = 10 is the earth’s gravitational constant, C = k/m, and m, k are the mass and the air resistance constant,
respectively. We assume that v(0) = 0 corresponds to a free-falling object without initial velocity.

For the control group, m = k = C = 1 and the potential outcome is calculated as Y0(u) = v(u) = 10 − e−u. We use
different sets of (m, k) to generate the treatment groups for each dataset. The values of (m, k) used in this experiment
are as follows: (5, 1), (5, 5), (5, 10), (5, 20), (10, 5), (10, 10), (10, 20), (20, 5), (20, 10), (20, 20), (50, 10), (50, 20). The
potential outcome function Y1(u) is calculated from Equation 5 with the values of m, k shown above. We choose the dataset
corresponding to (m, k) = (5, 1) as the base dataset.

3.1.1 Details of Experiments

In this paper, we first create a number of causal inference tasks from the above families of datasets. For each family of
datasets (e.g., IHDP, Jobs, Twins), the base task is created from its base dataset. Similarly, we construct the other tasks from
the remaining datasets in that family. In order to study the effects of transfer learning on causal inference, we define the
source tasks and the target tasks as follows:

• In the first experiment in Section 6.3, we choose the base task to be the source task and the other tasks to be the target
tasks.

• In the second experiment in Section 6.4, we choose the base task to be the target task and the other tasks to be the
source tasks.

4 PROOFS OF THEOREMS

Theorem 4.1. Let f̂S be a model trained on a source task, then

ϵTF (f̂
S) + uϵT,a=0

CF (f̂S) ≤ εTPEHE(f̂
S)

where u = pTF (a = 1).



Proof of Theorem 4.1. We have:

εPEHE(f̂S)

=

∫
X

[
(f̂S(x, 1)− f̂S(x, 0))− (fT (x, 1)− fT (x, 0))

]2
pTF (x)dx

=

∫
X

[
(f̂S(x, 1)− fT (x, 1))− (fT (x, 0)− f̂S(x, 0))

]2
pTF (x)dx

=

∫
X
(f̂S(x, 1)− fT (x, 1))2pF (x)dx

+

∫
X
(f̂S(x, 0)− fT (x, 0))2pTF (x)dx

− 2

∫
X
(f̂S(x, 1)− fT (x, 1))(fT (x, 0)− f̂S(x, 0))

pTF (x)dx

(6)

First, we have the following properties of the factual and counterfactual distributions:

1. ∀x ∈ X , pF (x) = pCF (x)

2. ∀x ∈ X ,∀a ∈ {0, 1}, pF (x, a) = pCF (x, 1− a)

Applying these properties, the first term of Equation (6) can be expressed as:∫
X
(f̂S(x, 0)− fT (x, 0))2pTF (x)dx

= u

∫
X
(f̂S(x, 0)− fT (x, 0))2pTF (x|a = 1)dx

+ (1− u)

∫
X
(f̂S(x, 0)− fT (x, 0))2pTF (x|a = 0)dx

= u

∫
X
(f̂S(x, 0)− fT (x, 0))2pTCF (x|a = 0)dx

+ (1− u)

∫
X
(f̂S(x, 0)− fT (x, 0))2pTF (x|a = 0)dx

= uϵT,a=0
CF (f̂S) + (1− u) ϵT,a=0

F (f̂S)

Similarly, the second term of Equation (6) can be expressed as:∫
X
(f̂S(x, 1)− fT (x, 1))2pTF (x)dx

= (1− u)ϵT,a=1
CF (f̂S) + u ϵT,a=1

F (f̂S)

The potential outcome is independent given the features Y1 ⊥⊥ Y0|X due to its unconfoundedness. Hence, the third term of
Equation (6) can be expressed as:

E
[
(f̂S(X, 1)− fT (X, 1))(fT (X, 0)− f̂S(X, 0))

]
= Ex

[
E
[
f̂S(x, 1)− Y T

1 )(Y T
0 − f̂S(x, 0))|X = x

]]
= 0

The factual and counterfactual losses of the treatment and control groups are positive. Thus, we have:



uϵT,a=1
F (f̂S) + (1− u)ϵT,a=0

F (f̂S) + uϵT,a=0
CF (f̂S)

= ϵTF (f̂
S) + uϵT,a=0

CF (f̂S)

≤ εTPEHE(f̂
S)

Theorem 4.2. For any hypothesis f̂ , we have:

ϵTCF (f̂) ≤ϵSF (f̂) + V (pTF , p
S
F ) + V (pTF , p

T
CF )

+ EpS
F
[|fS(x, t)− fT (x, t)|]

(7)

and

εTPEHE(f̂) ≤4ϵSF (f̂) + 4V (pTF , p
S
F ) + 2V (pTF , p

T
CF )

+ 4EpS
F
[|fS(x, a)− fT (x, a)|]

(8)

Proof of Theorem 4.2. Adapting the first theorem in Ben-David et al. [2010] to our setting, we have the following two
inequalities:

ϵTCF (f̂) ≤ ϵTF (f̂) + V (pTF , p
T
CF )

and
ϵTF (f̂) ≤ ϵSF (f̂) + V (pTF , p

S
F ) + EpS

F
[|fS(x, a)− fT (x, a)|]

Therefore, we have:
ϵTCF (f̂) ≤ϵSF (f̂) + V (pTF , p

S
F ) + V (pTF , p

T
CF )

+ EpS
F
[|fS(x, a)− fT (x, a)|]

From Shalit et al. [2017], we have:
εTPEHE(f̂) ≤ 2ϵTF (f̂) + 2ϵTCF (f̂)

Therefore, we have:
εTPEHE(f̂) ≤4ϵSF (f̂) + 4V (pTF , p

S
F ) + 2V (pTF , p

T
CF )

+ 4EpS
F
[|fS(x, a)− fT (x, a)|]

Theorem 4.3. Suppose that the function class G is stable under addition and multiplication and f̂ , fT ∈ G, then

ϵTCF (f̂) ≤ϵSF (f̂) + IPM
G

(pTF , p
S
F ) + IPM

G
(pTF , p

T
CF )

+ EpS
F
[|fS(x, a)− fT (x, a)|]

(9)

and

εTPEHE(f̂) ≤4ϵSF (f̂) + 4IPM
G

(pTF , p
S
F ) + 2IPM

G
(pTF , p

T
CF )

+ 4EpS
F
[|fS(x, a)− fT (x, a)|]

(10)

Proof of Theorem 4.3. we have that:

ϵTCF (f̂) ≤ ϵTF (f̂) + ∥
∫
(fT (x, a)− f̂(x, a))2

(pTF (x, a)− pTCF (x, a))dadx∥

≤ϵTF (f̂) + sup
g∈G

∥
∫

g(x, a)

(pTF (x, a)− pTCF (x, a))dadx∥



Hence, we have:
ϵTCF (f̂) ≤ ϵTF (f̂) + IPM

G
(pTF , p

T
CF )

Similarly, we have:
ϵTF (f̂)

≤ ϵSF (f̂) + EpS
F
[|fS(x, a)− fT (x, a)|]

+ ∥
∫
(fS(x, a)− f̂(x, a))2(pSF (x, a)− pSF (x, a))dadx∥

≤ ϵTF (f̂) + EpS
F
[|fS(x, a)− fT (x, a)|] + IPM

G
(pTF , p

S
F )

Thus, we have:
ϵTF (f̂)

≤ ϵSF (f̂) + EpS
F
[|fS(x, a)− fT (x, a)|] + IPM

G
(pTF , p

S
F )

Therefore, we have:
ϵTCF (f̂) ≤ϵSF (f̂) + IPM

G
(pTF , p

S
F ) + IPM

G
(pTF , p

T
CF )

+ EpS
F
[|fS(x, a)− fT (x, a)|]

From Shalit et al. [2017], we have:
εTPEHE(f̂) ≤ 2ϵTF (f̂) + 2ϵTCF (f̂)

Therefore, we have:
εTPEHE(f̂) ≤4ϵSF (f̂) + 4IPM

G
(pTF , p

S
F ) + 2IPM

G
(pTF , p

T
CF )

+ 4EpS
F
[|fS(x, a)− fT (x, a)|]

Next, we will use the following results from Shalit et al. [2017] for causal inference. For x ∈ X , a ∈ {0, 1}, with notation
simplicity, we define:

LT
Φ,h(x, a) =

∫
Y

lΦ,h(x, a, y)P (Y T
a = y|x)dy.

Theorem 4.1 (Bounding The Counterfactual Loss). Let Φ be an invertible representation with inverse Ψ. Let pa=i
Φ =

pϕ(r|a = i), a ∈ {0, 1} Let h : R × {0, 1} → Y be a hypothesis. Assume that for a = 0, 1, the function r 7→
LΦ,h(Ψ(r), a) ∈ G then:

ϵCF (Φ, h) ≤
(1− u)ϵa=1

F (Φ, h) + aϵa=0
F (Φ, h)+

IPM
G

(
pa=1
Φ , pa=0

Φ

)
.

(11)

Theorem 4.2 (Bounding the ϵPEHE). The Expected Precision in Estimating Heterogeneous Treatment Effect ϵPEHE

satisfies

εPEHE(Φ, h)

≤ 2 (ϵCF (Φ, h) + ϵF (Φ, h))

≤ 2
(
ϵa=0
F (Φ, h) + ϵa=1

F (Φ, h) + IPM
G

(
pa=1
Φ , pa=0

Φ

)) (12)

In the next section, the performance of target task ϵT,a=0
F (Φ, h) is related to that of a source task ϵS,a=0

F (Φ, h). Without loss
of generality, we present the proof for the case when a = 0.

First, we make the following assumptions:

• A1: Φ is injective (Thus, Ψ = Φ−1 exists on Im(Φ)).



• A2: There exists a real function space G on Im(Φ) such that the function r 7→ ℓTΦ,h(Ψ(r), a, y) ∈ G.

• A3: There exists a function class G′ on Y such that y 7→ ℓΦ,h(x, a, y) ∈ G′.

The measure of the fundamental difference between two causal inference tasks is defined as follows:

γ∗ = Ex∼P (XS)

[
IPM
G′

(P (Y S
a |x), P (Y T

a |x))
]

Lemma 4.3. Suppose that Assumptions 1-3 hold. The factual losses of any model (Φ, h) on source and target task satisfy
for every a ∈ {0, 1}

ϵT,a
F (Φ, h) ≤

ϵS,aF (Φ, h) + IPM
G

(P (Φ(XT
a )), P (Φ(XS

a ))) + γ∗

Proof of Lemma 4.3.

ϵT,a=0
F (Φ, h)− ϵS,a=0

F (Φ, h)

=

∫
X
LT
Φ,h(x, 0)P (XT

0 = x)− LS
Φ,h(x, 0)P (XS

0 = x)dx

=

∫
X
LT
Φ,h(x, 0)P (XT

0 = x)− LT
Φ,h(x, 0)P (XS

0 = x)

+ LT
Φ,h(x, 0)P (XS

0 = x)− LS
Φ,h(x, 0)P (XS

0 = x)dx

=

∫
X
LT
Φ,h(x, 0)P (XT

0 = x)− LT
Φ,h(x, 0)P (XS

0 = x)dx︸ ︷︷ ︸
Γ

+

∫
X

(
LT
Φ,h(x, 0)− LS

Φ,h(x, 0)
)
P (XS

0 = x)dx︸ ︷︷ ︸
Θ

To bound Θ, we use the following inequality:

LT
Φ,h(x, t)− LS

Φ,h(x, t)

=

∫
Y

ℓΦ,h(x, a, y)
(
P (Y T

a = y|x)− P (Y S
a = y|x)

)
dy

≤ max
f∈G′

∣∣∣∣∣
∫
Y

f(y)P (Y T
a = y|x)− P (Y S

a = y|x)dy

∣∣∣∣∣
= IPM

G′

(
P (Y T

a = y|x), P (Y S
a = y|x)

)
From the above inequality, we have:

Θ =

∫
X

(
LT
Φ,h(x, 0)− LS

Φ,h(x, 0)
)
P (XS

0 = x)dx

≤ Ex∼P (XS)

[
IPM
G′

(P (Y S
a |x), P (Y T

a |x))
]

= γ∗



To bound Γ, we use the change of variable formula:

Γ =

∫
X
LT
Φ,h(x, 0)P (XT

0 = x)−

LT
Φ,h(x, 0)P (XS

0 = x)dx

=

∫
R
LT
Φ,h

(
Ψ(r), 0

)
P
(
Φ(XT

0 ) = r
)
−

LT
Φ,h

(
Ψ(r), 0

)
P
(
Φ(XS

0 ) = r
)
dr

≤ max
g∈G

∣∣∣∣∣
∫

g(r)
(
P
(
Φ(XT

0 ) = r
)
−

P
(
Φ(XS

0 ) = r
))

dr

∣∣∣∣∣
= IPM

G

(
P
(
Φ(XT

0 )
)
, P

(
Φ(XS

0

))
Combining the above upper bounds for Γ and Θ, we have:

ϵT,a=0
F (Φ, h)− ϵS,a=0

F (Φ, h)

≤ IPM
G

(
P
(
Φ(XT

0 )
)
, P

(
Φ(XS

0 )
))

+ γ∗

Thus, we conclude that:
ϵT,a=0
F (Φ, h)

≤ ϵS,a=0
F (Φ, h) + IPM

G

(
P
(
Φ(XT

0 )
)
, P

(
Φ(XS

0 )
))

+ γ∗

Lemma 4.4. Suppose that Assumptions A1, A2, A3 hold. Then the counterfactual loss of any model (Φ, h) on the target
task satisfy:

ϵTCF (Φ, h) ≤ϵS,a=1
F (Φ, h) + ϵS,a=0

F (Φ, h)

+ IPM
G

(P (Φ(XT
1 )), P (Φ(XS

1 )))

+ IPM
G

(P (Φ(XT
0 )), P (Φ(XS

0 )))

+ IPM
G

(P (Φ(XT
0 )), P (Φ(XT

1 ))) + 2γ∗

where
γ∗ = E

x∼P (XS)

[
IPM
G′

(P (Y S
a |x), P (Y T

a |x))
]

(13)

measures the fundamental difference between two causal inference tasks.

Proof of Lemma 4.4. Theorem 4.1 is applied to establish an upper bound for the counterfactual loss of the target task.
Subsequently, we apply Lemma 4.3.

ϵTCF (Φ, h)

≤ ϵT,a=1
F (Φ, h) + ϵT,a=0

F (Φ, h) + IPM
G

(
Φ(XT

0 ),Φ(X
T
1 )

)
Therefore,

ϵTCF (Φ, h) ≤ ϵS,a=1
F (Φ, h) + ϵS,a=0

F (Φ, h) + 2γ∗

+ IPM
G

(
P
(
Φ(XT

1 )
)
, P

(
Φ(XS

1 )
))

+ IPM
G

(
P
(
Φ(XT

0 )
)
, P

(
Φ(XS

0 )
))

+ IPM
G

(
P
(
Φ(XT

0 )
)
, P

(
Φ(XT

1 )
))



Theorem 4.5. (Transferability of Causal Knowledge) Suppose that Assumptions A1, A2, A3 hold. The performance of
source model on target task, i.e. εTPEHE(Φ, h), is upper bounded by:

εTPEHE(Φ, h) ≤2(ϵS,a=1
F (Φ, h) + ϵS,a=0

F (Φ, h)

+ IPM
G

(P (Φ(XT
1 )), P (Φ(XS

1 )))

+ IPM
G

(P (Φ(XT
0 )), P (Φ(XS

0 )))

+ IPM
G

(P (Φ(XT
0 )), P (Φ(XT

1 )) + 2γ∗)

Proof of Theorem 4.5. By applying Theorem 4.2, we get

εTPEHE(Φ, h)

≤ 2
(
ϵT,a=0
F (Φ, h) + ϵT,a=1

F (Φ, h)

+ IPM
G

(
P
(
Φ(XT

0 )
)
, P

(
Φ(XT

1 )
)) )

After applying Lemma 4.3 to the first and second terms of the above equation, we have:

εTPEHE(Φ, h) ≤ 2 (ϵS,a=1
F (Φ, h) + ϵS,a=0

F (Φ, h)

+ IPM
G

(P (Φ(XT
1 )), P (Φ(XS

1 )))

+ IPM
G

(P (Φ(XT
0 )), P (Φ(XS

0 )))

+ IPM
G

(P (Φ(XT
0 )), P (Φ(XT

1 )) + 2γ∗)

5 BASELINE: DATA BUNDLING

In many causal inference scenarios, we only have access to the trained model, and the corresponding data is unavailable.
This situation could be the case in medical applications due to privacy reasons. Consequently, bundling the datasets of source
tasks with the target task is not feasible. In contrast, the data may be available for some specific applications. In this case, we
create another baseline referred to as data bundling.

In data bundling, we create the bundled dataset by combining the datasets of source tasks and the target task. Here, we
compare our approach with data bundling for the IHDP and the Movement(Physics) datasets. For data bundling, we report
the model’s best performance (i.e., εPEHE) achieved by hyper-parameter search. For our approach, we only report the
model’s performance with the lowest training error. This setup gives more advantage to the data bundling baseline. The
results are illustrated in Figure 1. Even with the aforementioned advantage, the data bundling method achieves poorer
performance than our approach. This is due to data imbalance, lack of precision in determining similarity from propensity
score, and differences in outcome functions.

6 CAUSAL INFERENCE TASK AFFINITY

Let PNθ
(T,Dte) ∈ [0, 1] be a function that measures the performance of a given model Nθ parameterized by θ ∈ Rd on the

test set Dte of the causal task T .

Definition 6.1 (ε-approximation Network). A model Nθ is called an ε-approximation network for a task-dataset pair (T,D)
if it is trained using the training data Dtr such that PNθ

(T,Dte) ≥ 1− ε, for a given 0 < ε < 1.



Figure 1: Performance comparison between data bundling and our approach. Our approach (red horizontal line) significantly
outperforms data bundling. An increase in the size of training data doesn’t improve the performance of data bundling.

Definition 6.2 (Fisher Information Matrix). For a neural network Nθs with weights θs trained on data Ds, a given test
dataset Dt and the negative log-likelihood loss function L(θ,D), the Fisher Information matrix is defined as:

Fs,t = ED∼Dt

[
∇θL(θs, D)∇θL(θs, D)T

]
(14)

= −ED∼Dt

[
H
(
L(θs, D)

)]
, (15)

where H is the Hessian matrix, i.e., H
(
L(θ,D)

)
= ∇2

θL(θ,D), and expectation is taken w.r.t the data. It is proven that the
Fisher Information Matrix is asymptotically well-defined [Le et al., 2022]. In practice, we approximate the above with the
empirical Fisher Information matrix:

F̂s,t =
1

|Dt|
∑
x∈Dt

∇θL(θs, x)∇θL(θs, x)
T . (16)

Here, the empirical Fisher Information Matrix is positive semi-definite because it is the summation of positive semi-definite
terms, regardless of the number of samples.

6.1 TASK AFFINITY BETWEEN COUNTERFACTUAL TASKS

In the following section, we denote the task-dataset pair a = (Ta, Da) by aF = (TaF
, DaF

) where DaF
is sampled

from the factual distribution. Similarly, aCF = (TaCF
, DaCF

) denotes the counterfactual task-dataset pair, where DaCF
is

sampled from the counterfactual distribution. We refer to (TaF
, DaF

) and (TaCF
, DaCF

) as the corresponding factual and
counterfactual tasks.

The following theorem proves that the order of proximity of tasks is preserved even if we observe the counterfactual tasks
instead. In other words, a task, which is more similar to the target task when measured using factual data, remains more
similar to the target task even when measured using counterfactual data.

Theorem 6.3. Let T be the set of tasks and let aF = (TaF
, DaF

), bF = (TbF , DbF ), and cF = (TcF , DcF ) be three factual
tasks and aCF = (TaCF

, DaCF
), bCF = (TbCF

, DbCF
), and cCF = (TcCF

, DcCF
) their corresponding counterfactual

tasks.

Suppose that there exists a class of neural networks (well-trained causal inference neural networks) N = {Nθ}θ∈Θ for



which:

∀a, b, c ∈ T, d[a, b] ≤ d[a, c] + d[c, b] (17)

and the task affinity between the factual and the counterfactual can be arbitrarily small, described as follows:

∀ϵ > 0,∃Nθ ∈ N , d[aF , aCF ] < ϵ (18)

We have the following result:

d[aF , bF ] ≤ d[aF , cF ] =⇒ d[aCF , bCF ] ≤ d[aCF , cCF ] (19)

Proof of Theorem 6.3. Suppose d[aF , bF ] ≤ d[aF , cF ]. For every ϵ > 0, we have:

d[aCF , bCF ] ≤ d[aCF , aF ] + d[aF , bF ] + d[bF , bCF ]

≤ ϵ+ d[aF , cF ] + ϵ

≤ d[aF , aCF ] + d[aCF , cCF ] + d[cF , cCF ]

+ 2ϵ

≤ d[aCF , cCF ] + 4ϵ

Therefore, d[aCF , bCF ] ≤ d[aCF , cCF ] as ϵ → 0.
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