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Abstract

This work considers the problem of selective-sampling for best-arm identification.
Given a set of potential optionsZ ⊂ Rd, a learner aims to compute with probability
greater than 1 − δ, arg maxz∈Z z

>θ∗ where θ∗ is unknown. At each time step,
a potential measurement xt ∈ X ⊂ Rd is drawn IID and the learner can either
choose to take the measurement, in which case they observe a noisy measurement
of x>θ∗, or to abstain from taking the measurement and wait for a potentially more
informative point to arrive in the stream. Hence the learner faces a fundamental
trade-off between the number of labeled samples they take and when they have
collected enough evidence to declare the best arm and stop sampling. The main
results of this work precisely characterize this trade-off between labeled samples
and stopping time and provide an algorithm that nearly-optimally achieves the
minimal label complexity given a desired stopping time. In addition, we show that
the optimal decision rule has a simple geometric form based on deciding whether a
point is in an ellipse or not. Finally, our framework is general enough to capture
binary classification improving upon previous works.

1 Introduction

In this work we consider selective sampling for online best-arm identification. In this setting, at every
time step t = 1, 2, . . . , Nature reveals a potential measurement xt ∈ X ⊂ Rd to the learner. The
learner can choose to either query xt (ξt = 1) or abstain (ξt = 0) and immediately move on to the next
time. If the learner chooses to take a query (ξt = 1), then Nature reveals a noisy linear measurement
of an unknown θ∗ ∈ Rd, i.e. yt = 〈xt, θ∗〉+ εt where εt is mean zero sub-Gaussian noise. Before
the start of the game, the learner has knowledge of a set Z ⊂ Rd. The objective of the learner is to
identify z∗ := arg maxz∈Z〈z, θ∗〉 with probability at least 1− δ at a learner specified stopping time
U . It is desirable to minimize both the stopping time U which counts the total number of unlabeled or
labeled queries and the number of labeled queries requested L :=

∑U
t=1 1{ξt = 1}. In this setting, at

each time t the learner must make the decision of whether to accept the available measurement xt, or
abstain and wait for an even more informative measurement. While abstention may result in a smaller
total labeled sample complexity L, the stopping time U may be very large. This paper characterizes
the set of feasible pairs (U ,L) that are necessary and sufficient to identify z∗ with probability at
least 1 − δ when xt are drawn IID at each time t from a distribution ν. Moreover, we propose an
algorithm that nearly obtains the minimal information theoretic label sample complexity L for any
desired unlabeled sample complexity U .

While characterizing the sample complexity of selective sampling for online best arm identification is
the primary theoretical goal of this work, the study was initially motivated by fundamental questions
about how to optimally trade-off the value of information versus time. Even for this idealized linear
setting, it is far from obvious a priori what an optimal decision rule ξt looks like and if it can even be
succinctly described, or if it is simply the solution to an opaque optimization problem. Remarkably,
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we show that for every feasible, optimal operating pair (U ,L) there exists a matrix A ∈ Rd×d such
that the optimal decision rule takes on the form ξt = 1{x>Ax ≥ 1} when xt ∼ ν iid. The fact that
for any smooth distribution ν the decision rule is a hard decision equivalent to xt falling outside a
fixed ellipse or not, and not a stochastic rule that varies complementarily with the density of ν over
space is perhaps unexpected.

To motivate the problem description, suppose on each day t = 1, 2, . . . a food blogger posts the
Cocktail of the Day with a recipe described by a feature vector xt ∈ Rd. You have the ingredients
(and skills) to make any possible cocktail in the space of all cocktails Z , but you don’t know which
one you’d like the most, i.e., z∗ := arg maxz∈Z〈z, θ∗〉, where θ∗ captures your preferences over
cocktail recipes. You decide to use the Cocktail of the Day to inform your search. That is, each day
you are presented with the cocktail recipe xt ∈ Rd, and if you choose to make it (ξt = 1) you observe
your preference for the cocktail yt with E[yt] = 〈xt, θ∗〉. Of course, making cocktails can get costly,
so you don’t want to make each day’s cocktail, but rather you will only make the cocktail if xt is
informative about θ∗ (e.g., uses a new combination of ingredients). At the same time, waiting too
many days before making the next cocktail of the day may mean that you never get to learn (and
hence drink) the cocktail z∗ you like best. The setting above is not limited to cocktails, but rather
naturally generalizes to discovering the efficacy of drugs and other therapeutics where blood and
tissue samples come to the clinic in a stream and the researcher has to choose whether to take a
potentially costly measurement.

Our results hold for arbitrary θ∗ ∈ Rd, sets X ⊂ Rd and Z ⊂ Rd, and measures ν ∈ 4X 1 for which
we assume xt ∼ ν is drawn IID. The assumption that each xt is IID allows us to make very strong
statements about optimality. To summarize, our contributions are as follows:

• We present fundamental limits on the trade-off between the amount of unlabelled data and labelled
data in the form of (the first) information theoretic lower bounds for selective sampling problems
that we are aware of. Naturally, they say that there is an absolute minimum amount of unlabelled
data that is necessary to solve the problem, but then for any amount of unlabelled data beyond this
critical value, the bounds say that the amount of labelled data must exceed some value as a function
of the unlabelled data used.

• We propose an algorithm that nearly matches the lower bound at all feasible trade-off points in the
sense that given any unlabelled data budget that exceeds the critical threshold, the algorithm takes
no more labels than the lower bound suggests. Thus, the upper and lower bounds sketch out a curve
of all possible operating points, and the algorithm achieves any point on this curve.

• We characterize the optimal decision rule of whether to take a sample or not, based on any critical
point is a simple test: Accept xt ∈ Rd if x>t Axt ≥ 1 for some matrix A that depends on the desired
operating point and geometry of the task. Geometrically, this is equivalent to xt falling inside or
outside an ellipsoid.

• Our framework is also general enough to capture binary classification, and consequently, we prove
results there that improve upon state of the art.

1.1 Related Work

Selective Sampling in the Streaming Setting: Online prediction, the setting in which the selective
sampling framework was introduced, is a closely related problem to the one studied in this paper
and enjoys a much more developed literature [6, 9, 1, 7]. In the linear online prediction setting, for
t = 1, 2, . . . Nature reveals xt ∈ Rd, the learner predicts ŷt and incurs a loss `(ŷt, yt), and then the
learner decides whether to observe yt (i.e., ξt = 1) or not (ξt = 0), where yt is a label generated by a
composition of a known link function with a linear function of xt. For example, in the classification
setting [1, 6, 9], one setting assumes yt ∈ {−1, 1} with E[yt|xt] = 〈xt, θ∗〉 for some unknown
θ∗ ∈ Rd, and `(ŷt, yt) = 1{ŷt 6= yt}. In the regression setting [7], one observes yt ∈ [−1, 1] with
E[yt|xt] = 〈xt, θ∗〉 again, and `(ŷt, yt) = (ŷt − yt)2. After any amount of time U , the learner is
incentivized to minimize both the amount of requested labels

∑U
t=1 1{ξt = 1} and the cumulative

loss
∑U
t=1 `(yt, ŷt) (or some measure of regret which compares to predictions using the unknown

θ∗). If every label yt is requested then L = U and this is just the classical online learning setting.

1We denote the set of probability measures over X as 4X .
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These works give a guarantee on the regret and labeled points taken in terms of the hardness of the
stream relative to a learner which would see the label at every time. Most do not give the learner the
ability to select an operating point that provides a trade-off between the amount of unlabeled versus
labeled data taken. Those few works that propose algorithms that do provide this functionality do not
provide lower bounds that match their given upper bounds, leaving it unclear whether their algorithm
optimally negotiates this trade-off. In contrast, our work fully characterizes the trade-off between the
amount of unlabeled and labeled data through an information-theoretic lower bound and a matching
upper bound. Specifically, our algorithm includes a tuning parameter, call it τ , that controls the
trade-off between the evaluation metric of interest (for us, the quality of the recommended z ∈ Z),
the label complexity L, and the amount of unlabelled data U that is necessary before the metric
of interest can be non-trivial. We prove that each possible setting of τ parametrizes all possible
trade-offs between unlabeled and labeled data.

Our work is perhaps closest to the streaming setting for agnostic active classification [8, 15] where
each xs is drawn i.i.d. from an underlying distribution ν on X , and indeed our results can be
specialized to this setting as we discuss in Section 3. These papers also evaluate themselves at
a single point on the tradeoff curve, namely the number of samples needed in passive supervised
learning to obtain a learner with excess risk at most ε. They provide minimax guarantees on the
amount of labeled data needed in terms of the disagreement coefficient [12]. In contrast, again, our
results characterize the full trade-off between the amount of unlabeled data seen, and the amount of
labeled data needed to achieve the target excess risk ε. We note that using online-to-batch conversion
methods, [9, 1, 6] also provide results on the amount of labeled data needed but they assume a very
specific parametric form to their label distribution unlike our setting which is agnostic. Other works
have characterized selective sampling for classification in the realizable setting that assumes there
exists a classifer among the set under consideration that perfectly labels every yt [13]–our work
addresses the agnostic setting where no such assumption is made. Finally, our results apply under the
more general setting of domain adaptation under covariate shift where we are observing data drawn
from the stream ν, but we will evaluate the excess risk of our resulting classifier on a different stream
π [22, 23, 26].

Best-Arm Identification and Online Experimental Design. Our techniques are based on experi-
mental design methods for best-arm identification in linear bandits, see [24, 11, 5]. In the setting of
these works, there exists a pool of examples X and at each time any x ∈ X can be selected with
replacement. The goal is to identify the best arm using as few total selections (labels) as possible.
Their algorithms are based on arm-elimination. Specifically, they select examples with probability
proportional to an approximate G-optimal design with respect to the current remaining arms. Then,
during each round after taking measurements, those arms with high probability of being suboptimal
will be eliminated. Remarkably, near-optimal sample complexity has been achieved under this setting.
While we apply these techniques of arm-elimination and sampling through G-optimal design, the
major difference is that we are facing a stream instead of a pool of examples. Finally, [10] considers a
different online experiment design setup where (adversarially chosen) experiments arrive sequentially
and a primal-dual algorithm decides whether to choose each, subject to a total budget. [10] studies
the competitive ratio of such algorithms (in the manner of online packing algorithms) for problems
such as D-optimal experiment design.

2 Selective Sampling for Best Arm Identification

Consider the following game: Given known X ,Z ⊂ Rd and unknown θ∗ ∈ Rd at each time
t = 1, 2, . . . :

1. Nature reveals xt
iid∼ ν with support(ν) = X

2. Player chooses Qt ∈ {0, 1}. If Qt = 1 then nature reveals yt with E[yt] = 〈xt, θ∗〉
3. Player optionally decides to stop at time t and output some ẑ ∈ Z

If the player stops at time U after observing L =
∑U
t=1Qt labels, the objective is to identify

z∗ = arg maxz∈Z〈z, θ∗〉 with probability at least 1− δ while minimizing a trade-off of U ,L.

This paper studies the relationship between U and L in the context of necessary and sufficient
conditions to identify z∗ with probability at least 1− δ. Clearly U must be “large enough” for z∗ to
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be identifiable even if all labels are requested (i.e., L = U ). But if U is very large, the player can start
to become more picky with their decision to observe the label or not. Indeed, one can easily imagine
scenarios in which it is advantageous for a player to forgo requesting the label of the current example
in favor of waiting for a more informative example to arrive later if they wished to minimize L alone.
Intuitively, L should decrease as U increases, but how?

Any selective sampling algorithm for the above protocol at time t is defined by 1) a selection rule
Pt : X → [0, 1] where Qt ∼ Bernoulli(Pt(xt)), 2) a stopping rule U , and 3) a recommendation rule
ẑ ∈ Z . The algorithm’s behavior at time t can use all information collected up to time t
Definition 1. For any δ ∈ (0, 1) we say a selective sampling algorithm is δ-PAC for ν ∈ 4X if for all
θ ∈ Rd the algorithm terminates at time U which is finite almost surely and outputs arg maxz∈Z〈z, θ〉
with probability at least 1− δ.

2.1 Optimal design

Before introducing our own algorithm, let us consider a seemingly optimal procedure. For any
λ ∈ 4X = {p :

∑
x∈X px = 1, px ≥ 0 ∀x ∈ X} define

ρ(λ) := max
z∈Z\{z∗}

‖z − z∗‖2EX∼λ[XX>]−1

〈θ∗, z∗ − z〉2
. (1)

Intuitively, ρ(λ) captures the number of labeled examples drawn from distribution λ to identify z∗.
Specifically, for any τ ≥ ρ(λ) log(|Z|/δ), if x1, . . . , xτ ∼ λ and yi = 〈xi, θ∗〉 + εi where εi is
iid 1 sub-Gaussian noise, then there exists an estimator θ̂ := θ̂({(xi, yi)}τi=1) such that 〈θ̂, z∗〉 >
maxz∈Z\z∗〈θ̂, z〉 with probability at least 1 − δ [11]. In particular, τ ≥ ρ(λ) log(|Z|/δ) samples
suffice to guarantee that arg maxz∈Z〈θ̂, z〉 = arg maxz∈Z〈θ∗, z〉 =: z∗.

Thus, if our τ samples are coming from ν, we would expect any reasonable algorithm to require
at least ρ(ν) log(|Z|/δ) examples and labels. However, since we only want to take informative
examples, we instead choose to select the tth example xt = x according to a probability P (x) so that
our final labeled samples are coming from the distribution λ where λ(x) ∝ P (x)ν(x). In particular,
P (x) should be chosen according to the following optimization problem

P ∗ = argmin
P :X→[0,1]

τEX∼ν [P (X)] subject to max
z∈Z\{z∗}

‖z∗ − z‖2EX∼ν [τP (X)XX>]−1

〈z∗ − z, θ∗〉2
βδ ≤ 1 (2)

for βδ = log(|Z|/δ) where the objective captures the number of samples we select using P ∗, and the
constraint captures the fact that we have solved the problem. Remarkably, we can reparametrize this
result in terms of an optimization problem over λ ∈ ∆X instead of P ∗ : X → [0, 1] as

τEX∼ν [P ∗(X)] = min
λ∈4X

ρ(λ)βδ subject to τ ≥ ‖λ/ν‖∞ρ(λ)βδ

where ‖λ/ν‖∞ = maxx∈X λ(x)/ν(x), as shown in Proposition 2. Note that as τ →∞ the constraint
becomes inconsequential. Also notice that ρ(ν)βδ appears to be a necessary amount of labels to solve
the problem even if P (x) ≡ 1 (albeit, by arguing about minimizing the upperbound of above).

2.2 Main results

In this section we formally justify the sketched argument of the previous section, showing nearly
matching upper and lower bounds.
Theorem 1 (Lower bound). Fix any δ ∈ (0, 1), X ,Z ⊂ Rd, and θ∗ ∈ Rd. Any selective sampling
algorithm that is δ-PAC for ν ∈ 4X and terminates after drawing U unlabelled examples from ν
and requests the labels of just L of them satisfies

• E[U ] ≥ ρ(ν) log(1/δ), and

• E[L] ≥ min
λ∈4X

ρ(λ) log(1/δ) subject to E[U ] ≥ ‖λ/ν‖∞ρ(λ) log(1/δ).

The first part of the theorem quantifies the number of rounds or unlabelled draws U that any algorithm
must observe before it could hope to stop and output z∗ correctly. The second part describes a
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trade-off between U and L. One extreme is if E[U ]→∞, which effectively removes the constraint
so that the number of observed labels must scale like minλ∈4X ρ(λ) log(1/δ). Note that this is
precisely the number of labels required in the pool-based setting where the agent can choose any
x ∈ X that she desires at each time t (e.g. [11]). In the other extreme, E[U ] = ρ(ν) log(1/δ) so that
the constraint in the label complexity E[L] is equivalent to ρ(ν) ≥ ‖λ/ν‖∞ρ(λ). This implies that
the minimizing λ must either stay very close to ν, or must obtain a substantially smaller value of
ρ(λ) relative to ρ(ν) to account for the inflation factor ‖λ/ν‖∞. In some sense, this latter extreme is
the most interesting point on the trade-off curve because its asking the algorithm to stop as quickly
as the algorithm that observes all labels, but after requesting a minimal number of labels. Note that
this lower bound holds even for algorithms that known ν exactly. The proof of Theorem 1 relies on
standard techniques from best arm identification lower bounds (see e.g. [17, 11]).

Remarkably, every point on the trade-off suggested by the lower bound is nearly achievable.

Theorem 2 (Upper bound). Fix any δ ∈ (0, 1), X ,Z ⊂ Rd, and θ∗ ∈ Rd. Let ∆ =
minz∈Z\{z∗}〈z∗ − z, θ∗〉 and βδ ∝ log(log( 1

∆ )|Z|/δ) where the precise constant is given in the
appendix. For any τ ≥ ρ(ν)βδ there exists a δ-PAC selective sampling algorithm that observes U
unlabeled examples and requests just L labels that satisfies with probability at least 1− δ

• U ≤ log2( 4
∆ ) τ , and

• L ≤ 3 log2( 4
∆ ) min

λ∈4X
ρ(λ)βδ subject to τ ≥ ‖λ/ν‖∞ρ(λ)βδ .

Aside from the log( 1
∆ ) factor and the log(|Z|) that appears in the βδ term, this nearly matches the

lower bound. Note that the parameter τ parameterizes the algorithm and makes the trade-off between
U and L explicit. The next section describes the algorithm that achieves this theorem.

2.3 Selective Sampling Algorithm

Algorithm 1 contains the pseudo-code of our selective sampling algorithm for best-arm identification.
Note that it takes a confidence level δ ∈ (0, 1) and a parameter τ that controls the unlabeled-labeled
budget trade-off as input. The algorithm is effectively an elimination style algorithm and closely
mirrors the RAGE algorithm for the pool-based setting of best-arm identification problem [11]. The
key difference, of course, is that instead of being able to plan over the pool of measurements, this
algorithm must plan over the x’s that the algorithm may potentially see and account for the case that
it might not see the x’s it wants.

Algorithm 1 Selective Sampling for Best-arm Identification

1: Input Z ⊂ Rd, δ ∈ (0, 1), τ
2: while |Z`| ≥ 1 do
3: Let P̂`, Σ̂P̂` ←OPTIMIZEDESIGN(Z`, 2−`, τ) // Σ̂P̂` approximates EX∼ν [P̂`(X)XX>]

4: for t = (`− 1)τ + 1, . . . , `τ do
5: Nature reveals xt drawn iid from ν (with support Rd)
6: Sample Qt(xt) ∼ Bernoulli(P̂`(xt)). If Qt = 1 then observe yt // E[yt|xt] = 〈θ∗, xt〉
7: end for
8: Let θ̂` ←RIPS({Σ̂−1

P̂`
Qs(xs)xsys}`τs=(`−1)τ+1, Z × Z) // θ̂` approximates θ∗

9: Z`+1 = Z` \ {z ∈ Z` : max
z′∈Z`

〈z′ − z, θ̂`〉 ≥ 2−`}
10: end while

In round `, the algorithm maintains an active set Z` ⊆ Z with the guarantee that each remaining
z ∈ Z` satisfies, 〈z∗ − z, θ∗〉 ≤ 8 · 2−`. In each round, on Line 3 of the algorithm, it calls out
to a sub-routine OPTIMIZEDESIGN(Z, ε, τ) that is trying to approximate the ideal optimal design
of (2). In particular, the ideal response to OPTIMIZEDESIGN(Z, ε, τ) would return a P ∗ε and
ΣP∗ε = EX∼ν [P ∗ε (X)XX>] where P ∗ε is the solution to Equation 2 with the one exception that the
denominator of the constraint is replaced with max{ε2, 〈θ∗, z∗ − z〉2}. Of course, θ∗ is unknown
so we cannot solve Equation 2 (as well as other outstanding issues that we will address shortly).
Consequently, our implementation will aim to approximate the optimization problem of Equation 2.
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But assuming our sample complexity is not too far off from this ideal, each round should not request
more labels than the number of labels requested by the ideal program with ε = 0. Thus, the total
number of samples should be bounded by the ideal sample complexity times the number of rounds,
which is O(log(∆−1)). We will return to implementation issues in the next section.

Assuming we are returned (P̂`, Σ̂P̂`) that approximate their ideals as just described, the algorithm
then proceeds to process the incoming stream of xt ∼ ν. As described above, the decision to request
the label of xt is determined by a coin flip coming up heads with probability P̂`(xt)–otherwise we
do not request the label. Given the collected dataset {(xt, yt, Qt, P̂`(xt))}t, line 8 then computes an
estimate θ̂` of θ∗ using the RIPS estimator of [5] which will satisfy

|〈z∗ − z, θ̂` − θ∗〉| ≤ O
(
‖z∗ − z‖EX∼ν [τP̂`(X)XX>]−1

√
log(2`2|Z|2/δ)

)
≤ 2−`

for all z ∈ Z` simultaneously with probability at least 1 − δ. Thus, the final line of the algorithm
eliminates any z ∈ Z` such that there exists another z′ ∈ Z` (think z∗) that satisfies 〈θ̂`, z′−z〉 > 2−`.
The process continues until Z` = {z∗}.

2.4 Implementation of OPTIMIZEDESIGN

For the subroutine OPTIMIZEDESIGN passed (Z`, ε, τ) the next best thing to computing Equation 2
with the denominator of the constraint replaced with max{ε2, 〈θ∗, z∗ − z〉2}, is to compute

Pε = argmin
P :X→[0,1]

EX∼ν [P (X)] subject to max
z,z′∈Z`

‖z − z′‖2EX∼ν [τP (X)XX>]−1

ε2
βδ ≤ 1 (3)

and ΣPε = EX∼ν [Pε(X)XX>] for an appropriate choice of βδ = Θ(log(|Z|/δ)). To see this,
firstly, any z ∈ Z with gap 〈θ∗, z∗ − z〉 that we could accurately estimate would not be included in
Z`, thus we don’t need it in the max of the denominator. Secondly, to get rid of z∗ in the numerator
(which is unknown, of course), we note that for any norm maxz,z′ ‖z − z′‖ ≤ maxz 2‖z − z∗‖ ≤
maxz,z′ 2‖z − z′‖. Assuming we could solve this directly and compute ΣPε = EX∼ν [Pε(X)XX>],
we can obtain the result of Theorem 2 (proven in the Appendix).

However, even if we knew ν exactly, the optimization problem of Equation 3 is quite daunting as
it is a potentially infinite dimensional optimization problem over X . Fortunately, after forming
the Lagrangian with dual variables for each z − z′ ∈ Z × Z , optimizing the dual amounts to
a finite dimensional optimization problem over the finite number of dual variables. Moreover,
this optimization problem is maximizing a simple expectation with respect to ν and thus we can
apply standard stochastic gradient ascent and results from stochastic approximation [20]. Given the
connection to stochastic approximation, instead of sampling a fresh x̃ ∼ ν each iteration, it suffices to
“replay” a sequence of x̃’s from historical data. Summing up, this construction allows us to compute a
satisfactory Pε and avoid both an infinite-dimensional optimization problem and requiring knowledge
of ν (as long as historical data is available).

Meanwhile, with historical data, we can also empirically compute EX∼ν [Pε(X)XX>]. Historical
data could mean offline samples from ν or just samples from previous rounds. In this setting, Theorem
2 still holds albeit with larger constants. Theorem 7 in the appendix characterizes the necessary
amount of historical data needed. Unfortunately (in full disclosure) the theoretical guarantees on the
amount of historical data needed is absurdly large, though we suspect this arises from a looseness in
our analysis. Similar assumptions and approaches to historical or offline data have been used in other
works in the streaming setting e.g. [15].

3 Selective Sampling for Binary Classification

We now review streaming Binary Classification in the agnostic setting [8, 12, 15] and show that our
approach can be adapted to this setting. Consider a binary classification problem where X is the
example space and Y = {−1, 1} is the label space. Fix a hypothesis classH such that each h ∈ H is
a classifier h : X → Y . Assume there exists a fixed regression function η : X → [0, 1] such that the
label of x is Bernoulli with probability η(x) = P(Y = 1|X = x). Being in the agnostic setting, we
make no assumption on the relationship between H and η. Finally, fix any ν ∈ 4X and π ∈ 4X .
Given known X ,H and unknown regression function η, at each time t = 1, 2, . . . :
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1. Nature reveals xt ∼ ν
2. Player chooses Qt ∈ {0, 1}. If Qt = 1 then nature reveals yt ∼ Bernoulli(η(xt)) ∈ {−1, 1}

3. Player optionally decides to stop at time t and output some ĥ ∈ H.

Define the risk of any h ∈ H as Rπ(h) := PX∼π,Y∼η(X)(Y 6= h(X)). If the player stops at time
U after observing L =

∑U
t=1Qt labels, the objective is to identify h∗ = arg minh∈HRπ(h) with

probability at least 1− δ while minimizing a trade-off of U ,L. Note that h∗ is the true risk minimizer
with respect to distribution π but we observe samples xt ∼ ν; π is not necessarily equal to ν. While
we have posed the problem as identifying the potentially unique h∗, our setting naturally generalizes
to identifying an ε-good h such that Rπ(h)−Rπ(h∗) ≤ ε.
We will now reduce selective sampling for binary classification problem to selective sampling for
best arm identification, and thus immediately obtain a result on the sample complexity. For simplicity,
assume that X and H are finite. Enumerate X and for each h ∈ H define a vector z(h) ∈ [0, 1]|X |

such that z(h)
x := π(x)1{h(x) = 1} for z(h) = [z

(h)
x ]x∈X . Moreover, define θ∗ := [θ∗x]x∈X where

θ∗x := 2η(x)− 1. Then

Rπ(h) = EX∼π,Y∼η(X)[1{Y 6= h(X)}]=
∑
x∈X

π(x)(η(x)1{h(x) 6= 1}+(1− η(x))1{h(x) 6= 0})

=
∑
x∈X

π(x)η(x) +
∑
x∈X

π(x)(1− 2η(x))1{h(x) = 1} = c− 〈z(h), θ∗〉

where c =
∑
x∈X π(x)η(x) does not depend on h. Thus, if Z := {z(h)}h∈H then identifying

h∗ = arg minh∈HRπ(h) is equivalent to identifying z∗ = arg maxz∈Z〈z, θ∗〉. We can now apply
Theorem 2 to obtain a result describing the sample complexity trade-off. First define,

ρπ(λ, ε) := max
z∈Z\{z∗}

‖z − z∗‖2EX∼λ[XX>]−1

max{〈θ∗, z∗ − z〉2, ε2}
= max
h∈H\{h∗}

EX∼π
[
1{h(X) 6= h′(X)}π(X)

λ(X)

]
max{(Rπ(h)−Rπ(h∗))2, ε2}

An important case of the above setting is when X ∼ ν and π = ν, i.e. we are evaluating the
performance of a classifier relative to the same distribution our samples are drawn from. This is
the setting of [8, 15, 12]. The following theorem shows that the sample complexity obtained by our
algorithm is at least as good as the results they present.
Theorem 3. Fix any δ ∈ (0, 1), domain X with distribution ν, finite hypothesis classH, regression
function η : X → [0, 1]. Set ε ≥ 0 and βδ = 2048 log(4 log2

2(4/ε)|H|/δ). Then for τ ≥ ρπ(ν, ε)βδ
there exists a selective sampling algorithm that returns h ∈ H satisfying Rπ(h)− Rπ(h∗) ≤ ε by
observing U unlabeled examples and requesting just L labels such that

• U ≤ log2(4/ε)τ

• L ≤ 3 log2( 4
ε ) min

λ∈4X
ρπ(λ, ε)βδ s.t. τ ≥ ‖λ/ν‖∞ρπ(λ, ε)βδ

with probability at least 1− δ. Furthermore when ν = π and if τ ≥ 16ρ(ν, ε)βδ we have that

L ≤ 36 log2(4/ε)
(
Rν(h∗)2

ε2 + 4
)

sup
ξ≥ε

θ∗(2Rν(h∗) + ξ, ν)βδ

where θ∗(u, ν) is the disagreement coefficient, defined in Appendix E.

Note that if τ is sufficiently large then the labeled sample complexity we obtain minλ∈∆X ρ(λ, ε)
could be significantly smaller than previous results in the streaming setting, e.g. see [16]. The proof
of Theorem 3 can be found in Appendix E.

4 Solving the Optimization Problem

Recall that in Algorithm 1, during round `, we need to solve optimization problem (3). Solving this
optimization problem is not trivial because the number of variables can potentially be infinite if X is
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an infinite set. In this section, we will demonstrate how to reduce it to a finite-dimensional problem
by considering its dual problem. To simplify the notation, let Y` = {z − z′ : z, z′ ∈ Z`, z 6= z′},
and rewrite the problem as follows, where c` > 0 is a constant that may depend on round `.

minP EX∼ν [P (X)]

subject to y>EX∼ν
[
P (X)XX>

]−1
y ≤ c2` , ∀y ∈ Y`,

0 ≤ P (x) ≤ 1, ∀x ∈ X .
(4)

Using the Schur complement technique, we show in Lemma 13 (Appendix C) the following equiva-
lence: y>EX∼ν

[
P (X)XX>

]−1
y ≤ c2` ⇐⇒ EX∼ν

[
P (X)XX>

]
� 1

c2`
yy>. This transforms

a constraint involving matrix inversion into one with ordering between PSD matrices. Then,
we remove the bound constraints 0 ≤ P (x) ≤ 1, ∀x ∈ X by introducing the barrier function
− log(1 − x) − log(x). That is, instead of working with the objective EX∼ν [P (X)] directly, we
consider the following problem.

minP EX∼ν [P (X)− µb(log(1− P (X)) + log(P (X)))]
subject to EX∼ν

[
P (X)XX>

]
� 1

c2`
yy>, ∀y ∈ Y`. (5)

Here, µb ∈ (0, 1) is some small constant that controls how strong the barrier is. Intuitively, a smaller
µb will make problem (5) closer to the original problem. We now show that unlike the primal, the
dual problem is indeed finite-dimensional. For each constraint of y ∈ Y`, let the matrix Λy � 0 be
its dual variable. Further, let Λ =

∑
y∈Y` Λy and Λ = (Λy)y∈Y` . The corresponding Lagrangian is

L (Λ, P ) = EX∼ν
[
P (X)−µb (log(1−P (X))+log(P (X)))−P (X)X>ΛX

]
+

1

c2`

∑
y∈Y`

y>Λyy.

The dual problem is maxΛy�0,∀y∈Y` minP L (Λ, P ). Notice that minimization over P : X 7→ [0, 1]
can be done via minimizing P (x) point-wise for each x ∈ X . To do this, we take the gradient with
respect to each P (x) and set it to zero to get

1 +
µb

1− P (x)
− µb
P (x)

− x>Λx = 0. (6)

Solving this equation and defining qΛ(x) = x>Λx− 1, we get

PΛ(x) =
1

2
− µb
qΛ(x)

+

√
(2µb − qΛ(x))

2
+ 4µbqΛ(x)

2qΛ(x)
. (7)

Note that if µb = 0 (no barrier), the above reduces to the “threshold” decision rule PΛ(x) =
1
2 + |qΛ(x)|

2qΛ(x) , which gives 0 when qΛ(x) < 0 and 1 when qΛ(x) > 0.2 This is exactly the hard elliptical
threshold rule mentioned before, in which whether to query the label for x depends on whether it
falls inside (x>Λx < 1) or outside (x>Λx > 1) of the ellipsoid defined by the positive semidefinite
matrix Λ. A visualization of the decision rule PΛ is given in Figure 2 in the Appendix.

Now, by plugging in PΛ(x), our dual problem becomes maxΛy�0,∀yD(Λ) := L (Λ, PΛ). This is a
finite-dimensional optimization problem, and can be solved by projected gradient ascent (or projected
stochastic gradient ascent when we have only samples from ν). The gradient of D(Λ) is

∇ΛyD(Λ) = EX∼ν
[(

1+
µb

1− PΛ(x)
− µb
PΛ(X)

−X>ΛX

)
∇ΛyPΛ(X)−PΛ(X)XX>

]
+
yy>

c2`

=
yy>

c2`
− EX∼ν

[
PΛ(X)XX>

]
. (Since PΛ(X) solves Eq. (6))

The algorithm to solve the problem has been summarized in Algorithm 2, in which the gradient during
kth iteration is replaced by its unbiased estimator yy

>

c2`
− PΛ̂(k)(xk)xkx

>
k . The adaptive learning rate

is chosen by following the discussion in chapter 4 of [21]. Optimizing the assignment of Λ̂y to each y
in line 10 ensures that the re-scaling step in line 11 increases the function value in an optimized way.
Finally, the re-scaling step is used to ensure that the output primal objective value EX∼ν [P(X)] is
bounded well, which will be explained in more details in Appendix C.

2When qΛ(x) = 0, PΛ(x) is undetermined from the dual.
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Algorithm 2 Projected Stochastic Gradient Ascent to Solve OPTIMIZEDESIGN

1: Input: Number of iterations K; number of samples u; barrier weight µb ∈ (0, 1)

2: Initialize Λ̂
(0)
y = 0 for each y ∈ Y`

3: for k = 0, 1, 2, . . . ,K − 1 do
4: Sample xk ∼ ν
5: Set gk,y = yy>

c2`
− PΛ̂(k)(xk)xkx

>
k , where PΛ is defined in Eq. (7)

6: Set Λ̂
(k+1)
y ← Λ̂

(k)
y + ηkgk,y for each y ∈ Y`, where ηk = 1√

2
∑k
s=1

∑
y∈Y`

‖gs,y‖22

7: Update Λ̂
(k+1)
y ← ΠSd+(Λ̂

(k+1)
y ) for each y ∈ Y`, a projection to the set of d×d PSD matrices

8: end for
9: Let Λ̂y = 1

K

∑K
k=1 Λ̂

(k)
y for each y ∈ Y` and Λ̂ =

∑
y∈Y` Λ̂y

10: Update (Λ̂y)y∈Y` ← argmaxΛ

∑
y∈Y` y

>Λyy, subject to
∑
y∈Y` Λy = Λ̂,Λy � 0,∀y ∈ Y`.

11: Find s∗ ← argmaxs∈[0,1]DE(s · Λ̂), where DE empirically evaluates D using u i.i.d. samples
12: return Λ̃ = s∗ ·

∑
y∈Y` Λ̂y

Let Λ∗ be an optimal solution for D(Λ). Intuitively, as long as we run this algorithm with sufficiently
large number of iterations K and number of samples u, we can guarantee that D(Λ̃) and D(Λ∗) are
close enough with high probability, which in turn guarantees that the primal constraints are violated
by only a tiny amount and EX∼ν

[
PΛ̃(X)

]
is close enough to the optimal value. Specifically, we can

prove the following theorem.
Theorem 4. Suppose ‖x‖2 ≤ M for any x ∈ supp(ν) and Σ = EX∼ν

[
XX>

]
is invertible. Let

Λ∗ ∈ argmaxΛy�0,∀y∈Y` D(Λ) and κ(Σ) = λmax(Σ)
λmin(Σ) be its condition number. Assume ‖Λ∗‖F > 0

and define ω = minΓ∈Sd:‖Γ‖F=1 EX∼ν
[(
X>ΓX

)2]
, where Sd is the set of d×d symmetric matrices.

Then, Λ∗ =
∑
y∈Y` Λ∗y is unique. Further, for any ε > 0 and δ > 0, if it holds that µb ≤

O
(√
‖Λ∗‖F κ(Σ)M

)
·
√

(1 + ε)/ε and

K≥O

(
|Y`|3κ(Σ)2‖Λ∗‖8FM16log(1/δ)

ω2µ6
b

)
·
(

1 + ε

ε

)2

, u≥O

(
κ(Σ)2‖Λ∗‖6FM16log(1/δ)

ω2µ6
b

)
·
(

1 + ε

ε

)2

,

then, with probability at least 1− δ, Algorithm 2 will output Λ̃ that satisfies

• y>EX∼ν
[
PΛ̃(X)XX>

]−1
y ≤ (1 + ε)c2` , ∀y ∈ Y`.

• EX∼ν
[
PΛ̃(X)

]
≤ EX∼ν

[
P̃ (X)

]
+ 4
√
µb, where P̃ is the optimal solution to problem (4)

with barrier constraint repaced by 0 ≤ P (x) ≤ 1− µb,∀x ∈ X .

The proof is in Appendix C. Although P̃ is not exactly the same as the optimal solution of the original
problem (4), when µb is sufficiently small, they will be very close. Meanwhile, it should be noted that
Theorem 4 mainly reveals that with sufficiently large number of iterations and number of samples,
Algorithm 2 can output sufficiently good solution. In future work, we plan to examine how much this
bound can be improved via a tighter analysis.

Finally, notice that Algorithm 2 needs to maintain |Y`| d2 = O(|Z`|2 d2) variables, which can be
large when we have a large set Z`. Therefore, as an alternative, we also propose Algorithm 3 that
only needs to maintain d2 variables but requires more computational power in each iteration. The
details are given in Appendix C.

5 Empirical results

In this section we present a benchmark experiment validating the fundamental trade-offs that are
theoretically characterized in Theorem 1 and Theorem 2. We take inspiration from [24] to define our
experimental protocol:
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• d = 2, a two-dimensional problem.
• Z = [e1, e2, (cos(ω), sin(ω))] for ω = 0.3, where e1, e2 are canonical vectors.
• θ∗ = 2e1 and y = x>θ∗ + η, where η ∼ N (0, 1).

• The distribution ν for streaming measurements xt
i.i.d.∼ ν is such that xt =

(cos(2Itπ/N), sin(2Itπ/N)) where It ∈ {0, . . . , N −1}, P(It = i) ∝ cos(2iπ/N)2, and N = 30.

In this problem, the angle ω is small enough that the item (cos(ω), sin(ω)) is hard to discriminate
from the best item e1. As argued in [24], an efficient sampling strategy for this problem instance
would be to pull arms in the direction of ±e2 in order to reduce the uncertainty in the direction of
interest, e1 − (cos(ω), sin(ω)). However, the distribution ν is defined such that it is more likely
to receive a vector xt in the direction of ±e1 rather than ±e2. Thus, if one seeks a small label
complexity, then P should be taken to reject measurements in the direction of ±e1.

In the benchmark experiment, we compare the following three algorithms which all use Algorithm 1
as a meta-algorithm and just swap out the definition of P̂`. Naive Algorithm uses no selective
sampling so that P̂`(x) = 1 for all x; the Oracle Algorithm uses P̂` = P∗ where P∗ is the ideal
solution to (2), and Our Algorithm uses the solution to (5) for P̂`, where we take µb = 2× 10−5.
We swept over the values of τ and plotted on the y-axis the amount of labeled data needed before
termination, as shown in Figure 1.
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Figure 1: (left) For each value of τ , we plot the average label complexity over 50 repeated
trials. (middle) Visualization of P∗(x) and ν(x) v.s. x, where x is indexed by I such that
xI = (cos(2Iπ/N), sin(2Iπ/N)). Here, P∗ is solved with τ = 4 × 105 and distribution ν is
not normalized. (right) A heat map of P∗(x) along with the setting of experimental protocol.

We observe in Figure 1 that the algorithms using non-naive selection rules require far less label
complexity than the naive algorithm for all τ . This reflects the intuition that selection strategies that
focus on requesting the more informative streaming measurements are much more efficient than
naively observing every streaming measurement. Meanwhile, the trade-off between label complexity
L and sample complexity U characterized in Theorem 1 and Theorem 2 is precisely illustrated in
Figure 1. Indeed, we see the number of labels queried by the two selective sampling algorithms
decrease as the number of unlabeled data seen in each round increases.

6 Conclusion

In this paper, we proposed a new approach for the important problem of selective sampling for best
arm identification. We provide a lower bound that quantifies the trade-off between labeled samples
and stopping time and also presented an algorithm that nearly achieves the minimal label complexity
given a desired stopping time.

One of the main limitations of this work is that our approach depends on a well-specified model
following stationary stochastic assumptions. In practice, dependencies over time and model mis-
match are common. Utilizing the proposed algorithm outside of our assumptions may lead to poor
performance and unexpected behavior with adverse consequences. While negative results justify
some of the most critical assumptions we make (e.g., allowing the stream xt to be arbitrary, rather
than iid, can lead to trivial algorithms, see Theorem 7 of [7]), exploring what theoretical guarantees
are possible under relaxed assumptions is an important topic of future work.
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A Selective Sampling Lower Bound

First, we review the standard argument for best-arm identification lower bounds applied to linear
bandits. Fix θ∗ ∈ Rd and let z∗ = arg maxz∈Z〈z, θ∗〉. Define the set C = {θ ∈ Rd : ∃z ∈
Z s.t. 〈θ, z − z∗〉 ≥ 0} as those θ in which z∗ is note the best arm under θ. We now recall the
transportation lemma of [17]. Under a δ-PAC strategy for finding the best arm for the bandit instance
(X ,Z, θ∗), let Tx denote the random variable which is the number of times arm x is pulled. In
addition let Nθ,x denote the reward distribution of the arm x of X , i.e. Nθ,x = N (x>θ, 1). Then for
any δ-PAC algorithm

log(1/2.4δ) ≤ min
θ∈C

∑
x∈X

E[Tx]KL(Nθ∗,x,Nθ,x)

= min
θ∈C

∑
x∈X

E[Tx] 1
2‖θ∗ − θ‖

2
xx>

= min
θ∈C

1
2‖θ∗ − θ‖

2
(
∑
x∈X E[Tx] xx>)

≤ min
z∈Z\z∗

1
2‖θ∗ − θz(ε)‖

2
(
∑
x∈X E[Tx] xx>)

where

θz(ε) = θ∗ −
((z∗ − z)>θ∗ + ε)(

∑
x∈X E[Tx]xx>)−1(z∗ − z)>

(z∗ − z)>(
∑
x∈X E[Tx]xx>)−1(z∗ − z)

for some small ε. This is a valid choice since for all z ∈ Z \ z∗ we have (z∗ − z)>θz(ε) = −ε < 0
and thus θz(ε) ∈ C. A straightforward calculation shows that

‖θ∗ − θz(ε)‖2(∑x∈X E[Tx] xx>) =
(〈z∗ − z, θ∗〉+ ε)2

‖z∗ − z‖2(∑x∈X E[Tx] xx>)−1

so that after rearranging and lettering ε→ 0 we have that any δ-PAC algorithm satisfies

max
z∈Z\z∗

2‖z∗ − z‖2(∑x∈X E[Tx] xx>)−1

〈z∗ − z, θ∗〉2
log(1/2.4δ) ≤ 1. (8)

This series of steps will be applied for each bullet point of the theorem.

A.1 Proof of Theorem 1, part I

We use the consequence of Lemma 19 of [17]. Consider a δ-PAC algorithm that sets P (x) = 1 for all
x ∈ X for all time until it exits at time U after this many unlabelled examples have been observed. If
Tx denotes the number of times x ∈ X was observed before stopping time U , then by Wald’s identity
we have that

E[Tx] = E

[ U∑
t=1

1{xt = x}

]
= ν(x)E[U ].

Plugging this into Equation 8 and rearranging we conclude that

E[U ] ≥ max
z∈Z\z∗

2‖z∗ − z‖2(∑x∈X ν(x) xx>)−1

〈z∗ − z, θ∗〉2
log(1/2.4δ) =: ρ(ν) log(1/2.4δ)

which concludes the proof of the first bullet.

A.2 Proof of Theorem 1, part II

By definition, the (random) number of times we measure x is

Lx =

U∑
s=1

1{xs = x,Qs(x) = 1}
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and we want to show that E[Lx] = ν(x)E
[∑U

`=1 P`(x)
]
. To do so, we define

Mt =

t∑
s=1

(1{xs = x,Qs(x) = 1} − ν(x)Ps(x))

It is easy to check that Pt+1 ∈ Ft := {(xs, ys, Qs)}ts=1 and that

E[Mt+1|Ft] = Mt + E[1{xs = x,Qs(x) = 1} − ν(x)Ps(x)|Ft] = Mt

Applying Doob’s equality E[MU ] = E[M0] = 0. Consequence:

E[Lx] = E

[ U∑
s=1

1{xs = x,Qs(x) = 1}

]
= ν(v)E

[ U∑
s=1

Ps(x)

]

Define α(x) :=
E[
∑U
s=1 Ps(x)]
E[U ] and note that each αx ∈ [0, 1]. Then E[Lx] = E[U ]α(x)ν(x) so

applying equation (18) of [17] again, we have

log(1/2.4δ) ≤min
θ∈C

∑
x∈X

E[Lx]KL(Nθ∗,x,Nθ,x)

= min
θ∈C

∑
x∈X

E[Lx] ‖θ − θ∗‖2xx>/2

= min
z∈Z\z∗

〈θ∗, z∗ − z〉2

2‖z − z∗‖2(∑x∈X E[Lx]xx>)−1

= min
z∈Z\z∗

〈θ∗, z∗ − z〉2

2‖z − z∗‖2(∑x∈X ν(x)α(x)xx>)−1

E[U ].

Rearranging, and applying the identity EX∼ν [α(X)XX>] =
∑
x∈X ν(x)α(x)xx>, the above

implies that

E[U ] ≥ max
z∈Z\z∗

2‖z − z∗‖2EX∼ν [α(X)XX>]−1

〈θ∗, z∗ − z〉2
log(1/2.4δ).

Noting that the total expected number of labels is equal to

E[L] =
∑
x∈X

E[Lx] =
∑
x∈X

E[U ]α(x)ν(x) = E[U ]EX∼ν [α(X)]

we conclude that

E[L] ≥ min
α:X→[0,1]

E[U ] EX∼ν [α(X)]

subject to E[U ] ≥ max
z∈Z\{z∗}

2‖z − z∗‖2EX∼ν [α(X)XX>]−1

〈θ∗, z∗ − z〉2
log(1/2.4δ).

The second bullet point result follows by denoting α as P and applying Proposition 2.

B Selective Sampling Algorithm for Known Distribution ν

B.1 Proof of Theorem 2, upper bound

At each round ` we assume an implementation such that P̂`, Σ̂P̂` ←OPTIMIZEDESIGN(Z`, 2−`, τ)

returns the solution of Equation 3 with ε = 2−`, essentially. More explicitly, let ε` := 2−`, B <∞
such that maxx∈X |〈x, θ∗〉| ≤ B, and σ <∞ such that E[(ys − 〈θ∗, xs〉)2|xs] ≤ σ2. If

βδ,` := 16(B2 + σ2) log(2`2|Z|2/δ)

then P̂` = P` where

P` := argmin
P :X→[0,1]

EX∼ν [P (X)] subject to max
z,z′∈Z`

‖z − z′‖2EX∼ν [τP (X)XX>]−1

ε2`
βδ,` ≤ 1
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and Σ̂P̂` := EX∼ν [P`(X)XX>]

We first provide an intermediate lemma on the correctness of Algorithm 1 that relies on the feasibility
of P` which we will show shortly.
Lemma 1. With probability at least 1− δ we have for all stages ` ∈ N such that P` is feasible, that
z∗ ∈ Z` and maxz∈Z`〈z∗ − z, θ∗〉 ≤ 4ε`.

Proof. Define the event E as

E :=

∞⋂
`=1

⋂
z,z′∈Z`

{
|〈z − z′, θ̂` − θ∗〉| ≤ ε`

}
By Lemma 2, we know that P(E) ≥ 1− δ. Then, the rest of the proof is the same as the one in [11],
but we include it here for completeness. Assume that E holds. Then for any z′ ∈ Z`

〈z′ − z∗, θ̂`〉 = 〈z′ − z∗, θ̂` − θ∗〉+ 〈z′ − z∗, θ∗〉

= 〈z′ − z∗, θ̂` − θ∗〉
≤ ε`

so that z∗ would survive to round Z`+1. And for any z ∈ Z` such that 〈z∗ − z, θ∗〉 > 2ε`, we have

max
z′∈Z`

〈z′ − z, θ̂`〉 ≥ 〈z∗ − z, θ̂`〉

= 〈z∗ − z, θ̂` − θ∗〉+ 〈z∗ − z, θ∗〉
> −ε` + 2ε`
= ε`

which implies this z would be kicked out. Note that this implies that maxz∈Z`+1
〈z∗ − z, θ∗〉 ≤

2ε` = 4ε`+1.

We can now prove Theorem 2. After L := dlog2( 4
∆ )e rounds Z` = {z∗} by the above lemma. Thus,

the total number of labels requested after L rounds is equal to L :=
∑L
`=1

∑`τ
t=(`−1)τ+1Q`(xt). By

Freedman’s inequality (c.f., Theorem 1 of [4]) we have that

L∑
`=1

`τ∑
t=(`−1)τ+1

Q`(xt) ≤ 2

L∑
`=1

τEX∼ν [P`(X)|Z`] + log(1/δ)

We can now bound the expected sample complexity of this algorithm.

L∑
`=1

τEX∼ν [P`(X)|Z`]

=

L∑
`=1

[
min

P :X→[0,1]
τEX∼ν [P (X)] subject to max

z,z′∈Z`

‖z − z′‖2EX∼ν [τP (X)XX>]−1

ε2`
βδ,` ≤ 1

]
.

Using Lemma 3, we have

max
z,z′∈Z`

‖z − z′‖2EX∼ν [τP (X)XX>]−1

ε2`
βδ,` ≤ βδ,L max

z,z′∈Z`

‖z − z′‖2EX∼ν [τP (X)XX>]−1

ε2`

≤ 64βδ,L max
z∈Z\z∗

‖z − z∗‖2EX∼ν [τP (X)XX>]−1

〈z − z∗, θ∗〉2

=: max
z∈Z\z∗

‖z − z∗‖2EX∼ν [τP (X)XX>]−1

〈z − z∗, θ∗〉2
βδ

Note that the last line also describes a condition for which a P` is feasible. Indeed, at round `, a
sufficient condition for a feasible P` (i.e., the RHS≤ 1) is if τ exceeds ρ(ν)βδ with βδ := 1024(B2 +
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σ2) log(2L2|Z|2/δ) and ρ(ν) = maxz∈Z\z∗
‖z−z∗‖2EX∼ν [XX>]−1

〈z−z∗,θ∗〉2 , which holds by assumption in the
theorem.

Plugging this constraint back into above we have
L∑
`=1

τEX∼ν [P`(X)|Z`]

≤
L∑
`=1

[
min

P :X→[0,1]
τEX∼ν [P (X)] subject to max

z∈Z\z∗

‖z − z∗‖2EX∼ν [τP (X)XX>]−1

〈z − z∗, θ∗〉2
βδ ≤ 1

]
≤ L min

λ∈4X
ρ(λ)βδ subject to ‖λ/ν‖∞ρ(λ)βδ ≤ τ

where the last line follows by applying the reparameterization of Proposition 2.

B.1.1 High-probability Events

Lemma 2. We have P(E) ≥ 1− δ.

Proof. For any V ⊆ Z and z, z′ ∈ V define

Ez,z′,`(V) = {|〈z − z′, θ̂`(V)− θ∗〉| ≤ ε`}

where θ̂`(V) is the estimator that would be constructed by the algorithm at stage ` with Z` = V . For
fixed V ⊂ Z and ` ∈ N we apply Proposition 1 so that with probability at least 1− δ

`2|Z|2 we have
that for any z, z′ ∈ V

|〈z − z′, θ̂`(V)− θ∗〉| ≤ ‖z − z′‖EX∼ν [τP`(X)XX>]−1

√
16(B2 + σ2) log(2`2|Z|2/δ)

≤ ε`
Noting that E :=

⋂∞
`=1

⋂
z,z′∈Z` Ez,z′,`(Z`) we have

P

 ∞⋃
`=1

⋃
z,z′∈Z`

{Ecz,z′,`(Z`)}

 ≤ ∞∑
`=1

P

 ⋃
z,z′∈Z`

{Ecz,z′,`(Z`)}


=

∞∑
`=1

∑
V⊆Z

P

 ⋃
z,z′∈V

{Ecz,z′,`(V)},Z` = V


=
∞∑
`=1

∑
V⊆Z

P

 ⋃
z,z′∈V

{Ecz,z′,`(V)}

P(Z` = V)

≤
∞∑
`=1

∑
V⊆Z

δ
`2|Z|2

(
|V|
2

)
P(Z` = V)

≤
∞∑
`=1

∑
V⊆Z

δ
2`2P(Z` = V) ≤ δ

B.2 Technical Lemmas

The following definition characterizes the RIPS estimator we used in Algorithm 1.
Definition 2. LetX1, . . . , Xn be i.i.d. random variables with mean x̄ and variance ν2. Let δ ∈ (0, 1).
We say that µ̂(X1, . . . , Xn) is a δ-robust estimator if there exist universal constants c1, c0 > 0 such
that if n ≥ c1 log(1/δ), then with probability at least 1− δ

|µ̂({Xt}nt=1)− x̄| ≤ c0

√
ν2 log(1/δ)

n
.
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Examples of δ-robust estimators include the median-of-means estimator and Catoni’s estimator [18].

This work employs the use of the Catoni estimator which satisfies |µ̂({Xt}nt=1)− x̄| ≤
√

2ν2 log(1/δ)
n−2 log(1/δ)

for n > 2 log(1/δ) which leads to an optimal leading constant as n→∞. See [5] or [18] for more
details.
Proposition 1. Let x1, . . . , xn be drawn IID from a distribution ν. Assume that |〈θ, xs〉| ≤ B
and E[|〈θ, xs〉 − ys|2] ≤ σ2. Let P : X → [0, 1] be arbitrary. Let Q(xs) ∼ Bernoulli(P (xs))
independently for all s ∈ [n]. For a given finite set V ⊂ Rd define for any v ∈ V

wv = Catoni({〈v,EX∼ν [P (X)XX>]−1Q(xs)xsys〉}ns=1).

If θ̂ = arg minθ maxv
|wv−〈θ,v〉|

‖v‖EX∼ν [P (X)XX>]−1
and n ≥ 4 log(2|V|/δ), then with probability at least

1− δ, it holds that

|〈v, θ̂ − θ〉| ≤ ‖v‖EX∼ν [nP (X)XX>]−1

√
16(B2 + σ2) log(2|V|/δ)

Proof. Inspired by [5], we note that

max
v∈V

|〈θ̂, v〉 − 〈θ, v〉|
‖v‖EX∼ν [nP (X)XX>]−1

= max
v∈V

|〈θ̂, v〉 − wv + wv − 〈θ, v〉|
‖v‖EX∼ν [nP (X)XX>]−1

≤ max
v∈V

|〈θ̂, v〉 − wv|
‖v‖EX∼ν [nP (X)XX>]−1

+ max
v∈V

|wv − 〈θ, v〉|
‖v‖EX∼ν [nP (X)XX>]−1

= min
θ

max
v∈V

|〈θ, v〉 − wv|
‖v‖EX∼ν [nP (X)XX>]−1

+ max
v∈V

|wv − 〈θ, v〉|
‖v‖EX∼ν [nP (X)XX>]−1

≤ 2 max
v∈V

|〈θ, v〉 − wv|
‖v‖EX∼ν [nP (X)XX>]−1

So it suffices to show that each |〈θ, v〉 − wv| is small. We begin by fixing some v ∈ V and bounding
the variance of v>EX∼ν [P (X)XX>]−1Q(xs)xsys for any s ≤ n which is necessary to use the
robust estimator. For readability purposes, we shorten Exs∼ν,Q(xs)∼P (xs) as Exs,Q in the rest of this
proof. Note that

Varxs∼ν,Q(xs)∼P (xs)(v
>EX∼ν [P (X)XX>]−1Q(xs)xsys)

=Exs,Q[(v>EX∼ν [P (X)XX>]−1Q(xs)xsys)
2]

− Exs,Q[v>EX∼ν [P (X)XX>]−1Q(xs)xsys]
2

which means we can drop the second term to bound the variance by

Exs,Q[
(
(v>EX∼ν [P (X)XX>]−1Q(xs)xsys

)2
]

= Exs,Q[
(
v>EX∼ν [P (X)XX>]−1Q(xs)xs(x

>
s θ + ξs)

)2
]

= Exs,Q[
(
v>EX∼ν [P (X)XX>]−1Q(xs)xs(x

>
s θ)
)2

]

+ Exs,Q[
(
v>EX∼ν [P (X)XX>]−1Q(xs)xs

)2
ξ2
t ]

≤ B2Exs,Q[
(
v>EX∼ν [P (X)XX>]−1Q(xs)xs

)2
]

+ σ2Exs,Q[
(
v>EX∼ν [P (X)XX>]−1Q(xs)xs

)2
]

= Exs∼ν
[
(B2 + σ2)EQ(xs)∼P (xs)[v

>EX∼ν [P (X)XX>]−1Q(xs)xsx
>
s Q(xs)EX∼ν [P (X)XX>]−1v]

]
(i)
= Exs∼ν

[
(B2 + σ2)EQ(xs)∼P (xs)[v

>EX∼ν [P (X)XX>]−1Q(xs)xsx
>
s EX∼ν [P (X)XX>]−1v]

]
≤ Exs∼ν

[
(B2 + σ2)v>EX∼ν [P (X)XX>]−1P (xs)xsx

>
s EX∼ν [P (X)XX>]−1v]

]
,

where we used that Q(xs)
2 = Q(xs) in equality (i) above. Thus, we have

Var(v>EX∼ν [P (X)XX>]−1Q(xs)xsys)

≤(B2 + σ2)v>(EX∼ν [P (X)XX>]−1Exs∼ν [P (xs)xsx
>
s ](EX∼ν [P (X)XX>]−1)v

=(B2 + σ2)‖v‖2(EX∼ν [P (X)XX>]−1
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By using the property of Catoni estimator stated in Definition 2, we have c0 =
√

2 and

|〈θ∗, v〉 − wv|
=|Catoni({〈v,EX∼ν [P (X)XX>]−1Q(xs)xsys〉}ns=1)− E[〈v,EX∼ν [P (X)XX>]−1Q(xs)xsys〉]|

≤
√

2

√
(Var(〈v,EX∼ν [P (X)XX>]−1Q(xs)xsys〉))

log( 2
δ )

n/2

(with probability at least 1− δ if n ≥ 4 log(2/δ))

≤‖v‖(EX∼ν [P (X)XX>]−1

√
4(B2 + σ2) log(2

δ )

n

=‖v‖EX∼ν [nP (X)XX>]−1

√
4(B2 + σ2) log(2/δ).

Finally, the proof is complete by taking union bounding over all v ∈ V .

Lemma 3. Holds

max
z,z′∈Z`

‖z − z′‖2EX∼ν [τP (X)XX>]−1

ε2`
≤ 64 max

z∈Z\z∗

‖z − z∗‖2EX∼ν [τP (X)XX>]−1

〈z − z∗, θ∗〉2

Proof. Let S` = {z ∈ Z : 〈z∗ − z, θ∗〉 ≤ 4ε`}. We have

max
z,z′∈Z`

‖z − z′‖2EX∼ν [τP (X)XX>]−1

ε2`
≤ max
z,z′∈S`

‖z − z′‖2EX∼ν [τP (X)XX>]−1

ε2`

= 16 max
z,z′∈S`

‖z − z′‖2EX∼ν [τP (X)XX>]−1

(4ε`)2

≤ 64 max
z∈S`

‖z − z∗‖2EX∼ν [τP (X)XX>]−1

(4ε`)2

= 64 max
z∈S`\z∗

‖z − z∗‖2EX∼ν [τP (X)XX>]−1

max{(4ε`)2, 〈z − z∗, θ∗〉2}

≤ 64 max
z∈Z\z∗

‖z − z∗‖2EX∼ν [τP (X)XX>]−1

〈z − z∗, θ∗〉2
.

B.2.1 Reparameterization

Proposition 2. Fix ν ∈ 4X and any λ ∈ 4X . Define ‖λ/ν‖∞ = supx∈X λ(x)/ν(x) and ρ(λ) =

maxz 6=z∗
‖z−z∗‖2EX∼λ[XX>]−1

〈z∗−z,θ∗〉2 . For any t, β ∈ R+ the following optimization problems achieve the
same value

• min
P :X→[0,1]

tEX∼ν [P (X)] subject to maxz 6=z∗
‖z−z∗‖2EX∼ν [P (X)XX>]−1

〈z∗−z,θ∗〉2 β ≤ t

• min
λ∈4X

ρ(λ)β subject to ‖λ/ν‖∞ρ(λ)β ≤ t

Let us first prove a simple lemma.
Lemma 4. Let P denote the set of all functions P : X → [0, 1]. And for any ν ∈ 4X with support
X let P ′ = {κλx/νx : λ ∈ 4X , κ ≥ 0 : κλx/νx ∈ [0, 1]}. Then P = P ′.

Proof. Fix any P ∈ P . If λx = Pxνx/‖P ◦ ν‖1 and κ = ‖P ◦ ν‖1 then κλ/ν ∈ P ′ and is equal to
P . This implies P ⊆ P ′.
For the other direction, fix any λ ∈ 4X and κ ≥ 0 such that κλx/νx ∈ [0, 1] for all x. If P = κλ/ν
then P ∈ P which implies P ′ ⊆ P and concludes the proof.
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Proof of Proposition 2. Using the above lemma we have that

min
P :X→[0,1]

tEX∼ν [P (X)] subject to max
z 6=z∗

‖z − z∗‖2EX∼ν [P (X)XX>]−1

〈z∗ − z, θ∗〉2
β ≤ t

is equivalent to

min
κ≥0,λ∈4X

tEX∼ν [κλ(X)/ν(X)] subject to max
z 6=z∗

‖z − z∗‖2EX∼ν [κλ(X)/ν(X)XX>]−1

〈z∗ − z, θ∗〉2
β ≤ t

κλ(x)/ν(x) ≤ 1 ∀x ∈ X

which is equal to, after simplifying,

min
κ≥0,λ∈4X

t κ subject to max
z 6=z∗

‖z − z∗‖2EX∼λ[XX>]−1

〈z∗ − z, θ∗〉2
β ≤ tκ

κλ(x)/ν(x) ≤ 1 ∀x ∈ X

which is equal to

min
u≥0,λ∈4X

u subject to ρ(λ)β ≤ u

‖λ/ν‖∞ ≤
t

u
.

Note, there exists a feasible (λ, u) precisely when there exists a λ ∈ 4X such that ‖λ/ν‖∞ρ(λ) ≤ t,
in which case the optimization problem is equal to

min
λ∈4X

ρ(λ)β subject to ‖λ/ν‖∞ρ(λ)β ≤ t

C Analysis of the Optimization Problem

C.1 Proof of Theorem 4

For simplicity, we will use µ instead of µb to denote the number that controls the intensity of barrier
function.

The proof relies on analyzing another function D : Rd×d�0 7→ R. For simplicity, first, we define

hΛ(x) = PΛ(x)− µ (log(1− PΛ(x)) + log(PΛ(x)))− PΛ(x)x>Λx. (9)

Recall that our dual objective is D(Λ) = EX∼ν [hΛ(X)] + 1
c2`

∑
y∈Y` y

>Λyy. Since the first term
in EX∼ν [hΛ(X)] only depends on Λ =

∑
y∈Y` Λy, we can consider the following optimization

problem.
f(Λ) = maxΛy

∑
y∈Y` y

>Λyy
subject to

∑
y∈Y` Λy = Λ

Λy � 0, ∀y ∈ Y`.
(10)

Then, the alternative dual objective D(Λ) is defined as D(Λ) = EX∼ν [hΛ(X)] + 1
c2`
f(Λ). We

can immediately see that maximizing D(·) is equivalent to maximizing D(·). In particular, let
Λ∗ ∈ argmaxΛ�0D(Λ) and

(
Λ∗y
)
y∈Y`

be the set of PSD matrices that solve problem (10) and

evaluate f(Λ∗). We can see that
(
Λ∗y
)
y∈Y`

also maximizes D(·). Conversely, for Λ∗ =
(
Λ∗y
)
y∈Y`

∈
argmaxΛy�0,∀yD(Λ), we also have

∑
y∈Y` Λ∗y ∈ argmaxΛ�0D(Λ).

Further, we also define their empirical version DE and DE with extra i.i.d. samples x1, . . . , xu as

DE(Λ) =
1

u

u∑
i=1

hΛ(xi) +
1

c2`

∑
y∈Y`

y>Λyy and DE(Λ) =
1

u

u∑
i=1

hΛ(xi) +
1

c2`
f(Λ). (11)
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Recall that the problem Algorithm 2 tries to solve is

minP EX∼ν [P (X)− µ(log(1− P (X)) + log(P (X)))]
subject to EX∼ν

[
P (X)XX>

]
� 1

c2`
yy>, ∀y ∈ Y`. (12)

We will restate a more precise version of Theorem 4 and then prove it.

Theorem 5. Suppose ‖x‖2 ≤ M for any x ∈ supp(ν) and Σ = EX∼ν
[
XX>

]
is invertible. Let

Λ∗ ∈ argmaxΛy�0,∀yD(Λ) and κ(Σ) = λmax(Σ)
λmin(Σ) be condition number. Assume ‖Λ∗‖F > 0 and

define ω = minΓ∈Sd:‖Γ‖F=1 EX∼ν
[(
X>ΓX

)2]
, where Sd is the set of d × d symmetric matrices.

Let |Y`|C2
` = 1

c2`

∑
y∈Y` ‖y‖

4
2.

Then, Λ∗ =
∑
y∈Y` Λ∗y is unique. Further, for any ε > 0 and δ > 0, suppose it holds that

µ ≤ min

{√
3κ(Σ) ‖Λ∗‖F M2

8
· 1 + ε

ε
,

4

9
‖Λ∗‖2F M

4,
1

2
√

3

}

K ≥
288κ(Σ)2 |Y`|3 ‖Λ∗‖4F M4(M4 + C2

` ) ·
(
2 ‖Λ∗‖F M2 + 1

)4
log(6/δ)

ω2µ6
·
(

1 + ε

ε

)2

u ≥
576κ(Σ)2 ‖Λ∗‖2F M8 ·

(
2 ‖Λ∗‖F M2 + 1

)4
log(6/δ)

ω2µ6
·
(

1 + ε

ε

)2

.

Then, with probability at least 1− δ, Algorithm 2 will output Λ̃ that satisfies

• y>EX∼ν
[
PΛ̃(X)XX>

]−1
y ≤ (1 + ε)c2` , ∀y ∈ Y`.

• EX∼ν
[
PΛ̃(X)

]
≤ EX∼ν

[
P̃ (X)

]
+ 4
√
µ, where P̃ is the optimal solution to problem (20).

Proof. First Bullet Point. Fix some ε > 0. Let Λ̂ and corresponding Λ̂ =
∑
y∈Y` Λ̂y be the

parameters obtained by Algorithm 2 just before the re-scaling step, which means that at line 10 of
Algorithm 2, the assignment of Λ̂y to each y ∈ Y` has been optimized by solving problem (10). That
is, we have D(Λ̂) = D(Λ̂) and DE(Λ̂) = DE(Λ̂). Let Λ̃ and Λ̃ be the ones after the re-scaling step.
Then, by Theorem 3.13 of [21], with probability at least 1− δ

3 , it holds that

D(Λ∗)−D(Λ̂) = D(Λ∗)−D(Λ̂) ≤
Reg(K) + 2

√
2K log(6/δ)

K
,

where Reg(K) is the regret of running projected stochastic gradient ascent for K steps with
ηk specified in Algorithm 2. Meanwhile, by Theorem 4.14 of [21] also, we have Reg(K) =
√

2B2
√∑K

k=1

∑
y∈Y` ‖gk,y‖

2
2, where B =

√
|Y`| ‖Λ∗‖F bound the norm of Λ∗ =

(
Λ∗y
)
y∈Y`

.

Since gk,y = yy>

c2`
− PΛ̂(k)(xk)xkx

>
k , we can easily get

∑
y∈Y` ‖gk,y‖

2
2 ≤ 2 |Y`|M4 +

2
c2`

∑
y∈Y` ‖y‖

4
2 = 2 |Y`|M4 + 2 |Y`|C2

` . Thus, we have

Reg(K) ≤ 2 |Y`| ‖Λ∗‖2F
√
|Y`|M4 + |Y`|C2

` ·
√
K := CReg

√
K (13)

=⇒ D(Λ∗)−D(Λ̂) ≤
CReg + 2

√
2 log(6/δ)√
K

, (14)

We now consider the effect of using u i.i.d. samples in the re-scaling step. First, since re-scaling
always increases the function value, we must have DE(Λ̂) ≤ DE(Λ̃). Meanwhile, since DE(Λ̂) =

DE(Λ̂), by Lemma 10, we have DE(Λ̂) = DE(Λ̂), which together implies DE(Λ̂) ≤ DE(Λ̃).
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By Lemma 5, we know that Λ∗ is unique and as long as µ ≤ 1
2
√

3
, D(Λ) is G-strongly concave with

respect to `2 norm over S = {Λ � 0 : ‖Λ‖F ≤ 2 ‖Λ∗‖F }, where G is defined in Eq. (21). Thus, by
Lemma 11, if K is large enough such that

D(Λ∗)−D(Λ̂) ≤
CReg + 2

√
2 log(6/δ)√
K

≤
G ‖Λ∗‖F

2
,

then
∥∥∥Λ̂− Λ∗

∥∥∥
F
≤ ‖Λ∗‖F , which implies

∥∥∥Λ̂
∥∥∥
F
≤ 2 ‖Λ∗‖F . That is, Λ̂ ∈ S. Then, under this

condition, by using Lemma 8, when µ ≤ 4
9 ‖Λ

∗‖F M4 and

u ≥

6κ(Σ) ‖Λ∗‖F M4
(

2 +
√

2 log(6/δ)
)

Gµ2
· 1 + ε

ε

2

, (15)

for Λ̃ after re-scaling, with probability at least 1− δ
3 , it holds simultaneously that∣∣∣DE(Λ̂)−D(Λ̂)

∣∣∣ ≤ Gµ2

3M2κ(Σ)
· ε

1 + ε
and

∣∣∣DE(Λ̃)−D(Λ̃)
∣∣∣ ≤ Gµ2

3M2κ(Σ)
· ε

1 + ε
(16)

=⇒ D(Λ∗)−D(Λ̃) ≤ D(Λ∗)−D(Λ̂) +D(Λ̂)−D(Λ̃)

≤ D(Λ∗)−D(Λ̂) +D(Λ̂)−DE(Λ̂) +DE(Λ̃)−D(Λ̃)

(Since DE(Λ̂) ≤ DE(Λ̃))

≤
CReg + 2

√
2 log(6/δ)√
K

+
2Gµ2

3M2κ(Σ)
· ε

1 + ε
. (By Eq. (14) and (16))

Since Λ̃ is a smaller re-scaling of Λ̂, we have Λ̃ ∈ S , which implies G
2

∥∥∥Λ∗ − Λ̃
∥∥∥
F
≤ D(Λ∗)−D(Λ̃)

by property of strongly concave function [3]. Therefore, by Lemma 12, to guarantee an at most ε
multiplicative constraint violation, it is sufficient to choose K such that

G

2

∥∥∥Λ∗ − Λ̃
∥∥∥
F
≤ D(Λ∗)−D(Λ̃)

≤
CReg + 2

√
2 log(6/δ)√
K

+
2Gµ2

3M2κ(Σ)
· ε

1 + ε

≤ min

{
4Gµ2

3M2κ(Σ)
· ε

1 + ε
,
G ‖Λ∗‖F

2

}
=

4Gµ2

3M2κ(Σ)
· ε

1 + ε
. (If µ ≤

√
3κ(Σ)‖Λ∗‖FM2

8 · 1+ε
ε )

An algebraic rearrangement gives us

K ≥

3κ(Σ)M2
(
CReg + 2

√
2 log(6/δ)

)
2Gµ2

· 1 + ε

ε

2

. (17)

Second Bullet Point. We then prove the upper bound for primal objective value EX∼ν
[
PΛ̃(X)

]
,

which explains the reason why an extra re-scaling step is needed. Define g(s) = DE(s · Λ̃).
By construction, we know that g(s) is maximized at s = 1 because Λ̃ = s∗ · Λ̂, where s∗ =

argmaxs∈[0,1]DE(s · Λ̂). Therefore, we have g′(1) ≥ 0, which in turn gives us

g′(1) =
1

c2`

∑
y∈Y`

y>Λ̃yy −
1

u

u∑
i=1

PΛ̃(xi)x
>
i Λ̃xi ≥ 0.

By the concentration inequality in Lemma 8, we know that when

u ≥

2 ‖Λ∗‖F M2
(
‖Λ∗‖F M2 + µ

√
2 log(6/δ)

)
µ3/2

2

, (18)
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with probability at least 1− δ
3 , it holds that∣∣∣∣∣EX∼ν [PΛ(X)X>ΛX

]
− 1

u

u∑
i=1

PΛ(xi)x
>
i Λxi

∣∣∣∣∣ ≤ √µ
=⇒ 1

c2`

∑
y∈Y`

y>Λ̃yy − EX∼ν
[
PΛ̃(X)X>Λ̃X

]
+
√
µ ≥ 0. (19)

Now, let P̃ be the optimal solution of problem (20) and P̂ be the optimal solution of the same problem
with bound constraint µ ≤ P (x) ≤ 1− µ.

minP EX∼ν [P (X)]

subject to y>EX∼ν
[
P (X)XX>

]−1
y ≤ c2` , ∀y ∈ Y`,

0 ≤ P (x) ≤ 1− µ, ∀x ∈ X .
(20)

Then, we can notice that
EX∼ν

[
PΛ̃(X)

]
≤EX∼ν

[
PΛ̃(X)− µ(log(1− PΛ̃(X)) + log(PΛ̃(X)))

]
≤EX∼ν

[
PΛ̃(X)− µ(log(1− PΛ̃(X)) + log(PΛ̃(X)))

]
+

1

c2`

∑
y∈Y`

y>Λ̃yy − EX∼ν
[
PΛ̃(X)X>Λ̃X

]
+
√
µ (By Eq. (19))

= inf
P
L(P, Λ̃) +

√
µ (By definition of Lagrangian function and how we solve for PΛ)

≤ max
Λy�0,∀y∈Y`

inf
P
L (P,Λ) +

√
µ

=EX∼ν [PΛ∗(X)− µ(log(1− PΛ∗(X)) + log(PΛ∗(X)))] +
√
µ

≤EX∼ν
[
P̂ (X)− µ log(1− P̂ (X))

]
− µ log

(
P̂ (X)

)
+
√
µ

(Since P̂ is feasible to problem (12))

≤EX∼ν
[
P̂ (X)

]
+ 3
√
µ, (Since −a log(a) ≤

√
a for a ∈ (0, 1))

≤EX∼ν
[
P̃ (X)

]
+ 4
√
µ. (Since P̂ (x) can have at most µ more contribution than P̃ )

Therefore, in summary, Suppose K and u satisfy conditions specified in Eq. (17), (15) and (18)

and µ ≤ min

{√
3κ(Σ)‖Λ∗‖FM2

8 · 1+ε
ε , 4

9 ‖Λ
∗‖2F M4, 1

2
√

3

}
, where CReg and G are defined in Eq.

(13) and (21), respectively. Then. by applying a simple union bound, with probability at least
1− δ, the output of Algorithm 2 Λ̃ satisfies y>EX∼ν

[
P (X)XX>

]−1
y ≤ (1 + ε)c2` ,∀y ∈ Y` and

EX∼ν
[
PΛ̃(X)

]
≤ EX∼ν

[
P̃ (X)

]
+ 4
√
µ.

C.2 Relevant Lemmas

C.2.1 Strong Concavity of D(Λ)

Lemma 5. As long as µ ≤ 1
2
√

3
, D(Λ) isG-strongly concave with respect to `2-norm on the bounded

region S = {Λ � 0 : ‖Λ‖F ≤ 2 ‖Λ∗‖F } with coefficient

G =
µ

2 (2 ‖Λ∗‖F M2 + 1)
2 · min

Γ∈Sd:‖Γ‖F=1
EX∼ν

[(
X>ΓX

)2]
. (21)

Because of this, as a corollary, Λ∗ will be unique.

Proof. By Lemma 6, since f(Λ) is concave in Λ, it is sufficient to prove that EX∼ν [hΛ(X)] is
G-strongly concave on S, where hΛ(x) is defined in Eq. (9). Then, we have

−∇2
ΛEX∼ν [hΛ(X)] = EX∼ν

[
dPΛ

dqΛ
(X)vec

(
XX>

)
vec
(
XX>

)>]
.
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Since ‖x‖2 ≤M , for any Λ ∈ S , we have qΛ(x) = x>Λx− 1 ≤ 2 ‖Λ∗‖F M2 + 1. By Lemma, 14,
we know that if 12µ2 ≤

(
2 ‖Λ∗‖F M2 + 1

)2
, which can be done by choosing µ ≤ 1

2
√

3
, we have

dPΛ

dqΛ
(x) ≥ µ

2(2‖Λ∗‖FM2+1)
2 for any x ∈ X and Λ ∈ S. Therefore, we have

−∇2
ΛEX∼ν [hΛ(X)] � γ · EX∼ν

[
vec
(
XX>

)
vec
(
XX>

)>]
Now, let S be the set of all d × d symmetric matrices. It is obvious that S is a subspace of the
vector space of all d × d matrices and S ⊆ S. Thus, by applying Lemma 7, we can conclude that
EX∼ν [hΛ(X)] is G-strongly concave on S with respect to `2 norm and

G =
µ

2 (2 ‖Λ∗‖F M2 + 1)
2 · min

Γ∈Sd:‖Γ‖F=1
vec(Γ)>EX∼ν

[
vec
(
XX>

)
vec
(
XX>

)>]
vec(Γ)

=
µ

2 (2 ‖Λ∗‖F M2 + 1)
2 · min

Γ∈Sd:‖Γ‖F=1
EX∼ν

[(
X>ΓX

)2]
.

Thus the proof is complete.

Lemma 6. f(Λ) defined in Eq. (10) is concave in Λ.

Proof. To show its concavity, consider Λ(1) � 0, Λ(2) � 0 and some γ ∈ (0, 1). Let (Λ
(i)
y )y∈Y` be

the optimal solution obtained by evaluating f(Λ(i)) for i ∈ {1, 2}. Then, we can notice that

γf(Λ(1)) + (1− γ)f(Λ(2)) = γ
∑
y∈Y`

y>Λ(1)
y y + (1− γ)

∑
y∈Y`

y>Λ(2)
y y

=
∑
y∈Y`

y>(γΛ(1)
y + (1− γ)Λ(2)

y )y

≤ f(γΛ(1) + (1− γ)Λ(2)).

The last inequality above holds because
∑
y∈Y` Λ

(i)
y = Λ(i) for i ∈ {1, 2} and thus∑

y∈Y`

(
γΛ

(1)
y + (1− γ)Λ

(2)
y

)
= γΛ(1)+(1−γ)Λ(2), which means that (γΛ

(1)
y +(1−γ)Λ

(2)
y )y∈Y`

is a feasible solution for problem (10) with parameter γΛ(1)+(1−γ)Λ(2). Therefore, we can conclude
that f(Λ) is concave in Λ.

Lemma 7. Let f : Rd 7→ R be a convex and twice differentiable function in Rd. If for some subspace
S ⊆ Rd, we have minw∈S:‖w‖2=1 w

>∇2f(x)w ≥ σ > 0, ∀x ∈ S, then f is σ-strongly convex with
respect to `2-norm on S.

Proof. Suppose S has dimension m and let v1, . . . , vm be a set of orthonormal basis that span S.
Then, for each x ∈ S, there exists unique z ∈ Rm such that x = V z, where V = [v1 . . . vm].
That is, there is one-to-one correspondence between S and Rm.

Now, we define g : Rm 7→ R as g(z) = f(V z). It is easy to compute ∇2g(z) = V >∇2f(V z)V .
Then, notice that for any w′ ∈ Rm such that ‖w′‖2 = 1, we have V w′ ∈ S and ‖V w′‖2 =√
w′>V >V w′ =

√
w′>w′ = 1. Thus, we have
min

w′∈Rm:‖w′‖2=1
w′>∇2g(z)w′ = min

w′∈Rm:‖w′‖2=1
w′>V >∇2f(V z)V w′

= min
w∈S:‖w‖2=1

w>∇2f(V z)w ≥ σ.

Therefore, g is σ-strongly convex with respect to `2 norm. Then, for any x1, x2 ∈ S, there exists
unique z1, z2 ∈ Rm such that x1 = V z1 and x2 = V z2. Notice that ‖z1 − z2‖2 = ‖x1 − x2‖2 since
V preserves the norm. Further, by definition of strong convexity, for any α ∈ [0, 1], we have

g(αz1 + (1− α)z2) +
σ

2
α(1− α) ‖z1 − z2‖22 ≤ αg(z1) + (1− α)g(z2)

=⇒ f(αV z1 + (1− α)V z2) +
σ

2
α(1− α) ‖x1 − x2‖22 ≤ αf(V z1) + (1− α)f(V z2)

=⇒ f(αx1 + (1− α)x2) +
σ

2
α(1− α) ‖x1 − x2‖22 ≤ αf(x1) + (1− α)f(x2).

Thus, f is also σ-strongly convex with respect to `2 norm on S.
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C.2.2 Concentration Inequalities

Lemma 8. Let x1, . . . , xu ∼ ν be i.i.d. samples. If
∥∥∥Λ̂
∥∥∥
F
≤ 2 ‖Λ∗‖F , ‖x‖2 ≤M for any x ∈ X and

µ ≤ 4
9 ‖Λ

∗‖2F M4, then with probability at least 1− 2δ
3 , it holds for any Λ ∈ Θ =

{
s · Λ̂ : s ∈ [0, 1]

}
simultaneously that∣∣∣∣∣EX∼ν [hΛ(X)]− 1

u

u∑
i=1

hΛ(xi)

∣∣∣∣∣ ≤ 2 ‖Λ∗‖F M2
(

2 +
√

2 log(6/δ)
)

√
u∣∣∣∣∣EX∼ν [PΛ(X)X>ΛX

]
− 1

u

u∑
i=1

PΛ(xi)x
>
i Λxi

∣∣∣∣∣ ≤ 2 ‖Λ∗‖F M2
(
‖Λ∗‖F M2 + µ

√
2 log(6/δ)

)
µ
√
u

.

Proof. To prove the first inequality, first, notice that we have hΛ(x) = −PΛ(x)qΛ(x) −
µ (log(1− PΛ(x)) + log(PΛ(x))), where qΛ(x) = x>Λx − 1. Since PΛ(x), defined in Eq. (7),
explicitly only depends on qΛ(x) instead of x directly, we can treat hΛ as a function of qΛ and define
a function class F =

{
x 7→ x>(s · Λ̂)x : s ∈ [0, 1]

}
. It is well-known that if hΛ is L1-Lipschitz

in qΛ and |hΛ(x)| ≤ R1 for any Λ ∈ Θ and x ∼ ν, then, with probability at least 1 − δ
3 , it holds

simultaneously for all Λ ∈ Θ that [2, 19]∣∣∣∣∣EX∼ν [hΛ(X)]− 1

u

u∑
i=1

hΛ(xi)

∣∣∣∣∣ ≤ 2L1 · Ru(F) +R1

√
2 log(6/δ)

u
, (22)

whereRu(F) is the Rademacher complexity of F .

To find L1, we can compute

dhΛ

dqΛ
= −dPΛ

dqΛ
qΛ − PΛ +

dPΛ

dqΛ

(
µ

1− PΛ
− µ

PΛ

)
= − dPΛ

d · qΛ
qΛ − PΛ +

dPΛ

dqΛ
· qΛ (Since PΛ satisfies Eq. (6))

= −PΛ

Therefore, we have dhΛ

dqΛ
∈
[
−1,−µ3

]
by Lemma 14. Therefore, we can set L1 = 1.

Let h0 be the value of hΛ when qΛ = −1, which means x>Λx = 0. To find R1, notice that since
dhΛ

dqΛ
∈
[
−1,−µ3

]
, we must have −qΛ + h0 ≤ hΛ ≤ −µ3 qΛ + h0. By Lemma 14, we know that

h0 ∈
[
0, 2
√
µ
]
. Therefore, we have −x>Λx ≤ hΛ(x) ≤ −µ3x

>Λx + 3
√
µ for any x ∈ X and

Λ ∈ Θ. Since ‖Λ‖F ≤
∥∥∥Λ̂
∥∥∥
F
≤ 2 ‖Λ∗‖F , we have |hΛ(x)| ≤ 2 ‖Λ∗‖F M2 := R1, which holds

when µ ≤ 4
9 ‖Λ

∗‖2F M4. Then, by Lemma 9, we know thatRu(F) ≤ 2‖Λ∗‖FM
2

√
u

. Thus, plugging in
values of L1, R1 andRu(F) into Eq. (22) gives our first concentration inequality.

We can basically follow exactly the same strategy to prove the second concentration inequality. In
particular, define h̃Λ(x) = PΛ(x)x>Λx = PΛ(x)qΛ(x) + PΛ(x). Then, with probability at least
1− δ

3 , it holds simultaneously for any Λ ∈ Θ that∣∣∣∣∣EX∼ν [h̃Λ(X)
]
− 1

u

u∑
i=1

h̃Λ(xi)

∣∣∣∣∣ ≤ 2L2 · Ru(F) +R2

√
2 log(6/δ)

u
, (23)

where
∣∣∣h̃Λ(x)

∣∣∣ ≤ R2 for any x ∈ X , Λ ∈ Θ and h̃Λ is L2-Lipschitz in qΛ.

To find L2, we can compute
dh̃Λ

dqΛ
= PΛ +

dPΛ

dqΛ
· x>Λx.
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By Lemma 14, we know that dPΛ

dqΛ
∈
[
0, 1

8µ

]
. Thus, we have

∣∣∣dh̃Λ

dqΛ

∣∣∣ ≤ 1 +
‖Λ∗‖FM

2

4µ := L2. It is

obvious that h̃Λ(x) ≤ 2 ‖Λ∗‖F M2 := R2. Thus, by plugging the values of L2, R2 andRu(F) into
Eq. (23), we can obtain the second concentration inequality.

Finally, both concentration inequalities hold simultaneously with probability at least 1 − 2δ
3 by a

simple union bound.

Lemma 9. If
∥∥∥Λ̂
∥∥∥
F
≤ 2 ‖Λ∗‖F , then, we have Ru(F) ≤

√
EX∼ν [(X>Λ̂X)2]

u ≤ 2‖Λ∗‖FM
2

√
u

, where

F =
{
x 7→ x>(s · Λ̂)x : s ∈ [0, 1]

}
.

Proof. Let σ1, . . . , σu be i.i.d. Rademacher random variables, which are uniform over {−1,+1}.
Let x1, . . . , xu ∼ ν be i.i.d. samples. Then, by definition of Rademacher complexity, we have

Ru(F) = E

[
sup
q∈F

1

u

u∑
i=1

σiq(xi)

]

= E

[
sup
s∈[0,1]

1

u

u∑
i=1

σix
>
i (sΛ̂)xi

]
(By definition of F)

(i)
=

1

u
E

[
1

{
n∑
i=1

σix
>
i Λ̂xi ≥ 0

}
n∑
i=1

σix
>
i Λ̂xi

]
.

≤ 1

u
E

[∣∣∣∣∣
u∑
i=1

σix
>
i Λ̂xi

∣∣∣∣∣
]

≤ 1

u

√√√√√E

( u∑
i=1

σix>i Λ̂xi

)2
 (By Jensen’s inequality)

=
1

u

√√√√E

[
u∑
i=1

(
x>i Λ̂xi

)2
]

(Since σi’s are i.i.d. and E [σi] = 0)

=

√√√√√EX∼ν
[(
X>Λ̂X

)2
]

u
≤

2 ‖Λ∗‖F M2

√
u

.

Here, the equality (i) holds because when
∑n
i=1 σix

>
i Λ̂xi < 0, the supremum over s ∈ [0, 1] will be

obtained by taking s = 0; otherwise, it will be obtained by taking s = 1.

C.2.3 Other Lemmas

The following lemma basically shows that f(Λ) is linear in scalar multiplication.

Lemma 10. If DE(Λ̂) = DE(Λ̂), with Λ̂ =
∑
y∈Y` Λ̂y, then, for any s ≥ 0, it holds that DE(s ·

Λ̂) = DE(s · Λ̂), where DE and DE are defined in Eq. (11).

Proof. It suffices to show that if
∑
y∈Y` y

>Λ̂yy = f(Λ̂), then
∑
y∈Y` y

>(s · Λ̂y)y = f(s · Λ̂) for
any s > 0. By definition, we have

f(s · Λ̂) = maxΛy

∑
y∈Y` y

>Λyy

subject to
∑
y∈Y` Λy = s · Λ̂

Λy � 0, ∀y ∈ Y`.
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For the above optimization problem, we can do a change of variable by setting Λ′y = 1
s · Λy =⇒

Λy = s · Λ′y . Then, we have

f(s · Λ̂) = maxΛy

∑
y∈Y` y

>(s · Λ′y)y

subject to
∑
y∈Y` s · Λ

′
y = s · Λ̂

s · Λ′y � 0, ∀y ∈ Y`.

=⇒ f(s · Λ̂) = maxΛy s
∑
y∈Y` y

>Λ′yy

subject to
∑
y∈Y` Λ′y = Λ̂

Λ′y � 0, ∀y ∈ Y`.

=⇒ f(s · Λ̂) = s · f(Λ̂) = s ·
∑
y∈Y`

y>Λyy =
∑
y∈Y`

y>(s · Λ̂y)y.

Thus, the proof is complete.

Lemma 11. Let f : Rd 7→ R be a concave function with maximizer x∗ over the convex set C.
Further, assume that f is G-strongly concave with respect to `2 norm in region S ∩ C, where
S = {x : ‖x− x∗‖2 ≤ A}. If f(x∗)− f(x) ≤ AG

2 and c ∈ C, then x ∈ S.

Proof. By property of strong concavity, we know that, f(x∗) − f(x) ≥ G
2 ‖x− x

∗‖2 for any
x ∈ S ∩ C. Now, suppose x′ satisfies f(x∗)− f(x′) ≤ AG

2 , x′ ∈ C and x′ /∈ S . Then, we must have
‖x′ − x∗‖2 > A.

Let γ ∈ (0, 1) be some number such that z = γx′+(1−γ)x∗ lies on the boundary of S . By convexity,
we also have z ∈ C. Then, since f is concave, we have f(z) ≥ γf(x′) + (1 − γ)f(x∗) > f(x′),
where the second inequality is strict because f is strongly concave in a region around x∗. Since
f(x∗)− f(x′) ≤ AG

2 , f is G-strongly concave on S and z lies on the boundary of S, we have

AG

2
=
G

2
‖z − x∗‖2 ≤ f(x∗)− f(z) < f(x∗)− f(x′) ≤ AG

2
.

This is a contradiction and thus we must have x′ ∈ S.

The following lemma quantitatively describes how close Λ̃ and Λ∗ needs to be to ensure an at most ε
multiplicative constraint violation.

Lemma 12. Assume ‖x‖2 ≤ M for any x ∈ X . Let Σ = EX∼ν
[
XX>

]
� 0 and Λ∗ =

argmaxΛ�0D(Λ). Then, for any ε > 0, if we have∥∥∥Λ̃− Λ∗
∥∥∥
F
≤ 8µ2λmin(Σ)

3M2λmax(Σ)
· ε

1 + ε
,

then it holds that y>EX∼ν
[
PΛ̃(X)XX>

]−1
y ≤ (1 + ε)c2` for any y ∈ Y`.

Proof. Fix some ε > 0. First, notice that if we regard PΛ as a function of qΛ(x) = x>Λx− 1, it then
holds that

‖∇ΛPΛ(x)‖2 =

∥∥∥∥dPΛ

dqΛ
∇ΛqΛ(x)

∥∥∥∥
2

≤
∣∣∣∣dPΛ

dqΛ

∣∣∣∣ ∥∥xx>∥∥2
≤
∣∣∣∣dPΛ

dqΛ

∣∣∣∣M2 ≤ M2

8µ
,

where we obtain the last inequality by using Lemma 14. Therefore, for any x ∈ X and Λ̃ � 0,
we have

∣∣PΛ̃(x)− PΛ∗(x)
∣∣ ≤ M2

8µ ·
∥∥∥Λ̃− Λ∗

∥∥∥
F

by mean value theorem and Cauchy-Schwartz.
inequality.

Therefore, if we have
∥∥∥Λ̃− Λ∗

∥∥∥
F
≤ δ, then

∣∣PΛ̃(x)− PΛ∗(x)
∣∣ ≤ M2δ

8µ
=⇒ PΛ̃(x) ≥ PΛ∗(x)− M2δ

8µ
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=⇒ EX∼ν
[
PΛ̃(X)XX>

]
� EX∼ν

[
PΛ∗(X)XX>

]
− M2δ

8µ
EX∼ν

[
XX>

]
.

By Lemma 13, we know that

y>EX∼ν
[
PΛ̃(X)XX>

]−1
y ≤ c2`(1 + ε)⇐⇒ EX∼ν

[
PΛ̃(X)XX>

]
� yy>

(1 + ε)c2`
. (24)

Let Σ∗ = EX∼ν
[
PΛ∗(X)XX>

]
. Therefore, to guarantee the condition in Eq. (24), it is sufficient

to guarantee that Σ∗ − M2δ
8µ Σ � yy>

(1+ε)c2`
, which is equivalent to

w>Σ∗w − M2δ

8µ
w>Σw ≥ (w>y)2

c2`(1 + ε)
, ∀unit vector w ∈ Rd

⇐⇒ 1

w>Σw
· w>

(
Σ∗ − yy>

(1 + ε)c2`

)
w ≥ M2δ

8µ
, ∀unit vector w ∈ Rd.

Therefore, it is sufficient to choose δ such that

M2δ

8µ
≤ 1

λmax(Σ)
· λmin

(
Σ∗ − yy>

c2`(1 + ε)

)
≤ min
w:‖w‖2=1

1

w>Σw
· w>

(
Σ∗ − yy>

(1 + ε)c2`

)
w.

Since PΛ∗ satisfies the constraint defined in problem (12), we have Σ∗ � yy>

c2`
. Meanwhile, by

Lemma 14, we know that PΛ∗(x) ≥ µ
3 for any x ∈ X , which means that Σ∗ � µ

3 · Σ. That is, for
any unit vector w ∈ Rd, we have

w>Σ∗w ≥
(
w>y

)2
c2`

and w>Σ∗w ≥ µ

3
λmin (Σ) ,

which together implies w>Σ∗w ≥ max

{
µ
3 · λmin(Σ),

(w>y)
2

c2`

}
. Therefore, it holds that

w>Σw −
(
w>y

)2
(1 + ε)c2`

≥ max

{
µ

3
· λmin(Σ),

(
w>y

)2
c2`

}
−
(
w>y

)2
(1 + ε)c2`

= max

{
µ

3
· λmin(Σ)−

(
w>y

)2
(1 + ε)c2`

,
ε
(
w>y

)2
(1 + ε)c2`

}
≥ εµ

3(1 + ε)
· λmin (Σ)

=⇒ λmin

(
Σ∗ − yy>

c2`(1 + ε)

)
≥ εµ

3(1 + ε)
· λmin (Σ) .

Therefore, to guarantee the condition in Eq. (24), it is sufficient to have

M2δ

8µ
=

εµλmin(Σ)

3(1 + ε)λmax(Σ)
=⇒ µ =

8µ2λmin(Σ)

3M2λmax(Σ)
· ε

1 + ε
,

Thus, the proof is complete.

The following lemma is a result of standard Schur complement technique.
Lemma 13. If EX∼ν

[
P (X)XX>

]
is invertible and c` > 0, then

y>EX∼ν
[
P (X)XX>

]−1
y ≤ c2` ⇐⇒ EX∼ν

[
P (X)XX>

]
� yy>

c2`
.

Proof. For simplicity, let A = EX∼ν
[
P (X)XX>

]
� 0. Then, we consider the block matrix[

A y
y> c2`

]
∈ R(d+1)×(d+1). Let [u a]

> ∈ Rd+1 with u ∈ Rd be some vector.
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Now, for one direction, suppose y>A−1y ≤ c2` holds. Consider

[u a]

[
A y
y> c2`

] [
u
a

]
= u>Au+ 2au>y + 2c2`a

2 := r(u, a).

If we minimize r(u, a) over u, which means to treat a as fixed, we can get (by taking gradient and
setting it to zero)

u∗ = −aA−1y =⇒ r(u∗, a) = a2(c2` − y>A−1y).

Since y>A−1y ≤ c2` , we know that r(u∗, a) ≥ 0, which means r(u, a) ≥ 0 for any [u a]
> ∈ Rd+1.

Then, if we minimize r(u, a) over a, we can get

a∗ = −u
>y

c2`
=⇒ r(u, a∗) = u>Au−

(
u>y

)2
c2`

.

Since r(u, a) ≥ 0 for any [u a]
> ∈ Rd+1, we know that u>Au − (u>y)

2

c2`
≥ 0 for any u ∈ Rd.

That is, we have A � yy>

c2`
.

The other direction simply takes the above calculation in a reversed way and thus the proof is
complete.

C.2.4 Properties of PΛ

A visualization of PΛ is given in Figure 2.
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Figure 2: (left) A heatmap of some PΛ when problem dimension is d = 2, which shows that PΛ is
approximately an 0-1 threshold rule characterized by an ellipsoid. (right) A plot of PΛ as a function
of qΛ(x) = x>Λx− 1, which shows that the change of PΛ near the boundary of ellipsoid is sharper
when the barrier weight µ is smaller.

Lemma 14. The function PΛ(x) defined in (7), if regarding as a function of qΛ(x) = x>Λx−1 ≥ −1,
satisfies

• limqΛ→0 PΛ = 1
2 for any µ ∈ (0, 1)

• When qΛ = −1, PΛ = 1
2 +µ−

√
1+4µ2

2 ≥ µ
3 and PΛ−µ(log(1−PΛ) + log(PΛ)) ≤ 2

√
µ

for any µ ∈ (0, 1).

• dPΛ

dqΛ
=

µ
√
q2
Λ+4µ2−2µ2

q2
Λ

√
q2
Λ+4µ2

decreases as q2
Λ increases. Further, dPΛ

dqΛ
∈ [0, 1

8µ ]. Thus, PΛ

increases monotonically as qΛ increases and PΛ(x) ≥ µ
3 for any x ∈ X and Λ � 0.

• dPΛ

dqΛ
|qΛ=±1 ≥ µ

10 and dPΛ

dqΛ
≥ µ

2q2
Λ

when q2
Λ ≥ 12µ2.
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Proof. For simplicity, we will drop the subscript Λ and just treat P as a function of q. That is, we
have

P (q) =
1

2
− µ

q
+

√
(2µ− q)2

+ 4µq

2q
.

We prove each bullet point separately.

• Since P (q) also satisfies Eq. (6), which in simpler form is µ
1−P (q) −

µ
P (q) = q, we can

easily see that P (q) = 1
2 satisfies this equation when q = 0.

• By direction computation, we can get P (−1) = 1
2 + µ−

√
1+4µ2

2 . To show this is greater
than µ

3 for any µ ∈ [0, 1], consider `(µ) = P (−1) − µ
3 . It is easy to check that `(0) = 0

and `(1) > 0. Then, since `′(µ) = 2
3 −

2µ√
1+4µ4

is initially greater than 0 and then smaller

than 0, we know `(µ) first increases and then decreases on [0, 1]. Thus, `(µ) ≥ 0 on [0, 1]
and thus P (−1) ≥ µ

3 for any µ ∈ [0, 1].

For the second part, define ˜̀(µ) = 2
√
µ − P (−1) + µ (log(1− P (−1)) + log(P (−1))).

Then, by utilizing the fact that P satisfies Eq. (6), we can compute its derivative and get
d˜̀

dµ = 1√
µ + log(1− P (−1)) + log(P (−1)). We can check that on the domain (0, 1), we

have d2 ˜̀

dµ2 = − 1
2µ3/2 + 1

µ −
2√

1+4µ2
· 2
√
µ(1+4µ2)−4µ3/2−

√
1+4µ2

2µ3/2
√

1+4µ2
≤ 0 on (0, 1), which

means that d˜̀

dµ is monotonically decreasing. To see why the second derivative is smaller
than 0, we can compute(

4µ3/2 +
√

1 + 4µ2
)
− 4µ

(
1 + 4µ2

)
= (1− 2µ)

2
+ 8µ3/2

√
1 + 4µ2 ≥ 0.

Thus, d˜̀

dµ is initially greater than 0 and then smaller than 0 on (0, 1). It is easy to verify that

limµ→0
˜̀= 0 and ˜̀(1) > 0. Therefore, we have ˜̀(µ) ≥ 0 for any µ ∈ (0, 1).

• We can get dP
dq =

µ
√
q2+4µ2−2µ2

q2
√
q2+4µ2

by direct computation. To show it is decreasing as q2

increasing, we consider f̃(z) =
µ
√
z+4µ2−2µ2

z
√
z+4µ2

and it is sufficient to show that df̃
dz < 0 for

any z > 0. Again by direct computation, we have

df̃

dz
=
µ
(

8µ3 + 3µz −
(
z + 4µ2

)3/2)
z2 (z + 4µ2)

3/2
.

By direct computation, We can show that
(
z + 4µ2

)3 − (8µ3 + 3µz
)2

= z3 + 3z2µ2 > 0

for any z > 0 and µ ∈ [0, 1]. Thus, df̃
dz < 0 and thus dP

dq is decreasing as q2 increases.

It is obvious that dP
dq ≥ 0 for any q2 ≥ 0 and µ ∈ [0, 1] since we always have

µ
√
q2 + 4µ2 ≥ 2µ2. Thus, the maximum value could potentially happen is when

q2 → 0, which can be evaluated by using L’Hospital’s rule. A direct computation gives
us limq2→0

dP
dq = 1

8µ . Thus, we can conclude that dP
dq ∈

[
0, 1

8µ

]
. Therefore, P increases

monotonically as q increases, which implies that PΛ(x) ≥ µ
3 for any x ∈ X and Λ.

• By direct computation, we have dPΛ

dqΛ
|qΛ=±1 = µ

(
1− 2µ√

1+4µ2

)
≥ µ

(
1− 2√

5

)
≥ µ

10 for

any µ ∈ [0, 1]. The reason is that we can easily see 2µ√
1+4µ2

is increasing in µ.

Finally, notice that when 2µ ≤ 1
2

√
q2 + 4µ2, which is equivalent to q2 ≥ 12µ2, we have

dP

dq
=
µ
√
q2 + 4µ2 − 2µ2

q2
√
q2 + 4µ2

≥
µ
√
q2 + 4µ2 − µ

2

√
q2 + 4µ2

q2
√
q2 + 4µ2

=
µ

2q2
.
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Thus, the proof is complete.

C.3 An Alternative Approach to OPTIMIZEDESIGN

Based on the analysis in Section C.1, we know that maximizing D(·) is equivalent to maximizing
D(·). Therefore, as an alternative to Algorithm 2, which maximizes D(·) through stochastic gradient
ascent, it is natural to have an algorithm that directly maximizes D(·). Here, we will consider
subgradient ascent.

Recall that D : Sd+ 7→ R is defined as

D(Λ) = EX∼ν
[
PΛ(X)− µ (log(1− PΛ(X)) + log(PΛ(X)))− PΛ(X)X>ΛX

]
+

1

c2`
· f(Λ),

where f(Λ) is defined in problem (10). The subgradient of D(Λ) is

∂D(Λ) = EX∼ν
[(

1+
µ

1− PΛ(x)
− µ

PΛ(X)
−X>ΛX

)
∇PΛ(X)−PΛ(X)XX>

]
+
∂f(Λ)

c2`
(The first term is differentiable)

=
∂f(Λ)

c2`
− EX∼ν

[
PΛ(X)XX>

]
. (Since PΛ(X) solves Eq. (6))

Therefore, to run subgradient ascent, we only need to find an element in ∂f(Λ), which can be
obtained by solving the following optimization problem as claimed by Lemma 15.

minΓ 〈Γ,Λ〉
subject to Γ � yy>, ∀y ∈ Y`,

Γ � 2
∑
y∈Y` yy

>.
(25)

As a result, we have Algorithm 3 as an alternative to solve OPTIMIZEDESIGN. Compared to
Algorithm 2, which needs to maintain |Y`| d2 number of objective variables, Algorithm 3 only has d2

variables. However, each iteration of Algorithm 3 is computationally more intensive since finding a
subgradient needs to solve the problem (25).

Algorithm 3 Projected Stochastic Subgradient Ascent to Solve OPTIMIZEDESIGN

1: Input: Number of iterations K; number of samples u; barrier weight µb ∈ (0, 1)

2: Initialize Λ̂(0) = 0
3: for k = 0, 1, 2, . . . ,K − 1 do
4: Sample xk ∼ ν
5: Solve problem (25) with current Λ̂(k) to get Γ(k)

6: Set gk = Γ(k)

c2`
− PΛ̂(k)(xk)xkx

>
k

7: Set Λ̂(k+1) ← Λ̂(k) + ηkgk, where ηk = 1√
2
∑k
s=1‖gs‖

2
2

8: Update Λ̂(k+1) ← ΠSd+(Λ̂(k+1)), a projection to the set of d× d PSD matrices
9: end for

10: Let Λ̂ = 1
K

∑K
k=1 Λ̂(k)

11: Find s∗ ← argmaxs∈[0,1]DE(s · Λ̂), where DE is the empirical version of D, evaluated using
u i.i.d. samples

12: return Λ̃ = s∗ · Λ̂

A result similar to Theorem 5 can also be obtained for Algorithm 3, which is given in Theorem 6.
The bounds are almost identical except that the old lower bound for K depends on |Y`|3 while the
new one depends on |Y`|. Steps identical to the proof of Theorem 5 will be skipped in the proof of
Theorem 6.

Theorem 6. Let Λ∗ ∈ argmaxΛ�0D(Λ) and take other settings the same as that in Theorem 5.
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Then, Λ∗ is unique. Further, for any ε > 0 and δ > 0, suppose it holds that

µ ≤ min

{√
3κ(Σ) ‖Λ∗‖F M2

8
· 1 + ε

ε
,

4

9
‖Λ∗‖2F M

4,
1

2
√

3

}

K ≥
288κ(Σ)2 ‖Λ∗‖4F M4(M4 + 4 |Y`|C2

` ) ·
(
2 ‖Λ∗‖F M2 + 1

)4
log(6/δ)

ω2µ6
·
(

1 + ε

ε

)2

u ≥
576κ(Σ)2 ‖Λ∗‖2F M8 ·

(
2 ‖Λ∗‖F M2 + 1

)4
log(6/δ)

ω2µ6
·
(

1 + ε

ε

)2

.

Then, with probability at least 1− δ, Algorithm 2 will output Λ̃ that satisfies

• y>EX∼ν
[
PΛ̃(X)XX>

]−1
y ≤ (1 + ε)c2` , ∀y ∈ Y`.

• EX∼ν
[
PΛ̃(X)

]
≤ EX∼ν

[
P̃ (X)

]
+ 4
√
µ, where P̃ is the optimal solution to problem (20).

Proof. First Bullet Point. Similar to the proof of Theorem 5, let Λ̂ be the parameter obtained by
Algorithm 3 just before the re-scaling step (line 11). Then, by Theorem 3.13 of [21], with probability
at least 1− δ

3 , it holds that

D(Λ∗)−D(Λ̂) ≤
Reg(K) + 2

√
2K log(6/δ)

K
,

where Reg(K) is the regret of running projected stochastic subgradient ascent for K steps with
ηk specified in Algorithm 3. Meanwhile, by Theorem 4.14 of [21] also, we have Reg(K) =
√

2B2

√∑K
k=1 ‖gk‖

2
2, where B = ‖Λ∗‖F . Since gk = Γ(k)

c2`
− PΛ̂(k)(xk)xkx

>
k and

∥∥Γ(k)
∥∥
F
≤

2
∥∥∥∑y∈Y` yy

>
∥∥∥
F

, we can easily get ‖gk‖22 ≤ 2M4 + 8
c2`

∑
y∈Y` ‖y‖

4
2 = 2M4 + 8 |Y`|C2

` . Thus,
we have

Reg(K) ≤ 2 ‖Λ∗‖2F
√
M4 + 4 |Y`|C2

` ·
√
K := CReg

√
K (26)

=⇒ D(Λ∗)−D(Λ̂) ≤
CReg + 2

√
2 log(6/δ)√
K

, (27)

We now consider the effect of using u i.i.d. samples in the re-scaling step. Since re-scaling always
increases the function value, we must have DE(Λ̂) ≤ DE(Λ̃).

Then, after exactly the same steps of analysis, we can get the following same lower bound for K,

K ≥

3κ(Σ)M2
(
CReg + 2

√
2 log(6/δ)

)
2Gµ2

· 1 + ε

ε

2

, (28)

with a different value of CReg.

Second Bullet Point. We then prove the upper bound for primal objective value EX∼ν
[
PΛ̃(X)

]
,

which explains the reason why an extra re-scaling step is needed. Let Λ̂ = (Λ̂y)y∈Y` be a set of PSD
matrices that solves problem (10) with parameter Λ̂ and Λ̃ = s∗·Λ̂, where s∗ = argmaxs∈[0,1]DE(s·
Λ̂). Since the constraint in problem (10) requires

∑
y∈Y` Λ̂y = Λ̂, we have

∑
y∈Y` Λ̃y = Λ̃, which

is the output of Algorithm 3.

Define g(s) = DE(s · Λ̃). By construction, we know that g(s) is maximized at s = 1 because DE(s ·
Λ̂) = DE(s · Λ̂) for any s ≥ 0 as shown in Lemma 10, which means that s∗ = argmaxs∈[0,1]DE(s ·
Λ̂). Therefore, we have g′(1) ≥ 0, which in turn gives us

g′(1) =
1

c2`

∑
y∈Y`

y>Λ̃yy −
1

u

u∑
i=1

PΛ̃(xi)x
>
i Λ̃xi ≥ 0.
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Then, after exactly the same steps of analysis, we can get EX∼ν
[
PΛ̃(X)

]
≤ EX∼ν

[
P̃ (X)

]
+4
√
µ,

where P̃ is the optimal solution of the problem (20).

C.3.1 Technical Lemmas

Lemma 15. The optimal value of the optimization problem (25) with parameter Λ � 0 is equal to
f(Λ). Further, let Γ∗(Λ) be an optimal solution to (25). Then, it holds that Γ∗(Λ) ∈ ∂f(Λ) and

‖Γ∗(Λ)‖ ≤ 2
∥∥∥∑y∈Y` yy

>
∥∥∥
F

.

Proof. Alternatively, we first consider the following optimization problem.

maxΛy,Σ

∑
y∈Y` y

> (Λy − 2Σ) y
subject to Λ =

∑
y∈Y` Λy − Σ,

Σ � 0,Λy � 0, ∀y ∈ Y`.
(29)

Since y>Σy ≥ 0 for any y ∈ Y` and Σ � 0, it is clear that problem (29) has the same optimal value
as problem (10). Then, let Γ ∈ Rd×d be the dual variable for the equality constraint in problem (29).
We can have its dual problem to be

min
Γ

max
Λy�0,∀y∈Y`,

Σ�0

∑
y∈Y`

〈
yy>,Λy − 2Σ

〉
+

〈
Γ,Λ + Σ−

∑
y∈Y`

Λy

〉

=⇒ min
Γ

max
Λy�0,∀y∈Y`,

Σ�0

〈Γ,Λ〉+

〈
Σ,Γ− 2

∑
y∈Y`

yy>

〉
+
∑
y∈Y`

〈
Λy, yy

> − Γ
〉
.

In order for the above optimization problem to have finite value, we must have Γ � 2
∑
y∈Y` yy

>

and Γ � yy> for any y ∈ Y`. Therefore, we obtain the following dual problem.

minΓ 〈Γ,Λ〉
subject to Γ � yy>, ∀y ∈ Y`,

Γ � 2
∑
y∈Y` yy

>.
.

This is exactly the problem (25). Then, we can notice the Slater’s condition is clearly satisfied by
problem (25), which means the strong duality holds. Therefore, problem (25) has the same optimal
value as (29), which is the same as (10).

Since f(Λ) is concave in Λ as shown in Lemma 6, to show that Γ∗(Λ) ∈ ∂f(Λ), consider arbitrary
Λ,Λ′ � 0. Then, we have

f(Λ) + 〈Γ∗(Λ),Λ′ − Λ〉 = 〈Γ∗(Λ),Λ〉+ 〈Γ∗(Λ),Λ′ − Λ〉 = 〈Γ∗(Λ),Λ′〉 ≥ f(Λ′).

The first equality holds because the optimal value of problem (25) is f(Λ) as just shown above. The
last inequality holds because Γ∗(Λ) is a feasible solution to the problem (25) with parameter Λ′.
Therefore, we have Γ∗(Λ) ∈ ∂f(Λ).

Finally, since the constraint of problem (25) requires Γ∗(Λ) � 2
∑
y∈Y` yy

>, we can obtain

‖Γ∗(Λ)‖F ≤ 2
∥∥∥∑y∈Y` yy

>
∥∥∥
F

as a direct consequence of Lemma 16.

Lemma 16. For A,B ∈ Sd×d, if A � B � 0, then ‖A‖F ≥ ‖B‖F .

Proof. Let λ1, . . . , λd and γ1, . . . , γd be eigenvalues of A and B, respectively. Let v1, . . . , vd be a
set of orthogonal unit eigenvectors of matrix A. Then, we have

‖A‖F =
√

tr (AA) =

√√√√tr

((
d∑
i=1

λiviv>i

)(
d∑
i=1

λiviv>i

))
=

√√√√ d∑
i=1

λ2
i .

Similarly, we have ‖B‖F =
√∑d

i=1 γ
2
i . By Corollary 7.7.4 in [14], since A � B � 0, we know

that λi ≥ γi ≥ 0 for each i. Therefore, we have ‖A‖F ≥ ‖B‖F .
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D Selective Sampling Algorithm for Unknown Distribution ν

D.1 Statement and proof of Theorem 7

Consider now the case where we do not know ν exactly, and are returned (P̂`, Σ̂P̂`) that only
approximate their ideals. Algorithm 1 can still be employed to solve this case where ν is unknown,
but at the cost of sampling some historical data. Note that compared to the case where ν is know, it
assumes the knowledge of an upper bound on supx∈support(ν) ‖x‖ . It also relies on a multiplicative
factor change in the constraint of the optimization problem, in order to account for the possible
constraint violation of the output of the subroutine. The last difference is the use of an approximation
of the covariance matrix to compute the estimator. The covariance matrix is empirically approximated
by injecting additional unlabeled samples (historical data). With that, although we do not know ν but
we can approximate the relevant quantities, such as the covariance matrix EX∼ν [XX>].

Let us detail the properties of the implementation of P̂`, Σ̂P̂` ←OPTIMIZEDESIGN(Z`, 2−`, τ) we
use at each round `.

First, P̂` has the properties described in Theorem 4 (by using Algorithm 2). More explicitly, let ε` :=
2−`, B <∞ such that maxx∈X |〈x, θ∗〉| ≤ B, and σ <∞ such that E[(ys−〈θ∗, xs〉)2|xs] ≤ σ2. If

βδ,` := 4(1 + ε)2
(

4
√
B2 + σ2 + 1

)2

log(4`2|Z|2/δ)

then P̂` is such that

• maxz,z′∈Z`
‖z−z′‖2EX∼ν [τP̂`(X)XX>]−1

ε2`
βδ,` ≤ 1 + ε.

• EX∼ν
[
P̂`(X)

]
≤ EX∼ν

[
P̃`(X)

]
+ 4
√
µb, where P̃` is the optimal solution to problem

(30).

minP EX∼ν [P (X)]

subject to maxz,z′∈Z`
‖z−z′‖2EX∼ν [τP (X)XX>]−1

ε2`
βδ,` ≤ 1,

0 ≤ P (x) ≤ 1− µb, ∀x ∈ X .
(30)

where µb ≥ 0. The quantity EX∼ν
[
P̃`(X)

]
that uses µb > 0 is easily related to the value when

µb = 0 through a simple scaling factor of 1
1−µb (see proof below).

Σ̂P̂` is the empirical covariance matrix of ΣP̂` := EX∼ν [P̂`(X)XX>] using historical data and is
such that

(1− γ)ΣP̂` � Σ̂P̂` � (1 + γ)ΣP̂`

where γ ≥ 0.

Again, while we think of historical data as independent data collected offline before the start of the
game, in practice this historical data could just come from previous rounds (which is not technically
correct since its use may introduce some dependencies).
Theorem 7 (Upper bound). Fix any δ ∈ (0, 1). Let ∆ = minz∈Z\z∗〈z∗ − z, θ∗〉 and set

βδ = 256(1 + ε)2
(

4
√
B2 + σ2 + 1

)2

log(4 log2
2( 4

∆ )|Z|2/δ).

For any τ ≥ ρ(ν)βδ there exists a δ-PAC selective sampling algorithm that collects T historical data
before the start of the game, observes U unlabeled examples, and requests just L labels that satisfies

• U ≤ log2( 4
∆ )τ ,

• L ≤ 1
1−µb minλ∈4X ρ(λ)βδ + 5τ

1−µb
√
µb subject to τ ≥ ‖λ/ν‖∞ρ(λ)βδ , and

• T ≤ log2( 4
∆ )(K + u+ κδ)
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with probability at least 1− δ.

Here, the sample complexity for estimating the covariance matrix is bounded by κδ =

d2K2
ψ2

(
√
d ln 9/c1 +

√
log(2/δ)
c1

) max{1, 20‖θ∗‖EX∼ν [XX>]}e (where the sub-gaussian norm

Kψ2
= maxs,P ‖

√
P (x̃s)Σ

−1/2
P x̃s‖ψ2

), and the contributions from the optimization problem to
compute {P̂`}` are

K = Õ

(
|Z|6 κ(Σ)2 ‖Λ∗‖82M16

ω2µ6
b

)
·
(

1 + ε

ε

)2

, u = Õ

(
κ(Σ)2 ‖Λ∗‖62M16

ω2µ6
b

)
·
(

1 + ε

ε

)2

,

Naturally, we have a trade-off on the subroutine tolerance µb. In order to get a better solution of
the optimization over the selection rule P (and thus get a smaller

∑`τ
t=(`−1)τ+1 P (xt) term), the

subroutine needs more unlabeled samples. However, it suffices to take µb = 1
τ2 to make U , and L

roughly match those of the case when ν was known.

The proof of this theorem is established through several results, which we provide in Section D.2.

D.2 Lemmas for the correctness

We first state here the correctness of Algorithm 1 in the case where ν is unknown.

Lemma 17. With probability at least 1− δ we have for all stages ` ∈ N, we have that z∗ ∈ Z` and
maxz∈Z`〈z∗ − z, θ∗〉 ≤ 4ε`.

The proof of the correctness lemma is established though several lemmas. First we provide Lemma 18
guaranteeing concentration of empirical covariance matrices, which is obtained by sampling κ
additional measurements. Then we show in Proposition 3 that the RIPS estimator does not suffer
from using that empirical covariance matrix.

Lemma 18. For any P : X → [0, 1], let ΣP = EX∼ν [P (X)XX>], Σ̂P = 1
κ

∑κ
s=1 P (x̃s)x̃sx̃

>
s .

Define Kψ2 = maxs ‖
√
P (x̃i)Σ

−1/2
P x̃s‖ψ2 . With probability at least 1− 2 exp(−c1t2/K4

ψ2
) holds

(1− c)x>ΣPx ≤ x>Σ̂Px ≤ (1 + c)x>ΣPx

where c = max

{
C
√
d+t√
κ

,
(
C
√
d+t√
κ

)2
}

, C = K2
ψ2

√
ln 9/c1 and c1 is an absolute constant.

Consequently for κ ≥ cδ := K2
ψ2

(
√
d ln 9/c1 +

√
log(2/δ)
c1

), holds with probability at least 1− δ(
1− cδ√

κ

)
x>ΣPx ≤ x>Σ̂Px ≤

(
1 +

cδ√
κ

)
x>ΣPx.

Proof. Let A ∈ Rκ×d whose rows Ai are independent sub-gaussian isotropic random vectors in
Rd and define Kψ2

= maxi ‖Ai‖ψ2
. We can apply Theorem 5.39 of [25] on A to have that with

probability at least 1− 2 exp(−c1t2/K4
ψ2

) holds

1− C
√
d+ t√
κ

≤ σmin(A) ≤ σmax(A) ≤ 1 +
C
√
d+ t√
κ

,

where C = K2
ψ2

√
ln 9/c1 and c1 is an absolute constant.

With Lemma 5.36 of [25], this implies that with probability at least 1− 2 exp(−c0t2) holds

‖A>A− I‖ ≤ max

C
√
d+ t√
κ

,

(
C
√
d+ t√
κ

)2
 =: c (31)
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Recall ΣP = EX∼ν [P (X)XX>], so Y =
√
P (X)Σ

−1/2
P X satisfies E[Y Y >] =

E[Σ
−1/2
P P (X)XX>Σ

−1/2
P ] = Σ

−1/2
P ΣPΣ

−1/2
P = I . So we can apply (31) to get

‖Σ−1/2
P Σ̂PΣ

−1/2
P − I‖ ≤ c. Thus for any y ∈ Rd,

1− c ≤ y>

‖y‖
Σ
−1/2
P Σ̂PΣ

−1/2
P

y

‖y‖
≤ 1 + c

so setting y = Σ
1/2
P x

(1− c)x>ΣPx ≤ x>Σ̂Px ≤ (1 + c)x>ΣPx.

Also, the sub-gaussian bound becomes Kψ2
= maxi ‖

√
P (x̃i)Σ

−1/2
P x̃i‖ψ2

.

Proposition 3 (RIPS guarantees on empirical covariance matrix). Let x1, . . . , xn and x̃1, . . . , x̃κ
be drawn IID from a distribution ν. For s = 1, . . . , n , assume that |〈θ, xs〉| ≤ B and E[|〈θ, xs〉 −
ys|2] ≤ σ2

noise. For s = 1, . . . , κ , assume that E[|〈θ, xs〉 − ys|2] ≤ σ2
noise. Let P ∈ [0, 1] be arbitrary

and let Qs(xs) ∼ Bernoulli(P ) independently for all s ∈ [n]. Let ΣP = EX∼ν [P (X)XX>] and
Σ̂P = 1

κ

∑κ
s=1 P (x̃s)x̃sx̃

>
s . Assume that ΣP is invertible and that there exists γ ≥ 0 such that

(1− γ)ΣP � Σ̂P � (1 + γ)ΣP . For a given finite set V ⊂ Rd define

wv = Catoni({〈v, Σ̂−1
P Qs(xs)xsys〉}ns=1),

If θ̂ = arg minθ maxv
|wv−〈θ,v〉|
‖v‖

Σ̂
−1
P

and n ≥ 4 log(2|V|/δ), then with probability at least 1− δ, it holds

that

|〈v, θ̂ − θ〉| ≤ 4

(√
B2 + σ2

(1− γ)2
+
√
nγ‖θ∗‖EX∼ν [XX>]

)
‖v‖EX∼ν [nP (X)XX>]−1

√
log(2 |V| /δ)

We first state an intermediate matrix lemma before the proof of Proposition 3.

Lemma 19. Assume that ΣP is invertible and that there exists γ ∈ [0, 1/2] such that (1− γ)ΣP �
Σ̂P � (1 + γ)ΣP . Then for any v ∈ V

‖v‖2
Σ̂−1
P ΣP Σ̂−1

P

≤ 1

(1− γ)2
‖v‖2

Σ−1
P

.

and

‖v‖
(I−Σ

1/2
P Σ̂−1

P Σ
1/2
P )2 ≤

√
1− 2

1 + γ
+

1

(1− γ)2
‖v‖2 ≤

√
10γ‖v‖2.

Proof. We know that taking the inverse of two ordered positive definite matrices will flip the order,
so here

1

(1 + γ)
Σ−1
P � Σ̂−1

P �
1

(1− γ)
Σ−1
P .

(1 − γ)ΣP � Σ̂P implies that for all u ∈ Rd holds u>ΣPu ≤ 1/(1 − γ)u>Σ̂Pu. So taking
u = Σ̂−1

P v, we get v>Σ̂−1
P ΣP Σ̂−1

P v ≤ 1/(1− γ)v>Σ̂−1
P v. Conclusion

v>Σ̂−1
P ΣP Σ̂−1

P v =
1

1− γ
v>Σ̂−1

P v ≤ 1

(1− γ)2
v>Σ−1

P v
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hence the first result of Lemma 19.
For the second one, we get

‖v‖2(
I−Σ

1/2
P Σ̂−1

P Σ
1/2
P

)2 = v>
(
I − Σ

1/2
P Σ̂−1

P Σ
1/2
P

)2

v

= ‖v‖22 − 2v>Σ
1/2
P Σ̂−1

P Σ
1/2
P v + v>Σ

1/2
P Σ̂−1

P ΣP Σ̂−1
P Σ

1/2
P v

(i)
≤ ‖v‖22 −

2

1 + γ
‖v‖22 +

1

1− γ
v>Σ

1/2
P Σ̂−1

P Σ
1/2
P v

≤ ‖v‖22 −
2

1 + γ
‖v‖22 +

1

(1− γ)
2 ‖v‖

2
2 (Since Σ̂P � 1

1−γΣP )

≤

(
1− 2

1 + γ
+

1

(1− γ)
2

)
‖v‖22

(ii)
≤ 10γ ‖v‖22 .

The inequality (i) above holds because 1
1+γΣ−1

P � Σ̂−1
P and (1− γ)ΣP � Σ̂P =⇒ ΣP � 1

1−γ Σ̂P .
The inequality (ii) above holds because for γ ∈

[
0, 1

2

]
, we have

1− 2

1 + γ
+

1

(1− γ)
2 ≤ 1− 2(1− γ) + (1 + 2γ)2 ≤ 10γ.

Taking square root on both sides gives us the results.

Proof of Proposition 3. This proof is analogous to the proof of Proposition 1. We first note that

max
v∈V

|〈θ̂, v〉 − 〈θ, v〉|
‖v‖Σ̂−1

P

= max
v∈V

|〈θ̂, v〉 − wv + wv − 〈θ, v〉|
‖v‖Σ̂−1

P

≤ max
v∈V

|〈θ̂, v〉 − wv|
‖v‖Σ̂−1

P

+ max
v∈V

|wv − 〈θ, v〉|
‖v‖Σ̂−1

P

= min
θ′

max
v∈V

|〈θ′, v〉 − wv|
‖v‖Σ̂−1

P

+ max
v∈V

|wv − 〈θ′, v〉|
‖v‖Σ̂−1

P

≤ 2 max
v∈V

|〈θ, v〉 − wv|
‖v‖Σ̂−1

P

So it suffices to show that each |〈θ, v〉 − wv| is small. We begin by fixing some v ∈ V and bounding
the variance of v>Σ̂−1

P Qs(xs)xsys for any s ≤ n which is necessary to use the robust estimator.
Note that

Varxs∼ν,Qs(xs)∼P (xs)(v
>Σ̂−1

P Qs(xs)xsys) =Exs∼ν,Qs(xs)∼P (xs)[(v
>Σ̂−1

P Qs(xs)xsys)
2]

− Exs∼ν,Qs(xs)∼P (xs)[v
>Σ̂−1

P Qs(xs)xsys]
2

which means we can drop the second term to bound the variance by

Exs∼ν,Qs(xs)∼P (xs)[
(

(v>Σ̂−1
P Qs(xs)xsys

)2

]

= Exs∼ν,Qs(xs)∼P (xs)[
(
v>Σ̂−1

P Qs(xs)xs(x
>
s θ + ξs)

)2

]

= Exs∼ν
[
EQs(xs)∼P (ss)[

(
v>Σ̂−1

P Qs(xs)xs(x
>
s θ)
)2

] + EQs(xs)∼P (ss)[
(
v>Σ̂−1

P Qs(xs)xs

)2

ξ2
t ]

]
≤ Exs∼ν

[
B2EQs(xs)∼P (ss)[

(
v>Σ̂−1

P Qs(xs)xs

)2

] + σ2EQs(xs)∼P (ss)[
(
v>Σ̂−1

P Qs(xs)xs

)2

]

]
= Exs∼ν

[
(B2 + σ2)EQs(xs)∼P (ss)[v

>Σ̂−1
P Qs(xs)xsx

>
s Qs(xs)Σ̂

−1
P v]

]
= Exs∼ν

[
(B2 + σ2)EQs(xs)∼P (ss)[v

>Σ̂−1
P Qs(xs)xsx

>
s Σ̂−1

P v]
]

≤ Exs∼ν
[
(B2 + σ2)v>Σ̂−1

P P (xs)xsx
>
s Σ̂−1

P v
]
,
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where we used that Q2
s(xs) = Qs(xs). Thus, we have with Lemma 19

Var(v>Σ̂−1
P Qs(xs)xsys) ≤ (B2 + σ2)v>Σ̂−1

P Exs∼ν [P (xs)xsx
>
s ]Σ̂−1

P v

= (B2 + σ2)‖v‖2
Σ̂−1
P ΣP Σ̂−1

P

≤ B2 + σ2

(1− γ)2
‖v‖2

Σ−1
P

.

We have

|〈θ∗, v〉 − wv| = |〈θ∗, v〉 − E[v>Σ̂−1
P P (x1)x1y1] + E[v>Σ̂−1

P P (x1)x1y1]− wv|
≤ |〈θ∗, v〉 − E[v>Σ̂−1

P P (x1)x1y1]|
+ |Catoni({〈v, Σ̂−1

P Qs(xs)xsys〉}ns=1)− EX∼ν [v>Σ̂−1
P P (X)XY ]|.

We now recall that we can write yt = x>t θ∗ + ξt where ξt is a mean-zero, independent random
variable with variance at most σ2. Thus, using Cauchy-Schwarz and applying Lemma 19, we get

|〈θ∗, v〉 − E[v>Σ̂−1
P P (x1)x1y1]| = |v>θ∗ − v>Σ̂−1

P ΣP θ∗|
= |v>(I − Σ̂−1

P ΣP )θ∗|

= |v>Σ
−1/2
P (I − Σ

1/2
P Σ̂−1

P Σ
1/2
P )Σ

1/2
P θ∗|

≤ ‖Σ−1/2
P v‖ ‖Σ1/2

P θ∗‖(I−Σ
1/2
P Σ̂−1

P Σ
1/2
P )2

≤
√

10γ‖Σ−1/2
P v‖ ‖Σ1/2

P θ∗‖
=
√

10γ‖v‖Σ−1
P
‖θ∗‖ΣP .

By using the property of Catoni estimator stated in Definition 2, we have

|〈θ∗, v〉 − wv|
≤|Catoni({〈v,EX∼ν [P (X)XX>]−1Qs(xs)xsys〉}ns=1)− E[〈v,EX∼ν [P (X)XX>]−1Qs(xs)xsys〉]|

+
√

10γ‖θ∗‖EX∼ν [XX>]‖v‖(EX∼ν [P (X)XX>]−1

≤
√

2

√
(Var(〈v,EX∼ν [P (X)XX>]−1Qs(xs)xsys〉))

log( 2
δ )

n/2

+
√

10γ‖θ∗‖EX∼ν [XX>]‖v‖(EX∼ν [P (X)XX>]−1

(with probability at least 1− δ if n ≥ 4 log(2/δ))

≤

(
√

4

√
B2 + σ2

(1− γ)2
+
√

10nγ‖θ∗‖EX∼ν [XX>]

)
‖v‖(EX∼ν [P (X)XX>]−1

√
log( 2

δ )

n

=

(
√

4

√
B2 + σ2

(1− γ)2
+
√

10nγ‖θ∗‖EX∼ν [XX>]

)
‖v‖EX∼ν [nP (X)XX>]−1

√
log(2/δ).

Finally, the proof is complete by taking union bounding over all v ∈ V .

Proof of Lemma 17. Most of this proof is exactly the one of Section B.1 and Section B.1.1 so we
only state the concentration bound. For any V ⊆ Z and z, z′ ∈ V define

Ez,z′,`(V) = {|〈z − z′, θ̂`(V)− θ∗〉| ≤ ε`}

where θ̂`(V) is the estimator that would be constructed by the algorithm at stage ` with Z` = V .
Naturally we want to apply Proposition 3 with τ labeled samples to obtain that Ez,z′,`(V) holds with
probability at least 1− δ

2`2|Z|2 . Note that as Lemma 14 gives P (x) ≥ µ/3 so

ΣP = EX∼ν [P (X)XX>] ≥ µ

3
EX∼ν [XX>]
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ΣP is invertible.

Defining δ0 := δ
4`2|Z|2 and setting κ ≥ 2cδ0 max{1, 20‖θ∗‖2EX∼ν [XX>]} where we recall that was

defined cδ = K2
ψ2

(
√
d ln 9/c1 +

√
log(2/δ)
c1

), Lemma 18 leads to

cδ0
κ
≤ 1

2
min

{
1,

1

20‖θ∗‖2EX∼ν [XX>]

}
so that we can set γ = cδ0/(τκ) in the bound of Proposition 3 to get√

10τγ‖θ∗‖EX∼ν [XX>] ≤
1

2

and √
B2 + σ2

(1− γ)2
≤ 2
√
B2 + σ2

So for δ0 = δ
4`2|Z|2 the event Ẽcov defined as

Ẽcov :=

{(
1− cδ0√

κ

)
x>ΣPx ≤ x>Σ̂Px ≤

(
1 +

cδ0√
κ

)
x>ΣPx

}
.

happen with probability at least 1− δ0.

Now, let us for now condition on Ẽcov. For fixed V ⊂ Z and ` ∈ N we apply Proposition 3,
instantiating the arbitrary P to P̂` (obtained with OPTIMIZEDESIGN, recall Section D.1) so that with
probability at least 1− δ

4`2|Z|2 we have that for any z, z′ ∈ V holds that the event ẼRIPS,z,z′ defined as

ẼRIPS,z,z′ :=

{
|〈z − z′, θ̂`(V)− θ∗〉|

≤ 2‖z − z′‖EX∼ν [τP̂`(X)XX>]−1

(
4
√
B2 + σ2 + 1

)√
log(4`2|Z|2/δ)

}
happen with probability at least 1− δ0.

So with probability at least 1− P(ẼcRIPS,z,z′)− P(Ẽccov) ≥ 1− δ
4`2|Z|2 −

δ
4`2|Z|2 = 1− δ

2`2|Z|2 , both
events hold and we have that for any z, z′ ∈ V holds

|〈z − z′, θ̂`(V)− θ∗〉| ≤ 2‖z − z′‖EX∼ν [τP̂`(X)XX>]−1

(
4
√
B2 + σ2 + 1

)√
log(4`2|Z|2/δ)

≤ 2(1 + ε)
(

4
√
B2 + σ2 + 1

)
‖z − z′‖EX∼ν [τP̂`(X)XX>]−1

√
log(4`2|Z|2/δ)

≤ ε`.

where we used the property of P̂` as detailed in Section D.1 to conclude.

Proof of Theorem 7. The total number of labels requested after L rounds is equal to∑L
`=1

∑`τ
t=(`−1)τ+1 P̂`(xt). Again by Freedman’s inequality we have that

L∑
`=1

`τ∑
t=(`−1)τ+1

P̂`(xt) ≤ 2

L∑
`=1

τEX∼ν [P̂`(X)|Z`] + log(1/δ)

From Theorem 4, it holds for any ` that EX∼ν [P̂`(X)] ≤ EX∼ν [P̃`(X)] + 4
√
µ where P̃` is

the optimal solution to problem (20). So now, for some τ̃ , we want to relate EX∼ν [τ̃ P̃`(X)] to
EX∼ν [τP`(X)] where P` is the solution of problem (4). To do so, we rewrite problem (4) and
problem (20) as

minP EX∼ν [τP (X)]

subject to y>EX∼ν
[
τP (X)XX>

]−1
y ≤ c2` , ∀y ∈ Y`,

0 ≤ τP (x) ≤ τ, ∀x ∈ X .
(32)
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and
minP EX∼ν [τ̃P (X)]

subject to y>EX∼ν [τ̃P (X)XX>]−1y ≤ c2` , ∀y ∈ Y`,
0 ≤ τ̃P (x) ≤ τ̃(1− µb), ∀x ∈ X .

(33)

where problem (32) is equivalent to problem (4) and problem (33) is equivalent to problem (20).
Thus taking τ̃ = τ

1−µb , problem (33) becomes

minP EX∼ν
[

τ
1−µbP (X)

]
subject to y>EX∼ν [ τ

1−µbP (X)XX>]−1y ≤ c2` , ∀y ∈ Y`,
0 ≤ τ

1−µbP (x) ≤ τ, ∀x ∈ X .

which, using Q = P
1−µb is equivalent to

minQ EX∼ν [τQ(X)]
subject to y>EX∼ν [τQ(X)XX>]−1y ≤ c2` , ∀y ∈ Y`,

0 ≤ τQ(x) ≤ τ, ∀x ∈ X .
(34)

And we can now see that (34) and (32) are the same optimization problem. And Q∗` the solution of

(34) is equal to P̃`
1−µb . Thus the result EX∼ν

[
τ̃ P̃`(X)

]
= EX∼ν [τP`(X)].

Remains to bound
∑L
`=1 τEX∼ν [P`(X)] where

L∑
`=1

τEX∼ν [P`(X)|Z`]

=

L∑
`=1

[
min

P :X→[0,1]
τEX∼ν [P (X)] subject to max

z,z′∈Z`

‖z − z′‖2EX∼ν [τP (X)XX>]−1

ε2`
βδ,` ≤ 1

]
,

where βδ,` is defined in Section D.1 as

βδ,` := 4(1 + ε)2
(

4
√
B2 + σ2 + 1

)2

log(4`2|Z|2/δ).

As in the case where the distribution ν is known (Section B.1), we use Lemma 3 to bound

maxz,z′∈Z`
‖z−z′‖2EX∼ν [τP (X)XX>]−1

ε2`
βδ,` by maxz∈Z\z∗

‖z−z∗‖2EX∼ν [τP (X)XX>]−1

〈z−z∗,θ∗〉2 64βδ,L. Last, the
reparameterization of Proposition 2 also applies here.

In the unlabeled sample complexity, we get an additional Lκ = Ld2K2
ψ2

(
√
d ln 9/c1 +√

log(2/δ)
c1

) max{1, 20‖θ∗‖EX∼ν [XX>]}e term from the estimation of the covariance matrix. Last,
we get an additional L(K + u), where K and u are such that

K ≥ Õ

(
|Z|3 κ(Σ)2 ‖Λ∗‖82M16

β2µ6
b

)
·
(

1 + ε

ε

)2

, u ≥ Õ

(
κ(Σ)2 ‖Λ∗‖62M16

β2µ6
b

)
·
(

1 + ε

ε

)2

,

from the sample complexity of the subroutine.

E Classification

In this section we adopt the implementation described in Section B.1. As described in the text,
given a distribution π ∈ ∆X , and a class of hypothesis H, we can reduce classification to linear
bandits by setting θ∗ = [θ∗x]x∈∆X where θ∗x = 2η(x) − 1, and Z := {z(h)}h∈H ⊂ [0, 1]|X | where
z

(h)
x = π(x)1{h(x) = 1}. With the quantities computed in Section 3, we now prove Theorem 3.

Proof of Theorem 3. We consider a slightly modified version of Algorithm 1 where we stop at round
L where Lε = dlog2(4/ε)e and return arg maxz(h)∈Z`〈z

(h), θ̂`〉. By an identical analysis to that in
the proof of Theorem 2, we are guaranteed that h ∈ S`, i.e. Rν(h)−Rν(z∗) = 〈z∗ − z, θ∗〉 ≤ 4ε`.
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In addition the analysis of the sample complexity given there immediately gives the first part of the
theorem.

It remains to bound the sample complexity in terms of the disagreement coefficient. The total sample
complexity is given by,

L∑
`=1

[
min

P :X→[0,1]
τEX∼ν [P (X)] subject to max

z∈S`

‖z − z∗‖2EX∼ν [τP (X)XX>]−1

ε2`
βδ ≤ 1

]
where we recall βδ = 2048 log(2L2|H|/δ) since we can take B = 1 and σ = 1.

We recall the proof of Theorem 2. From the proof, we see that with probability greater than 1− δ,
our sample complexity is obtained by summing up to round L

L∑
`=1

[
min

P :X→[0,1]
τEX∼ν [P (X)] subject to max

z∈S`

‖z − z∗‖2EX∼ν [τP (X)XX>]−1

ε2`
βδ ≤ 1

]
By proposition 2 this is equivalent to

L∑
`=1

[
min
λ∈∆X

ρ`(λ)βδ subject to
∥∥∥∥λν
∥∥∥∥
∞
ρ`(λ)βδ ≤ τ

]
, where ρ`(λ) := max

z∈S`

‖z − z∗‖2EX∼λ[XX>]−1

ε2`
.

Define
A` = {x ∈ X : ∃h, h(x) 6= h∗(x), Rν(h)−Rν(h∗) ≤ 4ε`}, ` ≤ L

and let λ` =
1{x ∈ A`}ν(x)

E[1{x ∈ A`}]
, so

∥∥∥∥λν
∥∥∥∥
∞

=
1

E[1{x ∈ Ai}]
.

We first argue that λ` is feasible for the previous program. Note,

ρ`(λ`) = max
h:Rν(h)−Rν(h∗)≤4ε`

EX∼ν [1{h(x)6=h∗(x)
λ`(x)/ν(x) }]
ε2`

(i)
= E[1{x ∈ A`}] max

h:Rν(h)−Rν(h∗)≤4ε`

EX∼ν [1{h(x) 6= h∗(x)}]
ε2`

≤ E[1{x ∈ A`}] max
h:Rν(h)−Rν(h∗)≤4ε`

16EX∼ν [1{h(x) 6= h∗(x)}]
max{ε2` , (Rν(h)−Rν(h∗))2}

≤ E[1{x ∈ A`}] max
h:Rν(h)−Rν(h∗)≤4ε`

16EX∼ν [1{h(x) 6= h∗(x)}]
max{(4ε`)2, (Rν(h)−Rν(h∗))2}

(ii)
≤ E[1{x ∈ A`}] max

h:Rν(h)−Rν(h∗)≤4ε`

16EX∼ν [1{h(x) 6= h∗(x)}]
max{ε2, (Rν(h)−Rν(h∗))2}

≤ E[1{x ∈ A`}] max
h∈H

16EX∼ν [1{h(x) 6= h∗(x)}]
max{ε2, (Rν(h)−Rν(h∗))2}

≤ 16E[1{x ∈ A`}]ρ(ν, ε)

where the equality (i) holds because the following is true when we only consider h such that
Rν(h)−Rν(h∗) ≤ 4ε`

1{h(x) 6= h∗(x)}
1{x : ∃h, h(x) 6= h∗(x), (Rν(h)−Rν(h∗)) ≤ 4ε`}

= 1{h(x) 6= h∗(x)}.

The inequality (ii) above is true because 4ε` ≥ ε. Thus we see that ρ`(λ`)‖λ/ν‖∞βδ ≤
16ρ(ν, ε)βδ ≤ τ . It remains to argue about the disagreement coefficient. Firstly note that for
any h such that Rν(h)−Rν(h∗) ≤ 4ε`.

dν(h, h∗) = EX∼ν [1{h(X) 6= h∗(X)}] ≤ EX∼ν [1{h(X) 6= Y }] + EX∼ν [1{h∗(X) 6= Y }]
(35)

≤ Rν(h) +Rν(h∗) (36)
≤ 2Rν(h∗) + 4ε` (37)
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Using this we see that,

min
λ∈∆

ρ`(λ) subject to ρ`(λ)‖λ/ν‖∞βδ ≤ τ

≤ ρ`(λ`)βδ (since λ` is feasible.)

≤ E[1{x ∈ A`}] max
h:Rν(h)−Rν(h∗)≤4ε`

EX∼ν [1{h(x) 6= h∗(x)}]
ε2`

βδ

(imitating the above computation)

≤ (2R(h∗) + 4ε`)EX∼ν [1{∃h : h(X) 6= h∗(X), dν(h, h∗) ≤ 2R(h∗) + 4ε`}]
ε2`

βδ

(Equation (35))

≤ βδ

{
9R(h∗)2

ε2`

EX∼ν [1{∃h:h(X)6=h∗(X),dν(h,h∗)≤2R(h∗)+4ε`}]
2R(h∗)+4ε`

4ε` ≤ R(h∗)
144EX∼ν [1{∃h:h(X)6=h∗(X),dν(h,h∗)≤2R(h∗)+4ε`}]

2R(h∗)+4ε`
4ε` > R(h∗)

≤
(

9R(h∗)2

ε2`
+ 144

)
EX∼ν [1{∃h : h(X) 6= h∗(X), dν(h, h∗) ≤ 2R(h∗) + 4ε`}]

2R(h∗) + 4ε`
βδ

Thus,

L∑
`=1

[
min
λ∈∆X

ρ`(λ)βδ subject to
∥∥∥∥λν
∥∥∥∥
∞
ρ`(λ)βδ ≤ τ

]

≤
L∑
`=1

ρ`(λ`)βδ

≤
L∑
`=1

(
9R(h∗)2

ε2`
+ 144

)
EX∼ν [1{∃h : h(X) 6= h∗(X), dν(h, h∗) ≤ 2R(h∗) + 4ε`}]

2R(h∗) + 4ε`
βδ

≤ log2

(
4

ε

)
sup
`≤L

(
9R(h∗)2

ε2`
+ 144

)
EX∼ν [1{∃h : h(X) 6= h∗(X), dν(h, h∗) ≤ 2R(h∗) + ε`}]

2R(h∗) + 4ε`
βδ

≤ log2

(
4

ε

)(
36R(h∗)2

ε2
+ 144

)
sup
`≤L

EX∼ν [1{∃h : h(X) 6= h∗(X), dν(h, h∗) ≤ 2R(h∗) + 4ε`}]
2R(h∗) + 4ε`

βδ

≤ 36 log2

(
4

ε

)(
R(h∗)2

ε2
+ 4

)
sup
ξ≥ε

θ∗(2R(h∗) + ξ, ν)βδ

from which the result follows.
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