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Abstract

This work considers the problem of selective-sampling for best-arm identification.
Given a set of potential options Z C R, a learner aims to compute with probability
greater than 1 — §, argmax.cz 2 ' 6, where 6, is unknown. At each time step,
a potential measurement z; € X C R is drawn IID and the learner can either
choose to take the measurement, in which case they observe a noisy measurement
of 7@, or to abstain from taking the measurement and wait for a potentially more
informative point to arrive in the stream. Hence the learner faces a fundamental
trade-off between the number of labeled samples they take and when they have
collected enough evidence to declare the best arm and stop sampling. The main
results of this work precisely characterize this trade-off between labeled samples
and stopping time and provide an algorithm that nearly-optimally achieves the
minimal label complexity given a desired stopping time. In addition, we show that
the optimal decision rule has a simple geometric form based on deciding whether a
point is in an ellipse or not. Finally, our framework is general enough to capture
binary classification improving upon previous works.

1 Introduction

In this work we consider selective sampling for online best-arm identification. In this setting, at every
time step t = 1,2,. .., Nature reveals a potential measurement z; € X C R¢ to the learner. The
learner can choose to either query x; (§; = 1) or abstain (§; = 0) and immediately move on to the next
time. If the learner chooses to take a query (§; = 1), then Nature reveals a noisy linear measurement
of an unknown 6, € RY, i.e. yr = (x4, 0.) + € where ¢; is mean zero sub-Gaussian noise. Before
the start of the game, the learner has knowledge of a set Z C R?. The objective of the learner is to
identify z, := argmax,cz(z, 0,) with probability at least 1 — ¢ at a learner specified stopping time
U. Tt is desirable to minimize both the stopping time ¢/ which counts the total number of unlabeled or
labeled queries and the number of labeled queries requested £ := Z?Zl 1{¢& = 1}. In this setting, at
each time ¢ the learner must make the decision of whether to accept the available measurement x4, or
abstain and wait for an even more informative measurement. While abstention may result in a smaller
total labeled sample complexity £, the stopping time I/ may be very large. This paper characterizes
the set of feasible pairs ({4, £) that are necessary and sufficient to identify z, with probability at
least 1 — § when z; are drawn IID at each time ¢ from a distribution . Moreover, we propose an
algorithm that nearly obtains the minimal information theoretic label sample complexity £ for any
desired unlabeled sample complexity /.

While characterizing the sample complexity of selective sampling for online best arm identification is
the primary theoretical goal of this work, the study was initially motivated by fundamental questions
about how to optimally trade-off the value of information versus time. Even for this idealized linear
setting, it is far from obvious a priori what an optimal decision rule &; looks like and if it can even be
succinctly described, or if it is simply the solution to an opaque optimization problem. Remarkably,
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we show that for every feasible, optimal operating pair (I, £) there exists a matrix A € R?*¢ such
that the optimal decision rule takes on the form & = 1{z " Az > 1} when z; ~ v iid. The fact that
for any smooth distribution v the decision rule is a hard decision equivalent to x; falling outside a
fixed ellipse or not, and not a stochastic rule that varies complementarily with the density of v over
space is perhaps unexpected.

To motivate the problem description, suppose on each day t = 1,2, ... a food blogger posts the
Cocktail of the Day with a recipe described by a feature vector z; € R%. You have the ingredients
(and skills) to make any possible cocktail in the space of all cocktails Z, but you don’t know which
one you’d like the most, i.e., z, := arg max.cz(z, 0.), where 6, captures your preferences over
cocktail recipes. You decide to use the Cocktail of the Day to inform your search. That is, each day
you are presented with the cocktail recipe x; € R¢, and if you choose to make it (£, = 1) you observe
your preference for the cocktail y; with E[y;] = (x4, 6.). Of course, making cocktails can get costly,
so you don’t want to make each day’s cocktail, but rather you will only make the cocktail if x; is
informative about 0, (e.g., uses a new combination of ingredients). At the same time, waiting too
many days before making the next cocktail of the day may mean that you never get to learn (and
hence drink) the cocktail z, you like best. The setting above is not limited to cocktails, but rather
naturally generalizes to discovering the efficacy of drugs and other therapeutics where blood and
tissue samples come to the clinic in a stream and the researcher has to choose whether to take a
potentially costly measurement.

Our results hold for arbitrary 6, € RY, sets ¥ € R? and Z C RY, and measures v € A XE] for which
we assume x; ~ v is drawn IID. The assumption that each z; is IID allows us to make very strong
statements about optimality. To summarize, our contributions are as follows:

* We present fundamental limits on the trade-off between the amount of unlabelled data and labelled
data in the form of (the first) information theoretic lower bounds for selective sampling problems
that we are aware of. Naturally, they say that there is an absolute minimum amount of unlabelled
data that is necessary to solve the problem, but then for any amount of unlabelled data beyond this
critical value, the bounds say that the amount of labelled data must exceed some value as a function
of the unlabelled data used.

¢ We propose an algorithm that nearly matches the lower bound at all feasible trade-off points in the
sense that given any unlabelled data budget that exceeds the critical threshold, the algorithm takes
no more labels than the lower bound suggests. Thus, the upper and lower bounds sketch out a curve
of all possible operating points, and the algorithm achieves any point on this curve.

* We characterize the optimal decision rule of whether to take a sample or not, based on any critical
point is a simple test: Accept z; € R? if 2,7 Ax; > 1 for some matrix A that depends on the desired
operating point and geometry of the task. Geometrically, this is equivalent to z; falling inside or
outside an ellipsoid.

* Our framework is also general enough to capture binary classification, and consequently, we prove
results there that improve upon state of the art.

1.1 Related Work

Selective Sampling in the Streaming Setting: Online prediction, the setting in which the selective
sampling framework was introduced, is a closely related problem to the one studied in this paper
and enjoys a much more developed literature [6, 19, [1,[7]. In the linear online prediction setting, for
t =1,2,... Nature reveals z; € RY, the learner predicts 7J; and incurs a loss £(%;, y;), and then the
learner decides whether to observe y; (i.e., & = 1) or not (§; = 0), where y; is a label generated by a
composition of a known link function with a linear function of x;. For example, in the classification
setting [[I} [6} O], one setting assumes y; € {—1,1} with E[y:|z:] = (24, 6.) for some unknown
0. € R, and (s, y:) = 1{y; # y:}. In the regression setting [7], one observes y; € [—1, 1] with
Ely:|x:] = (x1,0.) again, and £(g;,y:) = (Y — y1)?. After any amount of time U, the learner is

incentivized to minimize both the amount of requested labels Z?ﬂ 1{& = 1} and the cumulative

loss Zzt’{:l £(yt, i) (or some measure of regret which compares to predictions using the unknown
0.). If every label y, is requested then £ = U/ and this is just the classical online learning setting.

"'We denote the set of probability measures over X as A x.



These works give a guarantee on the regret and labeled points taken in terms of the hardness of the
stream relative to a learner which would see the label at every time. Most do not give the learner the
ability to select an operating point that provides a trade-off between the amount of unlabeled versus
labeled data taken. Those few works that propose algorithms that do provide this functionality do not
provide lower bounds that match their given upper bounds, leaving it unclear whether their algorithm
optimally negotiates this trade-off. In contrast, our work fully characterizes the trade-off between the
amount of unlabeled and labeled data through an information-theoretic lower bound and a matching
upper bound. Specifically, our algorithm includes a tuning parameter, call it 7, that controls the
trade-off between the evaluation metric of interest (for us, the quality of the recommended z € Z),
the label complexity £, and the amount of unlabelled data { that is necessary before the metric
of interest can be non-trivial. We prove that each possible setting of 7 parametrizes all possible
trade-offs between unlabeled and labeled data.

Our work is perhaps closest to the streaming setting for agnostic active classification 8, [15] where
each x; is drawn i.i.d. from an underlying distribution v on X', and indeed our results can be
specialized to this setting as we discuss in Section [3] These papers also evaluate themselves at
a single point on the tradeoff curve, namely the number of samples needed in passive supervised
learning to obtain a learner with excess risk at most e. They provide minimax guarantees on the
amount of labeled data needed in terms of the disagreement coefficient [12]. In contrast, again, our
results characterize the full trade-off between the amount of unlabeled data seen, and the amount of
labeled data needed to achieve the target excess risk e. We note that using online-to-batch conversion
methods, [9} 1} 6] also provide results on the amount of labeled data needed but they assume a very
specific parametric form to their label distribution unlike our setting which is agnostic. Other works
have characterized selective sampling for classification in the realizable setting that assumes there
exists a classifer among the set under consideration that perfectly labels every y; [[13]-our work
addresses the agnostic setting where no such assumption is made. Finally, our results apply under the
more general setting of domain adaptation under covariate shift where we are observing data drawn
from the stream v, but we will evaluate the excess risk of our resulting classifier on a different stream
m [22 231 126].

Best-Arm Identification and Online Experimental Design. Our techniques are based on experi-
mental design methods for best-arm identification in linear bandits, see [24} 11} |5]]. In the setting of
these works, there exists a pool of examples A and at each time any x € X can be selected with
replacement. The goal is to identify the best arm using as few total selections (labels) as possible.
Their algorithms are based on arm-elimination. Specifically, they select examples with probability
proportional to an approximate G-optimal design with respect to the current remaining arms. Then,
during each round after taking measurements, those arms with high probability of being suboptimal
will be eliminated. Remarkably, near-optimal sample complexity has been achieved under this setting.
While we apply these techniques of arm-elimination and sampling through G-optimal design, the
major difference is that we are facing a stream instead of a pool of examples. Finally, [10] considers a
different online experiment design setup where (adversarially chosen) experiments arrive sequentially
and a primal-dual algorithm decides whether to choose each, subject to a total budget. [[L0] studies
the competitive ratio of such algorithms (in the manner of online packing algorithms) for problems
such as D-optimal experiment design.

2 Selective Sampling for Best Arm Identification

Consider the following game: Given known X, Z C R? and unknown 6, € R? at each time
t=1,2,...:

1. Nature reveals z; % v with support(v) = X

2. Player chooses @; € {0,1}. If Q; = 1 then nature reveals y; with E[y:] = (2, 0.)

3. Player optionally decides to stop at time ¢ and output some z € Z
If the player stops at time U after observing £ = Zzglzl Q: labels, the objective is to identify
Z« = argmax,¢ z(z, 0,) with probability at least 1 — § while minimizing a trade-off of U, L.

This paper studies the relationship between ¢/ and L in the context of necessary and sufficient
conditions to identify z, with probability at least 1 — §. Clearly &/ must be “large enough” for z, to



be identifiable even if all labels are requested (i.e., £ = U). But if { is very large, the player can start
to become more picky with their decision to observe the label or not. Indeed, one can easily imagine
scenarios in which it is advantageous for a player to forgo requesting the label of the current example
in favor of waiting for a more informative example to arrive later if they wished to minimize £ alone.
Intuitively, £ should decrease as U increases, but how?

Any selective sampling algorithm for the above protocol at time ¢ is defined by 1) a selection rule
P, : X — [0,1] where Q; ~ Bernoulli(P;(x:)), 2) a stopping rule ¢/, and 3) a recommendation rule
z € Z. The algorithm’s behavior at time ¢ can use all information collected up to time ¢

Definition 1. Forany 0 € (0, 1) we say a selective sampling algorithm is §-PAC for v € Ay if for all

6 € R? the algorithm terminates at time U which is finite almost surely and outputs arg max. ¢ z(z, 6)
with probability at least 1 — 0.

2.1 Optimal design

Before introducing our own algorithm, let us consider a seemingly optimal procedure. For any
AeAx={p: ) cxPe=1,ps >0Vrc X} define

”Z - Z*”[QE XXT]-1
A) = X iy 1
p( ) zegl&{)i*} <9*, Zx — Z>2 ( )

Intuitively, p(\) captures the number of labeled examples drawn from distribution ) to identify z,.
Specifically, for any 7 > p(A)log(|Z|/9), if z1,...,2; ~ Xand y; = (x;,0,) + €; where ¢; is
iid 1 sub-Gaussian noise, then there exists an estimator 8 := 6({(z;, y;) T_,) such that @, 2,) >
max, ez, (8, z) with probability at least 1 — & [11]. In particular, 7 > p())log(|Z|/5) samples
suffice to guarantee that arg max,¢ = ((9\, z) = argmax,ecz (0x, 2) =: 2.

Thus, if our 7 samples are coming from v, we would expect any reasonable algorithm to require
at least p(v)log(|Z|/d) examples and labels. However, since we only want to take informative
examples, we instead choose to select the tth example x; = x according to a probability P(z) so that
our final labeled samples are coming from the distribution A where A(z) oc P(z)v(x). In particular,
P(z) should be chosen according to the following optimization problem

I — 2l P(X)XXT]-1
P* = argmin tEx.,[P(X)] subjectt e TPUOXE T g <1 2
P B APCOL et e, T e st @

for Bs = log(|Z|/0) where the objective captures the number of samples we select using P*, and the
constraint captures the fact that we have solved the problem. Remarkably, we can reparametrize this
result in terms of an optimization problem over A € Ay instead of P* : X — [0,1] as

TEx [P*(X)] = /\miAn (M)Bs  subjectto T > ||A/V]cop(N)Bs
SANY

where [|A/v| s = max,cx A(z)/v(z), as shown in Proposition[2] Note thatas 7 — oo the constraint
becomes inconsequential. Also notice that p(/) 55 appears to be a necessary amount of labels to solve
the problem even if P(z) = 1 (albeit, by arguing about minimizing the upperbound of above).

2.2 Main results

In this section we formally justify the sketched argument of the previous section, showing nearly
matching upper and lower bounds.

Theorem 1 (Lower bound). Fixany § € (0,1), X, Z C R% and 0, € R%. Any selective sampling
algorithm that is §-PAC for v € /\y and terminates after drawing U unlabelled examples from v
and requests the labels of just L of them satisfies

« ElU] > p(v) log(1/5), and
* BIL] > min p(\)log(1/6) subjectio  BU] > [\/v]cp(N) log(1/3).

The first part of the theorem quantifies the number of rounds or unlabelled draws U that any algorithm
must observe before it could hope to stop and output z, correctly. The second part describes a



trade-off between U/ and L. One extreme is if E[l{] — oo, which effectively removes the constraint
so that the number of observed labels must scale like minyea . p(A)log(1/§). Note that this is
precisely the number of labels required in the pool-based setting where the agent can choose any
x € X that she desires at each time ¢ (e.g. [L1]]). In the other extreme, E[U/] = p(v) log(1/§) so that
the constraint in the label complexity E[L£] is equivalent to p(v) > ||A/vV||cop(A). This implies that
the minimizing A must either stay very close to v, or must obtain a substantially smaller value of
p(A) relative to p(v) to account for the inflation factor || \/v||~. In some sense, this latter extreme is
the most interesting point on the trade-off curve because its asking the algorithm to stop as quickly
as the algorithm that observes all labels, but after requesting a minimal number of labels. Note that
this lower bound holds even for algorithms that known v exactly. The proof of Theorem [I]relies on
standard techniques from best arm identification lower bounds (see e.g. [17,[11]).

Remarkably, every point on the trade-off suggested by the lower bound is nearly achievable.

Theorem 2 (Upper bound). Fix any § € (0,1), X,Z C RY and 6, € RL Let A =
min,e 2\ (»,} (2« — 2, 0.) and Bs o log(log(x)|Z|/6) where the precise constant is given in the
appendix. For any T > p(v)Bs there exists a 0-PAC selective sampling algorithm that observes U
unlabeled examples and requests just L labels that satisfies with probability at least 1 — §

« U <logy(+) T, and

o £ <3logy(%) )\rélin p(N) Bs  subjectto T > ||A/V]|cop(A) Bs-
X

Aside from the log( ) factor and the log(| Z|) that appears in the 35 term, this nearly matches the
lower bound. Note that the parameter 7 parameterizes the algorithm and makes the trade-off between
U and L explicit. The next section describes the algorithm that achieves this theorem.

2.3 Selective Sampling Algorithm

Algorithm [T] contains the pseudo-code of our selective sampling algorithm for best-arm identification.
Note that it takes a confidence level § € (0, 1) and a parameter 7 that controls the unlabeled-labeled
budget trade-off as input. The algorithm is effectively an elimination style algorithm and closely
mirrors the RAGE algorithm for the pool-based setting of best-arm identification problem [[11]]. The
key difference, of course, is that instead of being able to plan over the pool of measurements, this
algorithm must plan over the x’s that the algorithm may potentially see and account for the case that
it might not see the x’s it wants.

Algorithm 1 Selective Sampling for Best-arm Identification

: Input Z C R4, 6 € (0,1),7

1

2: while |Z,| > 1do

3 Let P, iﬁe < OPTIMIZEDESIGN(Z,,27¢, 1) // flﬁk approximates Ex.,[Py(X)XX ]
4: fort=((—-1)7+1,...,47do

5: Nature reveals z; drawn iid from v (with support RY)

6: Sample Q,(2;) ~ Bernoulli(Py(z;)). If Q; = 1 then observe y;  // E[y;|z;] = (0., z;)
7:  end for R R

8:  Let6, eRIPS({ZgQS(azS)xsys}ﬁ; (—1yri1s Z X Z) // §; approximates 0,
9: Zp1=2Z\{z€Z: ergagx/(z’ - z,@) >274)

10: end while

In round /, the algorithm maintains an active set Z, C Z with the guarantee that each remaining
z € Z, satisfies, (z. — 2,0,) < 8- 27¢. In each round, on Line of the algorithm, it calls out
to a sub-routine OPTIMIZEDESIGN(Z, ¢, T) that is trying to approximate the ideal optimal design
of (). In particular, the ideal response to OPTIMIZEDESIGN(Z, €, 7) would return a P and
Spr = Ex [P (X)X X ] where P is the solution to Equation 2| with the one exception that the
denominator of the constraint is replaced with max{e?, (., z. — z)?}. Of course, 6, is unknown
so we cannot solve Equation [2] (as well as other outstanding issues that we will address shortly).
Consequently, our implementation will aim to approximate the optimization problem of Equation



But assuming our sample complexity is not too far off from this ideal, each round should not request
more labels than the number of labels requested by the ideal program with € = 0. Thus, the total
number of samples should be bounded by the ideal sample complexity times the number of rounds,
which is O(log(A~!)). We will return to implementation issues in the next section.

Assuming we are returned (ﬁg, 5 ﬁz) that approximate their ideals as just described, the algorithm
then proceeds to process the incoming stream of z; ~ v. As described above, the decision to request
the label of z; is determined by a coin flip coming up heads with probability ]3@ x¢)—otherwise we
do not request the label. Given the collected dataset {(z¢, ¢, Q¢, Po(x)) 1, linethen computes an
estimate é\e of 6, using the RIPS estimator of [5] which will satisfy

(zs — 2,0, — 0,)| <O (Hz* . zHEM[TﬁE(X)XXT]_l\/1og4(zgz\g|2/5)) <ot

for all z € Z, simultaneously with probability at least 1 — §. Thus, the final line of the algorithm

eliminates any z € Z, such that there exists another 2’ € Z; (think z,) that satisfies <§g, 2 —z) > 27t
The process continues until Z, = {z.}.

2.4 Implementation of OPTIMIZEDESIGN

For the subroutine OPTIMIZEDESIGN passed (Zy, €, 7) the next best thing to computing Equation
with the denominator of the constraint replaced with max{e?, (., z. — z)?}, is to compute

2
1z =2"lg, ooy xxT)

P. = argmin Ex.,[P(X)]subjectto max 5 Bs <1 3)

P:xX—[0,1] z,2' €2y €
and ¥p, = Ex.,[P.(X)XX "] for an appropriate choice of 35 = ©(log(|Z|/6)). To see this,
firstly, any z € Z with gap (0., z,. — z) that we could accurately estimate would not be included in
Zy, thus we don’t need it in the max of the denominator. Secondly, to get rid of z, in the numerator
(which is unknown, of course), we note that for any norm max., . ||z — 2’| < max, 2||z — z.|| <
max,_ . 2||z — 2’||. Assuming we could solve this directly and compute Xp, = Exy ., [P-(X)X X ],
we can obtain the result of Theorem 2 (proven in the Appendix).

However, even if we knew v exactly, the optimization problem of Equation [3]is quite daunting as
it is a potentially infinite dimensional optimization problem over X. Fortunately, after forming
the Lagrangian with dual variables for each z — 2’ € Z x Z, optimizing the dual amounts to
a finite dimensional optimization problem over the finite number of dual variables. Moreover,
this optimization problem is maximizing a simple expectation with respect to  and thus we can
apply standard stochastic gradient ascent and results from stochastic approximation [20]. Given the
connection to stochastic approximation, instead of sampling a fresh = ~ v each iteration, it suffices to
“replay” a sequence of z’s from historical data. Summing up, this construction allows us to compute a
satisfactory P, and avoid both an infinite-dimensional optimization problem and requiring knowledge
of v (as long as historical data is available).

Meanwhile, with historical data, we can also empirically compute Ex ., [P.(X)X X "]. Historical
data could mean offline samples from v or just samples from previous rounds. In this setting, Theorem
2 still holds albeit with larger constants. Theorem [/|in the appendix characterizes the necessary
amount of historical data needed. Unfortunately (in full disclosure) the theoretical guarantees on the
amount of historical data needed is absurdly large, though we suspect this arises from a looseness in
our analysis. Similar assumptions and approaches to historical or offline data have been used in other
works in the streaming setting e.g. [[15].

3 Selective Sampling for Binary Classification

We now review streaming Binary Classification in the agnostic setting [8, [12} [15] and show that our
approach can be adapted to this setting. Consider a binary classification problem where X is the
example space and ) = {—1, 1} is the label space. Fix a hypothesis class 7 such that each h € H is
a classifier h : X — ). Assume there exists a fixed regression function  : X — [0, 1] such that the
label of z is Bernoulli with probability n(z) = P(Y = 1|X = z). Being in the agnostic setting, we
make no assumption on the relationship between H and 7. Finally, fix any v € Ay and m € Ay.
Given known X', H and unknown regression function 7, at each time ¢t = 1,2,...:



1. Nature reveals x; ~ v
2. Player chooses Q; € {0,1}. If Q; = 1 then nature reveals y, ~ Bernoulli(n(z;)) € {—1,1}

3. Player optionally decides to stop at time ¢ and output some heH.

Define the risk of any h € H as R (h) := Pxr yyx)(Y # h(X)). If the player stops at time
U after observing £ = Zzt’lzl Q) labels, the objective is to identify h, = arg ming,cy R, (h) with
probability at least 1 — & while minimizing a trade-off of U/, L. Note that h, is the true risk minimizer
with respect to distribution 7 but we observe samples x; ~ v; 7 is not necessarily equal to v. While
we have posed the problem as identifying the potentially unique h*, our setting naturally generalizes
to identifying an e-good h such that R (h) — R (h.) <.

We will now reduce selective sampling for binary classification problem to selective sampling for
best arm identification, and thus immediately obtain a result on the sample complexity. For simplicity,
assume that X’ and A are finite. Enumerate X and for each h € H define a vector (") € [0, 1]I%!
such that 2{" = 7(x)1{h(x) = 1} for z(") = [zéh)]gﬂex. Moreover, define 6* := [0%],cx where
0% := 2n(z) — 1. Then

R(h) = Exryan) [HY # h(X)}) =) m(a)(n(@)1{h(z) # 1}+(1 = n(2))1{h(z) # 0})

=Y w(a)n(z) + Y w(@)(1 - 2n(x)1{h(z) =1} = c — (=M, 0%)

reX zeX

where ¢ = 3"\ m(z)n(z) does not depend on h. Thus, if Z := {2(M},cy then identifying
h. = arg miny ey R, (h) is equivalent to identifying z, = arg max.cz(z, 0*). We can now apply
Theorem [2]to obtain a result describing the sample complexity trade-off. First define,

(X
pr(he) Iz = zullE, L pxexr-r . Ex~r [1{h(X) # W' (X)}553
(A €) ZeZ\{z*} max{(0,, z. — 2)2,e2}  her\{h.} max{(Rnr(h) — R(h*))2, 2}

An important case of the above setting is when X ~ v and 7 = v, i.e. we are evaluating the
performance of a classifier relative to the same distribution our samples are drawn from. This is
the setting of [8, 15, [12]]. The following theorem shows that the sample complexity obtained by our
algorithm is at least as good as the results they present.

Theorem 3. Fix any § € (0, 1), domain X with distribution v, finite hypothesis class H, regression
functionn : X — [0,1]. Set € > 0 and S5 = 2048 1og(4loga(4/€)|H|/5). Then for v > px(v,€)Bs
there exists a selective sampling algorithm that returns h € H satisfying R.(h) — R, (h*) < e by
observing U unlabeled examples and requesting just L labels such that

* U <logy(4/e)T
e LKL 3log2(%) min pr(A\,€)Bs st T > |A/V]copr(N E)Bs
AEAX

with probability at least 1 — §. Furthermore when v = m and if T > 16p(v, €) Bs we have that

L< 36log2(4/6)( LAUSE +4) sup 0* (2R, (h") + &, v)Bs

£>e

where 6% (u, v) is the disagreement coefficient, defined in Appendix@
Note that if 7 is sufficiently large then the labeled sample complexity we obtain minyea , p(A, €)

could be significantly smaller than previous results in the streaming setting, e.g. see [[L6]. The proof
of Theorem [3|can be found in Appendix

4 Solving the Optimization Problem

Recall that in Algorithm I] during round ¢, we need to solve optimization problem (3). Solving this
optimization problem is not trivial because the number of variables can potentially be infinite if X" is



an infinite set. In this section, we will demonstrate how to reduce it to a finite-dimensional problem
by considering its dual problem. To simplify the notation, let Y, = {z — 2 : 2z,2" € Zy, 2 # 2'},
and rewrite the problem as follows, where ¢, > 0 is a constant that may depend on round /.

Hlinp EXNI/ [P(X)]

subjectto y Ex., [P(X)XXT] 'y <c, Vye, 4)

0<P(z)<l1l VzeX.
Using the Schur complement technique, we show in Lemma T3] (Appendix [C) the following equiva-
lence: vy Ex., [P(X)XXT]_ly < c? — Ex., [P(X)XXT] - ény. This transforms
a constraint involving matrix inversion into one with ordering between PSD matrices. Then,
we remove the bound constraints 0 < P(x) < 1, Vo € X by introducing the barrier function

—log(1 — z) — log(x). That is, instead of working with the objective E x ., [P(X)] directly, we
consider the following problem.

minpg  Exu[P(X) - m(log(l — P(X)) + log(P(X)))]
subject to Exw, [P(X)XX ] = Byy™, Wy € Ve ®)

Here, up, € (0, 1) is some small constant that controls how strong the barrier is. Intuitively, a smaller
wp will make problem (B) closer to the original problem. We now show that unlike the primal, the
dual problem is indeed finite-dimensional. For each constraint of y € )/, let the matrix A, > 0 be

its dual variable. Further, let A = > Ay and A = (Ay) . The corresponding Lagrangian is

ISAZ] yeEVp

1
L(A, P) =Exny [P(X) = (log(1-P(X)) +log(P(X))) = P(X)X TAX] + = > yTAyy.
€ yey,
The dual problem is maxy ,»o0,vyey, minp £ (A, P). Notice that minimization over P : X' — [0, 1]
can be done via minimizing P(z) point-wise for each € X. To do this, we take the gradient with
respect to each P(x) and set it to zero to get
Hb M
1—P(z) P(x)

Solving this equation and defining g (7) = x T Az — 1, we get
L V- @) + )

b =3-a@ ™" N | @

1+ —2TAz =0. (6)

Note that if y; = 0 (no barrier), the above reduces to the “threshold” decision rule Py (z) =
i+ 22 (@)] \hich gives 0 when g () < 0and 1 when gy () > O This is exactly the hard elliptical

2qa ()
threshold rule mentioned before, in which whether to query the label for x depends on whether it
falls inside (z " Az < 1) or outside (" Az > 1) of the ellipsoid defined by the positive semidefinite
matrix A. A visualization of the decision rule Py is given in Figure 2]in the Appendix.

Now, by plugging in P (z), our dual problem becomes maxy ,-o,vy D(A) := L (A, Py). Thisis a
finite-dimensional optimization problem, and can be solved by projected gradient ascent (or projected
stochastic gradient ascent when we have only samples from v). The gradient of D(A) is

.
/“’ i T ] vy
A)=Ex.,||1 — —XTA — II
VAyD( ) =Ex [( +1 ~ Pa(2) (X X X> VAyPA(X) PA(X)XX ' |+ cz
T
vy _
= = —Ex [PA(X)XXT]. (Since Pp(X) solves Eq. (6))

The algorithm to solve the problem has been summarized in Algorithm 2} in which the gradient during
T
vy
c?
is chosen by following the discussion in chapter 4 of [21]]. Optimizing the assignment of A, to each y
in line[I0]ensures that the re-scaling step in line[TT]increases the function value in an optimized way.
Finally, the re-scaling step is used to ensure that the output primal objective value Ex ., [P(X)] is
bounded well, which will be explained in more details in Appendix [C|

kth iteration is replaced by its unbiased estimator — Py (zr)zkz, . The adaptive learning rate

2When ga (z) = 0, Pa(z) is undetermined from the dual.



Algorithm 2 Projected Stochastic Gradient Ascent to Solve OPTIMIZEDESIGN

1: Input: Number of iterations K'; number of samples u; barrier weight 1, € (0, 1)
2: Initialize /A\.,E,O) =0 foreachy € )y
3: fork=0,1,2,..., K —1do
4:  Sample xp ~ v

T
5. Setgry = L — Py (wx)zkx) , where Py is defined in Eq. (7)

(4
6. Set AFTY L A 4 for each y € )Yy, where 0y, = L

Y Yy Nkgk,y Yy {4 Nk \/2 Sk, Yy, llgs,yll2

7. Update /A\l(,kﬂ) — HSi (Ag(,kﬂ)) for each y € ), a projection to the set of d x d PSD matrices
8: end for

9: Let A, = 1 Zszl A?E,k) for each y € Jy and A = > ey, A,
10: Update (Ay)yeyﬂ < argmaxp »5, cy, y " Ay, subject to Doy, Ay = A, Ay = 0,Vy € V.
11: Find s* <= argmax ¢ 1) D (s A), where D g empirically evaluates D using u i.i.d. samples

12: return A = s* - Eueyg Ay

Let A* be an optimal solution for D(A). Intuitively, as long as we run this algorithm with sufficiently

large number of iterations K and number of samples u, we can guarantee that D(A) and D(A*) are
close enough with high probability, which in turn guarantees that the primal constraints are violated
by only a tiny amount and Ex ., [PT\(X )] is close enough to the optimal value. Specifically, we can
prove the following theorem.

Theorem 4. Suppose |||, < M for any x € supp(v) and ¥ = Ex~, [XX "] is invertible. Let

A" € argmax, .o vycy, D(A) and K(X) = i\“:’?’]‘((g)) be its condition number. Assume ||A*|| . >0

and define w = minpega, ) =1 Ex~v [(XTFX) 2} , where S% is the set of d x d symmetric matrices.

Then, A* = Zyeyg A}, is unique. Further, for any ¢ > 0 and § > 0, if it holds that p;, <

O (VA k(E)M) - /(1 +€)/eand
. O(yzﬁn(z)?nm||%M1610g<1/6>>_ (1 + ) S s O(m@)?um nglog(l/a))(l + ) g

w2pd w2l €
then, with probability at least 1 — §, Algorithmwill output A that satisfies
-1
sy Exw [Px(X)XXT] "y<(1+e)ci, Vyel.

¢ Exov [P5(X)] <Exmn [IS(X)] + 4\/fiy, where P is the optimal solution to problem @
with barrier constraint repaced by 0 < P(x) <1 — u,Vx € X.

The proof is in Appendix [C} Although P is not exactly the same as the optimal solution of the original
problem (@), when p;, is sufficiently small, they will be very close. Meanwhile, it should be noted that
Theorem [ mainly reveals that with sufficiently large number of iterations and number of samples,
Algorithm 2] can output sufficiently good solution. In future work, we plan to examine how much this
bound can be improved via a tighter analysis.

Finally, notice that Algorithm [2| needs to maintain || d> = O(]Z,|* d2) variables, which can be
large when we have a large set Z;. Therefore, as an alternative, we also propose Algorithm [3]that
only needs to maintain d? variables but requires more computational power in each iteration. The
details are given in Appendix

S Empirical results

In this section we present a benchmark experiment validating the fundamental trade-offs that are
theoretically characterized in Theorem[T]and Theorem[2] We take inspiration from [24] to define our
experimental protocol:



* d = 2, atwo-dimensional problem.
Z = [e1, ez, (cos(w), sin(w))] for w = 0.3, where e;, e3 are canonical vectors.
s 0, =2e;andy = x'0, +n, where n ~ N(0,1).

e The distribution v for streaming measurements x; RS v is such that x; =

cos(21ym ,sin(207 where I; € {0,...,N —1},P(I; = i) o cos(2im ,an = 30.
(cos(2Liw/N),sin(21;w/N)) where I; € {0 N—-1}P(I /) (2im/N)?, and N = 30

In this problem, the angle w is small enough that the item (cos(w), sin(w)) is hard to discriminate
from the best item e;. As argued in [24]], an efficient sampling strategy for this problem instance
would be to pull arms in the direction of e, in order to reduce the uncertainty in the direction of
interest, 1 — (cos(w), sin(w)). However, the distribution v is defined such that it is more likely
to receive a vector x; in the direction of +e; rather than +e5. Thus, if one seeks a small label
complexity, then P should be taken to reject measurements in the direction of +e;.

In the benchmark experiment, we compare the following three algorithms which all use Algorithm |T]
as a meta-algorithm and just swap out the definition of P,. Naive Algorithm uses no selective
sampling so that P;(x) = 1 for all x; the Oracle Algorithm uses Py = P, where P, is the ideal

solution to ([2), and Our Algorithm uses the solution to (5) for ]34, where we take p1; = 2 x 1075,
We swept over the values of 7 and plotted on the y-axis the amount of labeled data needed before
termination, as shown in Figure E}

Label Complexity (£) v.s. T Comparison between P, () and /(x) Heatmap of P, (x)

w4 1

0.8
ez

10

0.6 25 i
~== Oracle Algorithm 8 w sin(w)]
[5} B Our Algorithm M = 0.5
é e

e 0.

probability

- Naive Algorithm

107

0.0

0.0 0.5 1.0 L5 2.0 0 5 10 15 20 25 30 1.0 0.5 0.0 0.5 1.0

Figure 1: (left) For each value of 7, we plot the average label complexity over 50 repeated
trials. (middle) Visualization of P.(z) and v(z) v.s. z, where x is indexed by I such that
xr = (cos(2I7/N),sin(2I7/N)). Here, P, is solved with 7 = 4 x 10° and distribution v is
not normalized. (right) A heat map of P, (z) along with the setting of experimental protocol.

We observe in Figure [I] that the algorithms using non-naive selection rules require far less label
complexity than the naive algorithm for all 7. This reflects the intuition that selection strategies that
focus on requesting the more informative streaming measurements are much more efficient than
naively observing every streaming measurement. Meanwhile, the trade-off between label complexity
L and sample complexity I characterized in Theorem [I]and Theorem [2]is precisely illustrated in
Figure [I] Indeed, we see the number of labels queried by the two selective sampling algorithms
decrease as the number of unlabeled data seen in each round increases.

6 Conclusion

In this paper, we proposed a new approach for the important problem of selective sampling for best
arm identification. We provide a lower bound that quantifies the trade-off between labeled samples
and stopping time and also presented an algorithm that nearly achieves the minimal label complexity
given a desired stopping time.

One of the main limitations of this work is that our approach depends on a well-specified model
following stationary stochastic assumptions. In practice, dependencies over time and model mis-
match are common. Utilizing the proposed algorithm outside of our assumptions may lead to poor
performance and unexpected behavior with adverse consequences. While negative results justify
some of the most critical assumptions we make (e.g., allowing the stream x; to be arbitrary, rather
than iid, can lead to trivial algorithms, see Theorem 7 of [7]), exploring what theoretical guarantees
are possible under relaxed assumptions is an important topic of future work.
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A Selective Sampling Lower Bound

First, we review the standard argument for best-arm identification lower bounds applied to linear
bandits. Fix 0, € R? and let z, = argmax,cz(z,0,). Define the setC = {# € R? : Iz ¢
Zs.t. {0,z — z,) > 0} as those 6 in which z, is note the best arm under §. We now recall the
transportation lemma of [17]. Under a §-PAC strategy for finding the best arm for the bandit instance
(X, Z,0.), let T, denote the random variable which is the number of times arm z is pulled. In
addition let \Vy . denote the reward distribution of the arm z of X, i.e. Ny, = N (2" 6,1). Then for
any J-PAC algorithm

log(1/2.46) < gleig;{E[TT]KL(Ng*,z7N9,z)

: 1 2
= min 3 E[T] 46, - 0], -
reX

. 2
= %gg%“e* - GH(ZIM E[T,]zzT)

. 1 2
< zénzlilz* §H9* - 9Z<6)||(ZI€XJE[TA:MT)

where
(5= D)0+ (e BTz )" (o — 2)T
(2 = 2) T (Cpex BlTe] 22 ) 1 (24 — 2)

for some small e. This is a valid choice since for all z € Z \ 2z, we have (2, — 2) '0,(¢) = —e < 0
and thus 6, (¢) € C. A straightforward calculation shows that

({zx — 2,0.) +¢)?

2
Iz = 2lles, BT 2emy 2

10, — 9z(€)H?ZT€XE[TI]mT) -

so that after rearranging and lettering ¢ — O we have that any §-PAC algorithm satisfies

2|| 2. —ZII?EwEXE[TEJwﬂ‘ﬁ 1/2.46) < 1 8

This series of steps will be applied for each bullet point of the theorem.

A.1 Proof of Theorem[l} part I

We use the consequence of Lemma 19 of [17]. Consider a §-PAC algorithm that sets P(x) = 1 for all
x € X for all time until it exits at time U/ after this many unlabelled examples have been observed. If
T, denotes the number of times z € X’ was observed before stopping time U/, then by Wald’s identity
we have that

u

Z 1{x; = x}] = v(x)E[U].

t=1

E[T,] =E

Plugging this into Equation [§and rearranging we conclude that

2”2*72”2 v(z)zzT)~
EU] > max (Ceex v(z) )t
2EZ\zx <Z* — Z,e*>2

log(1/2.46) =: p(v)log(1/2.46)
which concludes the proof of the first bullet.

A.2  Proof of Theorem[l} part II

By definition, the (random) number of times we measure x is

u

L, = Z Hzs = 2,Qs(x) = 1}

s=1
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and we want to show that E[L;] = v(z)E [27:1 Pg(x)} . To do so, we define

t

My = (o, = 2,Qu(x) = 1} — v(2) P.(x))

s=1
It is easy to check that P, 1 € F; := {(ws,ys, Qs)}._; and that
E[My1|Fe] = My + E[{zs =z, Qs(x) = 1} — v(2) Ps(2)|F] = My
Applying Doob’s equality E[M;,] = E[My] = 0. Consequence:

u
E[L,] =E |y Wz, =2,Q.(x) = 1}] = v(v)E

u
Z Py(x)
s=1
E[ZL, Pe(a)]

Define «o(z) := ) and note that each o, € [0,1]. Then E[L;] = E[U/f]a(x)v(x) so
applying equation (18) of [17] again, we have

. <mi
log(1/2.46) < rglégg(E[ﬁz]KL(Nngm)

—min 3 E[L,] [0 - 0.]2,+/2

oeC oyt
. <0*7 Zx T Z>2
= min 3
2EZ\zx 2||Z - Z*||(ZZ€XE[£$]$1T)—1
<6*7 Zx — Z>2

= min

EU].
z€2\z 2|z — z*||%E L

vex V(@)a(@)zzT) 7!
Rearranging, and applying the identity Ex ., [0(X)XX ] = > _, v(z)a(x)zz’, the above
implies that

2
— 2B o) xx T
T 262\ (Os, 2 — 2)?

log(1/2.46).
Noting that the total expected number of labels is equal to
E[L] = ) E[L,] =) EU]a(@)v(z) = EU) Exa(X)]

TEX TeX

we conclude that
E[£] > min ElU]) Ex o [a(X)]

a:X—[0,1]

2
— 2, .
subjectto  E[] > max HIEXW[Q(X)XXT]
z€2\{z.} (Ox, 24 — 2)?

log(1/2.46).

The second bullet point result follows by denoting « as P and applying Proposition 2]

B Selective Sampling Algorithm for Known Distribution v
B.1 Proof of Theorem [, upper bound

At each round ¢ we assume an implementation such that ﬁg, Xp, < OPTIMIZEDESIGN(Z;,27¢, 1)

returns the solution of Equation [3| with e = 27, essentially. More explicitly, let ¢, := 2~¢, B < o0
such that max,¢y |(x,0,)| < B, and o < oo such that E[(ys — (0, x,))?|z,] < o2, If

Bs.e = 16(B? + 02) log(20*| Z|*/5)
then 13@ = P, where

[ERE s -
Py := argmin Ex.,[P(X)]subjectto max ]EX”“[QP(X)XXT] i Bse <1
P:X—[0,1] 2,2/ €2, €

15



and 35, 1= Ex ., [P(X) XX ]

We first provide an intermediate lemma on the correctness of Algorithm [I]that relies on the feasibility
of P, which we will show shortly.

Lemma 1. With probability at least 1 — § we have for all stages ¢ € N such that Py is feasible, that
Ze € Zpand max ez, (2 — 2,0,) < 4dey.

Proof. Define the event & as
£:= {|<zfz/,/0\479*>|§65}

By Lemma we know that P(€) > 1 — 4. Then, the rest of the proof is the same as the one in [LI],
but we include it here for completeness. Assume that £ holds. Then for any 2’ € Z;

(2 — 2*,00) = (2 — 2*,6, — 0%) + (2 — 2*,6%)
< _2195_9>
<e

so that z* would survive to round Zy1. And for any z € Z; such that (z* — z,0*) > 2¢,, we have

ngagx{(z —z 9;) (z* = z,0y)

=(z" - 2,0, — 0*) + (2" — z,0%)

> —ep + 2¢y

= €y
which implies this z would be kicked out. Note that this implies that max.cz,, (z* — 2,0%) <
2€p = 4d€p41. O

We can now prove Theoreml 2l After L := [log,(+ )] rounds Z; = {z*} by the above lemma. Thus,

the total number of labels requested after L rounds is equal to £ := >~ 1 Zt (t—1)r+1 Qe(@e). By
Freedman’s inequality (c.f., Theorem 1 of [4]]) we have that

L LT L
ST Qelw) <2 TExW[P(X)|Z0] + log(1/)

=1t=(L—-1)7+1 =1

We can now bound the expected sample complexity of this algorithm.

L
Z TEx 0 [Po(X)| 2]

Iz = 215 1r -
= Z min  7Ex.,[P(X)] subjectto  max ]EXN”[Q POOXXTT Bse <1
P:X—[0,1] z,2' €2y € ’

Using LemmaEI, we have

2 2
e Iz = #llzy., rroo xx7)1 B < s max Iz = #llzy ., rpoo xx7)1
2,2/ €2, E% 0L = 1oL 2/ €2y E%

2
< 64535, max Iz = 2elley o, P x X711

2€2\z, (z — 24,04)?
2
Iz - Z*”IEXN,,[TP(X)XXT]*l
=: max Bs
2EZ\zx <Z — Zs, 9*>2

Note that the last line also describes a condition for which a P, is feasible. Indeed, at round 4, a
sufficient condition for a feasible P (i.e., the RHS < 1) is if 7 exceeds p(v)Bs with 85 := 1024(B? +
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2=z I3 -1 . Lo
0?)log(2L?|Z[?/6) and p(v) = max,cz\ .. (ZE}Z:";S;(T] , which holds by assumption in the
theorem.

Plugging this constraint back into above we have

L

> TExu[Pe(X)|2Z/]

=1

< ZL: min 7Ex.,[P(X)] subjectto  max i Z*”]zEXN"[TP(X)XXT]A Bs <1
T | P v 2€2\ 2. (2 — 24,0,)2 =

where the last line follows by applying the reparameterization of Proposition 2]

B.1.1 High-probability Events
Lemma 2. We have P(£) > 1 — 4.

Proof. ForanyV C Z and z, 2’ € V define
Eor (V) = {l(z = 2,0:(V) = 0.)] < e}

where é\g(V) is the estimator that would be constructed by the algorithm at stage ¢ with Z, = V. For
fixed V C Z and ¢ € N we apply Proposition|l|so that with probability at least 1 — ﬁ we have
that for any 2,2’ € V

(2 = 2, 000) = 0.)] < |12 = g prry x0T VI6(B + 02) log (22 22/3)
< e

Noting that £ := (1,2, ), ./cz, £=,2/,¢(Z¢) We have

]P’( U (&0}

Pl U {0201 <

{=1z,2'€Zy z,2'€Zy

VCZ z,2' €V

>
=1
=S Y p| U &) 2=V
=1
>

Pl U {0} | P2 =V)

(=1VCZ z,2' €V

<> D mEe ('5)”‘4 =V)

(=1VCZ
<N Pz =V) <6
(=1VvCz
O
B.2 Technical Lemmas
The following definition characterizes the RIPS estimator we used in Algorithm I]
Definition 2. Let X1, ..., X,, be i.i.d. random variables with mean T and variance v2. Let § € (0, 1).
We say that [i( X1, ..., X,,) is a d-robust estimator if there exist universal constants cy,co > 0 such
that if n > ¢y log(1/0), then with probability at least 1 — ¢
v2log(1/6)

n({X:}ey) =7 < co —
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Examples of d-robust estimators include the median-of-means estimator and Catoni’s estimator [[18]].
2v2 log(1/4)

n—2log(1/6)
for n > 21log(1/4) which leads to an optimal leading constant as n — co. See [3]] or [18]] for more
details.

Proposition 1. Let x1,...,x, be drawn IID from a distribution v. Assume that |(0,zs)] < B
and E[|(0,z5) — ys|?] < 02 Let P : X — [0,1] be arbitrary. Let Q(zs) ~ Bernoulli(P(xy))
independently for all s € [n]. For a given finite set V C RY define for any v € V

w, = Catoni({ (v, Ex o, [P(X) XX "]71Q(x,)xsys) I ;).

[we =(0,v)]

ey, pax)xxT1-1

This work employs the use of the Catoni estimator which satisfies |[1({ X }7 ;) —&| <

If 6 = arg ming max,, o

1 — 4, it holds that
(0,0 — 0)] < [[vllgy .. np(x)x x7)-1 V16(B2 + 02) log (2] V] /)

and n > 4log(2|V|/9), then with probability at least

Proof. Inspired by [5]], we note that

max |<9,U> N <97U>| — max |<97’U> — Wy + Wy — <97U>|
veV [Vley o mpxyxxTr veV [[VllEx P xx T
< max |<07’U> - wv| + max ‘wv - <9,U>|
veV [[vllgy ., mpx)xxT]-t v€V VllEx o, nP(X) XX T
i OO —wd = (0,0)]
0 eV vl mpx)xxT]-t v€V [VllEx o, nP(X) XX T
< 2max 00, v) — wy

veV [[vllgy , [nP(x)xxT]-1

So it suffices to show that each |(¢, v) — w,| is small. We begin by fixing some v € V and bounding
the variance of v Ex ., [P(X)X X T]71Q(x,)x,ys for any s < n which is necessary to use the
robust estimator. For readability purposes, we shorten E;_ ., 0 (z.)~P(z.) @ E¢, ¢ in the rest of this
proof. Note that

Var, ~,g)~P(e.) (0 Exaw[P(X)XX T Q(2,)25ys)
=E., o[(v Ex~ [P(X)X X 7' Q(4)25ys)?]
— Eo. v Exau[P(X)X X T]7'Q(5)25ys)
which means we can drop the second term to bound the variance by
Eq, (v Exan [P(X)XXT] Q) 2335) ]
=B, o[(v Ex [P(X)XX ] Q)5(2 0+ £,)) ]
= Ea, o[(v Exan[P(X)X X 171 Q(z0) 74 (2] 0))]
+Ee, 0l (0 Exnu [P(X) XX T 71Q(w5)2:) €8]
< BE,, ol(v Ex o [P(X)XXT]71Q(x0)1.)”)
+0%Be, 0l (v Ex o [P(X) XX )71 Q(24),) ]
=Equ o [(B> + 0)EQu)~pan) [V Exew [P(X)XX T]'Qas)2s2) Q(as)Ex o [P(X)X X T] 0]
YR, ., [(B?+ 0B mpn) v Exmu [P(X)XX T 'Q(2s)2s2] Bxay[P(X)X X T 10]]
< By [(B + 0®)0 Ex oy [P(X)XX '] P(ag)zs2) Ex o [P(X)XX T] 1],
where we used that Q(z5)? = Q(zs) in equality (i) above. Thus, we have
Var(v" Ex~y [P(X) XX ] Q(25)25ys)
<(B?+ 020" (Bx o [P(X)XX ] By, o [P(zs)zex ] |(BEx [P(X)XX ] Mo

=(B* + UQ)Hvll(Q]EXNV[P(X)XXT]*l
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By using the property of Catoni estimator stated in Definition |2, we have ¢y = v/2 and
(0 v) — wy |
=|Catoni({(v, Ex~ [P(X)X X "]7Q(ws)zsys) }om1) — Elv, Exn [P(X)X X |71 Q(25)z5s)|

<\/§\/(Var(<v71Ex~u[P(X)XXT}IQ(“)xsysm 105/(53)

(with probability at least 1 — § if n > 41log(2/6))

4(B? + 02) log(2)
<l e, P xxT-1 n

:HU”IEXW[nP(X)XXTk1 \/4(32 + 02) log(2/5)-
Finally, the proof is complete by taking union bounding over all v € V. O

Lemma 3. Holds

Iz — 2|13 - Iz — 23 -
mas IEXN,,[;—P(X)XXT] 1 < 64 max * IEX_N,,[TPQ(X;XXT] 1
, f €7 2€2\ 2. (z — 24, 0.)

Proof. Let Sy ={z € Z: (2. — 2,0,) < 4ep}. We have

9 2
A ||Z*Z/HJEXW[TP(X)XXT]*1 < max HZ7Z/”IEXW[TP(X)XXT]*1
2,2/ €Z, 6? T 2,2/€8, G%
2
— 16 max Iz — Z/H]EXNV[TP(X)XXT]*I
2,2' €8 (456)2
2
< 64 max Iz~ Z*”EXW[TP(X)XXTFI
2E€Sy (4€Z)2
2
=64 max I= - Z*”]EXw[TP(X)XXT}’l

2€8,\z. max{(4es)?, (z — zy,0,)%}

2
1z — 2« H]EXN,,[TP(X)XXT]—l

<64 max

2EZ\ z4 <Z — Zx, 0*>2
O
B.2.1 Reparameterization
Proposition 2. Fix v € Ay and any X € Ayx. Define ||\/V| o = sup,cx A(@)/v(x) and p(\) =
llz—2ll2 -
max,«,, S <Z[E’j ;fe[jﬁﬁ L. For any t, B € Ry the following optimization problems achieve the

same value

llz—2 12 -1
Xy [P(X)XX 1]
it 0.2 p<t

. i tEx~ | P(X bject t ~
P:?I(nir[lo,l] x~u|[P(X)] subject to max, .,

* min p(\)B  subjectto  ||I\/V|oop(N)B <t
AEA X

Let us first prove a simple lemma.

Lemma 4. Let P denote the set of all functions P : X — [0,1]. And for any v € A x with support
XletP' = {kXs/vy : A€ DAx,k>0: KAy /vy €[0,1]}. Then P =P,

Proof. Fixany P € P.If A\, = P,v,/||Pov|1and K = || P ov||; then k\/v € P’ and is equal to
P. This implies P C P’.

For the other direction, fix any A € Ay and x > 0 such that kA, /v, € [0,1] forall x. If P = kA /v
then P € P which implies P’ C P and concludes the proof. O
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Proof of Proposition|2| Using the above lemma we have that

HZ - Z*H]% P T1-1
min  tEx,[P(X bject t X [POXXT]ZL 5
P:X%H[lo,l} X [ ( )] subject o 1;12}5 <Z* 279*>2 B <

is equivalent to

Iz = 2% -, peacx) /o -
Kzg’riig&x tEx,[kA(X)/v(X)] subject to mex E?ZN*" [_)‘Z(T(H):>2(X)XXT] ‘B<t

kXz)/v(z) <1 VeeX

which is equal to, after simplifying,

Iz — 2% -
min tx subjectto  max CEXA XX gy
K>0AEA v Py (24 — 2,04)?

kXz)/v(x) <1 VeeX

which is equal to

min u subject to ANB <u
u>0, \EA x ! p( )5 B

t
A V]oo £ —.
M vloo < -

Note, there exists a feasible (\, u) precisely when there exists a A € Ay such that || A/v|ecp(N) < ¢,
in which case the optimization problem is equal to

. . <
oin. p(N)B  subjectto  ||N/V|oop(N)B <t

C Analysis of the Optimization Problem

C.1 Proof of TheoremM

For simplicity, we will use u instead of u;, to denote the number that controls the intensity of barrier
function.

The proof relies on analyzing another function D : R‘éﬁd — R. For simplicity, first, we define

ha(e) = Pa(e) - pu(log(1 — Pa()) + log(Pa () - Pa(e)a Aa, ©)

Recall that our dual objective is D(A) = Ex ,, [ha(X)] + % D yev, y " Ayy. Since the first term
4

in Ex., [ha(X)] only depends on A = >
problem.

— Ay, we can consider the following optimization

f(A) = maxy, Zyey,g yTAyy
subject to Zyeye Ay=A (10)
Ay =0, Yye.
Then, the alternative dual objective D(A) is defined as D(A) = Ex~, [ha(X)] + & f(A). We
J— (4
can immediately see that maximizing D(-) is equivalent to maximizing D(-). In particular, let
A* € argmax,, o D(A) and (Al*/)yeye be the set of PSD matrices that solve problem (T0) and
evaluate f(A*). We can see that (AZ)yeyz also maximizes D(-). Conversely, for A* = (Az)yeyz €

argmax, .o, D(A), we also have A3 € argmax, o D(A).

HISRY)

Further, we also define their empirical version D and Dy with extra i.i.d. samples x1,..., T, as

1

1 = IRS 1
Dp(A) =~ > ha(zi) + 2 > y"Ayy and Dg(A) = ” > ha(zi) + gf(A). (11)
=1 =1

yEVe
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Recall that the problem Algorithm 2]tries to solve is

miny Exu[P(X)  p(log(1 — P(X) + log(P(X)))] N
subjectto Ex., [P(X)XXT] = %ny, Yy € V. (12)

We will restate a more precise version of Theorem[d]and then prove it.
Theorem 5. Suppose ||z|, < M for any = € supp(v) and ¥ = Ex., [XX "] is invertible. Let

A" € argmax, .oy, D(A) and K(X) = % be condition number. Assume ||A*| n > 0 and

define w = minpega,|r| =1 Ex~v {(XTI‘X) 2}, where S¢ is the set of d x d symmetric matrices.
4
Let (V4 CF = 5 5 ey, ol

Then, A* =" A} is unique. Further, for any € > 0 and § > 0, suppose it holds that

yEVe

3(X) [|A*]| - M2 1 4 1
p < min \/ u Ll R SIAT|G MY —
8 9 2V/3

)
€

w26

1~ 2885(5)2 Vil A% ML + CF) - (2A%]] - M2+ 1) 1og(6/5) (1 + )
- €

.~ T6r(2)? A% |2 M3 - (2] A% M2+ 1) 10g(6/5) (1 +€)>
- w2yl € '

Then, with probability at least 1 — 6, Algorithmwill output A that satisfies
-1
sy Ex [Px(X)XXT] "y<(1+e)ci, Vye.

* Exew [Pi(X)] <Ex~w []B(X)} +4./11, where P is the optimal solution to problem (20).

Proof. First Bullet Point. Fix some ¢ > 0. Let A and corresponding A= Zyeyg Ay be the
parameters obtained by Algorithm 2]just before the re-scaling step, which means that at line [T0]of
Algorithrn the assignment of A, to each y € Y, has been optimized by solving problem (10). That

is, we have D(A) = D(A) and Dg(A) = Dg(A). Let A and A be the ones after the re-scaling step.
Then, by Theorem 3.13 of [21]], with probability at least 1 — %, it holds that

e TR . A Reg(K) + 2+/2K log(6/5)
D(A*) - D(A) = D(A) ~ D(A) < v ,

where Reg(K) is the regret of running projected stochastic gradient ascent for K steps with
Ny, specified in Algorithm Meanwhile, by Theorem 4.14 of [21]] also, we have Reg(K) =

K * * *
V2B 51, 5 ey, gk y |3 where B = /IV] A" bound the norm of A* = (A}) __, .
Y

. T .
Since gx, = i’g — Py (z)zrey, we can easily get Zyeyz HgkyHg < 2|V M* +
4
% ey Iylly =21V M* +2|Y,| CZ. Thus, we have

Rea(K) < 2|Vl |A*[3 /I M* + Y] CF - VE = CregVE (13)
_— ﬁ(A*> _ E(A) S CREg + 2\/>\/I§10g(6/6)7 (14)

We now consider the effect of using w i.i.d. samples in the re-scaling step. First, since re-scaling

always increases the function value, we must have Dg(A) < Dg(A). Meanwhile, since Dg(A) =
Dg(A), by Lemma we have D (A) = Dg(A), which together implies D (A) < Dg(A).
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By Lemma L we know that A* is unique and as long as p < 5 \/g’ D(A) is G-strongly concave with

respect to £5 norm over S = {A = 0 : ||A[|p < 2||A*||z}, where G is defined in Eq. (ZI). Thus, by
Lemma|TT] if K is large enough such that

_ . CReg + 21/210g(6/6 G ||A*
VK 2
then HA — A" . < ||A*|| p, which implies H/A\HF < 2||A*||. Thatis, A € S. Then, under this
condition, by using Lemma when p < 5 ||A*||  M* and

6(%) || A*]| M4 (2 + \/W) e

1
u> . — . (15)
for A after re-scaling, with probability at least 1 — £, it holds simultaneously that
L — Gu? € — = Gu? €
De(h) - DA)| < —H . d ’D A) - < : 1
sA) =P = a1 ™ £(h) = mney 15 19
— D(A") — D(X) < D(A*) — D(A) + D(A) - D(R)
< D(A*) - D(A) + D(A) - Dp(A) + De(A) - D(A)

(Since EE(/A\) < DE(K))

CReg + 21/210g(6/6) 2G u? €
< . . By Eq. d
< N +3M2n(§]) T By q. (T4) and (16))

Since A is a smaller re-scaling of A, we have A € S, which implies § HA* - /~\H < D(A*)—D(A)
by property of strongly concave function [3]. Therefore, by Lemma|I2] to guzfrantee an at most €
multiplicative constraint violation, it is sufficient to choose K such that
Gl,. ~ — e =
O], <o) -0
< CReg +2+/210g(6/9) 2G 12 €
- VK 3M?k(%) 1+e

. AGp? e G|Ap
= mm{gM%(z) 1o 2 }
4G u? €
T 3M26(D) 1+e
An algebraic rearrangement gives us

. 3k(2) M2 (CReg +2/2 log(6/5)> -
> .
- 2Gu? €

(If,u < \/3“(2)”1;*|‘ij2 . %)

Second Bullet Point. We then prove the upper bound for primal objective value Ex .., [PK(X )],
which explains the reason why an extra re-scaling step is needed. Define g(s) = Dg(s - A).
By construction, we know that g(s) is maximized at s = 1 because A = 5. A, where s* =
argmax,co 1) De(s - A). Therefore, we have ¢’(1) > 0, which in turn gives us

g'(1) ZyTAyy—fZP (zi)x; Az; > 0.
g yEVe
By the concentration inequality in Lemma(8] we know that when

2([A" | M2 (A" M2 + j1/2108(675) )

> e , (18)
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with probability at least 1 — g, it holds that
1 u
Ex~ [PA(X)XTAX] = =3 Py(z:)x] Ax;
Xev [PA(X) ] w2 NCDEIRY

1 - -
= 5 Sy Ay —Exes {PK(X)XTAX} + /> 0. (19)
© yeYe

< Vi

Now, let P be the optimal solution of problem (20) and P be the optimal solution of the same problem
with bound constraint 4 < P(z) <1 — p.

minp EXNV [P(X)]
subjectto y Ex., [P(X)XXT] 'y <, Vye, (20)
0<Px)<l—p, VeelX.

Then, we can notice that
Ex~ [Px(X)]
<Ex~y [P5(X) — u(log(1 — P5(X)) + log(P5(X)))]
<Ex~y [P5(X) — p(log(1 — P5(X)) + log(P5(X)))]

1 ~ ~
5 >y Ry~ By [PROOXTAX] + Vi (By Eq. (%)
¢ yey,
= iII})f L(P, _/~X) + i (By definition of Lagrangian function and how we solve for Py)
< .
=0, 8y, BB VR

=Ex~ [Pa-(X) — p(log(1 — Pr+ (X)) + log(Pa-(X)))] + Vit
<Ex~, [P(X) - plog(1 - P(X))| - plog (P(X)) + Vi

(Since P is feasible to problem (T2))
<Ex.. [P(X)} + 3V, (Since —alog(a) < vafora € (0,1))
<Ex~, [JS(X)] + 4,/ (Since P(x) can have at most 1 more contribution than P)

Therefore, in summary, Suppose K and u satisfy conditions specified in Eq. (I7), (I3) and (T8)
and p < min \/w e A2 e, L }, where CRreg and G are defined in Eq.

€9 2V3
(T3) and ZI), respectively. Then. by applying a simple union bound, with probability at least
1 — 4, the output of AlgorithmA satisfies y ' Ex~, [P(X)XXT] y<@+ €)c,Vy € YV and

Exew [P5(X)] < Exuy [P(X)] +4y/R 0

C.2 Relevant Lemmas
C.2.1 Strong Concavity of D(A)

Lemma 5. Aslong as pn < ﬁ, D(A) is G-strongly concave with respect to {2-norm on the bounded
region S = {A = 0 : [|A| p < 2||A*||} with coefficient
G = H 5 min
2(2||A*|p M2 +1)" Test|r|p=1

Because of this, as a corollary, A* will be unique.

Ex.., [(XTFX)Q} . 1)

Proof. By Lemmalf] since f(A) is concave in A, it is sufficient to prove that Ex ., [ha(X)] is
G-strongly concave on S, where ha () is defined in Eq. (@). Then, we have
dPy

—V2Ex~0 X)) =Ex., | —
VAEx~, [ha(X)] = Ex i

(X)vec (XX ) vec (XXT)T} .
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Since ||z]|, < M, forany A € S, we have gz (z) =z " Az — 1 < 2||A*| . M? + 1. By Lemma,
we know that if 12p2 < (2[|A*|| - M? + 1)2, which can be done by choosing p < 21% we have

dPy N
g (z) > SN A1) for any x € X and A € S. Therefore, we have

~V3Exy [ha(X)] =7 - Exew |:V€C (XXT) vec (XXT)T]

Now, let S be the set of all d x d symmetric matrices. It is obvious that S is a subspace of the
vector space of all d x d matrices and S C S. Thus, by applying Lemma([7} we can conclude that
Ex .~ [ha(X)] is G-strongly concave on S with respect to {2 norm and
K T T T
G = min vec(F) Ex~v [vec XX " )vee (XX ] vec(T
2 (2||A*||p M2 +1)° rest|r| = ( ) vee ) (T

a min _ Ex., [(XTTX)*].
2(2|A*|[p M2+ 1)% rest:|D =1

Thus the proof is complete. O
Lemma 6. f(A) defined in Eq. (10) is concave in A.

Proof. To show its concavity, consider A(Y) > 0 A® = 0 and some v € (0,1). Let (A{)),cy, be
the optimal solution obtained by evaluating f(A()) for i € {1,2}. Then, we can notice that

VIAD) + (1 =) fAPD) =7 Y yTANy+(1—7) Yy APy

yEYVe yEVe
=y (AN + (1= y)AP)y
yEVe
< FAD + (1 - 4)A®),

VYV, AP = A® for i € {1,2} and thus
ey, (VA8 + (1= )AP) = yAD 4 (1-7)AR), which means that (vA§ +(1-7)AF) e,

is a feasible solution for problem (T0) with parameter YA 4 (1 —fy)A(2). Therefore, we can conclude
that f(A) is concave in A. O

The last inequality above holds because

Lemma7. Let f : R? — R be a convex and twice differentiable function in R%. If for some subspace
S C RY, we have MiNyes: |w||,=1 w!'V2f(z)w > o >0, Vo € S, then f is o-strongly convex with
respect to ly-norm on S.

Proof. Suppose S has dimension m and let vq, ..., v,, be a set of orthonormal basis that span S.
Then, for each z € S, there exists unique z € R™ such that x = Vz, where V = [v1 ... vp).
That is, there is one-to-one correspondence between S and R™.

Now, we define g : R™ + R as g(z) = f(Vz). Itis easy to compute V3g(z) = VIV2f(V2)V

Then, notice that for any w’ € R™ such that ||w'||, = 1, we have Vw' € S and |[Vu'|, =
Vw'TVTVw = Vw'Tw' = 1. Thus, we have
. 1T w2 !/ . 1Ty, T2 /
min w' Vig(z)w' = min w ' VIVf(Vz)Vw
w’'€R™:||w’||,=1 w’ ER™:||w’[|,=1

= min  w Vif(V2)w>o.
weS:||wll,=1

Therefore, g is o-strongly convex with respect to /5 norm. Then, for any x1, x5 € S, there exists
unique 21, 22 € R™ such that ; = V21 and 25 = V' 25. Notice that |2y — 23|, = ||z1 — 22|, since
V preserves the norm. Further, by definition of strong convexity, for any « € [0, 1], we have

glazi + (1 a)z) + Za(l - a) 21 - 2]} < ag(x) + (1 - a)g(z2)
— flaVa +(1—a)Vz)+ %a(l —a) |z — 2} < af(Var) + (1— a)f(Vz)
— flaz +(1-a)z) + Za(l - a) a1 — w2} < af(e) + (1 - a)f(z2).

Thus, f is also o-strongly convex with respect to {3 norm on S. O
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C.2.2 Concentration Inequalities

z|ly < M forany x € X and

Lemma8. Letzy,...,x, ~ vbeiid. samples. I]‘HAH <2||IA*|| g
F

1 < Y\A*||% M, then with probability at least 1— 22, it holds for any A € © = {8 A:selo, 1]}
simultaneously that

2Nl M2 (2 +/2 10g(6/§))
- Vu

_ 2N M (A M2 + /2 109(679))

Ex~y [PA(X)X TAX] — %ZPA(@)@«. Az;| < e )

Proof. To prove the first inequality, first, notice that we have hy(z) = —Pa(z)ga(x) —
u (log(1 — Py(x)) + log(Pa(x))), where gz (x) = x" Az — 1. Since P (z), defined in Eq. (7),
explicitly only depends on g () instead of = directly, we can treat h, as a function of g, and define

a function class F = {x = (s-MNz:selo, 1]} It is well-known that if hy is L;-Lipschitz

in ga and |hp(2)] < Ry for any A € © and & ~ v, then, with probability at least 1 — g, it holds
simultaneously for all A € © that [2,[19]]

1 & 210g(6/0)
Exoy [ha(X)] = =S ha(z:)| < 201 - Ry Ry 2280200 2
X [ha(X)] u; Alzi) 1 Ru(F) + R " (22)
where R, (F) is the Rademacher complexity of F.
To find L1, we can compute
dha  dPy APy ( " [ >
—— === qr — A+ —— -5
dga dga dga \1 =Py Py
dP, dP,
-4 gn — Pa + A qa (Since Py satisfies Eq. (6))
d-qa dga
—_P

Therefore, we have % e [—1, —%] by Lemma Therefore, we can set L1 = 1.

Let hg be the value of hy when go = —1, which means 2T Az = 0. To find R;, notice that since

% € [71, f%] we must have —ga + ho < ha < —£qa + ho. By Lemma we know that

ho € [0,2/n]. Therefore, we have —z" Az < hp(x) < —4aT Az + 3,/n for any 2 € X and

A € ©. Since |[Al|, < HAH < 2||A*|| . we have |ha (z)] < 2[[A*]|, M? := Ry, which holds
F

* 2
when s < 2 |A*||% M*. Then, by Lemma@ we know that R, (F) < W

values of L1, Ry and R, (F) into Eq. (22) gives our first concentration inequality.

. Thus, plugging in

We can basically follow exactly the same strategy to prove the second concentration inequality. In
particular, define hy(x) = Pa(z)z" Az = Py(x)ga(z) + Pa(x). Then, with probability at least
1-— g, it holds simultaneously for any A € © that

< 2Ly -Ru(]")JrRz\/Ql%(G/a), (23)

where ‘ﬁA(:c)’ < Ry forany x € X, A € © and hy is Lo-Lipschitz in gy .

Ex-. [iLA(X)} — %zu:im(ffz)
i=1

To find Lo, we can compute
dh dp,
A :PA—F—A-xTAx.
dga dga
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By LemmaH we know that dPA S {O, 5 } Thus, we have ’3’“ <1+ % = Lo. Itis

obvious that ha(x) < 2||A*||z M* := Rs. Thus, by plugging the values of Lo, Ry and R, (F) into
Eq. 23), we can obtain the second concentration inequality.

Finally, both concentration inequalities hold simultaneously with probability at least 1 — 23—‘5 by a
simple union bound.

Ex~u[(XTAX)2] _ 2)jA"| oM
u - Vu

2
, where

Lemma 9. I]’HAHF < 2||A*|| ., then, we have R, (F) <

F = {LIZH%T(S'A)I:SG [0,1]}.

Proof. Let 01,...,0, be ii.d. Rademacher random variables, which are uniform over {—1, +1}.
Letzy,...,z, ~ v bei.id. samples. Then, by definition of Rademacher complexity, we have

u

R.(F)=E [sup 1 ZUiQ(mi)]

(2
qeF Ui

=E| sup — Z 0T T; (By definition of F)
s€[0,1] W i
)1 - A - A
9= ]I{ZO,L-JU;AJ:Z'EO}ZG,-JU;A@] .
i=1 i=1
S ZO’ZI':A,TZ ]
i=1
1 = ’
<= |E (Z UimiT/AXxi> (By Jensen’s inequality)
U -
1 E-i(T[\ )2 (Si s are i.i.d. and E[0;] = 0)
== x; Az; ince 0;’s are i.i.d. an oi| =
u i=1 '
)
Ex., (X X) } )
_ _ 2[Ap M
u - Vu '
Here, the equality (i) holds because when >, oz, TAz; < 0, the supremum over s € [0, 1] will be
obtained by taking s = 0; otherwise, it will be obtalned by taking s = 1. O

C.2.3 Other Lemmas

The following lemma basically shows that f(A) is linear in scalar multiplication.

Lemma 10. If Dg(A) = Dg(A), with A = Zyey o then, for any s > 0, it holds that Dg(s -
A) = Dpg(s- A), where D and Dy, are defined in Eq. (T1).

Proof. It suffices to show thatif 3 ,, y Ay = f(A), then > eV, y (s-Ay)y = f(s-A) for
any s > 0. By definition, we have

f(s-A) =maxy, Zyew y Ay A

subjectto > oy, Ay =s-A
Ay =0, Vy € V.
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For the above optimization problem, we can do a change of variable by setting A; = % Ay =
Ay=s- A;. Then, we have

fs-h) =maxy, Y,eu7(s ALy
subjectto 37 5, s+ Ay =s-A
s~A;/iO7 Yy € Vy.
— f(s-A) = maxa, S).,cy, yTA&y
subjectto Y A=A

— fs- A =s-fR)=s- 3 yTAy= 3y (s A,y

Thus, the proof is complete. O

Lemma 11. Let f : RY — R be a concave function with maximizer x* over the convex set C.
Further, assume that f is G-strongly concave with respect to o norm in region S N C, where
S={z:|z—a*, <AL Iff(z*) — f(z) < A€ and c € C, then z € S.

Proof. By property of strong concavity, we know that, f(z*) — f(z) > < |z — 2*|, for any
x € SN C. Now, suppose 2’ satisfies f(z*) — f(2') < 4%, 2’ € Cand 2’ ¢ S. Then, we must have
|z — x*||, > A.

Let~y € (0, 1) be some number such that z = ya’+ (1 —-)a* lies on the boundary of S. By convexity,
we also have z € C. Then, since f is concave, we have f(z) > vf(z') + (1 — ) f(z*) > f(z'),
where the second inequality is strict because f is strongly concave in a region around z*. Since
f(z*) — f(z') < A€, f is G-strongly concave on S and z lies on the boundary of S, we have

A A
A0 G ety < 1) — 1) < ) — 1) < A2

This is a contradiction and thus we must have 2’ € S. O

The following lemma quantitatively describes how close A and A* needs to be to ensure an at most ¢
multiplicative constraint violation.

Lemma 12. Assume ||z||, < M forany v € X. Let ¥ = Ex., [XX '] = 0 and A* =
argmax, .o D(A). Then, for any € > 0, if we have

< 8142 Anin (2) €
P 3M (D) 1te

HK _ A

then it holds that y "Ex ., [PK(X)XXT] ! y < (1+€)c? foranyy € Yy

Proof. Fix some e > 0. First, notice that if we regard Py as a function of ga (z) = z " Az — 1, it then
holds that
dPy

dPy
—V
dga

APy dPy
- dga

2
M? < M=
2 dga

= 8

rar(@)| < |52 e, <

3

IVAPs(@), = H

where we obtain the last inequality by using Lemma Therefore, for any z € X and Ao,

3 T~
we have |Px(x) — Py-(2)] < 47 - HA—A*

. by mean value theorem and Cauchy-Schwartz.

inequality.
Therefore, if we have H/NX — A* - < ¢, then
| P5 () P()]<M25:>P()>P() Mo
~ (1) — Pp+(x —_— ~(x «(x) —
A A ~ 8u AV = A 8
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M?2§
8

= Ex [Py(X)XXT] = Ex., [Pa-(X)XXT] - Ex [XXT].

By Lemma T3] we know that

yy'

(1+e€)cf
Let>X* =Ex~, [PA* (X)XX T] Therefore, to guarantee the condition in Eq. @), it is sufficient
to guarantee that ©* — A9y

Y Exey [PY(OXXT] y < (14 €) = Exoy [PR(X)XXT] = (24)

which is equivalent to

8u (1+ ) (A4e)c2?
M?2§ T
w! Y — w' Sw > (27), Yunit vector w € R
8p cj(1+e)
1 T M?3§
wT (o 5 Jw > ., Vunit vector w € R%.
wT Yw (14 €)c 8u

Therefore, it is sufficient to choose § such that

M?25 1 yy
< i (D= ) < .
8 T Amax(X) < c(l+e) w: Hsz—l wTZw (1+e)c —|— €)c? v
=
2*

yy Meanwhlle by
- 3. That is, for

Since Py~ satisfies the constraint defined in problem (I2), we have ¥*
Lemma we know that Py~ () > & for any z € X, which means that
any unit vector w € R%, we have

T 2
(w'y)

2
7

w! Y > and w'X*w > g)\min (%),

T 2
which together implies w " ©*w > max {g “Amin(X), (wpgw } Therefore, it holds that
0

(wTy)’ NN a7 I B AN
wTZ’LU _ m > max g : >\m1n(2>7 C? o (1

S 7N (w'y)” e(w'y)”
maX{?)')\mln(E) (1+€)Ce (1—}—6)64}

> : )\min b
~3(1+¢) (%)
N R /AR B Amin (2)
min C%(]_ + 6) - 3(1 + 6) min .
Therefore, to guarantee the condition in Eq. @), it is sufficient to have
M25 >\min by 2)\min b
__ epAmin(E) :>u:8“ ().6’
8 3(1 + €)Amax(X) M Apax(X) 1+¢€
Thus, the proof is complete. O

The following lemma is a result of standard Schur complement technique.
Lemma 13. I[fEx ., [P(X)XXT} is invertible and cp > 0, then

.
Y Exny [POOXXT] y <} e Ex [POOXXT] = 2
g4

Proof. For simplicity, let A = Ex., [P(X)XX "] = 0. Then, we consider the block matrix

[é cy2:| € REAFDX(@HD) Let[u a] € R with u € RY be some vector.
¢
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Now, for one direction, suppose y " A~1y < ¢Z holds. Consider
[u a [fr 03%] [Z} =u' Au+ 2au"y + 2¢2a® = r(u, q).

If we minimize r(u, @) over u, which means to treat a as fixed, we can get (by taking gradient and

setting it to zero)

= —aA"y = r(u*,a) =a*(Z -y A y).

Since y " A~y < ¢2, we know that r(u*, a) > 0, which means (v, a) > 0 for any [u a]T € R+,

Then, if we minimize r(u, a) over a, we can get

’LLTy

T 2
=—— = r(u,a") = u' Au — M

=7 7
: T d+1 T (uTy)? d
Since r(u,a) > 0 forany [u a] € R4, we know that u' Au — ~—* > 0 for any u € R®
4
;
That is, we have A > %
14

The other direction simply takes the above calculation in a reversed way and thus the proof is
complete. O

C.2.4 Properties of Py
A visualization of P, is given in Figure2]

Heatmap of Pj(x) Py (x) with different s,

1.0

1.0 4

0.8 4

0.6 0.6

Py(x)

—0.5

-1.0

1.5

— =01

)= 0.02
0.0 o

-2.0 0.0 T T T T T T T
=20 -15 =10 =05 0.0 0.5 1.0 1.5 2.0 -1 0 1 2 3 4 5
() =xTAzx -1

Figure 2: (left) A heatmap of some P, when problem dimension is d = 2, which shows that P, is
approximately an O-1 threshold rule characterized by an ellipsoid. (right) A plot of P, as a function
of ga(x) = =T Ax — 1, which shows that the change of P near the boundary of ellipsoid is sharper
when the barrier weight p is smaller.

Lemma 14. The function Py (z) defined in (7)), if regarding as a function of g5 (x) = zTAz—1> —1,
satisfies

* limg, o Py = 3 forany pu € (0,1)

e Whenqy = —1, Py = %—l—,u— _,1—54;/“ > & and Py — p(log(1 — Py) +log(Pr)) < 24/1
forany € (0,1).
/3 5,2
e B MVIIWE I g eses as q% increases. Further, $£A ¢ [0, L], Thus, Py

daa @2\ /q3+ap? dga T 8u

increases monotonically as qy increases and Py(x) > & for any x € X and A = 0.

d Py
dga

dp,
lan=1 > {5 and G > by when qf > 1241°.
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Proof. For simplicity, we will drop the subscript A and just treat P as a function of ¢. That is, we

have

P(q) =

[ (21— 9)* + 4ug
Pl .

1
2 2q

We prove each bullet point separately.

Since P(q) also satisfies Eq. (), which in simpler form is %P(q) — % = g, we can

casily see that P(q) = 1 satisfies this equation when ¢ = 0.

By direction computation, we can get P(—1) = u Y 1+4“ . To show this is greater

than £ for any 4 € [0, 1], consider £(u) = P(— ) CTtis easy to check that £(0) = 0

and K(l) > 0. Then, since ¢/ (1) = 2 — \/12+T is 1n1t1ally greater than 0 and then smaller
m

than 0, we know £(11) first increases and then decreases on [0, 1]. Thus, £(x) > 0 on [0, 1]
and thus P(—1) > £ for any u € [0, 1].

For the second part, define £(1) = 2,/ii — P(—1) + pu (log(1 — P(—1)) + log(P(~1))).
Then, by utilizing the fact that P satisfies Eq. (6], we can compute its derivative and get

df = f +1log(1 — P(—1)) + log(P(—1)). We can check that on the domain (0, 1), we
3/2
have 424 — _W + ; _ 2 2/ p(14+4p2)—4p V/ 14+4p2 < 0 on (0,1), which

dp? \/1+4;t 2u3/2\/1+4lt2
means that 1s monotonically decreasing. To see why the second derivative is smaller
than 0, we can compute

(4@3/2 +/1+ 4#2) — g (14 4?) = (1= 20)% + 842 /1 + 412 > 0.

Thus, 3= 1s initially greater than 0 and then smaller than 0 on (0, 1). It is easy to verify that
hmuﬁo E = 0and /(1) > 0. Therefore, we have £(1) > 0 for any p € (0,1).

w2 +4p2 —2p2

We can get % = by direct computation. To show it is decreasing as ¢>

*\/ ¢ +4p?
. . . z Vz+ap?
increasing, we consider f(z) = VAR and it is sufficient to show that < 0 for
27/ z+4u?

any z > 0. Again by direct computation, we have
- 3/2
aF ,u(8u3+3uz—(z+4u2) /)
dz 22 (z—|—4,u2)3/2 ’

By direct computation, We can show that (z + 4u2)3 (8u? + 3,uz)2 =23 4+32212 >0

for any z > 0 and p € [0, 1]. Thus, 3’; < 0and thus 2 is decreasing as 2 increases.

It is obvious that % > 0 for any ¢> > 0 and u € [0,1] since we always have

pr/q? +4p? > 2p2. Thus, the maximum value could potentially happen is when

q*> — 0, which can be evaluated by using L’ Hospital’s rule. A direct computation gives

us limgz_, % = =. Thus, we can conclude that Ly {0 ] Therefore, P increases

monotonically as ¢ 1ncreases, which implies that PA( ) > & forany x € X’ and A.

By direct computation, we have 4 d Al ga=t1 = (1 - \/12_57“2> > (1 - %) > 45 for

. 2, .. . .
any p € [0,1]. The reason is that we can easily see \/1+LT;L2 is increasing in f.

Finally, notice that when 2 < %\/qQ + 42, which is equivalent to ¢? > 1242, we have

AP _ py/q® +4p® =202 u\/q +4u -5V 4t

dg @@+ 42 2+ A2 T2
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Thus, the proof is complete. O

C.3 An Alternative Approach to OPTIMIZEDESIGN

Based on the analysis in Section we know that maximizing D(-) is equivalent to maximizing
D(-). Therefore, as an alternative to Algorithm 2] which maximizes D(-) through stochastic gradient
(.

ascent, it is natural to have an algorithm that directly maximizes D(-). Here, we will consider
subgradient ascent.

Recall that D : S4 +— R is defined as

D(A) = Exny [PA(X) — p (log(1 — Pa(X)) + log(Pa(X))) — Pa(X)X TAX] + % - f(A),

¢
where f(A) is defined in problem (T0). The subgradient of D(A) is
= p p T |, 0f(y)
DA)=Ex, |1 — —-X AX Py(X)—Ppr(X)XX —
D) =B (1415 it ) V0= P+
(The first term is differentiable)
_ W) g PA(X)XX"T i
=Tz X [PA(X) ] (Since Pp(X) solves Eq. (6))
¢

Therefore, to run subgradient ascent, we only need to find an element in 9f(A), which can be
obtained by solving the following optimization problem as claimed by Lemma [[3]

minp (T, A)
subjectto T'>=yy', Yy eV, (25)
r=2 ZyGye yy—r'

As a result, we have Algorithm [3] as an alternative to solve OPTIMIZEDESIGN. Compared to
Algorithm [2} which needs to maintain |),| > number of objective variables, Algorithm only has d?
variables. However, each iteration of Algorithm 3]is computationally more intensive since finding a
subgradient needs to solve the problem (25).

Algorithm 3 Projected Stochastic Subgradient Ascent to Solve OPTIMIZEDESIGN

Input: Number of iterations K'; number of samples u; barrier weight u;, € (0, 1)
Initialize A(®) = 0
fork=0,1,2,..., K —1do

Sample zj ~ v

Solve problem with current A to get T(F)

Set g, = % — Py (zi) )

Set Ak+1)  A(k) 4 Nk gk, Where ny, =

A A

1

V 2 Z?:] ”95 H%

8:  Update A1) Mge (A®+1) a projection to the set of d x d PSD matrices

9: end for .

10: Let A = & S°% A

11: Find s* ¢ argmax,c(o 1 Dg(s - A), where D is the empirical version of D, evaluated using
u i.i.d. samples

12: return A = s* - A

A result similar to Theorem [5]can also be obtained for Algorithm [3] which is given in Theorem [6]

The bounds are almost identical except that the old lower bound for K depends on |yg\3 while the
new one depends on |)y|. Steps identical to the proof of Theorem will be skipped in the proof of
Theorem

Theorem 6. Let A* € argmax,, g D(A) and take other settings the same as that in Theorem
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Then, A* is unique. Further, for any ¢ > 0 and § > 0, suppose it holds that

, Br(X) [[A*]|lp M? 1+e 4, 1
L < min V/ ( )|| ”F 7|| HF
8 € 2\/§

_ 288K(S)2 A MA (M + 419 CF) - (2] A M2 +1)* log(6/5) ( - )
= w26

€

* * 4

o BT6r(2)[|A I M3 - (2| A7||p M2 + 1) 1og(6/8) (14 ¢€)*

- w?pub €

Then, with probability at least 1 — 6, Algorithmwill output A that satisfies
« Yy Exo, [Py(X)XXT| 'y < (1462, Vye

* Exew [P3(X)] <Ex~w [ﬁ(X)} +4./11, where P is the optimal solution to problem 20).
Proof. First Bullet Point. Similar to the proof of Theorem let A be the parameter obtained by

Algorithm [3]just before the re-scaling step (line[TT). Then, by Theorem 3.13 of [21]], with probability
at least 1 — g, it holds that

A%y — Bk < Feal +2¢m

where Reg(K) is the regret of running projected stochastic subgradient ascent for K steps with
Nk specified in Algorithm [3] Meanwhile, by Theorem 4.14 of [21]] also, we have Reg(K) =

K 2 . . (*)
V2B2%\/>" 0, llgkll;, where B = ||A*|| . Since g = Fcﬁ — Pioo (zp)mpa)] and [[TW)|| <
: 2 4
2 szeyg nyHF, we can easily get || gx |5 < 2M* + % S yev, lully = 2M* + 8|V C7. Thus,

we have
Reg(K) < 2||A*||% /M4 4+ 4|V C2 - VK := Creg VK (26)
— ﬁ(A*> —E(A) S CReg+2\/»\/[§10g(6/5)7 (27)

‘We now consider the effect of using « i.i.d. samples in the re-scaling step. Since re-scaling always
increases the function value, we must have Dg(A) < Dg(A).

Then, after exactly the same steps of analysis, we can get the following same lower bound for K,

- 3(D) M2 (C’ch+2\/210g(6/5)> l+e
> .
- 2G u? € ’

(28)

with a different value of Creg.

Second Bullet Point. We then prove the upper bound for primal objective value Ex .., [PK(X )],
which explains the reason why an extra re-scaling step is needed. Let A = (A )yey, be aset of PSD
matrices that solves problem (10) with parameter Aand A = s*-A, where s* = argmaxg €lo,1] Dg(s:
A). Since the constraint in problem (T0) requires dyey, Ay = = A, we have > ey, Ay = = A, which
is the output of Algorithm 3]

Define g(s) = Dp(s- A). By construction, we know that g(s) is maximized at s = 1 because D (s -
A) = Dg(s-A) forany s > 0 as shown in Lemma. Wthh means that s* = argmax,c(g 1] Dr(s-

A). Therefore, we have ¢’(1) > 0, which in turn gives us

Zy Ayy—fZP~ X)), TAz; > 0.

¢ yey,
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Then, after exactly the same steps of analysis, we can get Ex.,, [P5(X)] < Ex~, [IS(X)] +4./1,
where P is the optimal solution of the problem (20). O

C.3.1 Technical Lemmas

Lemma 15. The optimal value of the optimization problem 25) with parameter A = 0 is equal to
f(A). Further, let T*(A) be an optimal solution to @23). Then, it holds that T*(A) € 90f(A) and

IT* (M) < 2{|X ey, vy

Proof. Alternatively, we first consider the following optimization problem.

maxa, s D,cy, y' (A, —2%)y
subject to A= Zyew -, (29)
S = 0,A, = 0. Vye

Since y ' Yy > 0 for any y € )V and X = 0, it is clear that problem (29) has the same optimal value
as problem (T0). Then, let I' € R4*? be the dual variable for the equality constraint in problem (29).
We can have its dual problem to be

Hllinl\ytlg}g?}l%yz, > (oA —28) + <F,A+ DEDY Ay>

$=0 yEVe yEYe

yEVe HISRY)

— 1ni T, A v, —2 T :
B, T+ (BT 2 )+ (s
>0

In order for the above optimization problem to have finite value, we must have I' < 2" — yy "
and " >= yy ' for any y € ). Therefore, we obtain the following dual problem.

minp (T, A)
subjectto T'>=yy', VYyeV, .
T2 ey, vy

This is exactly the problem (23)). Then, we can notice the Slater’s condition is clearly satisfied by
problem (25)), which means the strong duality holds. Therefore, problem has the same optimal
value as (29), which is the same as (I0).

Since f(A) is concave in A as shown in Lemmal6] to show that T'*(A) € 8 f(A), consider arbitrary
A, A’ = 0. Then, we have

FA) + (I(A), A" = A) = (T"(A), A) + (T(A), A" = A) = (T"(A), A) = f(A).

The first equality holds because the optimal value of problem (23)) is f(A) as just shown above. The
last inequality holds because I'*(A) is a feasible solution to the problem with parameter A’.
Therefore, we have I'*(A) € 0f(A).

Finally, since the constraint of problem requires I (A) < 237 ) yy ', we can obtain
IT*(A)||m <2 szew yy ' HF as a direct consequence of Lemma O

Lemma 16. For A, B € S¥™4 if A= B = 0, then || Al > || B|| 5

Proof. Let \1,..., g and 74, ..., 74 be eigenvalues of A and B, respectively. Let vy,...,v, be a
set of orthogonal unit eigenvectors of matrix A. Then, we have

|A|l = V/tr (AA) = <<ZM1 ) <§2AMT>> = é)\?.

Similarly, we have || B|| = \/Zle v2. By Corollary 7.7.4 in [14], since A = B > 0, we know
that \; > ; > 0 for each i. Therefore, we have ||A| » > || B]| p. O
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D Selective Sampling Algorithm for Unknown Distribution v
D.1 Statement and proof of Theorem

Consider now the case where we do not know v exactly, and are returned (Pg, Z ) that only
approximate their ideals. Algorithm [I]can still be employed to solve this case where v/ 1s unknown,
but at the cost of sampling some historical data. Note that compared to the case where v is know, it
assumes the knowledge of an upper bound on sup,, cquppor(v) || - It also relies on a multiplicative
factor change in the constraint of the optimization problem, in order to account for the possible
constraint violation of the output of the subroutine. The last difference is the use of an approximation
of the covariance matrix to compute the estimator. The covariance matrix is empirically approximated
by injecting additional unlabeled samples (historical data). With that, although we do not know v but
we can approximate the relevant quantities, such as the covariance matrix Ex ., [X X T].

Let us detail the properties of the implementation of Py, 3. p, < OPTIMIZEDESIGN(Zy, 274 7) we
use at each round /.

First, Pg has the properties described in Theoreml 4 (by using Algorlthm' More exphc1tly, let 613 =
27¢, B < oo such that max,ex |(z,0.)| < B, and 0 < oo such that E[(ys — (0., z5))?|zs] < o2 If

Bse = A(1 + ) (4\/B2+02+1) log(4€2|2|2/5)

then ﬁg is such that

=22 5 S
Ex oy TPy (X)X X 1]
* max, ez, et Bsu <1+e.

e Ex~w [ﬁg(X)} < Ex~w {ﬁg(X)} + 4./fip, where P, is the optimal solution to problem

(30).

minp EX~V [P(X)]
llz—2"|12
subject to  max, . ez, X [TP(X)XXT 65 ¢ <1, (30)

0< P(z)<1-— pup, VmeX

where pp > 0. The quantity Ex ., []Bg (X )] that uses pp > 0 is easily related to the value when
wy = 0 through a simple scaling factor of 1_11 (see proof below).

EAJE is the empirical covariance matrix of X5, = Ex~, [P;(X)X X 7] using historical data and is
such that

~

(1=7)2p 2 Xp, 2 (1+7)2p,
where v > 0.

Again, while we think of historical data as independent data collected offline before the start of the
game, in practice this historical data could just come from previous rounds (which is not technically
correct since its use may introduce some dependencies).

Theorem 7 (Upper bound). Fix any 0 € (0,1). Let A = min ¢ z\., (2« — 2, 0,) and set

Bs = 256(1 + ¢)2 (zh/ﬁﬂ) log(4log5 (%) Z%/9).

For any T > p(v)Bs there exists a -PAC selective sampling algorithm that collects T historical data
before the start of the game, observes U unlabeled examples, and requests just L labels that satisfies

e U < logg(%)ﬁ

e £< omimen, pNBs + 25y subjectto 7> | \v]eop(N) Bs, and

o T <logy(#)(K +u+ rs)
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with probability at least 1 — 0.

Here, the sample complexity for estimating the covariance matrix is bounded by ks =
|—2Kl202( dln9/c; + %) max{1,20|[0«||gy ., (xx7)}| (where the sub-gaussian norm
Ky, = max, p I P(iS)Z;,l/ 253H¢2 ), and the contributions from the optimization problem to
compute { Py} are

ko [BLAEPIA M\ 14\ s (AP A M) (1)
N w?pf € ’ N w?pf € ’

Naturally, we have a trade-off on the subroutine tolerance p. In order to get a better solution of
the optimization over the selection rule P (and thus get a smaller Zf;(é_l)T 41 P(xt) term), the

subroutine needs more unlabeled samples. However, it suffices to take p, = T% to make U, and £
roughly match those of the case when v was known.

The proof of this theorem is established through several results, which we provide in Section[D.2]

D.2 Lemmas for the correctness

We first state here the correctness of Algorithm[T]in the case where v is unknown.

Lemma 17. With probability at least 1 — § we have for all stages ¢ € N, we have that z, € Zy and
max,ez, (2« — z,0,) < 4de.

The proof of the correctness lemma is established though several lemmas. First we provide Lemmal|T§]
guaranteeing concentration of empirical covariance matrices, which is obtained by sampling
additional measurements. Then we show in Proposition 3] that the RIPS estimator does not suffer
from using that empirical covariance matrix.

Lemma 18. Forany P : X — [0,1], let Sp = Ex. ., [P(X)XX ], Sp = LS P(T)7,7, .

Define K, = max; || P(ii)E;,l/z%Ssz . With probability at least 1 — 2 exp(—c1t* / K}, ) holds

(1- c)xTpr < xTipx <(1+ c)mTpr

2
where ¢ = max { C{d;t, (%) } C= Ki v/In9/cy and ¢y is an absolute constant.

Consequently for k > ¢s := K, iz( dln9/c; + M), holds with probability at least 1 — ¢

C1

<1 — \;%) xTZpac < :chJpx < <1 + 3%) xTpr.

Proof. Let A € R**? whose rows A; are independent sub-gaussian isotropic random vectors in
R and define Ky, = max; || A;|y,. We can apply Theorem 5.39 of [25] on A to have that with
probability at least 1 — 2 exp(—c1t?/K,),) holds

_CVd+t
NG

where C = K 3& v/In9/¢; and ¢; is an absolute constant.

CVd+t

1
VE

< Umin(A> < Umax(A) <1+

With Lemma 5.36 of [25]], this implies that with probability at least 1 — 2 exp(—cot?) holds

2
JATA— 1] < max { YL <C\/a+ t)

NG NG =c 31)
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Recall Xp = Ex , [P(X)XXT], so ¥ = \/P(X)E;UQX satisfies E[YYT] =
ES, PP(X)XXTE?) = 525,552 = I So we can apply (3I) to get
IS5 /28 p5 52 — I|| < ¢. Thus for any y € RY,

.
1-c< ﬁ’jnzgmzpz;l/?i <l+ec

Iyl —
so setting iy = E}D/Qx
(1—¢)z " Spz <z Spr < (1+c)z Spe.

Also, the sub-gaussian bound becomes K, = max; || \/P(Ez—)E;l/ *Zill o O

Proposition 3 (RIPS guarantees on empirical covariance matrix). Let 1,..., T, and Ty, ..., Ty
be drawn IID from a distribution v. For s = 1,...,n, assume that |{0,xs)| < B and E[|(0,xs) —
ys|?] <02, Fors=1,... K, assume that B[|(0, ) — y,|*] < 02,.,. Let P € [0, 1] be arbitrary

noise* noise*

and let Q4(xs) ~ Bernoulli( P) independently for all s € [n]. Let ¥p = Ex,[P(X)XX "] and
Yp = % 25:1 P(3,)%,2). Assume that Y p is invertible and that there exists v > 0 such that
(1-79)2p =< Sp =< (1 4+ )X p. For a given finite set V C RY define

w,, = Catoni({(v, i\]]_DlQS(IS)ISyS>}Z=1)a

Iff = arg ming max, =99 gngn > 4 log(2|V|/d), then with probability at least 1 — 6, it holds

folls

that

—~ B2 +0-2
[(v,0 —0)| <4 <\/ W + \/”VHQ*HJEXW[XXT]) ||”HIEXW[nP(X)XXT]—1 log(2 V] /4)

We first state an intermediate matrix lemma before the proof of Proposition [3]

Lemma 19. Assume that ¥ p is invertible and that there exists vy € [0,1/2] such that (1 — v)Xp <
Yp X (1 +~)Xp. Then foranyv € V

1
<

2 2
||’U||§;12P§;1 = (1 _7)2 ||’U||E;1'

and

2 1
1oll /o asigaye < \/ - o el < VIO

Proof. We know that taking the inverse of two ordered positive definite matrices will flip the order,
so here

1
(1+7)

-1 -1 -1
IR I

(1-7)

(1=-9)%p = f]p implies that for all v € R holds u'Ypu < 1/(1 — fy)qulpu. So taking
u=Yp'v, wegetv' U5 EpE v < 1/(1 — v)vTE5 v, Conclusion

TH—1y $-1, _
v Xp XpXp v =

Ty—1
v Epvgﬁv Yp v

(1—7)
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hence the first result of Lemma[19]
For the second one, we get

2 T 1/28—-1¢w1/2 2
HU||(172}’/22;12;/2)2 =0 (I_EP EP EP ) v

= || = 20 S8 2 4 o TSNS e 2y
O 9 2 2 1 1/2¢—1w1/2
S H’U”2 — m ||UH2 + EUTZP/ EPIEP/ v

1 L
< v 5 vl (Since Up < T1-3p)

13— s+ ——
Pl -

9 1 )
<|(1- + 5 | lvll5
L+y  (1—9)

(i)

< 107]vll3 -
The inequality (i) above holds because =¥ 5" < Sptand (1—9)Ep <¥p = ¥p < ﬁip.
The inequality (ii) above holds because for v € [O, %] , we have

2 1
— + <1-2(1—7)+ (1+27)? < 107.
L+y  (1-9)

Taking square root on both sides gives us the results. O

Proof of Proposition[3] This proof is analogous to the proof of Proposition [T} We first note that

) =00 [80) —wy+w, = (0,0)]
veEV H’UHgJ;l veEVY ||UH2;1
e LB =l o, — (6,0)
veVY ”UH2;1 veVY ||’UHE;1
0',v) — — (¢
= I g P
ve v Z;l ve v Z;,l
< 2max 7“07@ — Wl
veV ||U||E}—31

So it suffices to show that each |(6, v) — w,| is small. We begin by fixing some v € V and bounding

the variance of vTings(xs)xsys for any s < n which is necessary to use the robust estimator.
Note that

VarCESNV,QS(IS)NP(IS) (UTE]_DIQS (xs)xsys) :EISNI/,QS (zs)~P(xs) [(UTZEIQS (xs)xsys)Q]

- Exbfvas (zs)~P(xs) [UTEEIQS(xS)xSySP
which means we can drop the second term to bound the variance by

~ 2
ExSNV,QS(xS)NP(zS)[((v—rz];l@s (xs)msys) ]
~ 2
= EISNMQS(%)NP(JL’S) [(UTEI_?lQS(xS)xs(x;re + fs)) }

[ —~ 2 ~ 2
=Eo,mv EQ3<ws)~P<ss>[(”Txﬁle(xs)xs(I;r‘))) ]+EQS<15>~P<SS>[(UTE?Q.@(%)IS) éﬂ]

[ —~ 2 —~ 2
<Egpmw B2EQ5(IS)~P(SS)[(UTEJ_DIQS(xS)$S) ]+ UQEQS(JL’S)NP(SS)[(UTZ;1Q8($S)$S) ]]

=Ez,~v (32 + UQ)EQS(wS)NP(ss) [UTi\:;lQS(xS)IsmsTQS (xs)il_alv]}

=Es. 0 (B? + 0'2)EQS(:1:5)~P(55) [vTings(xs)xsm;—i;lv]}

<E; _(Bz + JQ)UTi\];lP(xS)xS:EZfJ;lv} ,
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where we used that Q?(z,) = Qs(z5). Thus, we have with Lemma

Var(vTif,le(Is)zsys) < (B2 + 02)UT§]1§1E%NV[P(a:s)z‘gscj}i;lv

_p2 2 2

= (B” + o)l g, 5
B? 4 o2

< 7(1_7) Hv||22;1.

We have
[{O0s,v) — wy| = [{Bx,v) — E[vTifplP(xl)mlyl] + E[vTifplP(xl)mlyl] — wy|
< (0, 0) = E[v" S5 P(z1) 2131
+ |Catoni({(v, Sp' Qs (24)24ys) Hiey) — Exw[v S5 P(X) XY

We now recall that we can write y; = =] 0, + & where & is a mean-zero, independent random
variable with variance at most o2, Thus, using Cauchy-Schwarz and applying Lemma we get

(0., v) —E[o S5 P(z1)zim]| = [0 0, — v S8 p0,]
= v (I = E5'Sp)0.]
= 0T =521 - =S ) B0

—1/2 1/2
< ISR 20l IZF20 )y _gryes- 15y

—1/2 1/2
< V104|520 12104

= V107[|v[lg 1 10+l -

By using the property of Catoni estimator stated in Definition[2] we have
(0 0) — wy
<[ Catoni({(v, Exnu [P(X)XX |71 Qs(ws)25ys) Y oim1) — El(v, Exn [P(X)X X )71 Qs (ws)zsys)|
+ \/ﬁ”e*HExM,[XXT] vl Ex . [Px)Xx xT]-1

log(3)
n/2

gﬁ\/(Var(<v7 Ex[P(X)XXT]71Qs(zs)xs5ys)))

+ V10V 0ullex ., xxllvllEx P x XTI
(with probability at least 1 — § if n > 41log(2/6))

B2 1+ 52 IOg(g)
< <\/‘I s TV 10”79*||EXW[XXT]> vl (Ex . [Px) X XT]~1 2

(1=7) n
B2 + o2
=|v4 =z + VI [0ullex o, xx7] ) IVIEx s nPx) x xT)-1 v/ 108(2/0).
Finally, the proof is complete by taking union bounding over all v € V. O

Proof of Lemma(I7] Most of this proof is exactly the one of Section [B.I]and Section so we
only state the concentration bound. For any V C Z and z, 2’ € V define

Exore(V) = {l{z = 2, 0:(V) — 0.)] < ec}

where @(W is the estimator that would be constructed by the algorithm at stage ¢ with Z, = V.
Naturally we want to apply Proposition with 7 labeled samples to obtain that £, - (V) holds with
probability at least 1 — ﬁ. Note that as Lemma gives P(z) > u/3 so

Sp = Ex o [P(X)XX ] > %EXN,,[XXT]
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Y p is invertible.

Defining §y := ﬁ and setting x> 2¢5, max{1,20([0.[% (xx 7} Where we recall that was

defined c5 = K7, (1/dIn9/c; + log(2/ 5)) Lemmaleads to

Cso 1 . 1
— < —min
ko2 SETI [Ep—

so that we can set v = c5, /() in the bound of Proposition[3]to get

1
V310 [|0sllgy o x xT) < 5

and

B2 4 o2
%S%/BQ—ka?

(1-7)

So for §g = ﬁ the event g'cov defined as

g'co\, = {(1 — fj%) ITEPI < :z:Tflpx < (1 + fj%) o:Tpr} .
happen with probability at least 1 — .

Now, let us for now condition on gcov. For fixed V C Z and ¢ € N we apply Proposition
instantiating the arbitrary P to P, (obtained with OPTIMIZEDESIGN, recall Section@ so that with
probability at least 1 — ﬁ we have that for any z, z’ € V holds that the event Eryps . - defined as

gRIPS,z,z/ = {|<Z -7, @(V) —0.)]

<20z =My Ao x x T (4\/B27+02+ 1) Vlog(462| Z]? /5)}

happen with probability at least 1 — dy.

So with probability at least 1 — ]P’(:Slpsyzyz,) —P(E) > 4152?2\2 - 422“52‘2 =1- 252?Z|2 , both
events hold and we have that for any z, 2z’ € V holds

(2= 2, 0:(V) = 0] < 2012 = 2' g 1By x| (4\/32 Yo+ 1) log(42Z[2/9)

<2(1+¢) (VB + 0% +1) ||z = Z'llg,._, 10 xx )1 VI8 (APIZ2/0)

< €.
where we used the property of ﬁg as detailed in Section to conclude. O

Proof of Theoremm The total number of labels requested after L rounds is equal to
Zz 1Zt (—1)r+1 Py(x;). Again by Freedman’s inequality we have that

L

Z Z Py(zy) <23 7Ex0 [Po(X)|Z¢] + log(1/6)

=1 t=(t—1)7+1 =1
From Theorem EL it holds for any ¢ that Ex ., [P)(X)] < Ex.[Po(X)] + 4,/1t where P, is
the optimal solution to problem (20). So now, for some 7, we want to relate E x.,, [TP;(X)] to
Ex~.[7P;(X)] where P, is the solution of problem (@). To do so, we rewrite problem (@) and
problem (20) as

minp Ex., [TP(X)]
subjectto y Ex., [TP(X)XXT] ! y<ci Vye, (32)
0<7P(x)<T1, VeelX.
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and
minp IEXNV [’FP(X)]
subjectto ¥y Ex o, [TP(X)XX |7 ly <c?, Vye, (33)
0<7P(z) <7(1—pp), VzeX.

where problem (32) is equivalent to problem (@) and problem (33) is equivalent to problem (20).
Thus taking 7 = 1, problem (33) becomes

o P(X))

subject to yTEXN,,[l%HhP(X)XXT]_ly <c, VYye,
0< 7 P) <7, Vel

Hlinp EXNZI |:

which, using QQ = —— - is equivalent to

ming Ex., [TQ(X)]
subjectto ¥ Ex, [TQ(X)XX "]ty <c?, Vye, (34)
0<7Q(z) <7, VxelX.
And we can now see that (34) and (32)) are the same optimization problem. And Q) the solution of

(34) is equal to 1Pe Thus the result Ex ., [TP[(X)} =Ex.~, [TP(X)].

Remains to bound >~ v TEx -~ [Pr(X)] where

> TEx[Po(X)| 2]

L Iz = 2|13 -
= Z min  7Ex.,[P(X)] subjectto max ]EXN"[;P(X)XXT] - Bse <1
P:X—[0,1] 2,2/ €2y €€

where S35 ¢ is defined in Section as

Bs.o = 4(1 +¢)? (4\/32—1—02—1-1) log(462| Z|2/5).

As in the case where the distribution v is known (Section Eﬂ'[) we use Lemma [3] to bound

lz=="llg m llz—z.llg T
LITP(X)XX LITP(X)XX ']
52 BM by max.cz\ ., <Z L 64@;@. Last, the

reparameterization of Proposmon P]also applies here.

max, »'cz,

In the unlabeled sample complexity, we get an additional Lk = L[Qbe( dln9/c; +

v/ %) max{1,20|[0«|[gy ., xx7)}] term from the estimation of the covariance matrix. Last,
we get an additional L(K + u), where K and w are such that

koo [BLAEPIA M) (14 e\ s (R A M) (1)
N B2 ug € ’ - B2ud € ’

from the sample complexity of the subroutine. O

E Classification

In this section we adopt the implementation described in Section [BI} As described in the text,
given a distribution 7 € Ay, and a class of hypothesis #, we can reduce classification to linear
bandits by setting 6* = [0*],en, Where 0% = 2n(x) — 1, and Z := {zM}, 4 C [0, 1]1¥] where

2 = m(x)1{h(xz) = 1}. With the quantities computed in Section , we now prove Theorem

Proof of Theorem 3] We consider a slightly modified version of Algorithm [I]where we stop at round

L where L, = [log,(4/€)] and return arg max, o ¢ z, (2", 8;). By an identical analysis to that in
the proof of Theorem 2, we are guaranteed that h € Sy, i.e. R, (h) — R, (2*) = (z* — z,0,) < 4ey.
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In addition the analysis of the sample complexity given there immediately gives the first part of the
theorem.

It remains to bound the sample complexity in terms of the disagreement coefficient. The total sample
complexity is given by,

- Iz — 213 -

Z min TEx~,[P(X)] subjectto max ]EXN”[;P(X)XXT] - Bs <1
— P:X%[O,l] 2€Sy 6[

where we recall 35 = 2048 log(2L?|H|/J) since we can take B =1 and o = 1.

We recall the proof of Theorem 2. From the proof, we see that with probability greater than 1 — §,
our sample complexity is obtained by summing up to round L

L Iz — 2|13 -
Z[ min 7Ex.,[P(X)] subjectto max Exen [fPOOXX T 5o <

2
P:X—[0,1 2 €
=1 —10.1] FEoe G

By proposition 2 this is equivalent to

L 2
A HZ_Z*H]E [XXT]-1
. - < = X~
; |:/\Iélin pe(N)Bs  subject to H VHOOpg()\)ﬁg < T:| , where pg()) max p
Define

AZ = {SU eX: Hh,h(iﬂ) 7é h*(x)aRu(h) - Ru(h*) S 46@}76 S L
1{z € Ao}v(z) Al 1
El{z € A} ||v|. ~ El{ze A4}

We first argue that )\, is feasible for the previous program. Note,

and let \y =

o0

h(x)#h™ (x
EXNV[%}]

A =
)= e < o

o) Ex~y[1{h(z) # h*(z)}]
Eltfe e Ad], " e, 2
w | B[ £ 1)

h:R, (h)— R (h*)<4e, max{ez, (R, (h) — R,(h*))?}

16Ex ~y[1{h(z) # h*(2)}]
h:R, (h)— R,,(h*)<4ez max{(4e¢)?, (R, (h) — R, (h*))?}
16Ex ~y [1{h(z) # h*(2)}
h:Ry, (h)— R (h*)<4el max{e?, (R, (h) — R,(h*))?}

16Ex ~ [1{h(z) # h*(x)}]
hen max{e?, (R, (h) — R,(h*))?}
< 16E[1{z € As}|p(v,€)

E[1{z € As}]
E[1{z € A.}]

< E[1{z € A

< E[l{x S Az}]

where the equality (i) holds because the following is true when we only consider h such that
R,(h) — R, (h*) < 4e

{h(x) # h*(x)}

1{1' : Elhv h(d)) 7é h*(ﬂ?), (Rv(h) -

The inequality (ii) above is true because 4e¢;, > e. Thus we see that pe(N\)||N/V|oofBs <

16p(v,€)Bs < 7. It remains to argue about the disagreement coefficient. Firstly note that for
any h such that R, (h) — R, (h*) < 4e,.

dy(h,h") = Ex~p [1{h(X) # h*(X)}] < Ex~p [H{A(X) # Y}] 4+ Ex~p [1{h"(X) # Y}]

Ro(h)) <4} H{h(x) # h*(x)}.

(35)
< Ry(h) + Ry (h") (36)
< 2R, (h*) + 4e; (37)
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Using this we see that,
min p,(A) subject to pe(A)[|A/V[|ocfs < 7
€

< pe(Ae)Bs (since ), is feasible.)
Ex~[1{h(z) # h™(z)}]
<E[l A
<E[1{z € A/}] h:RV(h)fnRaﬁh*)ﬂel 2 Bs
(imitating the above computation)
< (2R(h*) + 4ep)Ex .~ [1{3h : h(X) ;é h*(X),d,(h,h*) <2R(h*) + 464}]

€
(Equation (33))
9R(h*)? Exnw[1{30:h(X)£R" (X),dy (h,h*) <2R(h")+4er}]
Bs {

2 SR(h*)+de; deg < R(h")
144E x ., Jh:h(X)Zh* (X),d, (h,h*)<2R(h*)+4ey *
e LB CXZ () ()20 e 4e, > R(W)

9R(h*) Exon[1{3h : h(X) # h*(X), dy(h, h*) < 2R(h*) + 4es}]
= < € + 144) 2R(h*) + 4ep Bs

<

L
A
[Argg; pe(A)Bs  subject to H VHOO pe(N)Bs < T}

L (9R(h*)? Ex,[1{3h:h h* h, h* 2R(h*) + 4e
€37 (RO 144) Bxnal1 30 C) £ GO ul11) £ 2000) 4l

< log, (z:) s (9R(h*)2 N 144) Ex[1{3h s h(X) # 1*(X),dy (b 17) < 2R(7) + ed}]
4
)

€z 2R(h*) + 4eg

36R(h*) Ex~[1{3h: W(X) # h*(X),d, (h,h*) < 2R(h*) + 4@}]
( €2 ” 144) €<L 2R(h*) + 4ey

< 361log, ( ) (RW) +4> sup 0*(2R(h*) + &,v)Bs

e §=e

from which the result follows.
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