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A NOTATIONS

This section summarizes notations used throughout this paper.

Table 2: Notations used throughout this paper.

Notations Definitions or Descriptions
G = (V, E ,X) Graph with node set V , edge set E and node feature X

m,n Number of nodes m = |V| and number of edges n = |E|
vi, eij Node vi and the edge eij between node vi and vj
A Adjacency matrix Aij = 1 indicates an edge eij between vi, vj
eA Row-based normalized graph adjacency matrix eA = D�1A
bA GCN-based normalized graph adjacency matrix bA = D�0.5AD�0.5

eAt Updated adjacency matrix at iteration t
D Diagonal degree matrix Dii =

Pn
j=1 Aij

bd Average degree of the network
T = {Train,Val,Test} Set of Training/Validation/Testing edge groups

DegreeTrain/Val/Test Degree based on Training/Validation/Testing Edges

TCTrain/Val/Test Topological Concentrations that quantify intersections
with Training/Validation/Testing neighbors

N t
i Node vi’s 1-hop neighbors of type t, t 2 T

Hk
i Nodes having at least one path of length k to vi based on training edges ETrain

SK
i = {Hk

i }Kk=1 K-hop computational tree centered on the node vi

CK,t
i \ eCK,t

i
(Approximated) Topological concentration for node vi considering

the intersection among K-hop computational trees among its type t neighbors.
Ek

i Embedding of the node vi after kth-layer message-passing
Rij Sample from gaussian random variable N (0, 1/d)
g⇥g Link predictor parameterized by ⇥g
eEi, bEi Predicted and ground-truth neighbors of node vi
HG Hypergeometric distribution
LP Link Prediction

(A)TC (Approxminated) Topological Concentration
TDS Topological Distribution Shift
� Exponential discounting effect as the hop increases
↵k Weighted coefficient of layer k in computing ATC
µ Mean of the distribution
L Number of message-passing layers
� Coefficients measuring the contribution of updating adjacency matrix
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B REVIEW OF THE COLD-START ISSUE IN LINK PREDICTION AND
RECOMMENDER SYSTEMS

One line of the research (Leroy et al., 2010; Ge & Zhang, 2012; Yan et al., 2013; Han et al., 2015;
Wang et al., 2016; Xu et al., 2017) defines the cold-start nodes as the ones with little to no topo-
logical information (isolated user) and augment these disadvantaged groups with auxiliary infor-
mation, e.g., user profile/rich text information, community information, and group membership.
Specifically, (Yan et al., 2013) derive the auxiliary information based on the interactions of these
disadvantageous nodes/users from their cross-platform behaviors. (Leroy et al., 2010) constructs
the probabilistic graph and then refines it by considering the transitivity of the contract relationship.
(Ge & Zhang, 2012) incorporates feature selection and regularization to avoid overfitting. The other
line of research (Wang et al., 2019; Dong et al., 2020; Li et al., 2021; Hao et al., 2021; Rahmani
et al., 2022; Wei & He, 2022) studies the cold-start issue from the user perspective in recommender
systems. They usually define cold-start nodes/users as the ones with no-to-sparse/low activities. (Li
et al., 2021; Rahmani et al., 2022) devises a re-ranking strategy by optimizing the performance gap
between low-activity and high-activity users. (Dong et al., 2020; Wei & He, 2022) design multiple
meta-learning frameworks to learn user preferences based on his/her few past interactions. (Wang
et al., 2019) uses knowledge graph embedding to assist with recommendation tasks for low-activity
users while (Hao et al., 2021) trains GNNs to adapt to cold-start nodes by mimicking the cold-start
scenario for warm users.

Following the above second line of research, we study the cold-start link prediction at the node
level since our paper targets demystifying the varying link prediction performance across different
nodes. Therefore, we follow some conventional literature (Wang et al., 2019; Dong et al., 2020;
Li et al., 2021; Wei & He, 2022) and deem the nodes with generally few degrees as cold-start
ones. Particularly, in Figure 4(b)/(e), we change the degree threshold from 1 to 10, divide nodes
into two groups at each degree threshold, and further visualize the average performance for each
group. We can see that nodes in the lower-degree groups generally have higher performance than
nodes in the higher-degree groups. The above observation has two promising insights compared
with conventional literature:

• (1) Many existing recommendation-based papers (Wang et al., 2019; Dong et al., 2020; Li
et al., 2021; Newman, 2001) define cold-start users/nodes as the ones with few/little interac-
tions/topological signals. However, our paper empirically demonstrates that nodes with lower
degrees even exhibit higher LP performance.

• (2) Many existing node classification papers (Tang et al., 2020; Chen et al., 2021a; Wang et al.,
2022a) find nodes with low degrees have lower performance. However, our work sheds new
insights into the degree-related bias in link prediction where nodes with lower degrees can actually
possess higher performance.

We justify the above 1st insight by relating to real-world scenarios where users with high degrees
usually tend to possess diverse interests (nodes with higher degrees may tend to belong to diverse
communities) and therefore, using the equal capacity of embedding cannot equally characterize all
of their interests (Zhao et al., 2021d).

We justify the above 2nd insight by relating to the inherent difference between the mechanism of
node classification and the mechanism of link prediction. For node classification, high-degree nodes
are more likely to obtain the supervised signals from labeled nodes in the same class (Chen et al.,
2021a). For link prediction, the ground-truth class for each node is actually its testing neighbors
and hence when performing message-passing, beneficial supervision signals are not guaranteed to
be captured more by high-degree nodes.

In our paper, we focus on the performance difference between low-degree nodes and high-degree
nodes rather than the cold-start issue. However, if we also consider cold-start nodes as the ones
with sparse interactions as some previous work did (Li et al., 2021; Rahmani et al., 2022), then our
analysis and observation can also apply there.
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C LINK-CENTRIC AND NODE-CENTRIC EVALUATION METRICS

In addition to the conventional link-centric evaluation metrics used in this work, node-centric evalu-
ation metrics are also used to mitigate the positional bias caused by the tiny portion of the sampled
negative links. We introduce their mathematical definition respectively as follows:

C.1 LINK-CENTRIC EVALUATION

Following (Hu et al., 2020), we rank the prediction score of each link among a set of randomly
sampled negative node pairs and calculate the link-centric evaluation metric Hits@K as the ratio of
positive edges that are ranked at K th-place or above. Note that this evaluation may cause bias as
the sampled negative links only count a tiny portion of the quadratic node pairs (Li et al., 2023).
Hereafter, we introduce the node-centric evaluation metrics and specifically denote the node-level
Hit ratio as HitsN@K to differentiate it from the link-centric evaluation metric Hits@K.

C.2 NODE-CENTRIC EVALUATION

For each node vi 2 V , the model predicts the link formation score between vi and every other node,
and selects the top-K nodes to form the potential candidates eEi. Since the ground-truth candidates
for node vi is N Test

i (hereafter, we notate as bEi), we can compute the Recall (R), Precision (P), F1,
NDCG (N), MRR and HitsN of vi as follows:

R@Ki =
|eEi \ bEi|
|bEi|

, P@Ki =
|eEi \ bEi|

K
(5)

F1@Ki =
2|eEi \ bEi|
K + |bEi|

, N@Ki =

PK
k=1

1[v
�k
i
2(eEi\bEi)]

log2(k+1)
PK

k=1
1

log2(k+1)

(6)

MRR@Ki =
1

minv2(eEi\bEi)
Rankv

, HitsN@Ki = 1[|bEi \ eEi| > 0], (7)

where �k
i denotes vi’s kth preferred node according to the ranking of the link prediction score, Rankv

is the ranking of the node v and 1 is the indicator function equating 0 if the intersection between
bE i \ eEi is empty otherwise 1. The final performance of each dataset is averaged across each node:

X@K = Evi2VX@Ki,X 2 {R, P, F1,N,MRR,HitsN} (8)

Because for each node, the predicted neighbors will be compared against all the other nodes, there is
no evaluation bias compared with the link-centric evaluation where only a set of randomly selected
negative node pairs are used.
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D PROOF OF THEOREMS

D.1 APPROXIMATION POWER OF ATC FOR TC

Theorem 1. Assuming g(|Hk1
i |, |Hk2

j |) = |Hk1
i ||Hk2

j | in Eq. (1) and let � be the dot-product based

similarity metric (He et al., 2020), then node vi’s 1-layer Topological Concentration C1,t
i is linear

correlated with the mean value of the 1-layer Approximated Topological Concentration µ eCK,t
i

as:

C1,t
i ⇡ d�1µEvj⇠Nt

i
(E1

j )
>E1

i
= d�1µ eC1,t

i
, (9)

where E1 2 Rn⇥d
denotes the node embeddings after 1-layer SAGE-style message-passing over the

node embeddings R ⇠ N (0d,⌃d).

Proof. Assuming without loss of generalizability that the row-normalized adjacency matrix eA =
D�1A is used in aggregating neighborhood embeddings. We focus on a randomly selected node
Ei 2 Rd, 8vi 2 V and its 1-layer ATC given by Eq. (2) is:

eC1,t
i = Evj⇠N t

i
(E1

j )
>E1

i = Evj⇠N t
i
(eAR)>j (eAR)i

= Evj⇠N t
i

1

|N Train
j ||N Train

i |
(

X

vm2N Train
j

Rm)>(
X

vn2N Train
i

Rn)

= Evj⇠N t
i

1

|N Train
j ||N Train

i |
X

(vm,vn)2N Train
j ⇥N Train

i

(Rm)>Rn

= Evj⇠N t
i

1

|H1
i ||H1

j |
(

X

(vm,vn)2N Train
j ⇥N Train

i ,
vm 6=vn

(Rm)>Rn

| {z }
Non-common neighbor embedding pairs

+
X

vk2N Train
j \N Train

i

(Rk)
>Rk

| {z }
Common neighbor embedding pairs

),

(10)

Note that the first term is the dot product between any pair of two non-common neighbor em-
beddings, which is essentially the dot product between two independent samples from the same
multivariate Gaussian distribution (note that here we do not perform any training optimization, so

the embeddings of different nodes are completely independent). By central limit theorem (Kwak
& Kim, 2017), the first term approaches the standard Gaussian distribution with 0 as the mean,
i.e., µ(Rm)>Rn

= 0. In contrast, the second term is the dot product between any Gaussian-
distributed sample and itself, which can be essentially characterized as the sum of squares of
d independent standard normal random variables and hence follows the chi-squared distribution
with d degrees of freedom, i.e., (Rk)>Rk ⇠ �2

d (Sanders, 2009). By Central Limit Theorem,
limd!1 P (�

2
d�dp
2d

 z) = PN (0,1)(z) and hence limd!1 �2
d = N (d, 2d), i.e., µ(Rk)>Rk

= d.
Then we obtain the mean value of Evj⇠N t

i
(E1

j )
>E1

i :

µ eC1,t
i

= µEvj⇠Nt
i
(E1

j )
>E1

i
⇡ Evj⇠N t

i

1

|H1
i ||H1

j |
(µP

(vm,vn)2N Train
j ⇥N Train

i ,
vm 6=vn

(Rm)>Rn
+ µP

vk2NTrain
j \NTrain

i
(Rk)>Rk

)

⇡ Evj2N t
i

d|N Train
i \N Train

j |
|H1

i ||H1
j |

= Evj2N t
i

d|H1
i \H1

j |
|H1

i ||H1
j |

= dC1,t
i .

(11)

The first approximation holds if assuming all nodes share the same degree. The second approxi-
mation holds since we set d to be at least 64 for all experiments in this paper. We next perform
Monte-Carlo Simulation to verify that by setting d = 64, the obtained distribution is very similar to
the Gaussian distribution. Assuming without loss of generality that the embedding dimension is 64
with the mean vector µ = 064 2 R64 and the identity covariance matrix ⌃64 = I 2 R64⇥64, we
randomly sample 1000 embeddings from N (µ,⌃).
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We visualize the distributions of the inner product between the pair of non-common neighbor em-
beddings, i.e., the first term in Eq. (10) (Rm)>Rn, vm 6= vn, and the pair of common neighbor
embeddings, i.e., the second term in Eq. (10) (Rk)>Rk, vk 2 N Train

j \ N Train
i in Figure 8. We

can see that the distribution of the dot product between the pair of non-common neighbor embed-
dings behaves like a Gaussian distribution centering around 0. In contrast, the distribution of the dot
product between the pair of common neighbor embeddings behaves like a chi-square distribution of
degree 64, which also centers around 64, and this in turn verifies the Gaussian approximation. Note
that the correctness of the first approximation in Eq. (11) relies on the assumption that the average
of the inverse of the node’s neighbors should be the same across all nodes. Although it cannot be
theoretically satisfied, we still empirically verify the positive correlation between TC and the link
prediction performance shown in Figure 3.

The above derivation bridges the gap between the Topological Concentration (TC) defined in the

topological space and the Approximated Topological Concentration (ATC) defined in the latent

space, which theoretically justifies the approximation efficacy of ATC.

Figure 8: The distribution of the inner product between common neighbor pairs is statistically higher
than that between non-common neighbor pairs.

D.2 DEGREE-RELATED BIAS OF EVALUATION METRICS

One previous work (Wang & Derr, 2022) has empirically shown the degree-related bias of evaluation
metrics used in link prediction models. Following that, we go one step further and theoretically
derive the concrete format of the evaluation bias in this section. We leverage an untrained link
prediction model to study the bias. This avoids any potential supervision signal from training over
observed links and enables us to study the evaluation bias exclusively. Since two nodes with the
same degree may end up with different performances, i.e., X@Ki 6= X@Kj , di = dj , we model
X@K|d as a random variable and expect to find the relationship between its expectation and the
node degree d, i.e., f : E(X@K|d) = f(d).

Following many existing ranking works (He et al., 2020; Chen et al., 2021b), we assume without
loss of generalizability that the link predictor P ranking the predicted neighbors based on their
embedding similarity with embeddings noted as E, then we have:
Lemma 1. For any untrained embedding-based link predictor P , given the existing k � 1 pre-

dicted neighbors for the node vi 2 V , the kth
predicted neighbor is generated by randomly

selecting a node without replacement from the remaining nodes with equal opportunities, i.e.,

P (v�k
i
= v|{v�1

i
, v�2

i
, ..., v�k�1

i
}) = 1

N�(k�1) .

Without any training, Lemma 1 trivially holds since embeddings of all nodes are the same, which
trivially leads to the following theorem:
Theorem 2. Given the untrained embedding-based link predictor P , the size of the intersection

between any node’s predicted list eEi and its ground-truth list bEi follows a hypergeometric distribu-

tion: |eEi \ bEi| ⇠ HG(|V|,K, |bEi|) where |V| is the population size (the whole node space), K is
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the number of trials and |bEi| is the number of successful states (the number of node’s ground-truth

neighbors).

Proof. Given the ground-truth node neighbors bEi, the predicted neighbors eEi = {v�k
i
}Kk=1 is formed

by selecting one node at a time without replacement K times from the whole node space V . Since
any selected node v�k

i
can be classified into one of two mutually exclusive categories bEi or V\bEi

and by Lemma 1, we know that for any untrained link predictor, each unselected node has an equal
opportunity to be selected in every new trial, we conclude that |eEi \ bEi| ⇠ HG(|V|,K, |bEi|) and by
default E(|eEi \ bEi|) = |eEi| |

bEi|
|V| = K |bEi|

|V| .

Furthermore, we present Theorem 3 to state the relationships between the LP performance under
each evaluation metric and the node degree:

Theorem 3. Given that |eEi \ bEi| follows hyper-geometric distribution, we have:

E(R@Ki|d) =
K

N
,
@E(R@K|d)

@d
= 0, (12)

E(P@K|di) =
↵d

N
,
@E(P@K|d)

@d
=

↵

N
, (13)

E(F1@K|d) = 2K

N

↵d

K + ↵d
,
@E(F1@K|d)

@d
=

2↵K2

N

1

(K + ↵d)2
, (14)

E(N@K|d) = ↵d

N
,
@E(N@K|d)

@d
=

↵

N
. (15)

Proof.

E(R@Ki|d) = E(
|eEi \ bEi|
|bEi|

) =
E(|eEi \ bEi|)

|bEi|
=

|bEi|
|V| K

|bEi|
=

K

N
(16)

E(P@Ki|d) = E(
|eEi \ bEi|

K
) =

E(|eEi \ bEi|)
K

=

|bEi|
|V|K

K
=

↵d

N
(17)

E(F1@Ki|d) = E(
2|eEi \ bEi|
K + |bEi|

) =
2E(|eEi \ bEi|)

K + ↵d
=

2K

N

↵d

K + ↵d
(18)

E(N@Ki|d) = E(

PK
k=1

1[v�k2(eEi\bEi)]

log2(k+1)
PK

k=1 log2(k + 1)
) =

E(
PK

k=1

1[v�k2(eEi\bEi)]

log2(k+1) )
PK

k=1
1

log2(k+1)

(19)

To calculate the numerator DCG, i.e., E(
PK

k=1

1[v�k2(eEi\bEi)]

log2(k+1) ) in Eq. (19), we model the link pre-

diction procedure as 1) randomly select K nodes from the whole node space V; 2) calculate |eEi\ bEi|,
i.e., how many nodes among the selected nodes eEi are in the ground-truth neighborhood list bEi; 3)
randomly select |eEi \ bEi| slots to position nodes in eEi \ bEi and calculate DCG. The above steps can
be mathematically formulated as:

KX

i=0

C(N � ↵d,K � i)C(↵d, i)

C(N,K)

C(K,i)X

j=1

p(O(K,i)
j )

KX

k=1

1[O(K,i)
jk = 1]

log2(k + 1)
, (20)
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where O(K,i) 2 {0, 1}C(K,i)⇥K represents all C(K, i) possible positional indices of putting i nodes
into K candidate slots. Specifically O(K,i)

j 2 {0, 1}K indicates the jth positional configuration of i
nodes where O(K,i)

jk = 1 if an node is positioned at kth slot and O(K,i)
jk = 0 otherwise. Since our link

predictor has no bias in positioning nodes in the K slots by Lemma 1, we have p(O(K,i)
j ) = 1

C(K,i)

and Eq. (20) can be transformed as:

KX

i=0

C(N � ↵d,K � i)C(↵d, i)

C(N,K)

1

C(K, i)

C(K,i)X

j=1

KX

k=1

1[O(K,i)
jk = 1]

log2(k + 1)
. (21)

We know that only when the kth slot is positioned a node can we have O(K,i)
jk = 1 and among the

total C(K, i) selections, every candidate slot k 2 {1, 2, ...,K} would be selected C(K � 1, i � 1)
times to position a node, which hence leads to:

C(K,i)X

j=1

KX

k=1

1[O(K,i)
jk = 1]

log2(k + 1)
=

KX

k=1

C(K � 1, i� 1)

log2(k + 1)
. (22)

We then substitute Eq. (22) into Eq. (21) as:

KX

i=0

C(N � ↵d,K � i)C(↵d, i)

C(N,K)

1

C(K, i)

KX

k=1

C(K � 1, i� 1)

log2(k + 1)

=
KX

i=0

C(N � ↵d,K � i)C(↵d, i)

C(N,K)

C(K � 1, i� 1)

C(K, i)

KX

k=1

1

log2(k + 1)
.

(23)

Further substituting Eq. (23) into Eq. (19), we finally get:

E(N@K|di) =
KX

i=0

C(N � ↵d,K � i)C(↵d, i)

C(N,K)

C(K � 1, i� 1)

C(K, i)

=
KX

i=0

C(N � ↵d,K � i)C(↵d, i)

C(N,K)

(K�1)!
(i�1)!(K�i)!

K!
i!(K�i)!

=
1

K

KX

i=0

i
C(N � ↵d,K � i)C(↵d, i)

C(N,K)
| {z }

E(|eEi\bEi|)

=
1

K

↵d

N
⇤K =

↵d

N

(24)

Based on Theorem 3, Precision, F1, and NDCG increase as node degree increases even when no
observed links are used to train the link predictor, which informs the degree-related evaluation bias
and causes the illusion that high-degree nodes are more advantageous than low-degree ones observed
in some previous works (Li et al., 2021; Rahmani et al., 2022).

D.3 REWEIGHTING BY LP SCORE ENHANCE 1-LAYER TC

Theorem 4. Taking the normalization term g(|H1
i |, |H1

j |) = |H1
i | and also assume that higher link

prediction score Sij between vi and its neighbor vj corresponds to more number of connections

between vj and the neighborhood NTrain
i , i.e., Sij > Sik ! |N 1,Train

j \N 1,Train
i | > |N 1,Train

k \
N 1,Train

i |, 8vj , vk 2 NTrain,1
i , then we have:

bC1,Train
i =

X

vj⇠NTrain
i

Sij |H1
i \H1

j |
|H1

i |
� Evj⇠NTrain

i

|H1
i \H1

j |
|H1

i |
= C1,Train

i (25)
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Proof. By definition, we have H1
i = N 1,Train

i , then the computation of 1-layer TCTrain is trans-
formed as:

C1,Train
i = Evj⇠NTrain

i
I(S1

i ,S1
j ) = Evj⇠NTrain

i

|NTrain
i \NTrain

j |
|NTrain

i |
=

1

|NTrain
i |

Evj⇠NTrain
i

(|NTrain
i \NTrain

j |).

(26)
On the other hand, we similarly transform weighted TC as:

bC1,Train
i =

1

|NTrain
i |

X

vj⇠NTrain
i

(Sij |NTrain
i \NTrain

j |). (27)

By the relation that:

Sij > Sik ! |N 1,Train
j \N 1,Train

i | > |N 1,Train
k \N 1,Train

i |, 8vj , vk 2 NTrain,1
i , (28)

Then we have:
bC1,Train
i � C1,Train

i (29)

Moreover, we include Figure 9 to illustrate the idea of enhancing TC via assigning higher weights to
edges connecting neighbors that have higher connections to the whole neighborhoods. We can see
in this case, weighted TC in Figure 9(a) is naturally higher than the one in Figure 9(b)

Figure 9: (a) Increasing the weight of neighbors that have more connections with the whole neigh-
borhood while (b) increasing the weight of neighbors that have fewer connections with the whole
neighborhood. (a) would increase the weighted TC while (b) would not

E EXAMPLE DEMONSTRATING THE ADVANTAGES OF TC OVER LCC

Figure 10: Comparison of TC and LCC

According to the definition of local clustering coefficient
(LCC) and TC, we respectively calculate their values for
node v1 in Figure 10. v2, v3, v4 do not have any connec-
tion among themselves, indicating node v1 prefer inter-
acting with nodes coming from significantly different do-
main/community. Subsequently, the incoming neighbors
v5, v6 of v1 are likely to also come from other communi-
ties and hence share no connections with v2, v3, v4, which
leads to the ill topological condition for predicting links
of v1. However, in this case, the clustering coefficient still
maintains 0.5 because of the connections between v1 and
v2/v3/v4, which cannot precisely capture the ill-topology
of v1 in this case. Conversely, our TCTrain equals 0, re-
flecting the ill topological condition of v1.
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F DATASETS AND EXPERIMENTAL SETTINGS

This section introduces datasets and experimental settings used in this paper.

F.1 DATASET INTRODUCTION AND STATISTICS

We use five widely employed datasets for evaluating the link prediction task, including four citation
networks: Cora, Citeseer, Pubmed, and Citation2, and 1 human social network Collab. We further
introduce two real-world animal social networks, Reptile and Vole, based on animal interactions.
• Cora/Citeseer/Pubmed: Following (Zhao et al., 2022; Chamberlain et al., 2022; Wang et al.,

2023), we randomly split edges into 70%/10%/20% so that there is no topological distribution
shift in these datasets. We use Hits@100 to evaluate the final performance.

• Collab/Citation2: We leverage the default edge splitting from OGBL (Hu et al., 2020). These two
datasets mimic the real-life link prediction scenario where testing edges later joined in the network
than validation edges and further than training edges. This would cause the topological distribution
shift observed in the Obs.3 of Section 3.3. For Collab, different from (Chamberlain et al., 2022;
Wang et al., 2023), our setting does not allow validation edges to join the network for message-
passing when evaluating link prediction performance. Therefore, the edges used for message-
passing and supervision come from edges in the training set. In addition, we also consider a
widely used setting in prior work where the validation edges would be allowed in message-passing
when evaluating in the testing stage and we term this one on Collab as Collab* (Wang et al., 2023;
Chamberlain et al., 2022).

• Reptile/Vole: we obtain the dataset from Network Repository (Rossi & Ahmed, 2015). To con-
struct this network, a bipartite network was first constructed based on burrow use - an edge
connecting a tortoise node to a burrow node indicated a burrow used by the individual. Social
networks of desert tortoises were then constructed by the bipartite network into a single-mode
projection of tortoise nodes. Node features are initialized by a trainable embedding layer, and we
leverage the same edge splitting 70%/10%/20% for training/validation/testing.

Table 3: Statistic of datasets used for evaluating link prediction.

Network Domain Dataset # Nodes # Edges Split Type Metric Split Ratio

Citation Network

Cora 2,708 5,278 Random Hits@100 70/10/20%
Citeseer 3,327 4,676 Random Hits@100 70/10/20%
Pubmed 18,717 44,327 Random Hits@100 70/10/20%
Citation2 2,927,963 30,561,187 Time MRR Default

Social Network Collab 235,868 1,285,465 Time Hits@50 Default

Animal Network Reptile 787 1232 Random Hits@100 70/10/20%
Vole 1480 3935 Random Hits@100 70/10/20%

F.2 HYPERPARAMETER DETAILS

For all experiments, we select the best configuration on validation edges and report the model per-
formance on testing edges. The search space for the hyperparameters of the GCN/SAGE/LightGCN
baselines and their augmented variants GCNrw/SAGErw are: graph convolutional layer {1, 2, 3},
hidden dimension of graph encoder {64, 128, 256}, the learning rate of the encoder and predic-
tor {0.001, 0.005, 0.01}, dropout {0.2, 0.5, 0.8}, training epoch {50, 100, 500, 1000}, batch size
{256, 1152, 64 ⇤ 1024} (Hu et al., 2020; Chamberlain et al., 2022; Wang et al., 2023), weights
↵ 2 {0.5, 1, 2, 3, 4}, the update interval ⌧ 2 {1, 2, 10, 20, 50}, warm up epochs Twarm 2
{1, 2, 5, 10, 30, 50}. For baseline NCN2, we directly run their code using their default best-
performing configurations on Cora/Citeseer/Pubmed/Collab but for Citation2, due to memory lim-
itation, we directly take the result from the original paper. We use cosine similarity metric as the
similarity function � in computing ATC.

2https://github.com/GraphPKU/NeuralCommonNeighbor
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G ADDITIONAL RESULTS

To demonstrate that the observations made previously in Section 3 can also generalize to other
datasets, here we present the comprehensive results on all datasets we study in this paper as follows.

G.1 LINK PREDICTION PERFORMANCE GROUPED BY TCTest

Figure 11: LP performance grouped by TCTest for all nodes

Figure 12: LP performance grouped by TCTest for low TCTest nodes
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G.2 LINK PREDICTION PERFORMANCE GROUPED BY TCTrain

Figure 13: LP performance grouped by TCTrain for all nodes

Figure 14: LP performance grouped by TCTrain for low TCTrain nodes
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G.3 LINK PREDICTION PERFORMANCE GROUPED BY DEGREETest

Figure 15: LP performance grouped by DegreeTest for all nodes

Figure 16: LP performance grouped by DegreeTest for low Test-Degree nodes
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G.4 LINK PREDICTION PERFORMANCE GROUPED BY DEGREETrain

Figure 17: LP performance grouped by DegreeTrain for all nodes

Figure 18: LP performance grouped by DegreeTrain for low DegreeTrain nodes
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G.5 RELATION BETWEEN LP PERFORMANCE AND TC AT GRAPH-LEVEL

Figure 19: Relation between LP performance and TC at Graph-level

G.6 RELATION BETWEEN TCTrain AND TCTest

Figure 20: Relation between TCTrain and TCTest on Collab/Citation2

G.7 DIFFERENCE IN TC VS DIFFERENCE IN PERFORMANCE BEFORE/AFTER APPLYING
REWEIGHTING

G.8 CORRELATION OF THE PERFORMANCE WITH TC AND DEGREE

Here we present the comprehensive correlation of the performance with TCTrain/TCVal/TCTest and
DegreeTrain. As the performance is evaluated under different K, we further define the absolute av-
erage/the typical average correlation across different K values to reflect the absolute correlation
strength/the consistency of the correlation average:

Absolute Avg.X@K =
1

4

X

k2{5,10,20,50}

|X@k|, Basic Avg.X@K =
1

4

X

k2{5,10,20,50}

X@k
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Figure 21: Relation between TCTrain and TCTest on Collab by running GCN

Figure 22: Relation between TCTrain and TCTest on Collab by running SAGE
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Table 4: The correlation between TCTrain/TCVal/TCTest/DegreeTrain and the GCN’s LP performance
on Collab. We note that the formal definitions of Absolute Avg. and Basic Avg. are provided in
Section and they represent the average absolute and simple average correlation, respectively, across
the range of @K for the given metric; these are also then calculated overall.

Metric @5 @10 @20 @50 Absolute Avg. Basic Avg.

TCTrain

Precision 0.2252 0.1925 0.1353 0.0578 0.1527 0.1527
F1 0.2601 0.2364 0.1733 0.0790 0.1872 0.1872
NDCG 0.2279 0.2427 0.2375 0.2206 0.2322 0.2322
Recall 0.2296 0.2358 0.2156 0.1754 0.2141 0.2141
HitsN 0.2057 0.1800 0.1328 0.0717 0.1476 0.1476
MRR 0.2044 0.2044 0.2044

0.1867 0.1867

TCVal

Precision 0.2573 0.2832 0.2788 0.2387 0.2645 0.2645
F1 0.2425 0.2901 0.2991 0.2641 0.2740 0.2740
NDCG 0.2066 0.2330 0.2521 0.2624 0.2385 0.2385
Recall 0.1742 0.2179 0.2428 0.2514 0.2216 0.2216
HitsN 0.2445 0.2674 0.2720 0.2620 0.2615 0.2615
MRR 0.2350 0.2350 0.2350

0.2520 0.2520

TCTest

Precision 0.5184 0.5437 0.5107 0.4127 0.4964 0.4964
F1 0.5858 0.6311 0.5964 0.4799 0.5733 0.5733
NDCG 0.5443 0.6282 0.6706 0.6902 0.6333 0.6333
Recall 0.5644 0.6753 0.7324 0.7533 0.6814 0.6814
HitsN 0.5272 0.5816 0.5924 0.5720 0.5683 0.5683
MRR 0.5085 0.5085 0.5085

0.5905 0.5905

DegreeTrain

Precision -0.1261 -0.0829 0.0006 0.1440 0.0884 -0.0161
F1 -0.1997 -0.1663 -0.0813 0.0812 0.1321 -0.0915
NDCG -0.1822 -0.2017 -0.1985 -0.1750 0.1894 -0.1894
Recall -0.2183 -0.2288 -0.2118 -0.1681 0.2068 -0.2068
HitsN -0.1395 -0.1164 -0.0658 0.0055 0.0818 -0.0791
MRR -0.1349 -0.1349 -0.1349

0.1397 -0.1166

DegreeVal

Precision 0.0047 0.0472 0.1117 0.2141 0.0944 0.0944
F1 -0.0823 -0.0469 0.0200 0.1416 0.0727 0.0081
NDCG -0.0608 -0.0803 -0.0838 -0.0736 0.0746 -0.0746
Recall -0.1203 -0.1296 -0.1269 -0.1100 0.1217 -0.1217
HitsN -0.0063 0.0171 0.0481 0.0848 0.0391 0.0359
MRR -0.0108 -0.0108 -0.0108

0.0805 -0.0116

DegreeTest

Precision 0.1075 0.1833 0.2924 0.4617 0.2612 0.2612
F1 -0.0669 0.0043 0.1249 0.3375 0.1334 0.1000
NDCG -0.034 -0.0723 -0.0814 -0.0668 0.0636 -0.0636
Recall -0.1678 -0.1856 -0.187 -0.1724 0.1782 -0.1782
HitsN 0.0785 0.1103 0.1407 0.1718 0.1253 0.1253
MRR 0.0727 0.0727 0.0727

0.1524 0.0489

Subgraph Density

Precision 0.2199 0.1646 0.0875 -0.0073 0.1198 0.1162
F1 0.2806 0.2259 0.1353 0.0161 0.1645 0.1645
NDCG 0.2811 0.2891 0.2748 0.2491 0.2735 0.2735
Recall 0.2911 0.2783 0.2399 0.1834 0.2482 0.2482
HitsN 0.2265 0.1842 0.1196 0.0423 0.1432 0.1432
MRR 0.2331 0.2331 0.2331

0.1898 0.1891

30



Published as a conference paper at ICLR 2024

Table 5: The correlation between TCTrain/TCVal/TCTest/DegreeTrain and the GCN’s LP performance
on Citation2. We note that the formal definitions of Absolute Avg. and Basic Avg. are provided in
Section and they represent the average absolute and simple average correlation, respectively, across
the range of @K for the given metric; these are also then calculated overall.

Metric @5 @10 @20 @50 Absolute Avg. Basic Avg.

TCTrain

Precision 0.0839 0.1312 0.1784 0.2157 0.1523 0.1523
F1 0.0849 0.1323 0.1795 0.2165 0.1533 0.1533
NDCG 0.0773 0.1164 0.1585 0.2012 0.1384 0.1384
Recall 0.0860 0.1346 0.1845 0.2265 0.1579 0.1579
HitsN 0.0840 0.1314 0.1791 0.2182 0.1532 0.1532
MRR 0.1229 0.1229 0.1229

0.1510 0.1510

TCVal

Precision 0.0575 0.0868 0.1200 0.1479 0.1031 0.1031
F1 0.0581 0.0874 0.1206 0.1484 0.1036 0.1036
NDCG 0.0545 0.0790 0.1078 0.1377 0.0948 0.0948
Recall 0.0586 0.0884 0.1231 0.1540 0.1060 0.1060
HitsN 0.0574 0.0870 0.1206 0.1500 0.1038 0.1038
MRR 0.0846 0.0846 0.0846

0.1022 0.1022

TCTest

Precision 0.1797 0.2541 0.3313 0.3996 0.2912 0.2912
F1 0.1812 0.2558 0.3328 0.4008 0.2927 0.2927
NDCG 0.1706 0.2365 0.3071 0.3825 0.2742 0.2742
Recall 0.1829 0.2599 0.3401 0.4141 0.2993 0.2993
HitsN 0.1797 0.2550 0.3331 0.4048 0.2932 0.2932
MRR 0.2512 0.2512 0.2512

0.2901 0.2901

DegreeTrain

Precision -0.0288 -0.0406 -0.0536 -0.0689 0.0480 -0.0480
F1 -0.0295 -0.0415 -0.0546 -0.0699 0.0489 -0.0489
NDCG -0.0285 -0.0394 -0.0522 -0.0692 0.0473 -0.0473
Recall -0.0305 -0.0436 -0.0589 -0.0791 0.0530 -0.0530
HitsN -0.0289 -0.0408 -0.0540 -0.0708 0.0486 -0.0486
MRR -0.0421 -0.0421 -0.0421

0.0492 0.0492

DegreeVal

Precision 0.0161 0.0229 0.0300 0.0393 0.0271 0.0271
F1 0.0156 0.0220 0.0289 0.0381 0.0262 0.0262
NDCG 0.0150 0.0199 0.0248 0.0305 0.0226 0.0226
Recall 0.0150 0.0203 0.0252 0.0301 0.0227 0.0227
HitsN 0.0161 0.0232 0.0300 0.0384 0.0269 0.0269
MRR 0.0234 0.0234 0.0234

0.0251 0.0251

DegreeTest

Precision 0.0060 0.0113 0.0190 0.0364 0.0182 0.0182
F1 -0.0009 0.0047 0.0128 0.0314 0.0125 0.0120
NDCG -0.0086 -0.0113 -0.0147 -0.0185 0.0133 -0.0133
Recall -0.0135 -0.0185 -0.0251 -0.0344 0.0229 -0.0229
HitsN 0.0051 0.0081 0.0120 0.0159 0.0103 0.0103
MRR 0.0104 0.0104 0.0104

0.0154 0.0009

Subgraph Density

Precision 0.0809 0.1217 0.1607 0.1916 0.1387 0.1387
F1 0.0823 0.1231 0.1621 0.1926 0.1400 0.1400
NDCG 0.0761 0.1111 0.1476 0.1853 0.1300 0.1300
Recall 0.0842 0.1268 0.1691 0.2063 0.1466 0.1466
HitsN 0.0811 0.1219 0.1618 0.1956 0.1401 0.1401
MRR 0.1144 0.1144 0.1144

0.1391 0.1391
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Table 6: The correlation between TCTrain/TCVal/TCTest/DegreeTrain and the GCN’s LP performance
on Cora. We note that the formal definitions of Absolute Avg. and Basic Avg. are provided in
Section and they represent the average absolute and simple average correlation, respectively, across
the range of @K for the given metric; these are also then calculated overall.

Metric @5 @10 @20 @50 Absolute Avg. Basic Avg.

TCTrain

Precision 0.0985 0.1046 0.1238 0.1571 0.1210 0.1210
F1 0.0989 0.1042 0.1239 0.1597 0.1217 0.1217
NDCG 0.0933 0.0990 0.1088 0.1306 0.1079 0.1079
Recall 0.1020 0.1042 0.1162 0.1568 0.1198 0.1198
HitsN 0.0961 0.1000 0.1226 0.1617 0.1201 0.1201
MRR 0.0869 0.0869 0.0869

0.1181 0.1181

TCVal

Precision 0.0342 0.0456 0.0840 0.0903 0.0635 0.0635
F1 0.0296 0.0406 0.0820 0.0907 0.0607 0.0607
NDCG 0.0215 0.0259 0.0446 0.0526 0.0362 0.0362
Recall 0.0257 0.0322 0.0724 0.0841 0.0536 0.0536
HitsN 0.0331 0.0413 0.0742 0.0932 0.0605 0.0605
MRR 0.0291 0.0291 0.0291

0.0549 0.0549

TCTest

Precision 0.4694 0.4702 0.4667 0.3977 0.4510 0.4510
F1 0.4952 0.4964 0.4948 0.4216 0.4770 0.4770
NDCG 0.4970 0.5239 0.5551 0.5759 0.5380 0.5380
Recall 0.4941 0.5109 0.5448 0.5347 0.5211 0.5211
HitsN 0.4749 0.4909 0.5130 0.4866 0.4914 0.4914
MRR 0.4920 0.4920 0.4920

0.4957 0.4957

DegreeTrain

Precision 0.0751 0.0970 0.1701 0.3268 0.1673 0.1673
F1 -0.0039 0.0237 0.0938 0.2549 0.0941 0.0921
NDCG -0.0156 -0.0276 -0.0283 -0.0191 0.0227 -0.0227
Recall -0.0432 -0.0547 -0.0568 -0.0529 0.0519 -0.0519
HitsN 0.0656 0.0650 0.0862 0.1135 0.0826 0.0826
MRR 0.0307 0.0307 0.0307

0.0837 0.0837

DegreeVal

Precision 0.0433 0.0623 0.1138 0.2248 0.1111 0.1111
F1 -0.0230 0.0012 0.0508 0.1634 0.0596 0.0481
NDCG -0.0235 -0.0336 -0.0369 -0.0361 0.0325 -0.0325
Recall -0.0570 -0.0648 -0.0689 -0.0784 0.0673 -0.0673
HitsN 0.0253 0.0222 0.0308 0.0431 0.0304 0.0304
MRR 0.0144 0.0144 0.0144

0.0602 0.0179

DegreeTest

Precision 0.1669 0.2104 0.3046 0.4890 0.2927 0.2927
F1 0.0537 0.1111 0.2127 0.4149 0.1981 0.1981
NDCG 0.0004 -0.0104 -0.0082 0.0060 0.0063 -0.0031
Recall -0.0599 -0.0702 -0.0760 -0.0781 0.0711 -0.0711
HitsN 0.1406 0.1487 0.1624 0.1865 0.1596 0.1596
MRR 0.1116 0.1116 0.1116

0.1455 0.1153

Subgraph Density

Precision 0.0794 0.0900 0.0796 0.0381 0.0718 0.0718
F1 0.1088 0.1189 0.1066 0.0580 0.0981 0.0981
NDCG 0.1157 0.1378 0.1543 0.1674 0.1438 0.1438
Recall 0.1330 0.1690 0.2015 0.2272 0.1827 0.1827
HitsN 0.0851 0.1109 0.1257 0.1385 0.1151 0.1151
MRR 0.0976 0.0976 0.0976

0.1223 0.1223
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Table 7: The correlation between TCTrain/TCVal/TCTest/DegreeTrain and the GCN’s LP performance
on Citeseer. We note that the formal definitions of Absolute Avg. and Basic Avg. are provided in
Section and they represent the average absolute and simple average correlation, respectively, across
the range of @K for the given metric; these are also then calculated overall.

Metric @5 @10 @20 @50 Absolute Avg. Basic Avg.

TCTrain

Precision 0.3330 0.3735 0.3898 0.3830 0.3698 0.3698
F1 0.3324 0.3803 0.4056 0.4049 0.3808 0.3808
NDCG 0.2831 0.3226 0.3570 0.3879 0.3377 0.3377
Recall 0.3001 0.3481 0.3920 0.4295 0.3674 0.3674
HitsN 0.3386 0.3901 0.4287 0.4603 0.4044 0.4044
MRR 0.3194 0.3194 0.3194

0.3720 0.3720

TCVal

Precision 0.2796 0.2962 0.3224 0.3229 0.3053 0.3053
F1 0.2756 0.2947 0.3291 0.3365 0.3090 0.3090
NDCG 0.2508 0.2662 0.2929 0.3118 0.2804 0.2804
Recall 0.2491 0.2585 0.2928 0.3086 0.2773 0.2773
HitsN 0.2801 0.3049 0.338 0.3496 0.3182 0.3182
MRR 0.2763 0.2763 0.2763

0.2980 0.2980

TCTest

Precision 0.6786 0.698 0.6745 0.6220 0.6683 0.6683
F1 0.7157 0.7385 0.7207 0.6678 0.7107 0.7107
NDCG 0.7037 0.7540 0.7946 0.8300 0.7706 0.7706
Recall 0.7299 0.7797 0.8258 0.8588 0.7986 0.7986
HitsN 0.7127 0.7595 0.7979 0.8216 0.7729 0.7729
MRR 0.7070 0.7070 0.7070

0.7442 0.7442

DegreeTrain

Precision 0.2472 0.3523 0.4591 0.5861 0.4112 0.4112
F1 0.1867 0.2727 0.3872 0.5408 0.3469 0.3469
NDCG 0.1303 0.1645 0.2022 0.2475 0.1861 0.1861
Recall 0.1144 0.1532 0.2047 0.2591 0.1829 0.1829
HitsN 0.2538 0.3181 0.3581 0.3886 0.3297 0.3297
MRR 0.2227 0.2227 0.2227

0.2913 0.2913

DegreeVal

Precision 0.1431 0.1866 0.2255 0.277 0.2081 0.2081
F1 0.1147 0.1582 0.2053 0.2693 0.1869 0.1869
NDCG 0.0845 0.1014 0.1194 0.1429 0.1121 0.1121
Recall 0.0693 0.0880 0.1113 0.1411 0.1024 0.1024
HitsN 0.1438 0.1683 0.1857 0.2148 0.1782 0.1782
MRR 0.1366 0.1366 0.1366

0.1575 0.1575

DegreeTest

Precision 0.3052 0.4412 0.5704 0.7223 0.5098 0.5098
F1 0.1919 0.3133 0.4639 0.6597 0.4072 0.4072
NDCG 0.0949 0.1220 0.1548 0.1975 0.1423 0.1423
Recall 0.0323 0.0562 0.0909 0.1314 0.0777 0.0777
HitsN 0.2745 0.3258 0.3378 0.3369 0.3188 0.3188
MRR 0.2444 0.2444 0.2444

0.2911 0.2911

Subgraph Density

Precision 0.1559 0.1412 0.1168 0.0858 0.1249 0.1249
F1 0.1867 0.1699 0.1420 0.1035 0.1505 0.1505
NDCG 0.2006 0.2097 0.2176 0.2235 0.2129 0.2129
Recall 0.2218 0.2289 0.2411 0.2491 0.2352 0.2352
HitsN 0.1768 0.1799 0.1982 0.2097 0.1912 0.1912
MRR 0.1759 0.1759 0.1759

0.1829 0.1829
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Table 8: The correlation between TCTrain/TCVal/TCTest/DegreeTrain and the GCN’s LP performance
on Pubmed. We note that the formal definitions of Absolute Avg. and Basic Avg. are provided in
Section and they represent the average absolute and simple average correlation, respectively, across
the range of @K for the given metric; these are also then calculated overall.

Metric @5 @10 @20 @50 Absolute Avg. Basic Avg.

TCTrain

Precision 0.1981 0.2358 0.2681 0.2924 0.2486 0.2486
F1 0.1690 0.2216 0.2652 0.2961 0.2380 0.2380
NDCG 0.1195 0.1379 0.1600 0.1831 0.1501 0.1501
Recall 0.0917 0.1142 0.1336 0.1397 0.1198 0.1198
HitsN 0.1932 0.2267 0.2485 0.2513 0.2299 0.2299
MRR 0.1920 0.1920 0.1920

0.1973 0.1973

TCVal

Precision 0.1769 0.2180 0.2653 0.3134 0.2434 0.2434
F1 0.1253 0.1815 0.2462 0.3092 0.2156 0.2156
NDCG 0.0780 0.0846 0.1046 0.1303 0.0994 0.0994
Recall 0.0417 0.0503 0.0672 0.0804 0.0599 0.0599
HitsN 0.1627 0.1882 0.2068 0.2077 0.1914 0.1914
MRR 0.1607 0.1607 0.1607

0.1619 0.1619

TCTest

Precision 0.3769 0.3989 0.4078 0.3909 0.3936 0.3936
F1 0.4011 0.4258 0.4329 0.4088 0.4172 0.4172
NDCG 0.3902 0.4231 0.4547 0.4870 0.4388 0.4388
Recall 0.3809 0.4080 0.4286 0.4335 0.4128 0.4128
HitsN 0.3923 0.4247 0.4463 0.4436 0.4267 0.4267
MRR 0.4097 0.4097 0.4097

0.4178 0.4178

DegreeTrain

Precision 0.2433 0.3108 0.3761 0.4849 0.3538 0.3538
F1 0.1019 0.1970 0.2987 0.4456 0.2608 0.2608
NDCG 0.0477 0.0366 0.0441 0.0715 0.0500 0.0500
Recall -0.0402 -0.0386 -0.0385 -0.0357 0.0383 -0.0383
HitsN 0.2080 0.2404 0.2504 0.2612 0.2400 0.2400
MRR 0.2051 0.2051 0.2051

0.1886 0.1733

DegreeVal

Precision 0.1823 0.2290 0.2849 0.3681 0.2661 0.2661
F1 0.0676 0.1368 0.2220 0.3359 0.1906 0.1906
NDCG 0.0293 0.0164 0.0221 0.0407 0.0271 0.0271
Recall -0.0429 -0.0466 -0.0459 -0.0476 0.0458 -0.0458
HitsN 0.1536 0.1749 0.1831 0.1872 0.1747 0.1747
MRR 0.1573 0.1573 0.1573

0.1408 0.1225

DegreeTest

Precision 0.3073 0.3898 0.4719 0.6133 0.4456 0.4456
F1 0.1251 0.2423 0.3716 0.5624 0.3254 0.3254
NDCG 0.0588 0.0406 0.0480 0.0821 0.0574 0.0574
Recall -0.0537 -0.0565 -0.0605 -0.0575 0.0571 -0.0571
HitsN 0.2615 0.2966 0.3030 0.3099 0.2928 0.2928
MRR 0.2556 0.2556 0.2556

0.2356 0.2128

Subgraph Density

Precision 0.1002 0.0746 0.0414 -0.0146 0.0577 0.0504
F1 0.1732 0.1319 0.0792 0.0030 0.0968 0.0968
NDCG 0.2146 0.2307 0.2357 0.2344 0.2289 0.2289
Recall 0.2475 0.2547 0.2540 0.2428 0.2498 0.2498
HitsN 0.1343 0.1330 0.1338 0.1288 0.1325 0.1325
MRR 0.1430 0.1430 0.1430

0.1531 0.1517
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Table 9: The correlation between TCTrain/TCVal/TCTest/DegreeTrain and the GCN’s LP performance
on Vole. We note that the formal definitions of Absolute Avg. and Basic Avg. are provided in
Section and they represent the average absolute and simple average correlation, respectively, across
the range of @K for the given metric; these are also then calculated overall.

Metric @5 @10 @20 @50 Absolute Avg. Basic Avg.

TCTrain

Precision 0.2725 0.2710 0.2648 0.2287 0.2593 0.2593
F1 0.2985 0.2981 0.2869 0.2401 0.2809 0.2809
NDCG 0.2714 0.3012 0.3300 0.3497 0.3131 0.3131
Recall 0.2946 0.3267 0.3677 0.3917 0.3452 0.3452
HitsN 0.3113 0.3307 0.3694 0.3988 0.3526 0.3526
MRR 0.2721 0.2721 0.2721

0.3102 0.3102

TCVal

Precision 0.1375 0.1717 0.1847 0.1721 0.1665 0.1665
F1 0.1233 0.1690 0.1871 0.1739 0.1633 0.1633
NDCG 0.0931 0.1201 0.1403 0.1479 0.1254 0.1254
Recall 0.0825 0.1251 0.1570 0.1548 0.1299 0.1299
HitsN 0.1347 0.1558 0.1815 0.1814 0.1634 0.1634
MRR 0.1219 0.1219 0.1219

0.1497 0.1497

TCTest

Precision 0.5547 0.4822 0.3937 0.2527 0.4208 0.4208
F1 0.6498 0.5597 0.4449 0.2742 0.4822 0.4822
NDCG 0.7395 0.7712 0.7954 0.8030 0.7773 0.7773
Recall 0.7325 0.7384 0.7367 0.6812 0.7222 0.7222
HitsN 0.6470 0.6529 0.6452 0.6016 0.6367 0.6367
MRR 0.6950 0.6950 0.6950

0.6078 0.6078

DegreeTrain

Precision 0.2103 0.2728 0.3620 0.4508 0.3240 0.3240
F1 0.1387 0.2253 0.3391 0.4508 0.2885 0.2885
NDCG 0.0180 0.0352 0.0760 0.1222 0.0629 0.0629
Recall 0.0238 0.0479 0.1111 0.1993 0.0955 0.0955
HitsN 0.1688 0.1977 0.2551 0.2989 0.2301 0.2301
MRR 0.0512 0.0512 0.0512

0.2002 0.2002

DegreeVal

Precision 0.0312 0.0747 0.1182 0.1758 0.1000 0.1000
F1 -0.0135 0.0414 0.0989 0.1685 0.0806 0.0738
NDCG -0.0527 -0.0455 -0.0336 -0.0153 0.0368 -0.0368
Recall -0.0670 -0.0487 -0.0309 0.0059 0.0381 -0.0352
HitsN 0.0077 0.0180 0.0368 0.0599 0.0306 0.0306
MRR -0.0215 -0.0215 -0.0215

0.0572 0.0265

DegreeTest

Precision 0.3731 0.5111 0.6562 0.8126 0.5883 0.5883
F1 0.2040 0.3944 0.5926 0.7916 0.4957 0.4957
NDCG 0.0004 0.0257 0.0722 0.1330 0.0578 0.0578
Recall -0.0942 -0.0697 -0.0301 0.0419 0.0590 -0.0380
HitsN 0.2320 0.2604 0.2731 0.2529 0.2546 0.2546
MRR 0.1642 0.1642 0.1642

0.2911 0.2717

Subgraph Density

Precision 0.0744 0.0369 -0.0119 -0.0815 0.0512 0.0045
F1 0.1372 0.0860 0.0187 -0.0689 0.0777 0.0433
NDCG 0.2205 0.2341 0.2398 0.2398 0.2336 0.2336
Recall 0.2178 0.2366 0.2495 0.2545 0.2396 0.2396
HitsN 0.1206 0.1493 0.1688 0.2138 0.1631 0.1631
MRR 0.2026 0.2026 0.2026

0.1530 0.1368
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Table 10: The correlation between TCTrain/TCVal/TCTest/DegreeTrain and the GCN’s LP performance
on Reptile. We note that the formal definitions of Absolute Avg. and Basic Avg. are provided in
Section and they represent the average absolute and simple average correlation, respectively, across
the range of @K for the given metric; these are also then calculated overall.

Metric @5 @10 @20 @50 Absolute Avg. Basic Avg.

TCTrain

Precision 0.5189 0.5084 0.4977 0.5009 0.5065 0.5065
F1 0.5420 0.5307 0.5146 0.5090 0.5241 0.5241
NDCG 0.5298 0.5502 0.5636 0.5741 0.5544 0.5544
Recall 0.5097 0.5176 0.5343 0.5475 0.5273 0.5273
HitsN 0.5208 0.5278 0.5407 0.5502 0.5349 0.5349
MRR 0.5300 0.5300 0.5300

0.5294 0.5294

TCVal

Precision 0.3994 0.4316 0.4550 0.4647 0.4377 0.4377
F1 0.3753 0.4250 0.4573 0.4670 0.4312 0.4312
NDCG 0.3183 0.3535 0.3790 0.3909 0.3604 0.3604
Recall 0.2670 0.3085 0.3525 0.3744 0.3256 0.3256
HitsN 0.3213 0.3483 0.3675 0.3840 0.3553 0.3553
MRR 0.3666 0.3666 0.3666

0.3820 0.3820

TCTest

Precision 0.7083 0.7000 0.6739 0.6506 0.6832 0.6832
F1 0.7898 0.7629 0.7138 0.6678 0.7336 0.7336
NDCG 0.8475 0.8897 0.9029 0.9072 0.8868 0.8868
Recall 0.8573 0.8858 0.8931 0.8759 0.8780 0.8780
HitsN 0.8276 0.8566 0.8604 0.8495 0.8485 0.8485
MRR 0.8163 0.8163 0.8163

0.8060 0.8060

DegreeTrain

Precision 0.4998 0.5294 0.5664 0.5947 0.5476 0.5476
F1 0.5082 0.5411 0.5788 0.6017 0.5575 0.5575
NDCG 0.4247 0.4572 0.4914 0.5120 0.4713 0.4713
Recall 0.4338 0.4598 0.5201 0.5615 0.4938 0.4938
HitsN 0.4998 0.5073 0.5391 0.5664 0.5282 0.5282
MRR 0.4369 0.4369 0.4369

0.5197 0.5197

DegreeVal

Precision 0.3185 0.3577 0.3797 0.3924 0.3621 0.3621
F1 0.3022 0.3546 0.3840 0.3956 0.3591 0.3591
NDCG 0.2285 0.2617 0.2858 0.2985 0.2686 0.2686
Recall 0.1997 0.2384 0.2830 0.3093 0.2576 0.2576
HitsN 0.2729 0.2938 0.3165 0.3339 0.3043 0.3043
MRR 0.2677 0.2677 0.2677

0.3103 0.3103

DegreeTest

Precision 0.6833 0.7492 0.7935 0.8118 0.7595 0.7595
F1 0.5477 0.6726 0.7556 0.7968 0.6932 0.6932
NDCG 0.3062 0.3404 0.3676 0.3790 0.3483 0.3483
Recall 0.1840 0.2103 0.2429 0.2532 0.2226 0.2226
HitsN 0.3940 0.3555 0.3381 0.3283 0.3540 0.3540
MRR 0.4468 0.4468 0.4468

0.4755 0.4755

Subgraph Density

Precision 0.2482 0.2491 0.2211 0.2022 0.2302 0.2302
F1 0.2943 0.2849 0.2420 0.2108 0.2580 0.2580
NDCG 0.3560 0.3819 0.3792 0.3765 0.3734 0.3734
Recall 0.3588 0.3928 0.3777 0.3607 0.3725 0.3725
HitsN 0.3440 0.3891 0.3837 0.3745 0.3728 0.3728
MRR 0.3510 0.3510 0.3510

0.3214 0.3214
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H EDGE REWEIGHTING ALGORITHM

Here we present our edge reweigting algorithm to enhance the link prediction performance by mod-
ifying the graph adjacency matrix in message-passing. We normalize the adjacency matrix to get eA
and bA as defined in the algorithm below.

Algorithm 1: Edge Reweighting to Boost LP performance
Input: The input training graph (A,X, ETrain,D), graph encoder f⇥f , link predictor g⇥g , update interval

�, training epochs T , warm up epochs Twarm and weights � for combining the original adjacency
matrix and the updated adjacency matrix. The validation adjacency/degree matrix A

Val/DVal that
only includes edges in the validation set.

1 Compute the normalized adjacency matrices bA = D
�0.5

AD
�0.5, eA = D

�1
A, eAVal = D

Val�1
A

Val

2 eA0 = bA
3 for ⌧ = 1, . . . , T do
4 if ⌧%� 6= 0 or ⌧  Twarm then
5 eA⌧ = eA⌧�1

/* Message-passing and LP to update model parameters */
6 for mini-batch of edges Eb ✓ ETrain do
7 Sample negative edges Eb,�, s.t., |Eb,�| = |Eb|
8 Compute node embeddings H⌧ = f

⇥
⌧�1
f

(eA⌧ ,X)

9 Compute link prediction scores E⌧
ij = g

⇥
⌧�1
g

(H⌧
i ,H

⌧
j ), 8(i, j) 2 Eb [ ETrain

10 Lb,⌧ = � 1
|Eb| (

P
eij2Eb logE

⌧
ij +

P
emn2Eb,� log(1�E

⌧
mn))

11 Update ⇥
⌧
g  ⇥

⌧�1
g �r

⇥
⌧�1
g

Lb,⌧ , ⇥
⌧
f  ⇥

⌧�1
f �r

⇥
⌧�1
f

Lb,⌧�1

/* Update adjacency matrix to enhance weighted TC */
12 if ⌧%� == 0 and ⌧ > Twarm then
13 Compute node embeddings H⌧ = f

⇥
⌧�1
f

(eA⌧�1,X);

14 if Using training neighbors to reweigh then
15 Average pooling the neighborhood embeddings N⌧ = eAH

⌧

16 if Using validation neighbors to reweigh then
17 Average pooling the neighborhood embeddings N⌧ = eAVal

H
⌧

18 Compute the link prediction scores S⌧
ij =

exp(g⇥⌧
g
(N⌧

i ,H⌧
j ))

Pn
j=1 exp(g⇥⌧

g
(N⌧

i ,H⌧
j ))

19 Update the adjacency matrix eA⌧  bA+ �S⌧

20 Return: eA⌧ , f⇥⌧
f
, g⇥⌧

g

I REWEIGH EDGES FOR BASELINES WITHOUT MESSAGE-PASSING

As discussed in Section 4, we enhance node TCTrain by reweighing the edges in message-passing.
However, for some state-of-the-art baselines Chamberlain et al. (2022) that directly employ the
neural transformation rather than message-passing to obtain node embeddings, we reweigh edges in
computing the binary cross entropy loss in the training stage as follows:

L = � 1

|Eb|
X

eij2Eb

(wij

X

eij2Eb

logE⌧
ij + wmn

X

emn2Eb,�

log(1�E⌧
mn)), (30)

where wij = �(�(Ni,Nj)) quantifies the edge weight between vi and vj with � being the Sigmoid
function and � being the cosine similarity. Ni is the node embedding of vi obtained in Eq. (2).
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Table 11: Comparing the efficiency (s) between X and our proposed Xrw.

Baseline Cora Citeseer Pubmed Collab Reptile Vole
GCN 19,5 15.5 158.4 2906 18.3 53.8
GCNrw 21.1 17.2 158.5 2915 17.0 53.0
SAGE 22.3 17.0 189.8 2970 20.9 61.2
SAGErw 23.8 20.5 192.4 2982 21.7 61.9
BUDDY 3.41 4.51 15.51 906.18 2.50 4.99
BUDDYrw 3.98 4.92 14.56 907.52 2.62 5.06

J COMPARING THE EFFICIENCY BETWEEN BASELINE AND THEIR
AUGMENTED VERSION BY TC

Here we compare the running time (s) of each baseline and their corresponding augmented ver-
sion by uniformly testing them on the same machine in Table 11. We can see that equipping our
proposed reweighting strategy could enhance the performance but only lead to marginal computa-
tional overhead. This is because firstly, we only change the weight of existing edges and hence the
number of edge weights to be calculated is linear to the network size. Secondly, we leverage the
pre-computed node embeddings to compute the edge weights. Thirdly, we only periodically update
the edge weights.

K REWEIGHTING TRAINING NEIGHBORS BASED ON THEIR CONNECTIONS TO
TRAINING NEIGHBORS OR VALIDATION NEIGHBORS

As discussed in Obs. 3, due to the topological distribution shift, the newly joined neighbors of one
node become less and less connective to the previous neighbors of that node. Therefore, the train-
ing neighbors of one node share fewer connections with the testing neighbors of that node than the
validation neighbors. This motivates us to further improve our reweighting strategy based on vali-
dation neighbors rather than training neighbors. The intuition is that when performing message-
passing to aggregate training neighbors’ information for each node, we want to incorporate
those training neighbors with more connections to that node’s validation neighbors instead of
those training neighbors with more connections to that node’s training neighbors. Technically,
we include additional steps 14-17 to consider two scenarios in Algorithm H: (1) reweighting based
on the connections of training neighbors to training neighbors and (2) reweighting based on the
connections of training neighbors to validation neighbors. We experiment on Collab to compare the
performance of these two scenarios in Table 12. We can see the performance of reweighting based
on validation neighbors is higher than reweighting based on training neighbors. This demonstrates
that the validation neighbors are more connected to the testing neighbors, justifying the existence of
the topological distribution shift.

Table 12: Comparing the link prediction performance on Collab between reweighting based on
training neighbors and reweighting based on validation neighbors

Performance GCN SAGE
No Train Val No Train Val

Hits@5 18.94±1.20 19.48±0.75 22.36±0.32 11.25±1.24 20.52±2.35 24.34±0.07
Hits@10 31.24±3.44 32.69±1.00 35.15±2.42 26.41±1.88 31.23±3.52 37.15±2.44
Hits@50 50.12±0.22 52.77±1.00 53.24±0.22 49.68±0.25 51.87±0.10 52.69±0.26
Hits@100 54.44±0.49 56.89±0.17 57.28±0.10 54.69±0.18 56.59±0.19 57.27±0.25
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L EXPLAINING WHY THE CURVE OF LINK PREDICTION PERFORMANCE HAS
SEVERAL FAST DOWN IN FIGURE 7(A)

Here we delve deep into the reason why we encounter several fast-down performances in Figure 7(a).
We ascribe it to the weight clip 3. We hypothesize that the loss landscape has several local minimums
and hence by weight clipping with higher upper bound constraints, our learning step would be
also larger so that the model could jump out of its original local optimum and keep finding some
other better local optimum, which corresponds to the fast downtrend (first jump away from one
local minimum and then find another better local minimum). We further empirically verify our
hypothesis by visualizing the performance curve for each training process with different clipping
weights in Figure 23. We can clearly see that as the clipping threshold becomes lower (upper bound
decreases), we observe less fast downtrend decreases.

Figure 23: From left to right, we constrain GCN-based link predictor with fewer upper bounds by
clipping using a lower threshold. We can see the number of performance fast downtrend decreases.
We hypothesize that the loss landscape has several local minimums and hence by weight clipping
with lower upper bounds, our learning step would be also smaller so that the model could not jump
out of its origin local optimum and hence we end up with fewer fast downtrends.

3Following the publically available implementation on GCN/SAGE on Collab link prediction, we employ
the weight clip every time after parameter update
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